Evaluation of the Community Multiscale Air Quality (CMAQ) model v5.0 against size-resolved measurements of inorganic particle composition across sites in North America

C. G. Nolte1, K. W. Appel1, J. T. Kelly2, P. V. Bhave3, K. M. Fahey1, J. L. Collett Jr.4, L. Zhang5, and J. O. Young1

1Atmospheric Modeling and Analysis Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
2Air Quality Assessment Division, Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
3International Centre for Integrated Mountain Development, Kathmandu, Khumaltar, Lalitpur, Nepal
4Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
5Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada
Abstract

This work evaluates particle size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model using Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements at 18 sites across North America. Size-resolved measurements of particulate SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, Na$^+$, Cl$^-$, Mg$^{2+}$, Ca$^{2+}$ and K$^+$ are compared to CMAQ model output for discrete sampling periods between 2002 and 2005. The observation sites were predominantly in remote areas (e.g. National Parks) in the United States and Canada, and measurements were typically made for a period of roughly one month. For SO$_4^{2-}$ and NH$_4^+$, model performance was consistent across the US and Canadian sites, with the model slightly overestimating the peak particle diameter and underestimating the peak particle concentration compared to the observations. Na$^+$ and Mg$^{2+}$ size distributions were generally well represented at coastal sites, indicating reasonable simulation of emissions from sea spray. CMAQ is able to simulate the displacement of Cl$^-$ in aged sea spray aerosol, though the extent of Cl$^-$ depletion relative to Na$^+$ is often underpredicted. The model performance for NO$_3^-$ exhibited much more site-to-site variability than that of SO$_4^{2-}$ and NH$_4^+$, with the model ranging from an underestimation to overestimation of both the peak diameter and peak particle concentration across the sites. Computing PM$_{2.5}$ from the modeled size distribution parameters rather than by summing the masses in the Aitken and accumulation modes resulted in differences in daily averages of up to 1 µg m$^{-3}$ (10 %), while the difference in seasonal and annual model performance compared to observations from the IMPROVE, CSN and AQS networks was very small. Two updates to the CMAQ aerosol model – changes to the assumed size and mode width of emitted particles and the implementation of gravitational settling – resulted in small improvements in modeled size distributions.
1 Introduction

A detailed understanding of the size, chemical composition, and atmospheric concentration of particulate matter (PM) is needed to assess its effects on human health, visibility, ecosystems, and climate. Assessments of these various PM effects are typically done with mathematical models, and our confidence in the models is established through rigorous evaluation against ambient measurements. The mass concentration, size distribution, and bulk chemical composition of atmospheric PM are most often measured separately, and models are typically evaluated against these independent measures (e.g., Simon et al., 2012). However, it is well established that the PM composition varies considerably with particle size, and these size-resolved chemical characteristics govern the optical and radiative properties of PM. Because the aerodynamic behavior of PM is also a strong function of particle size, the size distributions of different chemical components also influence the human health and environmental effects of PM by affecting where particles deposit in the respiratory tract (Asgharian et al., 2001) or whether they are transported to sensitive ecosystems (Scheffe et al., 2014).

Inertial cascade impactors are the most robust devices for collecting size-resolved ambient particles and analyzing their chemical composition (e.g., Marple et al., 1991). Because operating a cascade impactor is labor-intensive and costly, their use has been restricted historically to field studies at individual locations or multi-site campaigns within small geographic regions (e.g., Herner et al., 2005). Previously, size-composition distributions simulated by the Community Multiscale Air Quality (CMAQ) model were evaluated against Micro-Orifice Uniform Deposit Impactor (MOUDI) measurements of inorganic particle components at three coastal urban sites in Tampa, Florida during May 2002 using CMAQ’s standard modal aerosol formulation (Kelly et al., 2010) and a sectional formulation (Nolte et al., 2008). Kelly et al. (2011) evaluated size-composition distributions of inorganic and carbonaceous PM against MOUDI data at five sites in California’s Central Valley as well as Bodega Bay and Sequoia during a wintertime episode. Also, Zhang et al. (2006) evaluated CMAQ predictions...
of total particle volume distributions in Atlanta, and Elleman and Covert (2010) evaluated predictions of total particle mass in two sub-micron size ranges in the Pacific Northwest. These studies indicate that CMAQ often overpredicts the peak diameter of PM mass-size distributions and the widths of the lognormal particle modes. Kelly et al. (2011) reported that in some urban areas (e.g., Fresno, California) CMAQ adequately predicted the observed peak diameter for inorganic components but overpredicted the peak diameter of the organic and elemental carbon distributions. Overpredictions of particle diameter were found to lead to underpredictions of the PM mass in the sub-2.5 µm size range (PM$_{2.5}$).

The scarcity of impactor data has prevented any model evaluation of size-composition distributions across a continental-scale domain. Such an evaluation would enhance our confidence in models for assessing the human health and ecosystem effects of PM. From 2001–2005, a pair of field campaigns was conducted on a large geographic scale to yield size-segregated impactor measurements of the inorganic PM composition at 14 rural sites across the United States and Canada (Zhang et al., 2008; Lee et al., 2008a). In this paper, we evaluate size-composition distributions modeled by CMAQ against impactor measurements collected during these two campaigns, as well as urban-scale campaigns conducted in Pittsburgh and Tampa. We identify the regions and seasons where model performance is best as well as those where further model development is needed. Some implications on future evaluations of CMAQ output against routine measurements of PM$_{2.5}$ composition are also discussed.

2 Data

2.1 CMAQ simulations

The measurements used in this study were taken during discrete sampling periods spread across the years 2001–2005; therefore several years of CMAQ model simulations were required in order to create a comprehensive analysis dataset. Four years
of CMAQ simulations were conducted, covering the period 2002–2005. The CMAQ model configuration was the same for all simulations, with the only differences being in the year-specific emission and meteorological input data. The simulations utilized CMAQ version 5.0.1, which includes updates to the treatment of anthropogenic fugitive dust and windblown dust (Appel et al., 2013), as well as NH$_3$ bi-directional surface exchange (Bash et al., 2013). The simulations were performed for a domain covering the contiguous United States and southern Canada utilizing 12 km by 12 km horizontal grid spacing and 35 vertical layers, with the top of the lowest model layer at approximately 20 m. Lateral boundary conditions (BCs) for the CMAQ simulations were obtained from monthly median concentrations from a GEOS-Chem (Bey et al., 2001) model simulation of the year 2005 (the same BCs were used for all four years) using the procedure described by Henderson et al. (2014). Other model options employed include the AERO6 aerosol module, the Carbon Bond chemical mechanism that includes toluene and chlorine chemistry (CB05TUCL; Sarwar et al., 2011), and online computation of photolysis rates.

Meteorological data were provided from Weather Research and Forecast (WRFv3.3; Skamarock and Klemp, 2008) model version 3.3 simulations of 2002–2005. The WRF model simulations were performed using 35 vertical layers extending up to 50 hPa, the Pleim-Xiu land-surface model (PX-LSM; Pleim and Xiu, 1995), the ACM2 planetary boundary layer (PBL) scheme (Pleim, 2007a, b), the Kain-Fritsch cumulus parameterization scheme (Kain, 2004), the Morrison microphysics scheme (Morrison et al., 2009) and four-dimensional data assimilation with no nudging in the PBL. Version 4.0 of the Meteorology Chemistry Interface Processor (MCIPv4.0; Otte and Pleim, 2010) was used to prepare WRF outputs for CMAQ using the same 35-layer vertical structure as in WRF.

Hourly, gridded emission data from non-mobile sources between 2002–2005 were created using version 3.1 of the Sparse Matrix Operator Kernel Emissions (SMOKEv3.1; Houyoux et al., 2000) model and are based on the 2002 National Emissions Inventory (NEI) for the years 2002–2004 (2003 and 2004 are projected from
Continuous emission monitoring (CEM) data were used for the electric generating units sector. Wildfire emissions were based on daily fire detections from the Hazard Mapping System and the Sonoma Technology SMART-FIRE system (Raffuse et al., 2009).

Hourly mobile emissions were created using year-specific traffic and meteorological data in version 2010b of the Motor Vehicle Emission Simulator (MOVESv2010b; http://www.epa.gov/otaq/models/moves). PM$_{2.5}$ emissions of eight trace metals, including Mg$^{2+}$, Ca$^{2+}$, and K$^{+}$, were speciated using the profiles in Reff et al. (2009). Other model configuration options affecting emissions include online emissions of accumulation and coarse mode Na$^{+}$, Cl$^{-}$, SO$_4^{2-}$, Mg$^{2+}$, Ca$^{2+}$, and K$^{+}$ from sea spray (Kelly et al., 2010), online NO emissions using lightning flash counts from the National Lightning Detection Network (NLDN; Allen et al., 2012); BELD3 land-use for gridded fractional crop distributions; version 3.1.4 of the Biogenic Emissions Inventory System (BEIS v3.1.4; Vukovich and Pierce, 2002) for online biogenic emissions; the 2001 version of the National Land Characterization Database (NLCD) for land-use data; and NH$_3$ emissions from fertilizer based on an Environmental Policy Integrated Climate (EPIC; Cooter et al., 2012) simulation using 2002 fertilizer sales data.

2.2 MOUDI measurements

The MOUDI measurements used in this study are from four distinct datasets, with one dataset consisting of observations from wilderness sites located in several Canadian provinces (Zhang et al., 2008), another set consisting of sites primarily located in US National Parks (Malm et al., 2005; Lee et al., 2008a), a smaller dataset from sites available during the Bay Region Atmospheric Chemistry (BRACE) study in Tampa, Florida (Evans et al., 2004), and finally a dataset collected during the Pittsburgh Air Quality Study (Cabada et al., 2004). Data are available from 18 distinct sites covering 24 observation periods generally ranging in length from two to four weeks and covering each season of the year. To our knowledge, this collection represents the most comprehensive dataset collected to date characterizing inorganic PM size-composition.
distributions for multiple locations across the US and Canada and under diverse meteorological conditions. A brief description of the MOUDI data is provided below and a summary of the site locations and observation dates is provided in Table 1, with locations illustrated in Fig. 1.

Aerosol ion (SO$_2^-$, NO$_3^-$, NH$_4^+$, Cl$^-$, Na$^+$, Mg$^{2+}$, Ca$^{2+}$ and K$^+$) size distributions were measured at eight Canadian sites (i.e. ALG, BRL, CHA, EGB, FRS, KEJ, LED and SPR) (Zhang et al., 2008). The number of samples and the sample duration varied among monitors, with 7 being the fewest and 24 being the most samples taken during any one observation period, while the shortest sample duration was 6 h and the longest 152 h. Standard ion chromatography was used for analyses of all filters after extraction in deionized water. Additional details regarding these measurements can be found in Zhang et al. (2008).

Size distributions of the same particle ions were collected at the BON, SGO, GRC, GSM, YOS and BRG sites in the US. To ensure adequate mass collection at these rural locations, samples were typically collected over a 48 h period, with the exception of Yosemite NP which used 24 h sampling periods. A total of seven study periods are available from these sites in 2002–2004, with one study period in 2002 from mid-July through mid-August (YOS), five study periods in 2003 occurring in February (BON), April (SGO1), May (GRC), July (SGO2) and November (BRG), and one study period in 2004 from mid-July through mid-August (GSM). Additional details regarding these data can be found in Lee et al. (2008a).

Aerosol ion size distributions in three urban locations were collected during the BRACE study in Florida in 2002 at the AZP, GAN and SYD sites and in PIT in January 2002 (Table 1). Similar to the other two datasets described above, the BRACE data were collected using MOUDI samplers with 8 or 10 fractionation stages, an inlet height of 2 m, and a flow rate of 30 L min$^{-1}$ for sample durations of approximately 23 h. Samples were collected on 15 days at the AZP and GAN sites and 14 days at the SYD site between 4 May and 2 June for a total of 58 samples. Samples at the Pittsburgh site were collected during 1–17 January for a total of 11 samples. Additional details
regarding the BRACE data can be found in Evans et al. (2004) and Nolte et al. (2008), while additional details on the Pittsburgh data can be found in Cabada et al. (2004) and Stanier et al. (2004).

2.3 Data pairing and analysis

The particle size distribution data consist of multiple measurements taken over a period of several weeks. Since the analysis is focused on broad persistent features rather than day-to-day variability, the data here are averaged into a single observed and modeled size distribution for each ion for each campaign listed in Table 1, where the model output is averaged over the days and times corresponding to each sampling period. The CMAQ aerosol model uses three lognormal modes (Aitken, accumulation, and coarse) to represent particle size distributions (Binkowski and Roselle, 2003), whereas the observations are separated into discrete size bins. To facilitate comparison between the model and the observations, the three modes in the model are summed to produce a single smooth curve. For each mode \(j \), mass concentrations \(M_j = \sum_i M_{ij} \) are obtained from the CMAQ hourly average concentration (ACONC) files, where \(M_{ij} \) is the mass of constituent \(i \) in mode \(j \). Modal parameters \(D_{g,j}, \sigma_{g,j}, \) and \(M_{3,j} \) are taken from the aerosol diagnostic (AERODIAM) files, where \(D_{g,j} \) is the geometric number mean diameter of mode \(j \), \(\sigma_{g,j} \) is the geometric standard deviation of mode \(j \), and \(M_{3,j} \) is the third moment of mode \(j \). Particle densities \(\rho_j \) (\(\text{g cm}^{-3} \)) are calculated as

\[
\rho_j = \frac{10^{-12}}{M_{3,j}} \frac{6}{\pi} M_j. \tag{1}
\]

The geometric volume mean diameters \(D_{gv,j} \) are calculated from the number mean diameters using the Hatch–Choate relation

\[
D_{gv,j} = D_{g,j} \sqrt{\rho_j} \exp \left(3\ln^2 \sigma_{g,j}\right) \tag{2}
\]
where the multiplication by $\sqrt{\rho_j}$ puts the expression in terms of the particle aerodynamic diameter for consistency with the measurements. The size distribution at each hour t is then computed as

$$\frac{dM}{d\ln D_p}(D_p, t) = \sum_{j=1}^{3} \frac{M_j}{\sqrt{2\pi}\ln \sigma_{g,j}} \exp \frac{-(\ln D_p - \ln D_{gv,j})^2}{2\ln^2\sigma_{g,j}}$$

(3)

The above equation is discretized by $\ln D_p$, and the discretized values are computed for each hour before finally computing the temporally averaged size distribution.

For Aitken and accumulation mode species, the inputs to Eq. (3) are obtained directly from CMAQ outputs, but directly emitted coarse mode species require special processing. In CMAQ v5.0, accumulation mode emissions from sea spray are chemically speciated into Na$^+$, Cl$^-$, SO$_4^{2-}$, Mg$^{2+}$, Ca$^{2+}$, and K$^+$ components, but coarse mode sea spray cations are lumped into a single species, ASEACAT, for computational efficiency during advection. Concentrations of individual chemical components in the coarse mode are computed from ASEACAT, soil dust (ASOIL), and coarse primary emissions (ACORS):

$$ANAK = 0.8373 \cdot \text{ASEACAT} + 0.0626 \cdot \text{ASOIL} + 0.0023 \cdot \text{ACORS}$$

(4)

$$AMGK = 0.0997 \cdot \text{ASEACAT} + 0.0032 \cdot \text{ACORS}$$

(5)

$$AKK = 0.0310 \cdot \text{ASEACAT} + 0.0242 \cdot \text{ASOIL} + 0.0176 \cdot \text{ACORS}$$

(6)

$$ACAK = 0.0320 \cdot \text{ASEACAT} + 0.0838 \cdot \text{ASOIL} + 0.0562 \cdot \text{ACORS}$$

(7)

In Equations (4)–(7), ANAK, AMGK, AKK, and ACAK are coarse mode Na$^+$, Mg$^{2+}$, K$^+$, and Ca$^{2+}$, respectively, and the coefficients are relative abundances in seawater and composite weighting factors based on profiles in the SPECIATE database (Simon et al., 2010).
3 Evaluation of size distributions

In this section CMAQ modeled size-composition distributions are compared to the MOUDI measurements. For brevity, a few representative sites and time periods are presented for each ion. Plots of the average modeled and measured size distributions for all 24 campaigns listed in Table 1 are available in the Supplement for each of the inorganic ions analyzed.

3.1 SO$_2^-$ and NH$_4^+$

Modeled and observed SO$_2^-$ size distributions at each site and averaged over each sampling campaign are shown in Supplement Fig. S1. The model generally captures the variability in the SO$_2^-$ size distribution across different sites and different seasons. As shown in Fig. 2, the model accurately reproduces the observed SO$_2^-$ size distribution at many sites, including LED2, SPR2, SGO1, and SYD. However, the model fails to capture the accumulation mode peak observed in many of the campaigns (e.g., ALG1 and GSM), and often the modeled peak diameter is shifted to larger sizes (e.g., BRL and CHA2) than indicated by the measurements.

The model performance for particle NH$_4^+$ (Fig. 3 and Supplement Fig. S2) generally follows that of SO$_2^-$, with the model tending to underestimate the accumulation mode peak concentration and overestimating the aerodynamic diameter where the peak occurs. Modeled and observed NH$_4^+$ size distributions are generally in good agreement at those sites where SO$_2^-$ performance is best (i.e., LED2, SPR2, and SYD), though there is a large NH$_4^+$ underprediction at SGO1 in contrast to good SO$_2^-$ performance there. This behavior is consistent with recent studies that have reported that NH$_3$ emissions in southern California’s South Coast Air Basin are underestimated in the NEI (Nowak et al., 2012; Kelly et al., 2014). Similarly to the performance for SO$_2^-$, the model largely underestimates the NH$_4^+$ accumulation mode peak and overestimates the diameter at which the peak occurs at ALG1, GSM, BRL, and CHA2.
3.2 Na\(^+\) and Cl\(^-\)

Sea spray is the principal source of Na\(^+\) and, at most locations, the dominant source of Cl\(^-\) as well. Average modeled and observed Na\(^+\) size distributions are plotted for the coastal and near-coastal sites in Fig. 4. Cl\(^-\) size distributions generally follow those for Na\(^+\) and accordingly they are not further discussed here, though Na\(^+\) and Cl\(^-\) plots across all the campaigns are presented in Supplement Figs. S3 and S4. CMAQ generally captures the Na\(^+\) size distributions and elevated concentrations at the coastal sites, i.e., the BRACE sites (AZP, GAN, and SYD), as well as BRG and KEJ. At most of the other sites, Na\(^+\) concentrations are very low; often concentrations at these sites are near the detection limit, and confidence in the measurements is relatively low (Zhang et al., 2008). CMAQ correctly simulates that Na\(^+\) concentrations are low at these low-concentration sites, though size distributions do not agree very well with measurements (Supplement Fig. S3). The ALG site near Lake Superior is not impacted by sea spray; the relatively high Na\(^+\) concentrations in ALG1 are due to the application of salt to roads to prevent ice formation during the winter (Zhang et al., 2008). As this Canadian road salt is not in the US NEI, it is not surprising that the model is unable to capture this peak. SGO is in a mountainous wilderness area about 100 km from the Pacific Ocean. Because simulating winds over mountainous terrain is challenging, particularly with 12 km grid cells, CMAQ’s relatively poor performance for Na\(^+\) at SGO2 is likely attributable to errors in transport to the SGO site.

The concentration of Cl\(^-\) in fresh sea spray aerosol is proportional to its abundance in seawater. While Na\(^+\) and other sea salt cations are chemically inert, under certain conditions Cl\(^-\) in aged sea spray particles can be displaced by condensed gas-phase acids, such as HNO\(_3\). The percentage of chloride depleted can be defined as (Yao and Zhang, 2012)

\[
\text{Cl}^-_{\text{depletion}}(\%) = \left(\frac{a[Na^+] - [Cl^-]}{a[Na^+]} \right) \times 100
\]

(8)
where \([\text{Na}^+]\) and \([\text{Cl}^-]\) are molar equivalent concentrations and \(\alpha\) is the ratio of the relative molar abundance of \(\text{Cl}^-\) to \(\text{Na}^+\) in seawater, equal to 1.164 in CMAQ. The modeled percentages of chloride depletion are compared to the individual measurements at near-coastal sites in Fig. 5. Consistent with previous results of Kelly et al. (2010), the model frequently underestimates the moderate (25–50%) levels of chloride depletion seen at the BRACE sites (AZP, GAN, and SYD), which are within 20 km or less from Tampa Bay. The negative bias in the amount of chloride depletion is slightly greater at BRG (not shown). For the rural coastal KEJ site in Nova Scotia, the model slightly underestimates the chloride depletion during the fall campaign (KEJ2), but severely underestimates the frequently near-total depletion observed during the summer (KEJ1) (Yao and Zhang, 2012). For the springtime campaign SGO1, the modeled Cl\(^-\) depletion is overestimated. There are significant contributions of sodium from the primary species ASOIL and ACORS for SGO1, which could be contributing to an overprediction of \(\text{Na}^+\) and hence an overprediction of \(\text{Cl}^-\) depletion. For the summer SGO2 campaign, the model correctly simulates chloride depletions approaching 100%, while at YOS the modeled degree of chloride depletion is sometimes greater than observed. Highly time-resolved measurements were made using a Particle-Into-Liquid Sampler (PILS) at the same locations and times as the MOUDI measurements that are the focus of this study (Lee et al., 2008b). The PILS measurements show that NO\(_3^-\) peaks coincide with Cl\(^-\) dropping below detection limits at YOS and SGO2, providing strong evidence of chloride displacement from condensation of HNO\(_3\). The PILS data further demonstrate that aerosol concentrations varied substantially on much shorter timescales than could be captured by the integrated MOUDI measurements, which partially accounts for the scatter in Fig. 5.

3.3 Mg\(^{2+}\), Ca\(^{2+}\) and K\(^+\)

At coastal sites, modeled Mg\(^{2+}\) concentrations generally follow modeled Na\(^+\) concentrations in accordance with their relative abundances in seawater, and model performance for Mg\(^{2+}\) generally follows that for Na\(^+\) at these sites. At AZP (Fig. 6) as well as...
GAN, SYD, BRG, KEJ1, KEJ2, ALG1, and SGO2 (Supplement Fig. S6), the observed and modeled Mg\(^{2+}\) size distributions have the same relationship to each other as the corresponding Na\(^+\) size distributions at those sites. At BRL, GRC, and YOS, Mg\(^{2+}\) is likely to have a crustal rather than oceanic origin. At these western sites, Mg\(^{2+}\) is underpredicted (Fig. 6), consistent with findings of Appel et al. (2013). Unlike the behavior for Mg\(^{2+}\), modeled Ca\(^{2+}\) is notably underpredicted at coastal sites (Fig. 6 and Supplement Fig. S7). This suggests that there is a source of Ca\(^{2+}\) at those sites not captured by the model. On the other hand, modeled Ca\(^{2+}\) is higher than modeled Mg\(^{2+}\) at BRL, GRC, and YOS, in better agreement with observations, indicating that the coarse mode Ca\(^{2+}\) at those sites is due to contributions from anthropogenic fugitive dust or soils rather than sea spray. The chemical speciation of windblown dust and directly emitted coarse PM is derived from four California desert soil profiles in SPECIATE. Because these profiles did not report Mg, these sources do not contribute to Mg\(^{2+}\) concentrations modeled by CMAQ. The relatively good model performance for Ca\(^{2+}\) and underprediction of Mg\(^{2+}\) at these sites suggest that the Mg\(^{2+}\) speciation factors for primary coarse PM and windblown dust should be revisited.

Model performance for K\(^+\) is notably better than for Ca\(^{2+}\), with the model reasonably capturing the observed pattern at most sites (Fig. 6 and Supplement Fig. S7). K\(^+\) is known to be emitted from biomass burning in addition to the sea spray and dust sources that also impact Ca\(^{2+}\). The impact of the combustion source of K\(^+\) is evident in the smaller peak diameters for the K\(^+\) than the Mg\(^{2+}\) and Ca\(^{2+}\) observed distributions. The model simulates a bimodal distribution at GRC where the observed distribution was a broad single mode, and the coarse mode is underpredicted at YOS. Overall however, the model does well in simulating the observed K\(^+\) particle distribution at the majority of the Canadian and US sites.

3.4 NO\(_3^-\)

Aerosol NO\(_3^-\) is formed almost entirely from condensation of gas-phase HNO\(_3\) on existing particles. Moreover, the degree of gas-particle mass transfer for nitrate is thermo-
dynamically driven, and is a strong function of inorganic particle composition as well as temperature and relative humidity. As a result, the NO$_3^-$ size distribution depends on the distribution of other ions, especially SO$_4^{2-}$ and NH$_4^+$, making it particularly challenging to model accurately (Fig. 7 and Supplement Fig. S8). Model performance for NO$_3^-$ is generally good at ALG1, CHA1, and KEJ1, though the coarse mode is somewhat underpredicted at these sites, while the accumulation mode is slightly overpredicted at LED2. Despite the greater surface area of the fine modes, NO$_3^-$ often resides in the coarse mode when the fine modes are too acidic from condensation of H$_2$SO$_4$, which has lower vapor pressure than HNO$_3$ under ambient conditions. At BRL and BON, the modeled size distribution is broader and shifted slightly to larger particles than measured by the MOUDI. At SGO1 and YOS, particle NO$_3^-$ is significantly underestimated. These errors in modeled NO$_3^-$ concentrations can be attributed to underestimated levels of accumulation-mode NH$_4^+$ at SGO1 and underestimated coarse-mode Na$^+$ at YOS (cf. Fig. 7 and Supplement Fig. S3).

4 Modeled PM$_{2.5}$

In the US as well as many other countries, air quality regulations for particulate matter are based on the total mass of particles with aerodynamic diameters less than 2.5 µm (PM$_{2.5}$). Most CMAQ model evaluations, however (e.g., Appel et al., 2008), have used the sum of PM in the Aitken (i) and accumulation (j) modes (i.e. PM$_{ij}$), to represent PM$_{2.5}$. As noted by Jiang et al. (2006), PM$_{ij}$ and PM$_{2.5}$ are conceptually distinct quantities that sometimes differ significantly. Since the release of CMAQ v4.5 in 2005, additional variables are output to an optional diagnostic file (i.e., AERODIAM) that facilitate a more rigorous calculation of modeled PM$_{2.5}$ based on the simulated size distribution. Despite this capability, PM$_{ij}$ is still typically used for CMAQ model evaluation (Foley et al., 2010). As a further evaluation of CMAQ modeled aerosol size distributions, here
we compare modeled $\text{PM}_{2.5}$ to the traditional PM_{ij} calculations and to observed total $\text{PM}_{2.5}$ from the IMPROVE, CSN and AQS networks for 2002.

The mass-weighted fractions of the accumulation mode and coarse mode in the $\text{PM}_{2.5}$ size range averaged over the summer and winter seasons are shown in Fig. 8. Although during the winter the vast majority of the accumulation mode is smaller than 2.5 μm, during the summer up to 10–12% of the accumulation mode is greater than 2.5 μm in size. The smaller fraction of the accumulation mode in the $\text{PM}_{2.5}$ size range in the eastern US is attributable to larger amounts of aerosol water, both because of higher humidities and higher concentrations of hygroscopic SO_4^{2-}. The fractional contribution of the coarse mode to $\text{PM}_{2.5}$ is fairly uniform, ranging from 10–15%, though there are a few areas where the contribution exceeds 20%. Modeled $\text{PM}_{2.5}$ is 0.3–1.2 μgm$^{-3}$ lower than PM_{ij} across a large portion of the eastern US during the summer (Fig. 9), primarily due to the greater contributions of SO_4^{2-}, NO_3^-, NH_4^+ and EC to PM_{ij} than $\text{PM}_{2.5}$ concentrations. In the western US, $\text{PM}_{2.5}$ values are sporadically higher (primarily in Texas, New Mexico, Arizona and southern California) due almost exclusively to the greater contributions of soil (i.e. Al, Si, Ca, Fe and Ti) to $\text{PM}_{2.5}$ than PM_{ij} that result from the tail of the coarse mode overlapping the $\text{PM}_{2.5}$ size range. The relative differences are 4–12% in the eastern US during summer and 4–20% in the western US (Supplement Fig. S9).

Histograms of the difference in CMAQ daily mean aerosol concentrations (modeled $\text{PM}_{2.5}$ – modeled PM_{ij}) at IMPROVE, CSN and AQS-FRM sites for 2002 are also shown in Fig. 9. The distribution of mean differences is predominantly negative, particularly during summer and fall (not shown), indicating that PM_{ij} is generally greater than $\text{PM}_{2.5}$. For all seasons, the differences in $\text{PM}_{2.5}$ and PM_{ij} typically fall between $\pm 1 \mu$gm$^{-3}$.

The mean bias (MB), mean error (ME) and root mean square error (RMSE) as computed against the IMPROVE, CSN and AQS-FRM observations using modeled $\text{PM}_{2.5}$ and PM_{ij} values are provided in Table 2. The difference in network- and seasonally-averaged MB, ME, and RMSE computed using $\text{PM}_{2.5}$ and PM_{ij} is generally small. For
winter, spring, and fall, average \(\text{PM}_{2.5} \) is 0.04–0.20 \(\mu g m^{-3} \) less than \(\text{PM}_{ij} \). Since the model is generally positively biased with respect to observations during those seasons, using \(\text{PM}_{2.5} \) rather than \(\text{PM}_{ij} \) results in slightly improved performance statistics. The difference between \(\text{PM}_{2.5} \) and \(\text{PM}_{ij} \) is larger (more negative) during the summer, and since the model is generally negatively biased then, the MB, ME, and RMSE are all slightly worse for \(\text{PM}_{2.5} \) than for \(\text{PM}_{ij} \). The differences during the summer are still small, however, averaging 0.30 \(\mu g m^{-3} \) for MB, 0.22 \(\mu g m^{-3} \) for ME, and 0.21 \(\mu g m^{-3} \) for RMSE. Overall, the aggregated model performance using modeled \(\text{PM}_{2.5} \) and \(\text{PM}_{ij} \) is nearly the same, with the average difference (\(\text{PM}_{2.5} - \text{PM}_{ij} \)) in MB, ME and RMSE across all seasons of −0.15, 0.02 and 0.02 \(\mu g m^{-3} \), respectively. Therefore, while the difference between \(\text{PM}_{2.5} \) and \(\text{PM}_{ij} \) values for any particular observation site and time may be important, the difference in model performance between the two values is relatively small on average. The difference in the two methods for estimating \(\text{PM}_{2.5} \) is likely to be even smaller when the models are applied in a relative sense for a regulatory context (Baker and Foley, 2011).

In the version of CMAQ (v4.3) used by Jiang et al. (2006), there was very little mass in the coarse mode, and this mode was modeled as being chemically inert. Thus, \(\text{PM}_{ij} \) was always greater than \(\text{PM}_{2.5} \) in that version. Because the model was generally positively biased with respect to measurements, using the size distribution to compute \(\text{PM}_{2.5} \) improved model performance statistics. There have been several updates to the CMAQ aerosol model since the version used by Jiang et al. (2006). For this discussion, the most significant of these are the reduction of overestimated unspeciated \(\text{PM}_{2.5} \) (i.e., PMOTHER; Appel et al., 2008, 2013; Foley et al., 2010), and the treatment of gas-particle nitrate mass transfer to and from coarse mode particles (Kelly et al., 2010). As a result, the consequence of estimating \(\text{PM}_{2.5} \) concentrations by using the modeled size distributions rather than by summing the masses in the Aitken and accumulation modes has been changed such that it does not always improve model performance.
5 Model sensitivities

Four additional simulations are conducted to assess the sensitivity of modeled size distributions to changes in the aerosol model. The “BASE” model configuration used for the sensitivity runs contains various updates from CMAQ v5.0.1, but overall results of the BASE simulation used for these sensitivity studies are very similar to those presented in Sect. 3. The three sensitivity studies include an adjustment to the apportionment of PM emissions between modes and the implementation of a new gravitational settling scheme, two changes that are planned to be included in CMAQ v5.1 (scheduled for release in fall 2015). In addition, a third simulation is performed where the allowable particle mode widths (i.e. geometric standard deviations) in the model are constrained to a relatively narrow range. The details of each sensitivity analysis are described in the following three sub-sections. The sensitivity tests are each performed for May 2002 and compared to data from the three BRACE sites in Tampa during that month.

5.1 PM emissions adjustment

Currently (i.e., in CMAQ v5.0.2), primary anthropogenic emissions of PM$_{2.5}$ elemental carbon (EC), organic carbon (OC), and non-carbonaceous organic matter (NCOM) are mostly (99.9 %) assigned to CMAQ’s accumulation mode, with the remaining 0.1 % assigned to the Aitken mode. Primary anthropogenic emissions of other species (i.e., sulfate, nitrate, chloride, ammonium, sodium, water, and “other”) are 100 % assigned to the accumulation mode. As noted by Elleman and Covert (2010), these modal mass fractions are based on historical measurements that underestimated ultrafine particles. In an effort to improve simulation of aerosol number size distributions, Elleman and Covert (2010) updated particulate emissions size distributions based on a review of modern measurements in regions dominated by urban, power-plant, and marine sources at 4–15 km spatial scales. In the “PMEMIS” sensitivity test, the modal mass fractions for “urban” PM emissions from Elleman and Covert (2010) (i.e., 10 % Aitken mode, 90 % accumulation mode) were applied to all primary anthropogenic PM$_{2.5}$ emis-
sions. In addition, the modal parameters characterizing the emitted particles (i.e., geometric mean volume diameter and standard deviation) were modified. The updated emission parameters and their base case values are listed in Table 3. Anthropogenic emissions of coarse PM, as well as sea spray and windblown dust, were unchanged.

The change in particle size distribution for \(\text{SO}_4^{2-} \) and \(\text{Na}^+ \) at the three BRACE sites when implementing the PM emissions adjustment is shown in Fig. 10. Particle size distributions are narrower and shifted toward smaller sizes in the PMEMIS simulation compared to the BASE simulation, in better agreement with the observations. This model change affects only the fine mode peak (e.g. \(\text{SO}_4^{2-} \)) and does not impact the coarse mode peak (e.g. \(\text{Na}^+ \)). Overall, changing the input PM emissions distribution improves CMAQ estimated inorganic particle size distributions compared to the observations.

5.2 Constrained mode widths

CMAQ uses three lognormal modes to model the aerosol size distribution, where each mode is characterized by three parameters: particle number, geometric mean diameter, and geometric standard deviation (Binkowski and Roselle, 2003). Though the mode standard deviations (widths) are calculated as prognostic variables within the aerosol code, they are constrained between the values 1.05 and 2.50. Furthermore, due to numerical instabilities the coarse mode width is not allowed to vary during condensation and evaporation (Kelly et al., 2010). CMAQ mode widths often reach the allowed upper bound, which reduces confidence that they are being simulated accurately. Several other state-of-the-science modal aerosol models use fixed mode widths, e.g., COSMO-ART (Vogel et al., 2009) and MESSy/MADE3 (Kaiser et al., 2014), though other models also allow mode widths to vary (e.g., RAQM2/MADMS; Kajino et al., 2012). To explore how using fixed mode widths might affect CMAQ simulated size distributions, a model sensitivity study “CONSIG” based on the PMEMIS simulation was conducted in which the modal standard deviation constraints were modified from 1.05–2.50 to ±0.1 from their emitted values, i.e., the Aitken mode and accumulation mode standard deviations.
were constrained between 1.6 and 1.8, while the coarse mode standard deviation was constrained between 2.1 and 2.3.

The difference in particle size distribution between the PMEMIS simulation and the CONSIG simulation is also shown in Fig. 10. Similar to the PMEMIS sensitivity, constraining the mode widths tends to produce an accumulation mode peak that is narrower and shifted to smaller sizes than the PMEMIS simulation, resulting in a better comparison against the observations. For the coarse mode however, constraining the mode widths results in a wider and lower peak than the PMEMIS simulations, which does not compare as well to the observations. Of course, the impact on model performance is directly dependent on the values chosen to constrain the particle mode widths, and alternative constraints could potentially improve performance for the coarse mode. These results do suggest, however, that the modeled size distribution is sensitive to the treatment of the mode widths, and that improvements in the algorithm that computes them would be beneficial.

5.3 Gravitational settling

Although the CMAQ aerosol module simulates gravitational settling for particles in the lowest model layer in computing their dry deposition velocities (Binkowski and Roselle, 2003), a potential limitation of the approach is the absence of gravitational settling for particles above layer 1. As a result, coarse particles emitted or convectively mixed above the first model layer can artificially remain aloft and be transported downwind farther than is realistic. As part of the development for CMAQ v5.1, a gravitational settling scheme has been implemented in which settling velocities are calculated for accumulation and coarse mode aerosol zeroth, second, and third moments in each grid cell. The method is a Stokes law approach using the same equations used in computing aerosol deposition velocities to the surface in layer 1 (see Eq. A31–A32 in Binkowski and Shankar, 1995). The settling velocities are then used in a sedimentation sub-module to calculate the moment fluxes through model layers using a first-order upstream relation.
The difference in average Na^{+} size distributions simulated with and without gravitational settling is shown in Fig. 11. Because the impact of gravitational settling is significant only for larger particles, there is no discernible effect on the fine-mode range of the aerosol size distribution when gravitational settling is included. However, there is a substantial increase in the coarse-mode size range. The coarse mode peak is higher at the coastal BRACE sites in the GRAV simulation due to particles settling from upper model layers into the lowest model layer, increasing the overall surface layer concentration. The impact of gravitational settling is much less significant for inland locations that are not as impacted by sea spray. Including the effects of gravitational settling has only a very minor impact on modeled PM$_{2.5}$ mass.

6 Summary and conclusions

Size resolved particle ion SO_4^{2-}, NO_3^-, NH_4^+, Cl^-, Na^+, Mg^{2+}, Ca^{2+} and K^+ measurements for sites located throughout the United States and Canada in 2002–2005 were compared to CMAQv5.0.1 model output to assess the ability of the model to reproduce the observed particle mass size distribution. A total of 24 different measurement campaigns (some sites measured in two different seasons) were available across the four years. The model was generally able to reproduce the observed SO_4^{2-} and NH_4^+ distributions at most of the sites, but tended to overestimate the peak diameter and underestimate the peak particle concentration. NH_4^+ was substantially underestimated at the SGO site, likely due to underestimated NH$_3$ emissions in California’s South Coast Air Basin.

CMAQ was generally able to capture the size distribution and higher concentrations of Na^+ and Cl^- at coastal and near-coastal sites. The model also reasonably captures Mg^{2+} concentrations and size distributions for those sites where Mg^{2+} originates from sea spray (e.g., the three BRACE sites in Florida), but underpredicts at sites influenced by soil dust, particularly in the western portion of the modeling domain. By contrast, the model substantially underpredicts Ca^{2+} at many coastal sites while having better
performance than for Mg$^{2+}$ at some inland sites, which may be attributable to errors in speciation profiles for various source categories, including windblown and anthropogenic fugitive dust. K$^+$, which has contributions from residential wood combustion and wildfires as well as sea spray, exhibits somewhat better model performance than Ca$^{2+}$. Model performance for NO$_3^-$ was mixed, with good performance at some sites (e.g., BRL, CHA1, KEJ1, and LED2), overpredicted concentrations in the accumulation mode size range at some sites (e.g., BRG, FRS, and SPR2), and substantially underestimated accumulation mode NO$_3^-$ at SGO1 and underestimated coarse particle concentrations at other sites (e.g., GRC, GSM, and YOS).

An examination of the difference in model performance between calculating PM$_{2.5}$ mass from the modeled size distribution or by summing the masses in the Aitken and accumulation modes (PM$_{ij}$) shows that using the size distribution parameters results in values which on average are smaller by 0.3–1.2 µg m$^{-3}$. On a daily basis, the difference between PM$_{2.5}$ and PM$_{ij}$ is usually less than 1 µg m$^{-3}$, regardless of season or year. The largest differences between PM$_{2.5}$ and PM$_{ij}$ occur in the eastern US during the summer. Concentrations of SO$_4^{2-}$ are much higher in the eastern US than in the west. Higher humidities in the eastern US, together with the high hygroscopicity of SO$_4^{2-}$, lead to growth of the accumulation mode beyond the 2.5 µm size range.

For operational model evaluation, the difference in aggregated model performance between the two methods in comparison to observations is generally very small. Regional scale assessments based on determination of relative response factors (RRFs), such as development of State Implementation Plans, would likely be unaffected by the choice of using PM$_{2.5}$ or PM$_{ij}$. For studies that involve absolute contributions of PM, particularly at the fine scale, the difference between PM$_{2.5}$ and PM$_{ij}$ may warrant further consideration. The dataset used here, consisting of observations at mostly rural locations and limited to inorganic components of PM, as well as modeling conducted using relatively coarse 36 km grid cells, does not allow us to conclude which approach is more accurate in all cases. In urban areas dominated by primary emis-
sions, PM$_{ij}$ may be preferable to ensure consistency with emission inventories, as the PM$_{2.5}$ approach would immediately apportion some fraction of primary emissions to being outside the 2.5 µm size range. In remote or western regions, however, where PM is highly aged or dust is a main contributor, PM$_{2.5}$ may be preferable to account for growth outside the 2.5 µm size range or the sub-2.5 µm shoulder of the coarse mode.

Two updates to the aerosol model that are scheduled for the next release of CMAQ were evaluated. Increasing the fraction of primary PM emissions apportioned to the Aitken mode from 0.1 to 10 % and modifying the geometric mean diameter and standard deviation of the emitted particles, as recommended by Elleman and Covert (2010), caused the peak diameter of the accumulation mode to decrease, in better agreement with the observations. Implementing gravitational settling for the accumulation and coarse modes for layers above the lowest model layer led to an increase in coarse mode Na$^+$ from sea spray near the coast. Finally, an experiment in which the mode standard deviations were constrained to a relatively narrow range led to further reduction of accumulation mode peak diameters. Given the sensitivity of the size distribution to the treatment of mode standard deviations, future work should focus on determining the best approach for representing these variables in the model.

It is important to note that this evaluation of the CMAQ modeled aerosol size distributions has focused on the mass size distribution and has considered only inorganic species. As understanding of the health impacts associated with particular PM components and size ranges develops (e.g., Delfino et al., 2011), evaluating predictions of carbonaceous and ultrafine particle size distributions in urban environments could be valuable to support health and exposure applications. Similarly, as the state of the science evolves toward more frequent use of the two-way coupled WRF-CMAQ model (Wong et al., 2012) to capture the influence of air pollution on atmospheric dynamics, particularly the effect on clouds (Yu et al., 2014) it will be important to evaluate modeled aerosol number and surface area distributions as well.
Code availability

CMAQ model documentation and released versions of the source code are available at www.cmaq-model.org. The updates described here, as well as model postprocessing scripts, are available upon request.

The Supplement related to this article is available online at doi:10.5194/gmdd-8-3861-2015-supplement.

Acknowledgements. We thank Taehyoung Lee (Colorado State University), Noreen Poor (University of South Florida), and Charles Stanier (University of Iowa) for providing MOUDI measurements that helped make this analysis possible. Brett Gantt and Rohit Mathur (US EPA) provided constructive comments in reviewing this manuscript. We thank Heather Simon and George Pouliot (US EPA) for their assistance with PM profiles in the SPECIATE database. The United States Environmental Protection Agency through its Office of Research and Development supported the research described here. It has been subjected to Agency review and approved for publication. The views and interpretations in this publication are those of the authors and are not necessarily attributable to their organizations.

References

Elleman, R. A. and Covert, D. S.: Aerosol size distribution modeling with the Community Multiscale Air Quality modeling system in the Pacific northwest: 3. Size distri-
Introduction

Conclusions

References

Tables

Figures

---|---|---|---|
Back | Close |
Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Evans, M. C., Campbell, S. W., Bhethanabotla, V., and Poor, N. D.: Effect of sea salt and calcium carbonate interactions with nitric acid on the direct dry deposition of nitrogen to Tampa Bay, Florida, Atmos. Environ., 38, 4847–4858, 2004. 3867, 3869, 3891

References

3864

3866

3864

3865, 3878, 3883

Evans, M. C., Campbell, S. W., Bhethanabotla, V., and Poor, N. D.: Effect of sea salt and calcium carbonate interactions with nitric acid on the direct dry deposition of nitrogen to Tampa Bay, Florida, Atmos. Environ., 38, 4847–4858, 2004. 3867, 3869, 3891

Nolte, C. G., Bhave, P. V., Arnold, J. R., Dennis, R. L., Zhang, K. M., and Wexler, A. S.: Modeling urban and regional aerosols—Application of the CMAQ-UCD aerosol model to Tampa,

Table 1. Summary of the MOUDI data used in this study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Comment</th>
<th>Lat. N</th>
<th>Long. W</th>
<th>Dates</th>
<th>Ref.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG1</td>
<td>Algoma, ON</td>
<td>moderately polluted</td>
<td>47.04</td>
<td>84.38</td>
<td>8–27 Feb 2003</td>
<td>a</td>
</tr>
<tr>
<td>ALG2</td>
<td></td>
<td>urban coastal</td>
<td></td>
<td></td>
<td>5–26 Jun 2003</td>
<td></td>
</tr>
<tr>
<td>AZP</td>
<td>Azalea Park, FL</td>
<td>urban</td>
<td>27.78</td>
<td>82.74</td>
<td>4 May–2 Jun 2002</td>
<td>b</td>
</tr>
<tr>
<td>BON</td>
<td>Bondville, IL</td>
<td>agricultural</td>
<td>40.05</td>
<td>88.37</td>
<td>1–27 Feb 2003</td>
<td>c</td>
</tr>
<tr>
<td>BRL</td>
<td>Bratt’s Lake, SK</td>
<td>polluted agricultural</td>
<td>50.20</td>
<td>104.20</td>
<td>11 Feb–4 Mar 2005</td>
<td>a</td>
</tr>
<tr>
<td>BRG</td>
<td>Brigantine, NJ</td>
<td>coastal wildlife</td>
<td>39.46</td>
<td>74.45</td>
<td>4–30 Nov 2003</td>
<td>c</td>
</tr>
<tr>
<td>CHA1</td>
<td>Chalk River, ON</td>
<td>moderately polluted</td>
<td>46.06</td>
<td>77.40</td>
<td>22 Jan–21 Feb 2004</td>
<td>a</td>
</tr>
<tr>
<td>CHA2</td>
<td></td>
<td>urban coastal</td>
<td></td>
<td></td>
<td>4–26 Jun 2004</td>
<td></td>
</tr>
<tr>
<td>EGB</td>
<td>Egbert, ON</td>
<td>polluted</td>
<td>44.23</td>
<td>79.78</td>
<td>6–13 Mar 2002</td>
<td>a</td>
</tr>
<tr>
<td>FRS</td>
<td>Frelighsberg, QC</td>
<td>agricultural</td>
<td>45.05</td>
<td>73.06</td>
<td>4–16 May 2002</td>
<td>a</td>
</tr>
<tr>
<td>GAN</td>
<td>Gandy Bridge, FL</td>
<td>urban</td>
<td>27.97</td>
<td>82.23</td>
<td>4 May–2 Jun 2002</td>
<td>b</td>
</tr>
<tr>
<td>GRC</td>
<td>Grand Canyon, AZ</td>
<td>remote</td>
<td>35.97</td>
<td>111.98</td>
<td>1–30 May 2003</td>
<td>c</td>
</tr>
<tr>
<td>GSM</td>
<td>Great Smokies, TN</td>
<td>mountainous</td>
<td>35.63</td>
<td>83.94</td>
<td>22 Jul–19 Aug 2004</td>
<td>c</td>
</tr>
<tr>
<td>KEJ1</td>
<td>Kejimkujik, NS</td>
<td>clean</td>
<td>44.43</td>
<td>65.21</td>
<td>29 June–15 Jul 2002</td>
<td>a</td>
</tr>
<tr>
<td>LED1</td>
<td>Lac Édouard, QC</td>
<td>clean</td>
<td>47.68</td>
<td>72.44</td>
<td>11–27 Aug 2003</td>
<td>a</td>
</tr>
<tr>
<td>LED2</td>
<td></td>
<td>coastal</td>
<td></td>
<td></td>
<td>17 Oct–3 Nov 2003</td>
<td></td>
</tr>
<tr>
<td>PIT</td>
<td>Pittsburgh, PA</td>
<td>urban</td>
<td>40.44</td>
<td>79.94</td>
<td>1–17 Jan 2002</td>
<td>d</td>
</tr>
<tr>
<td>SGO1</td>
<td>San Gorgonio, CA</td>
<td>mountainous</td>
<td>34.19</td>
<td>116.90</td>
<td>4–26 May 2003</td>
<td>c</td>
</tr>
<tr>
<td>SGO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1–30 Jul 2003</td>
<td></td>
</tr>
<tr>
<td>SPR1</td>
<td>Sprucedale, ON</td>
<td>moderately polluted</td>
<td>45.42</td>
<td>79.49</td>
<td>17 Aug–18 Sep 2004</td>
<td>a</td>
</tr>
<tr>
<td>SPR2</td>
<td></td>
<td>urban</td>
<td>27.97</td>
<td>82.23</td>
<td>16 Nov–12 Dec 2004</td>
<td></td>
</tr>
<tr>
<td>SYD</td>
<td>Sydney, FL</td>
<td>coastal</td>
<td>37.75</td>
<td>119.59</td>
<td>4 May–2 Jun 2002</td>
<td>b</td>
</tr>
<tr>
<td>YOS</td>
<td>Yosemite CA</td>
<td>mountainous</td>
<td></td>
<td></td>
<td>15 Jul–2 Sep 2004</td>
<td>c</td>
</tr>
</tbody>
</table>

* * a, Zhang et al. (2008); b, Evans et al. (2004); c, Lee et al. (2008a); d, Cabada et al. (2004).
Table 2. Comparison of CMAQ PM model performance relative to observations at IMPROVE, CSN and AQS network sites during 2002 using the sum of masses in the Aitken and accumulation modes (PM$_{ij}$) and calculated using the modeled size distribution (PM$_{2.5}$).

<table>
<thead>
<tr>
<th>Season</th>
<th>MB (µg m$^{-3}$)</th>
<th>ME (µg m$^{-3}$)</th>
<th>RMSE (µg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{2.5}$</td>
<td>PM$_{ij}$</td>
<td>∆*</td>
</tr>
<tr>
<td>Winter (DJF)</td>
<td>2.38</td>
<td>2.42</td>
<td>-0.04</td>
</tr>
<tr>
<td>Spring (MAM)</td>
<td>0.46</td>
<td>0.53</td>
<td>-0.07</td>
</tr>
<tr>
<td>Summer (JJA)</td>
<td>-3.60</td>
<td>-3.30</td>
<td>-0.30</td>
</tr>
<tr>
<td>Fall (SON)</td>
<td>0.96</td>
<td>1.16</td>
<td>-0.20</td>
</tr>
<tr>
<td>Average</td>
<td>0.05</td>
<td>0.20</td>
<td>-0.15</td>
</tr>
</tbody>
</table>

* PM$_{2.5}$ – PM$_{ij}$.
Table 3. Parameters for Aitken and accumulation mode particulate emissions for the BASE run and PMEMIS sensitivity case.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Species</th>
<th>BASE</th>
<th>PMEMIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mass Fraction</td>
<td>$D_{g v}$ (µm)</td>
</tr>
<tr>
<td>Aitken</td>
<td>EC/OC/NCOM</td>
<td>0.001 0.000</td>
<td>0.030 1.7</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0.000</td>
<td>0.030 1.7</td>
</tr>
<tr>
<td>accumulation</td>
<td>EC/OC/NCOM</td>
<td>0.999 1.000</td>
<td>0.300 2.0</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.000</td>
<td>0.300 2.0</td>
</tr>
</tbody>
</table>
Figure 1. Location of the sampling sites used in this study.
Figure 2. Average observed (black) and modeled (red) SO_4^{2-} size distributions at representative sites.
Figure 3. Average observed (black) and modeled (red) NH$_4^+$ size distributions at representative sites.
Figure 4. Average observed (black) and modeled (red) Na\(^+\) size distributions at representative sites.
Figure 5. Scatter plots of modeled and observed chloride depletion in coarse ($D_p > 2.5\mu m$) particles at representative sites. Each point represents a distinct measurement period, with modeled concentrations averaged over the corresponding intervals.
Figure 6. Average observed (black) and modeled (red) Mg$^{2+}$ (top), Ca$^{2+}$ (middle), and K$^{+}$ (bottom) size distributions at representative sites.
Figure 7. Average observed (black) and modeled (red) NO$_3^-$ size distributions at representative sites.
Figure 8. Fraction of accumulation mode (left) and coarse mode (right) smaller than 2.5 µm in diameter, averaged over summer (top) and winter (bottom) 2002.
Figure 9. Difference between PM$_{2.5}$ computed using modeled size distribution and PM$_{ij}$, and histogram of daily average differences (PM$_{2.5}$ – PM$_{ij}$) for summer (top) and winter (bottom) 2002. Blue shading indicates days where PM$_{2.5}$ is greater than PM$_{ij}$, while red shading indicates days where PM$_{2.5}$ is less than PM$_{ij}$.
Figure 10. Observed and modeled SO$_4^{2-}$ (top) and Na$^+$ (bottom) size distributions for the PMEMIS and CONSIG sensitivity simulations.
Figure 11. Observed and modeled Na\(^+\) size distributions for the GRAV sensitivity simulation.