Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model experiment description paper
28 Nov 2016
Review status
This discussion paper is under review for the journal Geoscientific Model Development (GMD).
The PMIP4 contribution to CMIP6 – Part 2: Two Interglacials, Scientific Objective and Experimental Design for Holocene and Last Interglacial Simulations
Bette L. Otto-Bliesner1, Pascale Braconnot2, Sandy P. Harrison3, Daniel J. Lunt4, Ayako Abe-Ouchi5,6, Samuel Albani7, Patrick J. Bartlein8, Emilie Capron9,10, Anders E. Carlson11, Andrea Dutton12, Hubertus Fischer13, Heiko Goelzer14,15, Aline Govin2, Alan Haywood16, Fortunat Joos13, Allegra N. Legrande17, William H. Lipscomb18, Gerrit Lohmann19, Natalie Mahowald20, Christoph Nehrbass-Ahles13, Francesco S.-R. Pausata21, Jean-Yves Peterschmitt2, Steven Phipps22, and Hans Renssen23,24 1National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, Colorado 80305, USA
2Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
3Centre for Past Climate Change and School of Archaeology, Geography and Environmental Science (SAGES), University of Reading, Whiteknights, RG6 6AH, Reading, UK
4School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
5Atmosphere Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-20 8564, Japan
6Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa, Yokohama, Kanagawa, 236-0001, Japan
7Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
8Department of Geography, University of Oregon, Eugene, OR 97403-1251, USA
9Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
10British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET, UK
11College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
12Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
13Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
14Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
15Laboratoire de Glaciologie, Université Libre de Bruxelles, CP160/03, Av. F. Roosevelt 50, 1050 Brussels, Belgium
16School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS29JT, UK
17NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
18Group T-3, Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
19Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bussestr. 24, 27570 Bremerhaven, Germany
20Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA
21Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden
22Institute for Marine and Antarctic Studies, Uinversity of Tasmania, Hobart, Tasmania 7001, Australia
23Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
24Department of Environmental and Health Studies, University College of Southeast Norway, 3800 Bøi Telemark, Norway
Abstract. Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for Tier 1 simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127,000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional CMIP6 Tier 2 and Tier 3 sensitivity experiments of PMIP4, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

Citation: Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., Legrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S.-R., Peterschmitt, J.-Y., Phipps, S., and Renssen, H.: The PMIP4 contribution to CMIP6 – Part 2: Two Interglacials, Scientific Objective and Experimental Design for Holocene and Last Interglacial Simulations, Geosci. Model Dev. Discuss.,, in review, 2016.
Bette L. Otto-Bliesner et al.
Bette L. Otto-Bliesner et al.
Bette L. Otto-Bliesner et al.


Total article views: 708 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
490 194 24 708 8 39

Views and downloads (calculated since 28 Nov 2016)

Cumulative views and downloads (calculated since 28 Nov 2016)

Viewed (geographical distribution)

Total article views: 708 (including HTML, PDF, and XML)

Thereof 705 with geography defined and 3 with unknown origin.

Country # Views %
  • 1



Latest update: 21 Jun 2017
Publications Copernicus