
COSMO/MESSy Implementation
Documentation

Astrid Kerkweg1,

& Patrick Jöckel2,3

1 Institute for Atmospheric Physics
University of Mainz

55099 Mainz, Germany
kerkweg@uni-mainz.de

2 Max Planck-Institut für Chemie
Abteilung Luftchemie

D-55128 Mainz, Germany
3 now at: Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Institut für Physik der Atmosphäre
Oberpfaffenhofen, D-82234 Weßling, Germany patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “The 1-way on-line cou-
pled atmospheric chemistry model system MECO(n): Part I: The limited-area atmospheric
chemistry model COSMO/MESSy” in Geosci. Model Dev. (2011), available at: http://www.
geosci-model-dev.net

Date: June 9, 2011

2 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

Contents

1 Introduction 3

2 The generic MESSy submodels 3

2.1 SWITCH/CONTROL . 3

2.2 QTIMER . 3

2.3 TIMER . 4

2.4 BLATHER . 4

2.5 MPI . 4

2.6 TRANSFORM . 6

2.7 TRACER . 6

2.8 CHANNEL . 6

2.9 DATA . 7

2.10 TOOLS . 12

3 Rank identifier 14

4 Changes in the COSMO model code 16

4.1 Changes due to MESSy CONTROL . 16

4.2 Changes due to the MESSy CHANNEL data structure 17

4.3 Changes due to the MESSy CHANNEL I/O . 18

4.4 Changes due to the implementation of TRACER . 19

4.5 Changes due to the implementation of TIMER . 19

4.6 Changes due to the implementation of regular submodels 20

4.7 Other changes . 20

5 Changes in the MESSy code 20

5.1 Changes in the regular submodels . 20

5.2 Changes in the generic submodels . 21

5.2.1 CONTROL . 21

5.2.2 TRACER . 21

5.2.3 CHANNEL . 22

5.2.4 DATA . 23

5.2.5 TRANSFORM . 23

5.2.6 TIMER . 23

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 3

1 Introduction

This documentation provides additional information about the implementation of the MESSy interface
into the COSMO model. MESSy contains two types of MESSy submodels:

• The so-called “generic submodels” build the infrastructure of MESSy, e.g., the time manage-
ment by TIMER, the tracer interface by TRACER or the memory and I/O management by
CHANNEL.

• The “regular submodels” are MESSy submodels describing a specific process or supplying diag-
nostic tools.

In Sect. 2 provides some more details about the generic submodels. This includes a very short de-
scription also of those generic submodels, for which no modification (or extension) were required for
the implementation in the COSMO model. For the generic submodels discussed in the corresponding
article some more information and the details about required variables are provided. As the intro-
duction of the rank identifier into the SMIL of the regular submodels is the only major expansion
required in the regular submodels for inclusion into COSMO, Sect. 3 provides the naming rules for
the definition of the rank identifiers and the list of the currently defined rank identifiers. Last, but
not least the code changes required within the COSMO model and the MESSy code are documented
in Sects. 4 and 5, respectively.

2 The generic MESSy submodels

The generic MESSy submodels, which had to be changed for the implementation of MESSy into
COSMO have been discussed in the corresponding article. Nevertheless, some additional information
are provided here. Furthermore, all other generic MESSy submodels connected to the COSMO model
are briefly described. The principles of the MESSy structure and most generic submodels are explained
by Jöckel et al. (2005, 2010).

2.1 SWITCH/CONTROL

The generic submodel SWITCH provides the logical switches to (de-)activate the individual regular
MESSy submodels. For this purpose a logical switch (USE_XXX, with XXX name of the submodel) for
each regular MESSy submodel is defined. The default setting for these switches is .FALSE., meaning
that the respective submodel is deactivated. Setting the USE_XXX switch .TRUE. in the namelist file
switch.nml activates the respective submodel. Only the activated process models take part in the
respective simulation. These switches are used in CONTROL, where at each MESSy entry point
the respective regular submodels are called, if they are activated. As generic submodels are vital for
the simulation, the subroutines of the generic submodels are always called and thus no switches are
required for the generic submodels.

2.2 QTIMER

The generic MESSy submodel QTIMER allows for the optimal usage of the queue time of job scheduler
systems and performs some runtime diagnostics. It is described in detail by Jöckel et al. (2010).

4 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

2.3 TIMER

The changes imposed on the COSMO model due to the implementation of the TIMER submodel are
described in Sect. 5.2.6 and in the corresponding article. A user manual for TIMER is included in the
supplement of Jöckel et al. (2010).

2.4 BLATHER

The generic submodel BLATHER provides routines for output into the log-file. Three types of mes-
sages are distinguished:

• info: These are informations for the model user, e.g., a message as “no tracer is available, thus
no dry deposition is required, switching off dry deposition”.

• warning: A warning provides an information to the user, that something might be wrong, with
the simulation setup, e.g., if photolysis rates required for the chemistry solver are not available,
a message “J O3 not in channel jval gp” could be written.

• error: An error message leads inevitably to a termination of the simulation. First the error
message is written to the log-file and afterwards the simulation is terminated, e.g., in case of
different dimension arrays “array size of temp (GP) is incompatible to fill” the simulation has
to be terminated.

The two message types info and warning are available in the SMCL and in the interface layers
(BMIL/SMIL(, whereas error is an interface-only subroutine. The subroutines in the BMIL (indicated
by a _bi at the end of the subroutine name) call the core routines for the PE handling the I/O only,
in order to keep the log-file output as short and clear as possible.

2.5 MPI

The adaptions required for the generic submodel MPI are shown in the corresponding article. Here,
the list of the MPI variables set by MPI and used in MESSy is provided. First of all, most variables
determining the parallel environment in the COSMO model and three functions are used into the
MESSy submodel:

! COSMO
USE data_parallel, ONLY: imp_reals, imp_grib, imp_integers &

, imp_byte, imp_character, imp_logical &
, icomm_world, p_all_comm => icomm_world &
, p_nprocs => nproc, p_pe => my_world_id &
, nprocx, nprocy, isubpos, icomm_compute &
, num_compute, nboundlines, my_cart_id

USE parallel_utilities, ONLY: distribute_field, gather_field, gather_values

Hereby, the MESSy internally used variables p_all_comm, p_nprocs, and p_pe are assigned by re-
naming the respective COSMO variables during USagE. p_all_comm is the model wide communicator,
p_nprocs the number of PEs (=tasks) occupied by the model and p_pe is the rank of the current
PE in the model wide communicator. Additionally, the INTEGER, PARAMETER p_io is defined. In
this variable the rank in the model wide MPI-communicator of the PE dedicated to input and output

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 5

management (I/O-PE) is stored. The LOGICALs p_parallel and p_parallel_io inidicate, whether
the model runs in parallel mode and, whether the current PE is the I/O-PE. Note: In the COSMO
model compute- and I/O-PEs can be chosen independently. For COSMO/MESSy the “classical” setup
is required with all PEs being compute PEs and one PE acting also as I/O-PE.

In order to simplify the logical structure and to minimise the pre-processor usage in the generic
submodels, two dummy variables are defined imitating the TYPEs describing the decomposition in
ECHAM5/MESSy:

TYPE decomp
LOGICAL :: lreg = .TRUE.

END TYPE decomp
!
TYPE(decomp), POINTER :: dcg
TYPE(decomp) :: dcl

The switches are used mostly in messy_main_channel_bi. Much more if-statements would be required
in the code without this dummy definition.

The structure of the gather_gp and scatter_gp subroutines is adopted from the respecitive
ECHAM5/MESSy routines. The routines are overloaded for 4-, 3- and 2-dimensional arrays. In
the routines for the 4- and 3-dimensional arrays the array is reduced by one rank and the routine is
called again for the array which is smaller by one rank. In the gather_gp routine for the 2-dimensional
field the COSMO model subroutine gather_field is called. Consequently, the scatter_gp routine
for 2-dimensional fields calls the COSMO model subroutine distribute_field.

The subroutine p_bcast is twelvefold overloaded, broadcasting

1. a 1-dimensional INTEGER array of kind i8,

2. a 1-dimensional INTEGER array of kind i4,

3. one INTEGER value of kind i4,

4. a 1-dimensional REAL array of kind dp,

5. a 1-dimensional REAL array of kind sp,

6. a REAL variable of kind dp,

7. a REAL variable of kind sp,

8. a 1-dimensional LOGICAL array,

9. a LOGICAL scalar,

10. a 1-dimensional CHARACTER array of arbitrary length,

11. a CHARACTER of arbitrary length and

12. a 4-dimensional REAL array of kind dp.

dp, sp, i4 and i8 are the KIND parameters as defined in messy_main_constants_mem.f90:

INTEGER, PARAMETER :: sp = SELECTED_REAL_KIND(6,37)
INTEGER, PARAMETER :: dp = SELECTED_REAL_KIND(12,307)
INTEGER, PARAMETER :: i4 = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: i8 = SELECTED_INT_KIND(14)

6 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

2.6 TRANSFORM

For the COSMO/MESSy model, the generic submodel TRANSFORM consists of one subroutine only,
i.e., locate_in_decomp. This subroutine determines for a point with given geographical coordinates
on which PE number and in which grid box this point is located. It returns the respective PE
number and the index pair denoting the respective grid point in the local parallel-decomposed grid.
In addition to the geographical coordinates, locate_in_decomp can also handle input in the rotated
coordinates of the COSMO model grid. The optional parameter lrotated must be set .TRUE., if
rotated geographical coordinates are handed to the subroutine. An extra challenge of the regional
model in contrast to the global model is, that a correct geographical point can be outside of the model
domain. In this case a warning is written into the log-file.

2.7 TRACER

The TRACER submodel is described in detail in Jöckel et al. (2008). The definition of the tracer sets
and the changes to the code are described in detail in the corresponding article and in Sect. 5.2.2 in
this manual.

2.8 CHANNEL

The main points of the CHANNEL implementation into COSMO/MESSy have been discussed in the
corresponding article. Here, we like to emphasise some points:

• The COSMO model output is obsolete in COSMO/MESSy as it is completely replaced by the
output management of the generic submodel CHANNEL. The CHANNEL output is much more
flexible, as it allows for the simultaneous output of the instantaneous values, e.g., the average
w.r.t. to time, the standard deviation or minimum and maximum value of one channel object.
Therefore, the primary memory of a channel object always contains the instantaneous values of
the field.

• CHANNEL provides the possibility to write also the original COSMO model output files. This
is achieved by setting the CHANNEL namelist switch L_BM_OUTPUT_ORIG .TRUE.. For the
instantaneous fields of the COSMO model this leads to the usual result. But, this does not work
for the accumulated fields: as the primary memory of the MESSy channel objects and the output
field of the COSMO model is the same, the fields always contain the instantaneous values. This
is because CHANNEL requires a higher priority as the original output in order to allow the
on-line statistics with respect to time.

• The original COSMO &GRIBOUT namelists in the namelist file INPUT_IO of the COSMO model
can still be used to organize the output. This is achieved by mirroring the output requested in
the &GRIBOUT namelists into individual channels. Thus, for each &GRIBOUT namelist and for the
four namelist parts ’m’, ’p’, ’z’ and ’s’ an individual channel is created. This is performed in the
subroutine messy_channel_cosmo_output which is called from main_channel_init_coupling.
Here, references to channel objects are defined for output variables which are already channel
objects. For those output variables only locally calculated in the output routines of COSMO
new channel objects have to be defined.

The COSMO model provides diagnostic output fields, which are not defined throughout the
simulation in the COSMO model, but are calculated each output time step as intermediate
variable in the output routines. In order to output these fields also via CHANNEL, the requested

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 7

output fields have to be allocated as channel objects. This is done for each element within the
subroutine make_cosmo_channel, which is called for each part of a &GRIBOUT namelist from
messy_channel_cosmo_output.

As each of the channels is a concatenated POINTER list, within the output routines a loop over
the list is performed and the respective channel object is calculated instead of the intermediate
field used in src_output otherwise.

Because of the additionally calculated fields, it must be ensured, that these output routines are
called for each channel output step. This is regulated by using the LOGICAL lforce_calcout.
This is determined in the channel subroutine main_channel_update_timer which is called in
main_channel_global_end. lforce_calcout is .TRUE. if one of the channels originating from
the &GRIBOUT namelists is written in the next time step.

• A second challenge for the channel output is that in the COSMO model the number of time
levels established by the time integration scheme are an additional dimension of the prognostic
fields or, more precisely, that the meaning of the different indices of this additional rank is
shifted every time step by index rotation, in order to avoid copying the fields from the actual
to the previous time slice at the end of the time step. Thus, the field for one time level is not
assigned to the same memory all the time. This is in conflict to the CHANNEL idea, as each
channel object is always fixed in memory. In order to get CHANNEL output for the individual
time slices, additional channel objects have to be defined, on which the current values of one
time slice are copied. Alternatively, a POINTER rotation could be implemented into CHANNEL,
which is not trivial and computing time consuming.

• The tracers in COSMO/MESSy are not implemented as all other prognostic variables in COSMO,
but with each time slice unambiguously assigned to a fixed space in memory. This is because the
tracers are automatically associated to the channels. Hence, the time slices for the tracers are
available as individual variables in COSMO/MESSy. In order to allow the access of the different
tracer time slices via the indices nnew, nnow or nold, the POINTER ARRAY xt_array has been
defined. The POINTER ARRAY is allocated to the number of time levels required by the time
integration scheme. At the beginning of each time step, the individual POINTERs of the POINTER

ARRAY are associated to the respective time levels of the tracer variable. For instance, for the 2-
time-level integration scheme xt_array(nnew)%ptr => xt and xt_array(nnow)%ptr => xtm1
is set.

2.9 DATA

The main task of the generic submodel DATA is to collect the fields of the basemodel and make them
available for the MESSy submodels. In case of COSMO/MESSy DATA additionally has to

1. rename the COSMO model variables to the names used in the MESSy submodels,

2. save variables, which are required in the MESSy submodels, but are computed within the
COSMO model and are only locally defined there,

3. define and associate the POINTERs and channel objects to the tendencies and “m1” time slices
of prognostic variables and

4. compute additional fields that are available from ECHAM5, and thus used in MESSy submodels,
but are not available in the COSMO model.

8 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

Table 1: Dimension variables as defined in ECHAM5/MESSy and COSMO. ECHAM5 uses a vector
blocking with vector length (nproma) and a “number of grid point blocks”(ngpblks) as horizontal
dimensions. The product of both is not necessarily the number of horizontal grid boxes. In fact,
nproma is a namelist parameter and ngpblks is chosen such that the product is equal or larger than
the number of grid boxes. To reach exactly the number of grid boxes the vector length of the grid
point block (ngpblks) can be shorter than nproma. This shorter vector length is given by npromz,
whereas kproma is the length of the vector in the current “grid point block” during the local loop. As
the parallel decomposition of the COSMO grid is organized differently, the values corresponding to
nproma, npromz and kproma is always ie.

ECHAM5 COSMO meaning in meaning in
name name ECHAM5 COSMO model
nlev ke number of vertical levels number of vertical levels
nlevp1 ke+1 number of vertical interface

levels
number of vertical interface levels

nproma ie vector length 1st horizontal dimension of parallel
decomposed grid

npromz ie vector length of last vector in
row

1st horizontal dimension of parallel
decomposed grid

kproma ie nproma or npromz 1st horizontal dimension of parallel
decomposed grid

ngpblks je number of grid point blocks 2nd horizontal dimension of parallel
decomposed grid

ngl je tot number of latitudinal grid
boxes in the global grid

2nd horizontal dimension of model
domain

Each of the four points above is explained in detail below. Especially, lists of those variables currently
affected and examples are provided.

1. Rename COSMO variables:

(a) An important subset of these variables are the dimension variables. Naturally, COSMO
and ECHAM5 use different variable names. As ECHAM5/MESSy as global model works
with a more sophisticated type of decomposition, which proves to be valuable in terms of
work balance, e.g., for radiation processes. Therefore some variables are separately defined
for ECHAM5, where in COSMO one variable is sufficient. Table 1 lists the ECHAM5
dimension variables in the first column. The second column shows the COSMO variable
with an analoguos meaning and the third and fourth column explain the meaning of the
variables in the ECHAM5 and the COSMO model, respectively.

(b) Some diagnostic variables have to be renamed as ECHAM5/MESSy deals with dif-
ferent variable names as COSMO. They are simply USEd to a different name, e.g.
slf => fr_land. The table provides a list of the variables currently affected:

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 9

MESSy name COSMO name meaning
slf fr land sea-land fraction
alake fr lake lake fraction
prl rain gsp rain from grid-scale precipitation
prc rain con rain from convective precipitation
vgrat plcov fraction of plant cover
srfl sobs net surface radiative flux

(c) A third way of renaming is by defining channel object references for already existing
channel objects. This does not require additional memory. In this case, a new channel
object with a different name than the original channel object in the channel ’COSMO’ is
created with new_channel_object_reference (see electronic supplement of Jöckel et al.
(2010)):

’COSMO ORI’ ’COSMO’ meaning
objects name objects name
’U 10M’ ’u10’ 10-m wind velocity in x-direction
’V 10M’ ’v10’ 10-m wind velocity in y-direction
’RAIN GSP’ ’prl’ rain from grid-scale precipitation
’RAIN CON’ ’prc’ rain from convective precipitation
’TTENS’ ’tte’ temperatur tendency
’QVTENS’ ’qte’ specific humidity / water vapour tendency
’FR LAND’ ’slf’ sea-land fraction
’SOBS RAD’ ’srfl’ net surface radiative flux

Here, ’COSMO’ is the channel defined in DATA, whereas the channel ’COSMO_ORI’ hosts all
variables normally allocated within src_allocation.

2. Save local COSMO variables:
Some variables, also required in MESSy submodels are computed in the COSMO model, but they
are only locally defined here. For these variables POINTERs and the respective channel objects
are defined within DATA. The POINTERs are USEd by the respective module and internally used
instead of the locally defined variable. This is done for variables computed in

• the soil models of COSMO:

MESSy name local name COSMO module meaning
cvs xf snow / zf snow src soil(multlay) snow covered fraction
cvw zf wi src soil(multlay) water covered fraction
rco leaf zrstom src soil(multlay) leaf stomatal resistence

cvs and cvw are directly used, whereas the local variable zrstom is copied to the channel
object rco_leaf.

Additionally, in DATA, POINTERs for the deep soil temperature (tsoil) and the soil wetness
(ws) are assigned to the respective soil variables of the COSMO model (see also item 3):

– lmulti_layer = .TRUE.: tsoil => t_so and ws => w_so

– lmulti_layer = .FALSE.: tsoil => t_cl and ws => w_g1

• the radiation scheme:
cossza_2d is the cosine of the solar zenith angle. The local variable zsmu0 is copied to the
channel object in organize_radiation.

10 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

• the convection scheme:
The convection scheme is a special case, as most of the saved variables are not calculated
by the original COSMO code, but other variables only locally available in the convection
scheme of the COSMO model are required for their computation. Thus the channel objects
are defined in DATA and USEd into the convection scheme and calculated there. These
changes are currently only implemented for the Tiedtke convection scheme, i.e., only the file
src_conv_tiedtke is modified. The variables listed below are saved, as they are required
in the MESSy submodels CVTRANS and/or SCAV:

– massfu: updraft mass flux
– u_detr: updraft detrainment flux
– u_entr: updraft entrainment flu
– massfd: downdraft mass flux
– d_detr: downdraft detrainment flux
– d_entr: downdraft entrainment flux
– cv_precflx: convective precipitation flux
– cv_snowflx: convective snow precipitation flux
– cv_lwc: convective cloud water content
– cv_iwc: convective cloud ice content
– cv_rform: convective (rain) precipitation formation
– cv_sform: convective (snow) precipitation formation

3. Define and associate POINTERs (copy data)
The following POINTERs are allocated as new channel objects and associated within DATA:

• The POINTERs for the deep soil temperature (tsoil) and the soil wetness (ws) are assigned
to the respective soil variables of the COSMO model:

– lmulti_layer = .TRUE.: tsoil => t_so and ws => w_so

– lmulti_layer = .FALSE.: tsoil => t_cl and ws => w_g1

• 3-dimensional POINTERs to the ’m1’ time level of most prognostic variables: um1, vm1,
wm1, tm1_3d, qm1_3d, ppm1_3d , xim1_3d, xlm1_3d are allocated1. The ’m1’ time level of
the respective fields is copied (!) to the respective POINTER in main_data_global_start.
These have to be copies, as the prognostic variables contain one dimension less in MESSy
than in the COSMO model (as all time levels are bundled in one variable).

• tte_3d and qte_3d are 3-dimensional POINTERs associated to the current tendencies of the
temperature and water vapour, respectively.

• qcm1_3d and qcte_3d are the respective variables for the cloud water content in
COSMO/MESSy, which are not available in ECHAM5/MESSy.

• qr_3d, qs_3d, qg_3d, t_so_3d and w_so_3d: The variable qr, qs, qg, t_so and w_so
are defined on all time levels, but no tendencies are defined for these variables in
the COSMO model. Thus the POINTERs contain copies of the ’m1’ time level in
main_data_global_start.

1The different variable names (with and without 3d at the end are due to different treatment in ECHAM5/MESSy.
While the POINTERs for um1, vm1 and wm1 are USEd from ECHAM5 and the channel objects are declared in DATA
using new channel object reference, the POINTERs ending with 3d are defined in DATA and allocated as channel
objects in DATA. They are copies of the respective variables at certain points in the ECHAM5 code. In COSMO/MESSy
these POINTERs are all defined and assigned in DATA.

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 11

• ps, t_s, t_snow, w_snow, w_i and qv_s are 2-dimensional fields defined on all time levels
required for the time integration scheme, thus the variables ps_2d, t_s_2d, t_snow_2d,
w_snow_2d, w_i_2d and qv_s_2d provide copies of the ’m1’ time level of the respective
variable.

• qte and tte are 2-dimensional POINTERs, which point to the 2D tendencies of water vapour
and temperature, respectively. They are re-set in every imitated local loop in CONTROL
within the subroutine main_data_2d_set_jrow.

• tm1 and qm1 are 3-dimensional POINTERs associated to the ’m1’ time level of the tempera-
ture and the water vapour, respectively. Note: tm1_3d and qm1_3d are copies of the values,
whereas tm1 and qm1 are associated to the respective variable fields.

4. Define channel objects and compute fields
The POINTERs and the respective channel objects of the following fields are defined and computed
in DATA:

• the pressure fields on full and interface levels, press_3d and pressi_3d, respectively,

• the geopotential on full and interface levels, geopot_3d and geopoti_3d, respectively,

• the humid mass of a grid box (grmass), the dry mass of a grid box (grmassdry) and the
volume of a grid box (grvol),

• the cosine of the transformed latitude for grid mids (crlat_2d) and interfaces (crlati_2d),
respectively,

• geographical latitude (philat_2d) and longitude (philon_2d),

• decomposition diagnostic: the local index of the first (decomp_gp_ie) and the second
(decomp_gp_je) horizontal dimension and the respective PE number (decomp_gp_pe),

• the area covered by the respective grid box (gboxarea_2d),

• slm is calculated in main_data_global_start. It is zero for sea points and 1 for land
points. A grid box is a land grid box, if the land-sea fraction is larger than 0.5.

• wsmx is the field capacity of soil, and is calculated in main_data_global_start.

• tslm1 is the temperature of the ground surface for soil. It is set to the ’m1’ time level of
the COSMO variable t_s in main_data_global_start.

• tsw is the temperature of the ground surface for water and is set to the ’m1’ time level of
t_g for a land-sea fraction smaller than 0.5 and a t_g > 0., otherwise it is set to 273.15.

• glac is the fraction of land covered by glaciers. Due to lack of data this is set to zero at
the moment in main_data_init_memory.

• seaice is the sea-ice fraction. Due to lack of data this is set to zero at the moment in
main_data_init_memory.

• wind10_2d is the 10m wind velocity and is calculated from u_10m and v_10m in
main_data_global_start.

• az0 is the roughness length and is calculated in main_data_global_start from the
COSMO model variable gZ0

• The following variables are mainly required for the MESSy submodel DRYDEP. Until
now, they are not computed in the COSMO model itself, thus a subroutine based on the
calculations in the ECHAM5-vdiff code, was added, to compute these variables:

– fws is the “soil moisture stress function” and is calulated directly in
main_data_global_start.

12 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

– tvir is the virtual temperature which is also calculated directly in
main_data_global_start.

– tvl, tvw, tvi: These are the surface virtual temperatures for land, water and ice re-
spectively. They are calculated in the DATA private subroutine calc_boundary_layer
called from main_data_vdiff.

– cdnl, cdnw, cdni: These are the neutral drag coefficients for land, water and ice, re-
spectively. They are calculated in the DATA private subroutine calc_boundary_layer
called from main_data_vdiff.

– cfml, cfmw, cfmi: These are the momentum drag coefficients for land, water and ice, re-
spectively. They are calculated in the DATA private subroutine calc_boundary_layer
called from main_data_vdiff.

– cfncl, cfncw, cfnci : These are exchange parameters for land, water and ice, respec-
tively. They are calculated in the DATA private subroutine calc_boundary_layer
called from main_data_vdiff.

– ril, riw, rii: These are the Richardsen numbers for land, water and ice, respectively.
They are calculated in the DATA private subroutine calc_boundary_layer called from
main_data_vdiff.

2.10 TOOLS

The generic submodel TOOLS contains a variety of basemodel and submodel independent tools, which
are required from more than one submodel, e.g., string conversion, conversions between different
humidity variables (relative/specific humidity, saturation pressure), and so forth. Additionally, it
provides the definition of the 1D- to 4D-POINTER ARRAYs: POINTER ARRAYs are arrays of POINTERs

of a specific dimension. For instance, a 2D-POINTER ARRAY example_ptr is defined by:

TYPE (PTR_2D_ARRAY), DIMENSION(:), POINTER :: example_ptr => NULL()

with

TYPE PTR_2D_ARRAY
REAL(DP),DIMENSION(:,:),POINTER :: PTR
END TYPE PTR_2D_ARRAY

The following list is a snapshot of the current status of TOOLS. We emphasize, that this submodel is
dynamically growing and thus changes are possible at any time.

• read_nml_open, read_nml_check, read_nml_close: These subroutines standardise the access
to the submodel namelists. They open the file, check it and close the file after reading.

• find_next_free_unit: For the opening of a file in Fortran95 a handle of type INTEGER is
required (the so-called unit). The function find_next_free_unit locates the first free unit in
a given integer interval.

• strcrack: The subroutine strcrack splits a string into small pieces which are separated by a
specific character. The string and the character are both input parameters of the subroutine.
Output of the subroutine are the number of pieces resulting from the string crack and the string
pieces themselves. Before returning, the trailing spaces are deleted from the string pieces.

• str: str consists of four overloaded functions converting a LOGICAL, an INTEGER, a REAL(sp)

and a REAL(dp) into a string.

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 13

• str2chob: The subroutine str2chob converts a string to lists of channel object names. str2chob
is used for the interpretation of some submodel namelists, e.g., SCOUT, S4D, and so forth.

• ucase: ucase converts all letters of a string into uppercase letters.

• match_wild: The function match_wild compares strings with strings containing wildcards, look-
ing for a match of those strings.

• iso2ind: iso2ind searches for an index of an isosurface level.

• ind2val: This subroutine assigns to a variable val a value of a field at given index level and
given fraction below the index level.

• int2str: This subroutine converts an INTEGER to a string of given length using fill values
provided as parameter of the subroutine call.

• nn_index: The subroutine looks for the nearest neighbour(s) of a given value in an ordered list.

• ns_index: The subroutine searches for surrounding neighbour(s) of a given value in an ordered
list.

• flipp_array: This function reverses a 1D array, e.g., (1,5,3,8) → (8,3,5,1).

• bilin_weight: The subroutine calculates weights for bilinear interpolation.

• init_convect_tables: This subroutine initialises the lookup table for specific convection codes.

• Spline1D and Splint1D: Subroutines for spline interpolation (Press et al., 2007).

• full2half: This subroutine returns a variable on half level pressures given a 3-D variable (but
single jrow) on full level pressures.

• cair_wmo: This function calculates the concentration of air, i.e., molecules / cm3 based
on WMO definition of relative humidity ωv/ωvs with ωv: water vapor mass mixing ratio
(kg H2O)/(kg dry air) and ωvs: saturation mass mixing ratio.

• cair_trad: This function calculates the concentration of air, i.e., molecules / cm3 based on
traditional definition of relative humidity p_v / psat.

• psat_mk: This function calculates the saturation vapour pressure over liquid water and ice
following Murphy and Koop (2005).

• relhum2mr: This function calculates water mixing ratio (mol H2O)/(mol dryair) as function
of relative humidity defined as p(H2O)/psat(H2O)

• relhumwmo2mr: This function calculates the water mixing ratio (mol H2O)/(mol dryair) as
function of relative humidity defined by w(H2O)/wsat(H2O) with w: (kg H2O)/(kg dryair).

• rh2mr: This function calculates the water mixing ratio (mol H2O)/(mol dryair) as function of
relative humidity using the functions relhum2mr or relhumwmo2mr.

• spec2relhum: This function converts specific humidity into relative humidity.

• spec2relhumwmo: This function converts specific humidity into relative humidity as defined by
WMO (Jacobson, 2000).

• rel2spechum: This function converts relative to specific humidity.

14 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

• rel2spechumwmo: This function converts relative to specific humidity as defined by WMO (Ja-
cobson, 2000).

3 Rank identifier

All rank identifiers are defined in the include file messy_main_ppd_si.inc2, which is included into
each SMIL file. The design of the Rank Identifier (RI) names follows some basic rules:

• X, Y and Z denote an index in the respective direction, (mostly jp for X, jrow for Y and jk for
Z).

• C stands for colon, i.e., the uppercase C indicates that a colon is part of the flipped ranks. If the
colon replaces a specific rank this is indicated by a lowercase c following the rank letter, e.g., Zc
indicates that a vertical column (1:nlev) is replaced.

• V denotes the number of vertical layers (nlev).

• K indicates special vertical indices, e.g., ktop, kbot.

• N indicates a loop index for tracers (jt).

• D denotes a specific tracer inDex (idt).

• I and J indicate specific indices, not included into the above possibilities (idx, idx2)

• numeric deviations from an index are indicated by

– m1 denotes an index minus 1 (-1),

– p1 denotes an index plus 1 (+1),

– if not an index variable, but an exact number is used as index this number is part of the
rank identifier, e.g., if the first layer is addressed.

– c2 denotes that the colon starts from 2 and not from 1 (2:)

– lowercase additions can be used to specify the meaning of an index to enhance the readability
of the code, e.g., vertical indices indicating the top and bottom of a cloud are named Ktop
and Kbot, respectively.

• the order of the rank index identifiers is: 1st horizontal direction, 2nd horizontal direction,
vertical direction and number dimension (e.g., tracer, aerosol mode number, etc.). The position
of C depends on the rank a colon represents.

Table 2 lists all currently defined rank identifiers. Note: the first two rank identifiers listed in the table
_RI_Ca_ and _RI_Cb_ indeed each empty for one of the basemodel. This is helpful for fields which
consists of 2 horizontal (h1, h2 and one number (n) dimension. In ECHAM5/MESSy the order is
(h1,n,h2) and in COSMO/MESSy (h1,h2,n). If now this field is repeatedly adressed for different
indices in the number dimension and the second horizontal dimension is only replaced by a colon, the
easiest way to subsitute this is, to include the ,: in the place were it is required and to leave an empty
space at the other side.

2ppd stands for pre-processor directive

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 15

Table 2: Currently defined rank identifers.
rank ECHAM5/MESSy COSMO/MESSy
identifier replacement replacement
RI Ca ,:
RI Cb ,:
RI CD :,idt idt,:
RI CI idx,: :,idx
RI Va ,nlev
RI Vb ,nlev
RI VD nlev,idt idt,nlev
RI VN nlev,jt jt,nlev
RI Y1 1,jrow jrow,1
RI Y1D 1,idt,jrow jrow,idt,1
RI Y1N 1,jt,jrow jrow,jt,1
RI YC :,jrow jrow,:
RI YCC :,:,jrow :,jrow,:
RI YcV nlev,: :,nlev
RI YcVm1 nlev-1,: :,nlev+1
RI YcZ nlev,: :,nlev
RI YI idx,jrow jrow,idx
RI YIc 1:idx,jrow jrow,1:idx
RI YIp1c 1:idx+1,jrow jrow,1:idx+1
RI YJc 1:idx2,jrow jrow,1:idx2
RI YKbot kbot,jrow jrow,kbot
RI YKlev mlev,jrow jrow,mlev
RI YKtop ktop,jrow jrow,ktop
RI YlocC :,locrow locrow,:
RI YlocV nlev,locrow locrow,nlev
RI YlocVm1 nlev-1,locrow locrow,nlev-1
RI YlocVM nlev,jm,locrow locrow,jm,nlev
RI YV nlev,jrow jrow,nlev
RI YVm1 nlev-1,jrow jrow,nlev-1
RI YVp1 nlev+1,jrow jrow,nlev+1
RI YZ jk,jrow jrow,jk
RI YZc 1:nlev,jrow jrow,1:nlev
RI YZc2 2:nlev,jrow jrow,2:nlev
RI YZc2p1 2:nlev+1,jrow jrow,2:nlev+1
RI YZcm 1:mlev,jrow jrow,1:mlev
RI YZcm1 1:nlev-1,jrow jrow,1:nlev-1
RI YZcM 1:nlev,jm,jrow jrow,jm,1:nlev
RI YZm1 jk-1,jrow jrow,jk-1
RI YZp1 jk+1,jrow jrow,jk+1
RI YZM jk,jm,jrow jrow,jm,jk
RI YZN jk,jt,jrow jrow,jt,jk
RI Za ,jk
RI Zb ,jk
RI ZcmlN ml1:nlev,jt jt,ml1:nlev
RI ZcN 1:nlev,jt jt,1:nlev
RI ZD jk,idt idt,jk
RI ZN jk,jt jt,jk

16 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

4 Changes in the COSMO model code

All changes to the COSMO model code have been applied using the pre-processor directive MESSY:

#ifdef MESSY
... new code ...
#endif

or

#ifndef MESSY
... original COSMO code ...
#else
... modified code
#endif

Thus, the changes listed below are only active if the model is configured with --enable-MESSY (de-
fault). Otherwise the original COSMO model code is compiled.

4.1 Changes due to MESSy CONTROL

• lmorg: The following MESSy CONTROL entry points are called directly from lmorg:

– messy_initialize (end of Section 1)

– messy_new_tracer (end of Section 1)

– messy_init_coupling(end of Section 5)

– messy_init_tracer(end of Section 5)

– messy_init_loop(in subroutine initialise_loop, end of Section 1)

– messy_global_start(begin Section 6.2, before call to organize_physics)

– messy_local_start(begin Section 6.2, before call to organize_physics)

– messy_vdiff(begin Section 6.2, before call to organize_physics)

– messy_physc (begin Section 6.3)

– messy_global_end (part 1: begin Section 6.3, part 2: before Section 6.9)

– messy_write_output (end of Section 6.9)

– messy_free_memory before organize_allocation (’dealloc’,..)

• organize data: after the COSMO variable table is set up, the MESSy entry point
messy_init_memory is called.

• organize physics: After calling the convection schemes of COSMO the MESSy CONTROL
entry point messy_convec is called.

• src setup: First, the MESSy subroutine initialising MPI variables for MESSy is called
(messy_mpi_initialise). Second, the MESSy CONTROL entry point messy_setup is called.
In this subroutine, the TIMER is initialised, thus the COSMO time variables are reinitialised
according to the TIMER settings.

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 17

4.2 Changes due to the MESSy CHANNEL data structure

• data fields: CHANNEL manages the data fields internally as 4D POINTERs. Thus all fields
allocated as channel objects need to be defined as POINTERs instead of allocatable fields. Thus,
for most REAL fields the definition was changed as

#ifndef MESSY
REAL(KIND=ireals), TARGET, ALLOCATABLE :: &

#else
REAL(KIND=ireals), POINTER :: &

#endif

• data lheat nudge: For the same reason as in data_fields the declaration
of the three fields tt_lheat, tinc_lhn and qrsflux has been changed from
’REAL(KIND=ireals), ALLOCATABLE ::’ to ’REAL (KIND=ireals), POINTER ::’.

• data lhn diag: For the same reason as in data_fields the declaration of the first
data field block was changed from ’REAL(KIND=ireals), TARGET, ALLOCATABLE ::’ to
’REAL(KIND=ireals), POINTER ::’.

• data modelconfig: The variables vcoord, sigmr, hhlr, vcflat, svc1, svc2, p0sl, t0sl,
dt0lp, delta_t and h_scal are now defined as POINTERs, in order to make some of the defini-
tions of the model configuration and the reference atmosphere accessible via channel objects.

• data runcontrol: The variables psm0, dsem0, msem0, kem0 and qcm0 are defined as POINTERs

for the same reasons as in the aforementioned data_*-files.

• dfi initialisation: As in MESSy most allocatable fields are defined as POINTERs instead, the
test ’IF (ALLOCATED(X))’ must be exchanged by ’IF (ASSOCIATED(X))’.

• lmorg: messy_write_output is called after organize_data (’result’,..) to trigger CHAN-
NEL output.

Additionally, the test ’IF (ALLOCATED(X))’ is changed to ’IF (ASSOCIATED(X))’ for POINT-

ERs.

• organize satellite: synme7 and synmsg are defined as channel objects in MESSy. Thus they
are not (de-)allocated here.
Furthermore, as qs is a POINTER, it needs to be tested for ’IF (ASSOCIATED(qs))’ instead of
’IF (ALLOCATED(qs))’.

• src allocation: the subroutines alloc_meteofields and dealloc_meteofields are com-
pletely skipped. Instead the CHANNEL subroutines messy_COSMO_create_channel and
messy_dealloc_meteofields are called, which treat the fields as channel objects.

• src artifdata: as the variables p0sl, t0sl, dt0lp, delta_t and h_scal are rank 0-POINTER in
COSMO/MESSy, in order to place their contents into the CHANNEL files, they cannot be part
of a namelist. Thus in case of MESSy the original COSMO variables are renamed while used

USE data_modelconfig, &
ONLY: p0sl_mc => p0sl &

, t0sl_mc => t0sl &
, dt0lp_mc => dt0lp &
, delta_t_mc => delta_t &
, h_scal_mc => h_scal

18 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

in order to keep the names in the namelist as they are. After reading the namelist the values
from the namelist variables are copied to the original COSMO model variables.
t_cl and t_s_bd are POINTERs and need to be tested for ’IF (ASSOCIATED(X))’ instead of
’IF (ALLOCATED(X))’.

• src integrals: test ’IF (ALLOCATED(X))’ changed to ’IF (ASSOCIATED(X))’ for POINTERs.

• src meanvalues: test ’IF (ALLOCATED(X))’ changed to ’IF (ASSOCIATED(X))’ for POINT-

ERs.

• src relaxation: test ’IF (ALLOCATED(X))’ changed to ’IF (ASSOCIATED(X))’ for POINTERs.

• src setup vartab: all if-statements for setting var(.,.,.)%idef_stat = -1, if the variable is
not allocated, are changed to ’IF (ASSOCIATED(X))’.

4.3 Changes due to the MESSy CHANNEL I/O

• organize data:

– In order to calculate the diagnostic variables not only when COSMO output is scheduled,
but also if MESSy output is required, the logic of the call of these calculations is changed
accordingly.

– For the differentiation between the individual channel names for each &GRIBOUT namelist
an additional INTEGER is parameter to the subroutine calls of organize_output.

– Additionally, in the subroutine organize_output the information, if the COSMO model
requestes output within this time step is required (only if original COSMO output is re-
quested in addition to the CHANNEL output). For this, the additional logical parameter
lcout is defined and forwarded to organize_output.

– Furthermore the output of original COSMO model restart files is inhibited,as restarts are
organised via CHANNEL.

• src input: the reading of the restart files is skipped. Instead messy_channel_read_restart is
called in Section 3.

• src output: Three points had to be taken into account by changing src_output.

– Diagnostic output variables in COSMO are only calculated prior to the output (not each
time step). Thus the diagnostic calculation needs to be called also when CHANNEL output
is requested. Additionally, the diagnostic variables need to be made available as channel
objects.
For this, the subroutine organize_output has two more parameters in case of MESSy.
The number of the &GRIBOUT namelist and a LOGICAL indicating whether original COSMO
model output is requested for this specific time step. Furthermore, the variable zvarlev in
the subroutine organize_output is defined as 4D POINTER and associated to the respective
channel object allocated beforehand in the subroutine messy_channel_cosmo_output in
CHANNEL. The respective channel depends on the number of &GRIBOUT namelists and the
requested output variable group (’m’,’s’,’p’ or ’z’) and is accessed within the subroutine
organize_output.

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 19

– Usually, the output of the original COSMO model output is omitted, but it is possi-
ble to request the original COSMO model output in addition to the CHANNEL output
(L_BM_ORIG_OUTPUT=.TRUE.). Thus, COSMO output files are only created, written and
closed if L_BM_ORIG_OUTPUT=.TRUE. (to be set in &CPL in channel.nml).

– As CHANNEL provides the possibitity to apply on-line statistics, i.e., calculation of av-
erage, standard deviation, minimum and maximum values w.r.t. time etc., the primary
memory requires to contain the instantaneous values. Thus it is not possible to keep the
accumulation of the COSMO model (even if L_BM_ORIG_OUTPUT=.TRUE.), which also ren-
ders the re-setting unnecessary.

For the output of the variable T_SO, which is in COSMO dimensioned by 0:ke_soil+1 but
as MESSy POINTER needs to be accessed by the dimensions 1:ke_soil+2 due to POINTER

arithmethics, kbot is always 1 in case of MESSy.

4.4 Changes due to the implementation of TRACER

The treatment of the MESSy tracers corresponds to the implementation for the water vapour in the
COSMO model. This also applies to the switch yef_adv_qx determining the advection scheme applied
to water vapour, which now is also valid for all MESSy tracers. In our opinion an extra switch for
tracers is not required, as the inconsistencies arising from treating tracers with different advection
schemes would be too large. The following files have been modified for the implementation of the
tracers:

• hori diffusion

• slow tendencies

• src advection rk

• src leapfrog

• src relaxation

• src runge kutta

• src slow tendencies rk

• lmorg

Additionally, the subroutine complete_tendencies_tracer has been added to the file
src_slow_tendencies_rk, which is called from src_runge_kutta.

4.5 Changes due to the implementation of TIMER

• lmorg: messy_timer_reset_time is called at the very end of the time step to set the TIMER
to the next time step.

• src setup: In organize_setup the time variables of COSMO are adjusted to the TIMER status
(see Sect. 5.2.6).

20 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

4.6 Changes due to the implementation of regular submodels

• src conv tiedtke: For the implementation of the MESSy submodel CVTRANS some fields
need to be stored from or calculated within the convection scheme (see Sect. 2.9 item 2).

• src radiation: The MESSy variable cossza_2d is USEd and the local COSMO variable zsmu0
is copied to it.

• src soil and src soil multlay: cvs and cvw are USEd (and renamed to the local variable)
instead of the local variables xf_snow and zf_wi. The locally defined variable zrstom is stored
in the variable rco_leaf for later use.

4.7 Other changes

• data parameters: The COSMO model and MESSy must use the same KIND parameters.
Thus ireals and iintegers are defined as dp and i4, respectively, which are declared in the
MESSy module messy_main_constants_mem. Additionally, the KIND parameters idouble and
isingle are determined by dp and sp, respectively.

• dfi initialisation: The statement functions fpvsw, fpvsi and fqvs have been rewritten as
functions according to the Fortran95 standard.

• lmorg: Before the call to final_environment an information file is produced indicating whether
the simulation is finished or stopped (interrupted), by calling messy_blather_endfile_bi or
info_bi (from the MESSy generic submodel BLATHER), respectively.

• organize physics: In case of a restart, in section ’init’ ntke must be set to nnow instead of
nnew for a two-time level time integration scheme.
hnextrad is set only for the very beginning of the simulation. In case of a restart, hnextrad is
restart attribute and thus read from the restart file instead of being set by hstart

• src artifdata: the statement functions fspw and fsqv are rewritten as functions.

5 Changes in the MESSy code

Due to the MESSy interface structure, no changes are usually required in the submodel core layer,
when a new basemodel is applied. However, small extensions had to be implemented in the core layer
of some generic submodels, as some specifics were missing as required for the COSMO model. In the
following the changes to the individual submodels and some general changes are shown.

5.1 Changes in the regular submodels

The regular submodels only required minor changes due to the implementation of the COSMO base-
model. The most important change was the introduction of the rank identifiers in the SMIL of the
submodels, which are explained in detail in the main article and Sect. 3 of this manual. They had
to be introduced into all SMIL files of the regular submodels. Additionally, when the submodels de-
fine their own representations, the different order of spacial dimensions had to be taken into account
within the SMIL files. After the application of these two types of changes the SMIL files are now also
independent of the basemodel. Thus now, the interface files of the regular submodels can be “plugged
in” as was already possible for the core files. This is also indicated in the name of the files. While so

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 21

farECHAM5 was the only 3D model MESSy was connected to, the SMIL files ended with _e5.f90.
For the SMIL files now connected to both, the ECHAM5 and COSMO the files, end now with _si.f90
and are located in the messy subdirectory messy/smil instead of messy/echam5/smil.

For some regular submodels certain calculations or namelist options are disabled, as they are not
applicable in the COSMO model. For instance, the emission and the dry deposition submodels with
calls from the entry point messy_vdiff in ECHAM5/MESSy have the choice whether to assign the
change of a tracer directly to the tracer by changing the tendency of the tracer, or to change the
“lower boundary flux” (xtems), which is further used in the ECHAM5 routine vdiff where the tracer
is directly mixed by vertical diffusion throughout the lower levels. As this flux does not exist in the
COSMO model, the regular submodels called from messy_vdiff in COSMO/MESSy, can assign the
tracer changes only by changing the tracer tendency.

5.2 Changes in the generic submodels

As the generic submodels build the interface between the basemodels and the MESSy interface, most
changes have been applied to the basemodel interface layer (BMIL) of these submodels. Basemodel
dependent code is embraced by the pre-processor directive #ifdef COSMO ... #endif in case of
COSMO dependent code and #ifdef ECHAM5 ... #endif in case of ECHAM5 dependent code.

5.2.1 CONTROL

Due to the different structures of the basemodels, some entry points for MESSy have to be called in
a different order. Especially messy_global_end was split into to parts. The first part (called with
flag 1) is called before organize_physics and allows the regular submodels to update the tracer
tendencies a last time before the time integration takes place. The second call, invokes the generic
submodels, especially the tracer mass diagnostics of TRACER PDEF. This split is necessary, as the
vertical diffusion and the time integration are intermeshed. The mass diagnostic should be applied
after all processes are calculated, requiring a call after the time integration in the case of COSMO.

5.2.2 TRACER

The TRACER submodel is described in detail by Jöckel et al. (2008). Within the generic submodel
TRACER different tracer sets can be defined. As the COSMO model is a grid point model, only a
grid-point (GP) tracer set is defined. For the dimensioning of the tracer set the number of required
instances is important. In the ECHAM5/MESSy model, which uses a leap-frog time integration scheme
4 instances are defined: the three time levels for the time integration scheme and the tendencies.
In COSMO/MESSy the number of time-levels is determined at run-time. A two- or a three-level
time integration scheme can be chosen. Thus the number of instances is different for different time
integration schemes. In addition to the time levels and the tendencies, in COSMO/MESSy two
additional instances are required for the boundary data. The order of the first three instances is fixed
for GP tracers. xt and xtm1 are the first and the second instances, respectively, while the tendency
xtte is the third instance. The other instances can be freely chosen, they are combined in the so-called
“extended” memory of the tracer set. As the boundary data for the tracers is always required, whereas
the third time level is only necessary for the three-time level integration scheme, the boundary data
occupies the fourth and fifth instance, whereas the third time level, if required, is located at the sixth
instance. For the access to the individual instances POINTERs to the subarrays of the tracer field are
provided:

22 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

• The variables xt, xtm1 and xtf provide access to the three different time levels.

• xtte points to the instance for the tracer tendencies and

• xt_bd accesses the two instances for the boundary data.

As discussed before, the COSMO model uses another approach for the handling of the time levels
as MESSy. In the COSMO model the number of time levels is just an additional dimension of the
prognostic variables. The individual time levels are accessed via indices, which are rotated every
time step. This has the advantage, that the prognostic fields are not to be copied every time step.
Thus one time level is not always located at the same memory space, which is in contradiction to the
CHANNEL memory management philosophy. Therefore the tracers are treated in the “MESSy-way”,
i.e., each time level has a fixed place in the memory and needs to be copied to the ’m1’ level at the
end of the time step. In order to make the tracers available also via time indices, a POINTER ARRAY

(xt_array) is defined within the TRACER submodel. Each of the POINTERs accesses one time level
and is assigned each time step according to the time level indices nnew, nnow and nold.

TRACER PDEF is a tool to diagnose tracer mass and correct for negative numerical overshoots.
In the COSMO model the time integration is intermixed with the calculation of other transport
processes especially vertical diffusion. In order to provide the tracer diagnsis really at the, i.e., after all
processes changing the tracers have been applied, TRACER PDEF is called after the time integration
in COSMO. Therefore, the newly calculated tracer mixing radio (xt) is corrected in COSMO instead
of the tendency as done in ECHAM5/MESSy. The TRACER PDEF subroutine tracpdef_integrate
was changed accordingly.

5.2.3 CHANNEL

The BMIL module of the generic submodel CHANNEL is split into general applicable code and
basemodel specific code. To put all basemodel specific code together in one module file reduces the
readability of the code a lot. Thus, for the CHANNEL submodel BMIL file include-files have been
established containing the basemodel specific code. The include-file for the COSMO model is named
messy_main_channel_c4.inc and the one for ECHAM5 is named messy_main_channel_e5.inc. The
main module file messy_main_channel_bi.f90 contains those code parts used by all basemodels.
Nevertheless, minor basemodel dependent code parts exist also in the *bi-file:

• The date and time string used for the names of the channel output files is larger for COSMO by
two characters. This is because the COSMO model can use time step lengths smaller than one
minute, thus, to promote output for each time step, the seconds have been added to the date
string, e.g., 20100324_004000 instead of 20100324_0040 for ECHAM5/MESSy.

• The memory required for COSMO, which is normally allocated in the subroutine
alloc_meteofields is allocated by defining the respective channel objects in the subroutine
messy_COSMO_create_channel. This subroutine is also called from organize_allocation.
The channel defined in messy_COSMO_create_channel is named ’COSMO_ORI’. It only serves
as communication interface and not for regular output. Afterwards, in channel_init_memory
additionally attributes are set for the ’COSMO_ORI’ channel in the COSMO specific subroutine
set_COSMO_ORI_attributes. The call to this subroutine is located in messy_main_channel_bi,
whereas the subroutine itself is part if the COSMO specific include file. Basically, these are the
same attributes for the netCDF-output of the COSMO-CLM model as implemented by the
CLM-Community.

A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation 23

• The original COSMO output, defined in the &GRIBOUT namelist of COSMO, is associated to
channels. Four different types of output are distinguished:

– the fields on model levels (marker ’m’),

– fields interpolated on pressure levels (marker ’p’),

– fields interpolated on height levels (marker ’z’) and

– output from the RTTOV library (satellite images, marker ’s’).

For each of these four data types a channel is defined, which name ends with the respective
marker. As more than one &GRIBOUT namelist can be defined in the namelist file INPUT_IO the
channels are enumerated in addition. Three digits are reserved for this in the channel name.
Thus the channels mirroring the COSMO output are named COSMOm001, COSMOp001, COSMOz001,
COSMOs001, COSMOm002, COSMOp002, COSMOz002, COSMOs002, and so forth.

• The restarts are handled by the CHANNEL and TIMER submodels and no longer via the
COSMO restart facility. Nevertheless, CHANNEL makes use of the data structure as defined in
organize_data listing the COSMO variables required for the restart. Additional to the usual
CHANNEL restart attributes, some additional restart attributes are defined for COSMO/MESSy:

– hnextrad indicates when the radiation is called the next time in COSMO.

– irefatm, ivctype and nfltvc define which type of reference atmosphere and vertical co-
ordinate have been used for the production of the restart files. To be consistent, COSMO
simulations started from restart files have to use the same reference atmosphere and vertical
coordinate as the previous simulation.

– nnew, nnow, nold, i.e., the indices indicating the individual time levels of the time integra-
tion scheme must be known for a restart to access the correct time level after restart.

5.2.4 DATA

The generic submodel DATA highly depends on the basemodel. Therefore, no code at all is shared
between the different basemodels, i.e., a complete new code block enclosed in the pre-processor di-
rectives #ifdef COSMO ... #endif was added to the module. The contents of the DATA submodel
are discussed in detail in Sect. 2.9, therefore we refrain from further discussion here.

5.2.5 TRANSFORM

Grid transformations can be very basemodel specific. Therefore, the generic MESSy submodel
TRANSFORM consists also of two independent code blocks for COSMO and ECHAM5. As in DATA,
these are seperated by pre-processor directives.

5.2.6 TIMER

The TIMER was implemented into the MESSy sytem in the course of the implementation of MESSy
into the COSMO model. It is based on the time management routines of ECHAM5, which have
been developed by Ingo Kirchner (previously Max-Planck-Institute for Meteorology, currently Freie
Universität Berlin, Germany). In addition to the functionalities incorporated into the ECHAM5
time management routines, the generic MESSy submodel TIMER provides the possibility to over-
write the TIMER settings by a time setup of the basemodel and vice versa. This is achieved

24 A. Kerkweg and P. Jöckel: COSMO/MESSy Implementation Documentation

by the subroutines named starting with timer_set_ or timer_get_, respectively. Usually, the
TIMER should determine the basemodel timing. Thus, in COSMO/MESSy the COSMO model
time variables are re-initialised by the TIMER. This is partly achieved by calling the subroutines
timer_get_delta_time, timer_get_calendar and timer_get_date from the COSMO model sub-
routine organize_setup. The other initialisations are achieved by calling the COSMO specific TIMER
subroutine messy_timer_COSMO_reinit_time. This routine is called from organize_setup and, in
case of a restart, from the generic submodel CHANNEL. This subroutine computes

• hstart and nstart,

• the COSMO counters

– hlastmxt, hnextmxt, nlastmxt and nnextmxt for the time interval required for T_MIN and
T_MAX computation and

– hlastmxu, hnextmxu, nlastmxu and nnextmxu determining the interval for the maximum
10m wind speed as well as the gust variables vgust_con and vgust_dyn,

• the strings containing the current date yakdat1 and yakdat2.

References

Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, Cambridge University Press, 2000.

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth
Submodel System (MESSy) - a new approach towards Earth System Modeling, Atmos. Chem. Phys.,
5, 433–444, 2005.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S.,
and Kern, B.: Development Cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci.
Model Dev., 3, 717–752, 2010.

Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., and Pozzer, A.: Technical
note: Coupling of chemical processes with the modular earth submodel system (MESSy) submodel
TRACER, Atmos. Chem. Phys., 8, 1677–1687, 2008.

Murphy, D. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric
applications, Q. J. R. Meteorol. Soc., 131, 1539–1565, 2005.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B.: Numerical Recipes 3rd Edition:
The Art of Scientific Computing, Cambridge University Press, 2007.

