Journal Metrics

  • IF value: 6.086 IF 6.086
  • IF 5-year<br/> value: 6.174 IF 5-year
  • SNIP value: 1.812 SNIP 1.812
  • IPP value: 5.140 IPP 5.140
  • SJR value: 3.969 SJR 3.969
  • h5-index value: 29 h5-index 29
Geosci. Model Dev. Discuss., 4, 3485-3598, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD.
Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation
X. Liu1, R. C. Easter1, S. J. Ghan1, R. Zaveri1, P. Rasch1, X. Shi1, J.-F. Lamarque2, A. Gettelman2, H. Morrison2, F. Vitt2, A. Conley2, S. Park2, R. Neale2, C. Hannay2, A. M. L. Ekman3, P. Hess4, N. Mahowald5, W. Collins6, M. J. Iacono7, C. S. Bretherton8, M. G. Flanner9, and D. Mitchell10
1Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
2National Center for Atmospheric Research, Boulder, Colorado, USA
3Department of Meteorology and Bert Bolin Centre for Climate Research, Stockholm University, Sweden
4Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
5Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA
6Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
7Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
8Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
9Department of Atmospheric, Oceanic & Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, Michigan, USA
10Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, USA

Abstract. A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles.

Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases, e.g., simulated sulfate and mineral dust concentrations at surface over the oceans are too low. Simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. There biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.

Citation: Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation, Geosci. Model Dev. Discuss., 4, 3485-3598, doi:10.5194/gmdd-4-3485-2011, 2011.
Search GMDD
Discussion Paper
    Final Revised Paper