Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
https://doi.org/10.5194/gmdd-7-4119-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Development and technical paper
26 Jun 2014
Review status
This discussion paper has been under review for the journal Geoscientific Model Development (GMD). A final paper in GMD is not foreseen.
Development and evaluation of a hydrostatic dynamical core using the spectral element/discontinuous Galerkin methods
S.-J. Choi1 and F. X. Giraldo2 1Korea institute of atmospheric prediction systems, Seoul, Korea
2Naval Postgraduate School, Monterey, USA
Abstract. In this paper, we present a dynamical core for the atmospheric primitive hydrostatic equations using a unified formulation of spectral element (SE) and discontinuous Galerkin (DG) methods in the horizontal direction with a finite difference (FD) method in the radial direction. The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss–Lobatto–Legendre (GLL) quadrature points, which define the common machinery. The atmospheric primitive hydrostatic equations are solved on the cubed-sphere grid using the flux form governing equations in a three-dimensional (3-D) Cartesian space. By using Cartesian space, we can avoid the pole singularity problem due to spherical coordinates and this also allows us to use any quadrilateral-based grid naturally. In order to consider an easy way for coupling the dynamics with existing physics packages, we use a FD in the radial direction. The models are verified by conducting conventional benchmark test cases: the Rossby–Haurwitz wavenumber 4, Jablonowski–Williamson tests for balanced initial state and baroclinic instability, and Held–Suarez tests. The results from those tests demonstrate that the present dynamical core can produce numerical solutions of good quality comparable to other models.

Citation: Choi, S.-J. and Giraldo, F. X.: Development and evaluation of a hydrostatic dynamical core using the spectral element/discontinuous Galerkin methods, Geosci. Model Dev. Discuss., 7, 4119-4151, https://doi.org/10.5194/gmdd-7-4119-2014, 2014.
S.-J. Choi and F. X. Giraldo
S.-J. Choi and F. X. Giraldo

Viewed

Total article views: 507 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
292 194 21 507 29 30

Views and downloads (calculated since 26 Jun 2014)

Cumulative views and downloads (calculated since 26 Jun 2014)

Saved

Discussed

Latest update: 23 Jun 2017
Publications Copernicus
Download
Share