Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/gmdd-6-6835-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Methods for assessment of models
17 Dec 2013
Review status
This discussion paper has been under review for the journal Geoscientific Model Development (GMD). The revised manuscript was not accepted.
Influences of calibration data length and data period on model parameterization and quantification of terrestrial ecosystem carbon dynamics
Q. Zhu1,2 and Q. Zhuang1,2,3 1Purdue Climate Change Research Center, Purdue University, West Lafayette, Indiana, USA
2Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
3Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
Abstract. Reliability of terrestrial ecosystem models highly depends on the quantity and quality of the data that have been used to calibrate the models. Nowadays, in situ observations of carbon fluxes are abundant. However, the knowledge of how much data (data length) and which subset of the time series data (data period) should be used to effectively calibrate the model is still lacking. In this study we use the AmeriFlux carbon flux data to parameterize the Terrestrial Ecosystem Model (TEM) using an adjoint based data assimilation technique for five different ecosystem types including deciduous broadleaf forest, coniferous forest, grassland, shrubland and boreal forest. We hypothesize that calibration data covering various climate conditions for the ecosystems (e.g. drought and wet; high and low air temperature) can reduce the uncertainty of the model parameter space. Here parameterization is conducted to explore the impact of both data length and data period on the uncertainty reduction of the posterior model parameters and the quantification of site and regional carbon dynamics. We find that: (1) the model is better constrained when it uses two-year data comparing to using one-year data. Further, two-year data is long enough in calibrating TEM's carbon dynamics, since using three-year data could only marginally improve the model performance at our study sites; (2) the model is better constrained with the data that have a higher "climate variability" than that with a lower one. The climate variability is used to measure the overall possibility of the ecosystem to experience various climate conditions including drought and extreme air temperatures and radiation; (3) the US regional simulations indicate that the effect of calibration data length on carbon dynamics is amplified at regional and temporal scales, leading to large discrepancies among different parameterization experiments, especially in July and August. This study shall help the eddy flux observation community in conducting field observations. The study shall also benefit the ecosystem modeling community in using multiple-year data to improve model parameterization and predictability.

Citation: Zhu, Q. and Zhuang, Q.: Influences of calibration data length and data period on model parameterization and quantification of terrestrial ecosystem carbon dynamics, Geosci. Model Dev. Discuss., 6, 6835-6865, https://doi.org/10.5194/gmdd-6-6835-2013, 2013.
Q. Zhu and Q. Zhuang
Q. Zhu and Q. Zhuang

Viewed

Total article views: 733 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
476 224 33 733 40 40

Views and downloads (calculated since 17 Dec 2013)

Cumulative views and downloads (calculated since 17 Dec 2013)

Saved

Discussed

Latest update: 25 Jun 2017
Publications Copernicus
Download
Share