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Abstract 15 

Simple models can play pivotal roles in the quantification and framing of uncertainties surrounding climate change and sea-

level rise. They are computationally efficient, transparent, and easier to reproduce. These qualities make simple models 

useful for uncertainty quantification and risk characterization. Simple model codes are increasingly distributed as open 

source, as well as actively shared and guided. Alas, computer codes used in the geosciences can often be hard to access, run, 

modify (e.g., with regards to assumptions and model components), and review. Here, we introduce a simple model 20 

framework for projections of global mean temperatures as well as regional sea levels and coastal flood risk (BRICK: 

Building blocks for Relevant Ice and Climate Knowledge). The BRICK model framework is written in R and Fortran and 

aims to help mitigate these issues, while maintaining a high degree of computational efficiency. We demonstrate the 

flexibility of this framework through simple model intercomparison experiments. Furthermore, we demonstrate that BRICK 

is suitable for risk assessment applications by using a didactic example in local flood risk management. 25 
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1 Introduction 

Simple, mechanistically-motivated Earth system models often play a pivotal role in climate and flood risk management 

(Hartin et al., 2015). For example, they are used for uncertainty quantification (Bakker et al., 2016b; Urban et al., 2014; 

Urban and Keller, 2010), complex model emulation (Applegate et al., 2012; Bakker et al., 2016a; Hartin et al., 2015; 

Meinshausen et al., 2011a), and incorporated in integrated assessment models (Hartin et al., 2015; Meinshausen et al., 5 

2011a). 

 

Computational constraints often impose hard trade-offs between physical model complexity and statistical model 

complexity. For example, a sizable allotment of computational time could be spent running a small number of simulations 

using a high-complexity physical model. Highly detailed simulations are useful to better understand the complex system, but 10 

with just a small number of simulations, only weak ensemble statistics can be drawn. In contrast, numerous realizations of a 

less detailed physical model could be run. This would provide the opportunity for more advanced ensemble statistical 

techniques including the characterization and quantification of uncertainties. It is important in climate-related applications 

such as mitigation of greenhouse gas emissions or adaptation to sea-level rise that the relevant uncertainties are explored and 

communicated clearly to policy-makers (e.g., Garner et al., 2016; Goes et al., 2011; Hall et al., 2012; Lempert et al., 2004). 15 

 

Several studies have broken important new ground in tackling these challenges.  For example, Nauels et al. (2016) present a 

platform of sea-level emulators (i.e. simple models of complex models) that efficiently produces future projections and 

characterizes key model structural uncertainties using statistical calibration methods. Semi-empirical modeling (SEM) 

approaches trade detailed physics for a model that can efficiently project sea level using statistical, but mechanistically 20 

motivated, relationships between sea-level changes and climate conditions such as temperature and radiative forcing 

(Jevrejeva et al., 2010; Rahmstorf, 2007). Recent work has expanded upon the SEM approach to use simple models to 

resolve individual contributions to global sea level (Bakker et al., 2016b; Mengel et al., 2016; Nauels et al., 2016).  

 

Although there is an increasing tendency to share scientific code, it can be (perhaps surprisingly) hard to get the models 25 

running and to reproduce the results. A likely cause for this is that not enough attention is given to the scientific coding 

itself. Careful coding, documentation, and review require a dedicated commitment of time, but scientific incentives to do so 

can be weak.  

 

Here we introduce BRICK v0.1 (“Building blocks for Relevant Ice and Climate Knowledge”), a new model framework that 30 

focuses on accessibility, transparency, and flexibility while maintaining, as much as possible, the computational efficiency 

that make simple models so appealing. There is a wide range of potential applications for such a model. A simple framework 

enables uncertainty quantification via statistical calibration approaches (Higdon et al., 2004; Kennedy and O’Hagan, 2001), 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-303, 2017
Manuscript under review for journal Geosci. Model Dev.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



3 

 

which would be infeasible with more computationally expensive models. A transparent modeling framework enables 

communication between scientists as well as communication with stakeholders. This leads to potential application of the 

model framework in decision support and education (Weaver et al., 2013). The present work expands on previous studies by 

(1) providing a platform of simple, but mechanistically motivated sea-level process models that resolve more processes, (2) 

providing a model framework that can facilitate model comparisons (for example, between our models and those of Nauels 5 

et al. (2016)), (3) exploring combined effects of key structural and parametric uncertainties, (4) explicitly demonstrating the 

flexibility of our framework for interchanging model components, and (5) explicitly demonstrating the utility of our model 

framework for informing decision analyses. 

 

In this model framework, we present a set of easy-to-couple simple models for climate and flood risk management. They 10 

simulate climate and contributions to global mean sea-level rise (GMSL). BRICK also includes a regional sea-level rise 

module, which translates the global mean sea level contributions to regional sea level at a user-defined region. We use these 

regional sea level projections to demonstrate how the physical model may be linked to decision-making and impacts. We 

implement a Bayesian calibration approach with an aim to adequately represent the tails of the distribution of future sea level 

because these low-probability areas drive high-risk events. In robust decision-making approaches, it can be favorable to be 15 

underconfident as opposed to overconfident (Herman et al., 2015).  We hence include a Bayesian approach with wide, 

mechanistically-motivated prior parameter probability distributions (Bakker et al., 2016b). Yet, its flexibility also enables the 

implementation of other calibration schemes. This paper is intended to showcase a useful model framework that is attractive 

for a sustainable approach to model development, for example by inspiring fellow researchers to contribute to the 

framework, to rethink their coding practice, and maybe even to adopt some of the demonstrated design objectives in their 20 

future research proposals. 

 

The hindcast skill of the BRICK model has been previously demonstrated (Bakker et al., 2016b). Thus, the present work 

focuses on outlining a set of epistemic modeling values that we believe facilitates advances in the modeling community. The 

remainder of this work is organized as follows. In Sect. 2, we describe these values and the ways in which the BRICK model 25 

implementation strives to attain them. Section 3 contains an overview of the BRICK model components for climate and the 

contributions to sea-level rise. Section 4 describes and presents the results of a set of model experiments conducted to 

demonstrate how BRICK lives up to our epistemic modeling values. Section 5 summarizes the findings of this work and 

provides conclusions and guidance for future work. 
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2 Framework design 

2.1 Model design 

The essence of the BRICK physical model is to simulate climate change and the implied sea-level change. The 

socioeconomic impacts of the simulated climate and sea-level rise may then be assessed. This is depicted in Fig. 1. The 

climate component, each individual contribution to global sea-level rise, and an impacts module are sub-models of BRICK, 5 

or “BRICKs.” We defer details of the specific sub-models to Sect. 3. The physical model (climate and sea-level rise) 

components of BRICK are intentionally simple. This choice is guided by the epistemic modeling values outlined below.  

2.2 Epistemic modeling values 

2.2.1 Accessibility 

We selected R as the base language for BRICK because it is (1) stable, (2) freely available and open source, (3) relatively 10 

easy to use, and (4) easy to call subroutines written in faster languages. In the BRICK source code accompanying this study, 

the physical sub-models within the climate and sea-level rise modules are all provided as both R and Fortran 90 routines. It 

is our aim that the full physical-statistical model of BRICK is accessible using a modern laptop. This means that sizable 

Monte Carlo simulations (on the order of a million samples) must be possible on a time scale of hours. This is made possible 

by calling Fortran 90 sub-models from the base code in R.  15 

 

In addition to conceptual accessibility, it is our view that useful model codes are physically accessible too. Openness with 

scientific codes is likely to lead to higher quality codes (Easterbrook, 2014). In an effort to be truly open source and freely 

available, all codes – including the physical model, statistical model, and processing and plotting scripts used for the results 

shown here– are available through the website URL provided in the Code Availability section of this article. Providing all 20 

code and data necessary to recreate this study is a critical component of reproducible research (Murray-Rust and Murray-

Rust, 2014) and can help to build trust between the general public and scientific community (Easterbrook, 2014; Grubb and 

Easterbrook, 2011). 

2.2.2 Transparency 

We aim to achieve transparency in two areas: the physical modeling, including the related model code, and the 25 

communication of scientific findings. 

 

In regards to transparent physical modeling, we use simple numerical integration schemes whenever possible. We use as few 

global variables as possible, in order to “write programs for people, not computers” (Wilson et al., 2014). The essence of 

these authors’ advice is that users should not be expected to remember more than a few pieces of information as they read 30 

and develop code. To this end, in BRICK we aim to give appropriately suggestive names to our variables within the code, 
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such that a human intuitively understands what the quantity at hand represents. For example, when naming a logical or 

Boolean variable, we prefer for its name to read as a question that the variable itself answers, and begin the variable name 

with the letter “l” to imply it is a “logical” variable. One example of this in the BRICK source code is the variable 

“l.project”, which is true when the model is configured to make projections of future sea-level rise and climate, and false 

when the model is set up for hindcast simulations. While it may seem fussy to review these points, practices such as this will 5 

facilitate the sharing of scientific codes and enable the community to build stronger and more efficient collaborations. 

 

Transparency also serves to link the findings of a physical model to decision-making and policy impacts. BRICK can be a 

useful tool to link climate changes (global temperature and sea-level rise) to decision-making frameworks through a clear 

outlet for coupling to socioeconomic models. Perhaps most importantly, the coupled physical-statistical framework in 10 

BRICK incorporates many sources of uncertainty into the physical findings on which the decisions will be based. It is 

important that these uncertainties in climate projections are represented in the decision-making framework (Lempert et al., 

2004). 

2.2.3 Flexibility 

A modular programming approach is taken with BRICK, which allows each component sub-model to be exchanged for 15 

alternative models. In this way, as the scientific forefront progresses, the BRICK sub-models may advance as well. The 

flexible BRICK framework also permits a quantitative evaluation of model structural differences, which is valuable in the 

event that it is unclear which of two candidate models should be chosen. In these cases, the BRICK framework is valuable 

for model comparison and quantification of structural uncertainty. As new data sets for the calibration of the sub-models 

become available, these can also be incorporated instead of or in addition to the current data sets. We demonstrate the 20 

flexibility of the BRICK framework through a series of modeling experiments (Sect. 4). 

2.2.4 Efficiency 

Code efficiency is enabled primarily through (1) the use of simple models and (2) using model versions written in R for easy 

preliminary experimentation, and Fortran 90 versions for production simulations. This practice also follows the advice of 

Wilson et al. (2014) for code developers to “write code in the highest-level language possible, and shift to lower-level 25 

languages like C and Fortran only when they are sure the performance boost is needed.” This boost indeed enables the 

generation of production simulations on most modern laptops. The simulation of one million model iterations spanning from 

1850 to present, performed on each of four CPUs (two cores and two threads per core) yields an ensemble of four million 

model realizations. This procedure requires less than an hour on a model year 2012 laptop with a 2.9 GHz dual-core 

processor with 16 GB of RAM. Paleoclimatic simulations require longer wall clock times, but can still be completed in less 30 

than a day. All simulations for this study were completed on this machine. 
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Providing computationally efficient code simplifies the use. For example, there may be limitations on the computing 

resources allocated for a particular project, or an instructor might be interested in enhancing coursework by incorporating 

computer modeling exercises. In these cases, transparency is critical (as mentioned above), but also the model must be 

sufficiently efficient that it neither (1) expires the computational allotment for the experiment, nor (2) takes too long to be of 

any educational use. Our epistemic modeling values of accessibility, transparency, flexibility, and efficiency motivate the 5 

choice of a relatively simple physical modeling framework. Accordingly, a detailed statistical calibration framework is 

implemented. Within this framework, physical model and statistical model parameters are calibrated using observational 

data sets and mechanistically-motivated prior ranges. The statistical model is reviewed at greater length by Bakker et al. 

(2016b), so we provide only an overview in Sect. 4.1.  

2.3 Code review and sharing 10 

We invite the readers to download and test our code, as well as provide feedback on how best to further develop BRICK to 

fulfill the four epistemic values outlined above. Frequent and thorough code review by other team members as well as 

outside agents is another critical step towards good scientific coding practices (Wilson et al., 2014), and “peer review needs 

to be supplemented with a number of other mechanisms that help to establish the correctness and credibility of scientific 

research” (Grubb and Easterbrook, 2011). Wilson et al. (2014) also note that a number of high profile research articles have 15 

been retracted or revised because of errors in the code. The likelihood of these errors may be greatly reduced by thoroughly 

testing other group members’ codes. In our own experience conducting the experiments described in this study, we have 

anecdotal evidence for the value of testing one another’s code. Some errors were corrected through this process, and many 

more pieces of code were modified for clarity. We continue to invite all comments and suggestions for improvements and 

modifications (to the corresponding author). 20 

 

The use of a version control system greatly expands the accessibility of a code base, and also facilitates continuous 

improvement of the modelling framework itself. This is true and useful before, during, and after the peer-review process. 

Mistakes are inevitable and we assume that BRICK still contains some minor errors, ambiguities, and pieces of code that do 

not fully comply to our own standards. Openly sharing the code and documentation will help to address these issues. It is our 25 

hope that BRICK may be further developed as a community modeling tool, and that other users may contribute to the 

framework through added or revised models and data, or improved functionality. The use of a version control system 

facilitates this type of community effort (Wilson et al., 2014). 
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3 Model components 

3.1 Global mean climate 

We adopt DOECLIM (Diffusion Ocean Energy balance CLIMate model, (Kriegler, 2005)) as a starting point for a simple 

climate model (Fig. 1). DOECLIM is an energy balance model coupled to a one-dimensional diffusive ocean model. The 

DOECLIM physical model outputs are global mean surface temperature anomaly (°C) and ocean heat uptake (1022 J). 5 

Calibration data for DOECLIM include both global surface temperature (Morice et al., 2012) and oceanic heat uptake 

(Gouretski and Koltermann, 2007). The required input to drive the model is the radiative forcing time series (W m-2). This 

forcing is partitioned into aerosol and non-aerosol components, to enable a representation of the uncertainty associated with 

these forcings. The BRICK model considers this as an uncertain model parameter denoted as the aerosol forcing scaling 

factor (DOECLIM). This aerosol scaling factor has been used elsewhere in the literature (Urban et al., 2014; Urban and Keller, 10 

2010) and accounts for some uncertainty in the radiative forcing of aerosols (Meinshausen et al., 2011b). The interested 

reader is directed to Kriegler (2005) and Tanaka and Kriegler (2007) for more information about the DOECLIM model.  

 

We fit a first-order autoregressive (AR1) error model to the model-data discrepancy between temperature and ocean heat 

uptake model output and calibration data. We estimate the first-order lag autocorrelation parameters (T and H) and 15 

homoscedastic component of the AR1 innovation variance (T and H) within the calibration framework as statistical model 

parameters. We add the heteroscedastic observational error estimates from Morice et al. (2012) and Gouretski and 

Koltermann (2007) in quadrature to T and H (respectively) for the complete heteroscedastic temperature and ocean heat 

uptake error estimates. The model calibration approach implemented here assumes normally-distributed model-data 

residuals with mean zero (Higdon et al., 2004). The AR1 error model has the effect of “whitening” the residuals to satisfy 20 

this assumption. 

3.2 Sea level components 

The BRICK global mean sea-level module calculates global sea level change as the sum of four individual components: 

glaciers and ice caps (GIC), Greenland ice sheet (GIS), Antarctic ice sheet (AIS), and thermal expansion (TE). These 

component sub-models are described in the following sections. The differential equations for the GIC, GIS, AIS, and TE 25 

contributions to global mean sea level (below) are integrated in BRICK using first-order numerical integration schemes with 

a one-year time step. Initial conditions are specified at a certain year. Starting from this initial condition, a first-order explicit 

numerical integration method integrates forward in time to the end of the simulation and a first-order implicit (backward 

differentiation) method integrates backward in time to the earliest year of the simulation. Preliminary experiments (not 

shown) demonstrated that the one-year time step is sufficiently short to maintain numerical stability. The total global mean 30 

sea-level rise from the coupled BRICK model is 
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𝑑𝑆

𝑑𝑡
(𝑡) =  

𝑑𝑆𝐺𝑆𝐼𝐶

𝑑𝑡
(𝑡) +

𝑑𝑆𝐺𝐼𝑆

𝑑𝑡
(𝑡) +

𝑑𝑆𝐴𝐼𝑆

𝑑𝑡
(𝑡) +

𝑑𝑆𝑇𝐸

𝑑𝑡
(𝑡),       (1) 

where S(t) is the global mean sea level (m) in year t, SGIC is the sea level contribution from GIC (m), SGIS is the sea level 

contribution from the GIS (m), SAIS is the sea level contribution from the AIS (m), STE is the sea level contribution from 

thermal expansion (m). We report projections of future sea level relative to the 1986-2005 mean.  

3.2.1 Glaciers and ice caps 5 

We adopt a simple sub-model for the contribution to global sea-level rise from Glaciers and Ice Caps (GIC) from Wigley 

and Raper (2005). This same formulation is used in the MAGICC climate model (Meinshausen et al., 2011a). The 

parameterization for the GIC contribution to global sea-level rise is: 

𝑑𝑆𝐺𝐼𝐶

𝑑𝑡
(𝑡) = 𝛽0(𝑇𝑔(𝑡) − 𝑇𝑒𝑞,𝐺𝐼𝐶) (1 −

𝑆𝐺𝐼𝐶(𝑡)

𝑉0,𝐺𝐼𝐶
)

𝑛

.       (2) 

In Eq. (2), SGIC is the cumulative sea level contribution from GIC (m), 0 is the initial mass balance sensitivity to global 10 

temperatures (m °C-1 y-1), Teq,GIC is the theoretical equilibrium temperature at which the GIC mass balance is at steady state 

(°C), V0,GIC is the initial total volume of GIC available in 1990 (m sea level equivalent (SLE)), and n is an exponent 

parameter for area-to-volume scaling. An initial condition, S0,GIC, is provided as an uncertain model parameter. Teq,GIC is 

taken equal to -0.15°C (Wigley and Raper, 2005). Note that in this formulation for GIC contribution to sea-level rise, 

whether the GIC mass is increasing or decreasing depends only on Tg(t) relative to Teq,GIC; it is independent of the current 15 

state SGIC(t). Within this model for the GIC sea-level contribution, Tg is relative to the 1850-1870 mean global surface 

temperature (Wigley and Raper, 2005). 

 

The uncertain physical model parameters for GIC-MAGICC (which will be tested in Sect. 4.2) are 0, V0,GIC, S0,GIC, and n. 

We fit an AR1 model to the model-data discrepancy between GIC model output and calibration data (Dyurgerov and Meier, 20 

2005) in the same manner as the temperature and ocean heat uptake calibration (Sect. 3.1). Uniform prior distributions are 

used for the GIC-MAGICC physical and statistical model parameters. These prior distributions, as well as calibrated 

posterior medians, 5, and 95% quantiles, are given in Appendix A. 

3.2.2 Greenland ice sheet 

BRICK uses the mechanistically-motivated SIMPLE (Simple Ice-sheet Model for Projecting Large Ensembles) model as the 25 

parameterization for the Greenland ice sheet (GIS) contribution to global mean sea level change (Bakker et al., 2016a). 

SIMPLE is a linear mass balance between precipitation PGIS, runoff of meltwater QGIS, and the dynamic outflow of ice DGIS, 

 
𝑑𝑀𝐺𝐼𝑆

𝑑𝑡
= 𝑃𝐺𝐼𝑆 − 𝑄𝐺𝐼𝑆 − 𝐷𝐺𝐼𝑆 ,                       (3) 

 30 
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and assumes height HGIS, volume VGIS, mass MGIS, and slope slGIS of the ice sheet to vary proportionally. PGIS is often 

assumed to exponentially increase with temperature at mean sea-level TGIS by a rate of 5-7% K-1 (e.g., Applegate et al., 

2012). For a small temperature interval, this can be approximated by linearity, 

 

𝑃𝐺𝐼𝑆(𝑡) =  𝑐1  𝑇𝐺𝐼𝑆(𝑡) + 𝑐2.                       (4) 5 

 

In Eqs. (4) – (7), cj are all constants, j=1,2,…,7. Similarly, QGIS depends on the mean temperature at the ice sheet surface T-

GIS,surface, 

 

𝑄𝐺𝐼𝑆(𝑡) =  𝑐3 𝑇𝐺𝐼𝑆,𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) + 𝑐4,                       (5) 10 

 

where the difference between TGIS,surface  and TGIS depends linearly on HGIS, 

 

𝑇𝐺𝐼𝑆,𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡) =   𝑇𝐺𝐼𝑆(𝑡) + 𝑐5𝐻𝐺𝐼𝑆(𝑡).                                           (6) 

 15 

The dynamic ice outflow is linearly dependent on the slope (thus, on the height), where the sensitivity is a function of 

temperature TGIS, 

𝐷𝐺𝐼𝑆(𝑡) =  (𝑐6𝑇𝐺𝐼𝑆 + 𝑐7)𝐻𝐺𝐼𝑆                       (7) 

 

SIMPLE (algebra) simplifies Eqs. (3) – (7) to Eqs. (8) and (9) by first estimating an equilibrium ice sheet volume (Veq,GIS, m 20 

SLE) at which the sea level contribution from the GIS is zero, and estimating the e-folding time-scale of GIS volume 

changes due to changes in global temperature (GIS, y-1). 

𝑉𝑒𝑞,𝐺𝐼𝑆(𝑡) =  𝑎𝐺𝐼𝑆 𝑇𝑔(𝑡) +  𝑏𝐺𝐼𝑆         (8) 

 
1

𝜏𝐺𝐼𝑆(𝑡)
=  𝛼𝐺𝐼𝑆 𝑇𝑔(𝑡) +  𝛽𝐺𝐼𝑆         (9) 25 

 

In Eqs. (8) and (9), aGIS, bGIS, GIS, and GIS are uncertain physical model parameters. aGIS is the sensitivity of the equilibrium 

volume to changes in temperature (m SLE °C-1); bGIS is the equilibrium volume Veq,GIS for zero temperature anomaly (m 

SLE); GIS is the sensitivity to temperature of the time-scale of GIS volume response to changes in temperature (°C-1 y-1); 

and GIS is the equilibrium (Tg=0°C) time-scale of GIS volume response to changes in temperature (y-1). Global mean surface 30 

temperature, Tg, is taken relative to 1961 to 1990 mean. The GIS volume changes can then be written as 

𝑑𝑉𝐺𝐼𝑆

𝑑𝑡
(𝑡) =

1

𝜏𝐺𝐼𝑆(𝑡)
(𝑉𝑒𝑞,𝐺𝐼𝑆(𝑡) − 𝑉𝐺𝐼𝑆(𝑡)).        (10) 

The initial condition V0,GIS is provided as an uncertain model parameter (m SLE). Using this initial condition, designated in 

the year 1961, the sea-level rise due to the GIS is calculated as the change from V0,GIS to the current GIS volume, VGIS(t). 

This formulation, of course, assumes that all GIS volume lost makes its way into the oceans. An AR1 model is fitted to the 35 

GIS model-data residuals. Due to poor convergence, the first-order lag autocorrelation parameter (GIS) is held constant at a 

value determined by a preliminary model simulation that is optimized using a differential evolution optimization algorithm 

(Storn and Price, 1997). The GIS training data set does not provide heteroscedastic error estimates, so the AR1 innovation 
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variance is taken to be the estimated statistical parameter GIS added in quadrature to the provided error estimate (Sasgen et 

al., 2012). All GIS physical and statistical model parameters are assigned uniform prior distributions. The ranges for these 

priors and posterior distribution medians, 5, and 95% quantiles are given in Appendix A. Further details regarding SIMPLE 

are provided in Bakker et al. (2016a). 

3.2.3 Antarctic ice sheet 5 

We employ the Danish Center for Earth System Science Antarctic Ice Sheet (DAIS) model to simulate the Antarctic ice 

sheet contribution to global sea level (Shaffer, 2014). This is a two-dimensional model for the Antarctic ice sheet that 

assumes an axisymmetric geometry, shown graphically in Shaffer (2014), his Fig. 2. The DAIS model tracks changes in 

Antarctic ice sheet volume, considering contributions from (1) incident precipitation, (2) runoff of ice melt, (3) ice flow, and 

(4) ice sheet disintegration from rising and warming sea levels. Input forcings for the DAIS model include Antarctic surface 10 

temperature reduced to sea level (TA, °C), high latitude ocean subsurface temperature (TANTO, °C), global mean sea level (m), 

and the time rate of change of global mean sea level (m y-1). 

 

When calibrated as a stand-alone model, the DAIS forcings are provided based on temperature reconstructions (see Shaffer 

(2014)). When the DAIS model is run as a component in the coupled BRICK model, a separate sub-model is needed to 15 

convert the global mean surface temperature from the climate model (DOECLIM) to the Antarctic surface and ocean 

subsurface temperatures required by the DAIS model. The Antarctic surface temperature is estimated from a linear 

regression with global mean surface temperature (Morice et al., 2012; Shaffer, 2014). The Antarctic ocean temperatures 

(TANTO) are modeled through a simple relation with the global mean surface temperature, Tg (relative to 1850-1970 mean). 

TANTO is bounded below at the freezing point of salt water (Tf = -1.4C): 20 

𝑇𝐴𝑁𝑇𝑂(𝑡) = 𝑇𝑓 +
𝑎𝐴𝑁𝑇𝑂∗𝑇𝑔(𝑡)+𝑏𝐴𝑁𝑇𝑂−𝑇𝑓

1+exp[(𝑎𝐴𝑁𝑇𝑂∗𝑇𝑔(𝑡)+𝑏𝐴𝑁𝑇𝑂−𝑇𝑓)/𝑎𝐴𝑁𝑇𝑂]
 .      (11) 

Equation (11) is a modified linear regression between the global mean surface temperature Tg and the Antarctic ocean 

temperature TANTO, such that the Antarctic ocean temperature is bounded below by the freezing temperature of sea water, Tf. 

In Eq. (11), aANTO is the sensitivity of the Antarctic ocean temperature to global mean surface temperature (unitless), and 

bANTO (C) is the approximate Antarctic ocean temperature for Tg=0C. banto is the approximate ocean temperature because 25 

the relationship in Eq. (11) is not a simple linear regression. aANTO and bANTO are both estimated as uncertain model 

parameters. The DAIS model contains 11 physical and one statistical parameter, for a total of 14 Antarctic ice sheet 

parameters to be estimated. 

 

Here, we use an updated and corrected version of the DAIS model (Ruckert et al., 2016; Shaffer, 2014). In the original 30 

formulation of the DAIS model, the input forcing from year t is used to determine the AIS contribution to sea-level rise in 

year t. This implicit numerical scheme assumes sea level and temperatures for the current year are known during that model 

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-303, 2017
Manuscript under review for journal Geosci. Model Dev.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



11 

 

iteration. For this study, in which temperatures and sea level originate in other BRICK model components, the DAIS model 

is re-cast using an explicit numerical scheme. The sea level and temperatures from the year t-1 are used to calculate the AIS 

contribution in year t. Each mass contribution to sea level has a particular effect, or “fingerprint,” on regional sea level 

everywhere in the ocean. We use an Antarctic shore-average fingerprint ratio of -1.0 for the AIS contribution to global sea 

level, and Antarctic shore-average fingerprint factors of 1.0 for the other contributions to sea-level rise from all BRICK sub-5 

models (Slangen et al., 2014). This Antarctic local sea level functions as the input to DAIS when run as a sub-model of the 

coupled BRICK model. Preliminary experiments indicated that our results are not sensitive to the precise choices of these 

fingerprints. 

 

The dynamical core of the DAIS model is more detailed than the GIC, GIS, and TE emulators given above. For this reason, 10 

we do not undertake a full review of the model equations here. The interested reader is directed to Shaffer (2014) and 

Ruckert et al. (2016) for further details regarding the DAIS model and its hindcast forcings. Equation (3) of Shaffer (2014) is 

main equation of state for the Antarctic ice sheet volume (VAIS, m3): 

𝑑𝑉𝐴𝐼𝑆

𝑑𝑡
(𝑡) = 𝐵𝑡𝑜𝑡(𝑇𝐴 , 𝑅) + 𝐹(𝑆, 𝑅).         (12) 

In Eq. (12), Btot is the total rate of accumulation of mass on the Antarctic ice sheet (m3 y-1), TA is the Antarctic surface 15 

temperature reduced to sea level (C), S is the sea level (m), R is the Antarctic ice sheet radius (m), and F is the ice flux at 

grounding line (m3 y-1). Following Shaffer (2014), we take the present sea level equivalent Antarctic ice sheet volume to be 

57 m SLE, and the initial ice sheet volume (V0,AIS, m3) to be consistent with an initial ice sheet radius of 1.86x106 m. Thus, 

the Antarctic ice sheet contribution to global sea level may be calculated as 

𝑑𝑆𝐴𝐼𝑆

𝑑𝑡
(𝑡) = (57 𝑚) ∗ (1 −

𝑑𝑉𝐴𝐼𝑆
𝑑𝑡

(𝑡)

𝑉0,𝐴𝐼𝑆
).        (13) 20 

3.2.4 Thermal expansion 

BRICK uses a simple parameterization for the contribution of thermal expansion (TE) of the Earth’s oceans to sea-level rise. 

This emulator is based on the parameterizations of the sea-level rise sub-models of (Mengel et al., 2016) and was originally 

used by (Grinsted et al., 2010) to model the total global mean sea level changes. First, an equilibrium sea-level rise from 

thermal expansion, due to changing global surface temperature (Seq,TE, m) is calculated as 25 

𝑆𝑒𝑞,𝑇𝐸(𝑡) =  𝑎𝑇𝐸  𝑇𝑔(𝑡) + 𝑏𝑇𝐸.         (14) 

In Eq. (14), aTE is the sensitivity of the equilibrium sea-level rise from thermal expansion, due to changing global surface 

temperatures (m °C-1), and bTE is the equilibrium sea-level rise from thermal expansion with no temperature anomaly (m). 

The sea-level rise due to thermal expansion evolves with time as 

𝑑𝑆𝑇𝐸

𝑑𝑡
(𝑡) =

1

𝜏𝑇𝐸
(𝑆𝑒𝑞,𝑇𝐸(𝑡) − 𝑆𝑇𝐸 (𝑡)) ,        (15) 30 
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where the quantity TE is the e-folding time-scale with which current sea-level adjusts to the equilibrium state, and 1/TE is 

taken as an uncertain model parameter. This parameter is assigned a gamma prior distribution with shape 1.81 and scale 

0.00275, which places the 5th and 95th quantiles for TE at 82 and 1,290 years (Mengel et al., 2016). This choice of prior 

distribution is motivated by the fact that TE functions similarly to the uncertain time-scale associated with an exponentially-

distributed random variable. A gamma distribution is the conjugate prior for such a random variable. The initial condition 5 

S0,TE is provided as an uncertain model parameter (m), designated in year 1850. To match this accounting for sea-level rise 

relative to pre-industrial, forcing temperature is taken relative to its 1850-1870 mean. We calibrate the thermal expansion 

component of sea-level rise using trends reported by the International Panel on Climate Change (IPCC) Fifth Assessment 

Report (AR5, Church et al., 2013). 

3.3 Regional sea-level patterns 10 

In order to link the projections of global mean sea-level change from BRICK to a local coastal adaptation, information on 

regional sea level change is needed. Thus, the global mean sea level from BRICK is downscaled to regional sea level using 

previously published maps of scaling factors for the glacier and ice sheet components of sea-level change (Slangen et al., 

2014). Any redistributions of mass between the cryosphere and the ocean (e.g. ice melt) leads not only to a change in the 

total mass of the ocean, but also to changes in regional sea level as a result of variations in the gravitational field of the 15 

Earth, which in turn affects the solid Earth and the rotation of the Earth (e.g., Mitrovica et al., 2001). This typically (and 

counterintuitively) leads to a sea-level fall close to the source of mass loss and larger-than-average sea-level rise at larger 

distances (> 6700 km) from the source. These so-called regional sea-level “fingerprints” are constant for the time scales used 

in this study, as long as the location of the ice mass change remains the same. The fingerprints can therefore be used to relate 

global glacier and ice sheet contributions to sea level (Sect. 3.2.1 – 3.2.3) to their regional sea level contribution.  20 

 

The glacier fingerprint is based on projected changes in glacier mass in 2100 using a glacier model driven by temperature 

and precipitation information from the Fifth Climate Model Intercomparison Project database (Taylor et al., 2012) under the 

Representative Concentration Pathway 8.5 climate change scenario (RCP8.5, Moss et al., 2010), as presented in Slangen et 

al. (2014). It is assumed that the mass change ratios between the different glacier regions on Earth remain the same 25 

throughout the 20th and 21st century, which is a valid assumption as long as none of the glacier regions “finishes” (which is 

not expected to happen in the next century). For the Greenland and Antarctic ice sheets, it is assumed that ice melt takes 

place uniformly over the ice sheet surface. Within the BRICK model structure, users may define a latitude and longitude to 

obtain regional sea level change. 
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4 Model experiments 

4.1 Model calibration 

We calibrate the model through a coupled physical-statistical calibration framework. The relatively simple physical 

modeling framework of BRICK is motivated by our epistemic modeling values (Sect. 2.1). This efficient model permits the 

use of a sophisticated model calibration technique. The calibration uses a robust adaptive Markov chain Monte Carlo 5 

(MCMC) approach (Vihola, 2012). The specifics of how it is applied to the BRICK model as well as a demonstration of 

calibrated BRICK model hindcast skill are documented in Bakker et al. (2016b). 

 

One modification of the calibration routine relative to that presented in Bakker et al. (2016b) regards the calibration using 

global mean sea level data. The vastly different time scales and characterizations of uncertainty in the Antarctic 10 

paleoclimatic calibration period and the modern period (1850 to present) lead to two separate sets of calibration parameters: 

(1) DAIS parameters, calibrated using paleoclimatic data, and (2) DOECLIM, GIC, GIS, and TE parameters, jointly 

calibrated using modern data. The paleoclimatic calibration is done using four parallel MCMC chains of 500,000 iterations 

each. The first 120,000 iterations of each chain are removed for burn-in. The paleoclimatic calibration requires about 10 

hours on a laptop with a 2.9 GHz dual-core processor with 16 GB of RAM. The modern calibration is done using four 15 

parallel MCMC chains of 1x106 iterations each. The first 500,000 iterations of each chain are removed for burn-in. This 

requires less than one hour on the same machine as the paleoclimatic calibration. Convergence and burn-in lengths are 

assessed using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). 

 

We combine these two disjoint sets of parameters to form concomitant full BRICK model parameters sets, and calibrate 20 

these to global mean sea level data (Church et al., 2013) using rejection sampling (Votaw Jr. and Rafferty, 1951). In this 

method, each full BRICK parameter set is constructed by parsing a random draw from the calibrated DAIS parameter sets 

with a random draw from the DOECLIM-GIC-GIS-TE calibrated parameter sets. This full BRICK model has the major 

components of global mean sea-level rise represented, so only at this stage is calibration using global mean sea level data 

possible. The calibration to global sea level data initially proposes 5,000 full BRICK model parameter sets. We use a joint 25 

Gaussian normal likelihood function centered at the time series of the global mean sea level data, with standard deviation 

given by the observational uncertainty of the sea level data. For rejection sampling, the enveloping distribution is this 

likelihood function evaluated at the observed sea level time series itself. Thus, no model simulation can yield a realization of 

the likelihood function that exceeds this value. Rejection sampling accepts each model simulation with probability equal to 

the ratio of the likelihood function evaluated at the selected model simulation to the maximal value of the likelihood 30 

function. 573 ensemble members remain after the calibration to global mean sea level data. These model realizations serve 

as the control ensemble for analysis. The entire analysis for the control model, including paleoclimatic simulations and the 

risk assessment presented in Sect. 4.4 requires less than 10 minutes on a modern laptop. 
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In the spirit of our epistemic values, calibration routines are provided with the available BRICK source code. These routines 

use modern methods readily available in R. It is our aim that the interested user can easily substitute their own likelihood 

function (as physical scientific knowledge progresses), a new calibration method (as the statistical state-of-the-art 

progresses), or both. To this end, we provide a sub-routinized likelihood function, called from an R-packaged calibration 5 

method (Vihola, 2012). We also provide individual likelihood functions and calibration scripts for each sub-model of 

BRICK individually, to enable interested users to perform experiments using stand-alone sub-models or pre-calibration 

(Edwards et al., 2011). 

 

In the interest of accessibility and transparency, with the available BRICK source code we also provide the sets of calibrated 10 

model parameters for all experiments presented here. The purpose of this is twofold. First, it greatly enhances the 

reproducibility of these results. Second, these data sets enable users who would like to run their own ensembles to do so. 

This supports our goal of accessibility. The calibrated parameter sets are provided in netCDF format, with ensemble member 

as the “unlimited” dimension. This permits concatenating multiple data sets by using netCDF operators (NCO) such “ncrcat” 

(Zender, 2008). These are freely available tools for manipulating data stored in netCDF format. 15 

4.2 Exchanging BRICKs and full sea-level rise module intercomparisons 

4.2.1 Experimental description 

We achieve the accessibility, transparency, and computational efficiency of the BRICK modeling framework through use of 

simple models written in a simple programming environment (R). It remains to be demonstrated that this framework is 

flexible and efficient in post-processing.  20 

 

We demonstrate BRICK’s flexibility and efficiency by implementing and switching in an alternative formulation for the 

global mean sea level, S(t). We exchange the more detailed model configuration for global mean sea level (the BRICK 

control, see Fig. 1) for the simple emulator described in Rahmstorf (2007). This is 

𝑑𝑆

𝑑𝑡
(𝑡) = 𝑎𝐺𝑀𝑆𝐿(𝑇𝑔(𝑡) − 𝑇𝑒𝑞,𝐺𝑀𝑆𝐿) ,         (16) 25 

where t is time (years), S is the global mean sea level (m), aGMSL is a sensitivity constant (m °C-1 y-1), Tg is the global mean 

surface temperature anomaly (°C), and Teq,GMSL is the theoretical temperature at which the global sea level is steady (°C). The 

parameters aGMSL and Teq,GMSL, as well as the statistical parameters GMSL (the first-order lag) and GMSL (the homoscedastic 

component of the innovation variance), are calibrated using the same global mean sea level data set as the full BRICK sea-

level rise module (Church and White, 2011). The “BRICK-GMSL” model performance using Eq. (16) for the sea-level rise 30 

module (while still coupled to DOECLIM as the climate module) is compared against the full BRICK model configuration. 
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This BRICK-GMSL model configuration is calibrated using four parallel MCMC chains of 100,000 iterations each. The first 

50,000 iterations are removed for burn-in, as determined using Gelman and Rubin diagnostics (Gelman and Rubin, 1992). 

We randomly sample from the resulting posterior distribution to form an ensemble for analysis of 600 model realizations. 

This ensemble size is chosen to be comparable with the BRICK control model ensemble size (573 members). The prior 

ranges and posterior medians, 5, and 95% quantiles for the BRICK-GMSL parameters are provided in Appendix A. 5 

 

Note that this specific emulator structure is arguably not the state-of-the-art anymore (Grinsted et al., 2010; Kopp et al., 

2016). However, it serves here the purpose of demonstrating the ease with which alternative model formulations can be 

tested. This greatly simplifies, for example, model inter-comparisons and improvements. Some advantages of a simple 

emulator such as this include fewer parameters to estimate and a transparent analysis. Disadvantages of such a model include 10 

the inability to resolve individual contributions to global mean sea level. This disables the use of sea level fingerprinting to 

obtain regional sea-level patterns. Thus, the choice of model should not only be motivated by goodness-of-fit metrics, but 

also by applications. 

 

Many goodness-of-fit metrics are available for the comparison of models and data. We focus on three metrics that are 15 

motivated by the heavily-parameterized full BRICK model framework. There are 39 free parameters in the coupled 

climate/sea-level rise model. By contrast, BRICK-GMSL has 13 free parameters. We use the global mean sea level time 

series of Church and White (2011) for the model-data comparisons in skill hindcasting global mean sea level. 

Root-mean-squared-error (RMSE) is a commonly-used error metric, so we employ it here. For consistency with other 

error criteria defined below, we define the RMSE for a model as the RMSE of the model ensemble member that maximizes 20 

the likelihood function. 

Akaike Information Criterion (AIC) is a measure of the relative goodness-of-fit between two potential models for the 

same data (Akaike, 1974). 

𝐴𝐼𝐶 = −2 ln(𝐿𝑚𝑎𝑥) + 2 𝑁         (17) 

In Eq. (17), Lmax is the maximum value of the likelihood function and N is the number of model parameters. Lower values of 25 

AIC provide a better match between model output and data, and consider a penalty for over-parameterizing a model. 

Bayesian Information Criterion (BIC) is formulated similarly to AIC, but enacts a different penalty for over-

parameterization (Schwarz, 1978). 

𝐵𝐼𝐶 = −2 ln(𝐿𝑚𝑎𝑥) + 𝑁 ln (𝑁𝑜𝑏𝑠)          (18) 

In Eq. (18), Nobs is the number of observational data points used in the model-data comparison. Thus, for Nobs>e2, the BIC 30 

metric penalizes over-parameterization more harshly than does AIC. 
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4.2.2 Experimental results: sea-level rise module intercomparison 

The full BRICK sea-level rise module (Fig. 1) performs better than the GMSL emulator (Eq. (16)) according to RMSE; the 

full sea-level rise module has RMSE of 0.0068 m, which is about half the GMSL emulator RMSE of 0.015 m (Fig. 2). These 

hindcasts are presented as sea level relative to 1961-1990 global mean sea level. This is of course expected, because the 

number of free model parameters in the full BRICK model is 39, while the GMSL emulator contains only 13 free 5 

parameters. The BIC metric gives the expected result for this disparity in model complexity. The BIC for the full BRICK 

model with respect to the sea level data is 57.6 higher than the BIC for the GMSL emulator. The AIC is actually lower (by 

17) for the full BRICK model than for the BRICK-GMSL emulator. These mixed results for the model comparison metrics 

indicate that using the full BRICK sea-level rise module is not unreasonably over-parameterized.  

 10 

These results also show that the sea level hindcast in the full BRICK model smooths much of the year-to-year variability in 

sea-level rise. This can be seen by contrasting the full BRICK maximum likelihood ensemble member (solid pink line) in 

Fig. 2a with the BRICK-GMSL emulator maximum likelihood ensemble member in Fig. 2b. The full BRICK simulation 

does not capture the annual variation in global mean sea level that the BRICK-GMSL simulation successfully captures. This 

does not affect ensemble statistics, however, which can be seen from the shaded envelopes around the model simulations in 15 

Fig. 2. The BRICK model has been developed with efficiency and large ensemble simulations in mind, so missing annual 

variability is of little concern. 

 

This demonstrates the ease with which model intercomparisons may be undertaken using BRICK. Deactivating the glaciers 

and ice caps, thermal expansion, and Greenland and Antarctic ice sheet components and integrating the GMSL emulator into 20 

BRICK involves low overhead in computer code. GMSL is the main output of the BRICK physical model. As such, it is our 

aim to provide a framework in which users can easily integrate new processes and models into the climate and sea-level rise 

modules as the scientific forefront progresses. 

4.3 Interchanging BRICKs and sub-model intercomparisons 

4.3.1 Experimental description 25 

We conduct an experiment to demonstrate the flexibility of BRICK to permit easy exchanging of a single sub-model for one 

component of global sea-level rise. In the control BRICK model set-up, SIMPLE is used to emulate the sea-level rise 

contributions from the Greenland ice sheet (GIS) and GIC-MAGICC is used to emulate the contributions from glaciers and 

ice caps (GIC). In this model intercomparison experiment, a second version of SIMPLE is calibrated to represent the GIC 

component of sea-level rise. This experiment is motivated by potential structural shortcomings of the GIC-MAGICC model. 30 

In Eq. (2), the implied GIC volume equilibrium depends only on the current surface temperature relative to the fixed 

parameter Teq,GIC. If the GIC volume is quite low (almost entirely melted), this structure potentially enables unphysically fast 
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growth of GIC volume. The SIMPLE model (Eqs. (3) – (5)) contains an arguably more realistic representation of the 

relaxation of ice sheet volume towards an equilibrium. In this formulation, the time-scale of the relaxation and the 

equilibrium itself both depend on the surface temperature state. This type of potential disagreement within the scientific 

community regarding model structure is precisely where the BRICK model framework can be useful. The flexibility of 

BRICK enables easy exchange of one component sub-model (GIC-MAGICC) for another (GIC-SIMPLE). This enables 5 

experiments examining the impacts of model structural choices. 

 

This GIC-SIMPLE model configuration calibrates GIC-SIMPLE using the same observational data as the control GIC-

MAGICC set-up. One key difference is that the prior distributions of the model parameters for GIC-SIMPLE were modified 

to be specific to the GIC conditions instead of the GIS. These prior distributions are given in Appendix A. The same 10 

calibration method and likelihood functions are used for the GIC-SIMPLE experiment as in the GIC-MAGICC control 

model. We use the same basic calibration approach as in the control ensemble, which yields an ensemble of 548 model 

realizations for analysis in the GIC-SIMPLE experiment. As in Sect. 4.2, we focus on RMSE, AIC, and BIC as model 

goodness-of-fit metrics. The GIC-MAGICC model has six model parameters (four physical model, two statistical) and the 

GIC-SIMPLE model has seven parameters (five physical model, two statistical). 15 

4.3.2 Experimental results: glaciers and ice caps sub-model intercomparison 

When the GIC-MAGICC model is used, RMSE, AIC, and BIC are all lower than when the GIC-SIMPLE model is used (Fig. 

3). But the AIC and BIC are not drastically lower for GIC-MAGICC than for GIC-SIMPLE.  This indicates that the addition 

of a model parameter (GIC-SIMPLE) may not be justified (Kass and Raftery, 1995). The GIC contribution to global sea 

level in Fig. 3 is presented relative to 1960 GIC sea-level rise. The median, 5, and 95% quantiles of the calibrated GIC-20 

SIMPLE parameters are given in Appendix A. 

 

The two models display similar levels of under-confidence, illustrated by the wide model ensemble envelope around the 

narrower range of observational data (Fig. 3) (Dyurgerov and Meier, 2005). That both models show under-confidence is 

often judged to be preferable to over-confidence, especially when physical models are linked of applications-oriented 25 

decision-making frameworks (Herman et al., 2015). This experiment demonstrates BRICK's flexibility, and ability to allow 

the user to isolate and examine any source of uncertainty or dissatisfaction in the modeling framework. These results also 

provide guidance for the use of the BRICK model framework for model intercomparison and selection experiments. At 

present we do not make any recommendations regarding which GIC sub-model to use. The GIC-MAGICC component has 

both strengths (e.g., fewer parameters and appropriate in melting regimes) and weaknesses (unphysical GIC growth, does not 30 

encourage growth beyond V0,GIC, state-independent equilibrium). 
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4.4 Linking an impacts and decision-analysis module to BRICK 

4.4.1 Experimental description 

We demonstrate the ability of the BRICK framework to incorporate additional structure to link the physical model for 

surface temperature and sea-level rise (climate and sea level modules, Fig. 1) to socioeconomic implications (impacts 

module, Fig. 1). In this example application, we use the calibrated ensemble in the BRICK control configuration to obtain 5 

local sea level projections for New Orleans, Louisiana. We use a common didactic model for coastal flood protection (Van 

Dantzig, 1956; Jonkman et al., 2009). In this flood risk model, the policy lever available to decision-makers is the amount by 

which to heighten the dikes protecting the coastal community. We consider a previously published simple analysis that 

focuses on the northern dike ring in central New Orleans (Jonkman et al., 2009). We use this illustrative cost-benefit 

approach to calculate an economically-efficient dike-heightening by weighing the decrease in probable losses due to 10 

flooding achieved by building taller dikes against the increase in costs due to investments in construction. 

 

The flood risk model implemented here follows a commonly used simple approach (Van Dantzig, 1956). The present 

implementation considers the current year as 2015 and a time horizon of 85 years (to 2100). We consider discrete dike 

heightenings in increments of 5 centimeters, between 0 and 10 meters. The average annual flood probability is calculated 15 

from the simulated local sea-level rise, the land subsidence rate (Dixon et al., 2006), and flood frequency parameters 

(Jonkman et al., 2009). We calculate the expected losses (US dollars) for each proposed dike heightening from the flood 

probabilities for each heightening, the value of goods protected by the dike ring, and the net discount rate (Jonkman et al., 

2009). We use a linear approximation of the investment to achieve a particular dike heightening from previous work to 

calculate expected investments for each dike heightening (Jonkman et al., 2009). The total expected costs are the sum of the 20 

expected losses and the expected investments. With respect to dike heightening, the expected investments are a linearly 

increasing function and the expected losses are an exponentially decreasing function. The minimum total expected cost then 

is the economically-efficient dike heightening strategy in the framework of this simple illustrative model (Eq. (14) of Van 

Dantzig (1956)). 

 25 

The uncertain parameters considered in this cost-benefit analysis include the initial flood frequency with no heightening (y-

1); the exponential flood frequency constant (m-1); the value of goods protected by the dike ring (billion US dollars); the net 

discount rate (%); the uncertainty in investment costs (a unitless multiplicative factor); and the land subsidence rate (m y-1). 

We sample the uncertainty in these parameters via Latin hypercube, where the population size is given by the number of sea-

level rise ensemble members that are present (573 for the control BRICK ensemble). The distributions from which the 30 

economic model parameters are drawn are given in Table 2. Each realization of regional sea level is assigned a concomitant 

sample of flood risk model parameters. An economically-efficient dike heightening is calculated for each ensemble member. 

“Return periods” (years) correspond to the frequency of storms with the potential to overtop dikes with the corresponding 
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dike height – essentially, the inverse of the annual flood probability. Return periods are a convenient and intuitive way to 

view the probabilities of flooding in this economic analysis. 

 

We present results for the flood risk management experiment using sea level projections under the Representative 

Concentration Pathway (RCP) 8.5. We note that many factors are not incorporated into this analysis and this simple 5 

illustration is not designed to be used for real decision making. For example, storm surge and structural failure are not 

considered (Grinsted et al., 2013; Moritz et al., 2015). The purpose of this illustration is to demonstrate the flexibility and 

transparency of the BRICK model framework. This experiment highlights the importance of transparency in particular when 

linking physical modeling results to the impacts on socioeconomic modeling and policy decision-making. 

4.4.2 Experimental results: regional sea-level changes 10 

Regional sea level is projected to 2100 under the climate change scenarios of RCP2.6, 4.5, and 8.5 (Fig. 4). These 

projections use the control configuration of the model, with GIC-MAGICC and the full sea-level rise sub-model set-up 

depicted in Fig. 1. The ensemble median projection is shown in Fig. 4. Sea level rises by 2100 globally by about 50 cm, 71 

cm, and 126 cm under RCP2.6, 4.5, and 8.5, respectively (ensemble median). The Arctic Ocean is an obvious exception to 

the rest of the ocean. Due to the Greenland ice mass loss, Arctic regional sea level will fall as a result of the loss of 15 

gravitational attraction. However, the addition of mass raises sea level in other parts of the ocean farther away. Arctic sea 

level (median sea level of all latitudes higher than 60°N) increases by 7 cm under RCP2.6, but falls by 1 cm under RCP4.5 

and by 28 cm under RCP8.5. By contrast, the tropical sea level (median of all latitudes between 30°S and 30°N) rises by 55 

cm, 79 cm, and 142 cm under RCP2.6, 4.5, and 8.5, respectively, which is greater than the global mean rise. Due to the 

asymptotically increasing gravitational effects in proximity to the melting Greenland ice sheet, sea-level fall below -1.5 m is 20 

cut off at -1.5 m.  

4.4.3 Experimental results: Link to coastal defense strategies 

Regional sea level projections scaled to New Orleans, Louisiana are used in a common flood risk management example. We 

find the economically-efficient (i.e., cost-minimizing) dike heightening to be 1.45 m (ensemble mean; 90% range is 0.75 to 

1.95 m). This heightening corresponds to a return period of about 1270 years (ensemble mean; 90% range is roughly 200-25 

3000 years). The simple analysis presented here should not be used to inform on-the-ground decisions in New Orleans. This 

experiment is meant to demonstrate BRICK’s ability to contribute in risk assessment applications.  

5 Conclusions 

We present BRICK v0.1, a modeling framework for global and regional sea-level change. BRICK has been designed with 

four epistemic modeling goals: accessibility, transparency, efficiency, and flexibility.  BRICK can  skillfully match 30 
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observational data for individual sea level contributions in hindcast (Bakker et al., 2016b).  Here we focus on how BRICK 

achieves our epistemic values using a set of modeling experiments. 

 

BRICK is coded in the widely available and simple coding language R, to achieve the goals of accessibility and 

transparency. The main physics (climate and sea-level rise) codes are also (redundantly) transcribed in Fortran 90, for more 5 

efficient simulations. BRICK is designed to be transparent, as well as efficient, by coupling previously published simple, 

mechanistically motivated models for the major contributors to global sea level. The efficient physical modeling approach 

provides the opportunity to incorporate a rigorous statistical calibration framework as well, wherein various sources of 

uncertainty are incorporated into model projections (see Bakker et al. (2016b) for a more detailed discussion of this). Finally, 

the model comparison experiments in Sect. 4.2 and 4.3 demonstrate the flexibility of the BRICK modeling framework. 10 

These sections bring into focus the importance of these epistemic modeling values. A modeling framework that is (in 

particular) transparent and accessible can help to streamline the process of quantifying the local impacts of the physical 

model results, to link to decision-analytical models, and to communicate these results to stakeholders and decision-makers.   

 

We hope that the accessibility and transparency of BRICK are helpful to others, and will stimulate the continuous peer-15 

reviewing, challenging, and improving of the BRICK framework. Of course, although we tried to couple models that fit our 

epistemic model values as close as possible, we assume that others may prefer other models and may have different 

epistemic values. Our framework is designed in such a way that it is possible to plug in other model components to reflect 

these different values. For example, it would be very interesting to add the components models used for the semi-empirical 

model frameworks of Mengel et al. (2016) and Nauel et al. (2016). 20 

 

We demonstrated the flexibility and transparency of BRICK in connecting projections from the physical model to the 

impacts on a local risk and decision-analysis problem. The simple probabilistic calibration method and cost-benefit analysis 

that we adopted for the simple demonstration can be expanded to incorporate aspects of deep uncertainties (Lempert et al., 

2004; Weaver et al., 2013) as well as more complex decision-making frameworks (e.g., considering multiple objectives, 25 

beyond only expected total costs) (Kasprzyk et al., 2013; Lempert, 2014; Lempert and Collins, 2007). Climate change poses 

decision problems where strong connections across academic disciplines are critical. Further, the study of climate modeling 

relies on communal modeling efforts. The need for transparent communication among modelers and between disciplines is 

where the BRICK framework and the epistemic modeling values presented here can facilitate future developments. Above 

all, we hope that BRICK inspires the involved communities to pay careful attention to enhance flexibility, transparency, and 30 

accessibility of modelling frameworks.   
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Code and Data Availability 

All BRICK0.1 code is available at http://download.scrim.psu.edu/Wong_etal_BRICK under the GNU general public open 

source license. The data sets as well as the calibration methods used for model comparisons and calibrations in this study are 

provided along with the model code. 

  5 
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Appendix A: Prior probability distribution ranges for the sub-model parameters, and median, 5th, and 95th 

quantiles of the calibrated posterior parameter distributions. 

Table A1. Prior probability distribution ranges for the DOECLIM climate model parameters, and median, 5th, and 95th 

quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

S °C 0.1 10 1.6 2.3 3.6 

DOECLIM cm2 s-1 0.1 4 0.39 1.6 3.6 

DOECLIM [-] 0 2 0.44 0.78 1.1 

0 °C -0.3 0.3 -0.083 -0.038 0.0050 

H0 1022 J -50 0 -42 -30 -15 

T °C 0.05 5 0.070 0.080 0.092 

H 1022 J 0.1 10 0.18 1.0 2.9 

T [-] 0 0.999 0.062 0.5 0.95 

H [-] 0 0.999 0.36 0.48 0.61 

 5 

Table A2. Prior probability distribution ranges for the thermal expansion model parameters, and median, 5th, and 95th 

quantiles of the calibrated posterior parameter distributions. The prior distribution for 1/TE is a gamma distribution (see 

main text). The other priors are all uniformly distributed. 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

aTE m °C-1 0 0.8595 0.11 0.41 0.80 

bTE m 0 2.193 0.035 0.34 1.5 

TE y-1 0 1 0.00046 0.0017 0.0056 

S0,TE m  -0.0484 0.0484 -0.044 0.0014 0.043 
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Table A3. Prior probability distribution ranges for the GIS-SIMPLE Greenland ice sheet model parameters, and median, 5th, 

and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. Due to 

convergence issues, GIS is held fixed at a value calculated from a preliminary optimized model simulation (see main text). 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

aGIS m °C-1 -4 -0.001 -3.9 -3.0 -1.6 

bGIS m  5.888 8.832 7.4 7.8 8.1 

GIS °C-1 y-1 0 0.001 0.00038 0.00075 0.00098 

GIS y-1 0 0.001 2.3x10-5 0.00013 0.00041 

V0,GIS m  7.16 7.56 7.2 7.4 7.5 

GIS m  0 0.002 0.00017 2.0x10-4 0.00025 

GIS [-] [-] [-] [-] 0.92 [-] 

 

Table A4. Prior probability distribution ranges for the DAIS Antarctic ice sheet model parameters, and median, 5th, and 5 

95th quantiles of the calibrated posterior parameter distributions. An inverse gamma prior distribution is used for 2
DAIS (see 

Ruckert et al. (2016)). All other prior distributions are uniform. 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

aANTO °C °C-1 0 1 0.034 0.40 0.96 

bANTO °C  0 2 0.12 1.1 1.9 

 [-] 0.5 4.25 1.4 3.1 4.1 

DAIS [-] 0 1 0.040 0.39 0.78 

 m1/2 7.05 13.65 7.4 11 13 

 m-1/2 y-1/2 0.003 0.015 0.0038 0.0089 0.014 

P0 m y-1 0.026 1.5 0.15 0.50 1.2 

DAIS °C-1 0.025 0.085 0.029 0.057 0.082 

f0 m y-1 0.6 1.8 0.7 1.3 1.8 

h0 m 735.5 2206.5 1100 1700 2200 

C m °C-1 47.5 142.5 51 80 120 

b0 m 740 820 750 780 820 

slope [-] 0.00045 0.00075 0.00056 0.00065 0.00074 


DAIS m2 SLE 0 [-] 0.19 0.49 2.0 
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Table A5. Prior probability distribution ranges for the GIC-MAGICC glaciers and ice caps model parameters, and median, 

5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

GIC m y-1 °C-1 0 0.041 0.00057 0.00089 0.0014 

V0,GIC m  0.3 0.5 0.31 0.40 0.49 

N [-] 0.55 1 0.57 0.79 0.97 

S0,GIC m -0.0041 0.0041 -0.0038 3.0x10-6 0.0037 

GIC m  0 0.0015 1.9x10-5 0.00021 0.00063 

GIC [-] -0.999 0.999 0.30 0.87 0.99 

 

Table A6. Prior probability distribution ranges for the GIC-SIMPLE model parameters, and median, 5th, and 95th quantiles 

of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 5 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

aGIC m °C-1 -4  -0.001 -3.60 -1.90 -0.73 

bGIC m  0.3  0.5 0.31 0.39 0.49 

GIC °C-1 y-1 0  0.001 4.3 x10-5 0.00044 0.00093 

GIC y-1 0  0.001 7.9 x10-5 0.00048 0.00094 

V0,GIC m  0.3  0.5 0.31 0.41 0.49 

GIC m  0  0.0015 1.4x10-5 0.00020 0.00065 

GIC [-] -0.999  0.999 0.55 0.90 0.99 

 

Table A7. Prior probability distribution ranges for the Rahmstorf (2007) global mean sea level model parameters, and 

median, 5th, and 95th quantiles of the calibrated posterior parameter distributions. The priors are all uniformly distributed. 

Parameter Units 
Lower 

bound 

Upper 

bound 
5% Median 95% 

aGMSL m °C-1 0 0.0035 0.0012 0.0020 0.0030 

Teq,GMSL m  -1.5 1.5 -1.2 -0.58 -0.28 

GMSL m  0 0.05 7.0x10-5 0.00075 0.0019 

GMSL [-] 0 0.999 0.35 0.62 0.88 

 

  10 
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Tables 

 

Table 1. Parameter descriptions and prior probability distributions for flood protection cost-benefit analysis. 

Parameter Description Distribution 

p0 Initial flood frequency (yr-1) with zero heightening log-N(log-=log(0.0038), log-=0.25) 

 Exponential flood frequency constant (m-1) N(=2.6, =0.1) 

V Value of goods protected by dike ring (billion US$) U(5, 30) 

 Net discount rate (-)                                                   U(0.02, 0.06) 

Iunc Investment uncertainty (-) U(0.5, 1) 

rsubs Land subsidence rate (m yr-1) log-N(log-=log(0.0056), log-=0.4) 
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Figures 

 

Figure 1. BRICK model structural diagram. Dashed connectors indicate couplings that are non-essential for projections of 

global mean sea level. These dashed couplings are required for projecting regional sea level and climate impacts. DOECLIM 

is the Diffusion-Ocean-Energy balance CLIMate model (Kriegler, 2005); GIC-MAGICC is the Glaciers and Ice Caps 5 

module from the climate model MAGICC (Meinshausen et al., 2011a); TE is the Thermal Expansion model (Grinsted et al., 

2010; Mengel et al., 2016); SIMPLE is the Simple Ice-sheet Model for Projecting Large Ensembles (Bakker et al., 2016a); 

ANTO is the ANTarctic Ocean temperature model; DAIS is the Danish Center for Earth System Science Antarctic Ice Sheet 

model (Shaffer, 2014); regional sea level fingerprinting downscales from global sea-level contributions to regional (Slangen 

et al., 2014); and the model of Van Dantzig (1956) assesses flood risk. 10 
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Figure 2. Comparison of global mean sea-level rise hindcast skill relative to sea level data (Church and White, 2011), using 

(a) the full sub-model approach (GIC, GIS, TE, and AIS) and (b) the model for global mean sea-level rise of Rahmstorf 

(2007). Sea level is relative to 1961-1990 global mean sea level. Both model configurations use DOECLIM as the climate 

module. Lower values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and root-mean-squared 5 

error (RMSE) indicate a better model fit to the data. These error metrics are all calculated using the maximum likelihood 

ensemble member, which is represented by the solid pink line. Green highlighting indicates the model structure suggested by 

each comparison metric. 
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Figure 3. Comparison of (a) GIC-MAGICC versus (b) GIC-SIMPLE model performance in hindcasting the glaciers and ice 

caps (GIC) contribution to sea-level rise. GIC sea-level rise is presented relative to 1960 GIC sea level contribution. Lower 

values of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and root-mean-squared error (RMSE) 

indicate a better model fit to the data (Dyurgerov and Meier, 2005). These error metrics are all calculated using the 5 

maximum likelihood ensemble member, which is represented by the solid pink line. Green highlighting indicates the model 

structure suggested by each comparison metric. 
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Figure 4. Regional projections of median sea-level changes under Representative Concentration Pathways (RCP) (a) 2.6, (b) 

4.5, and (c) 8.5 in the year 2100. Sea-level rise is presented relative to 1986-2005 global mean sea level.  
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Figure 5. Illustrative cost-benefit analysis for the economically efficient dike heightening (lower horizontal axis) and return 

period (upper horizontal axis) for the north-central dike ring in New Orleans, Louisiana. The bold dot denotes the 

economically-efficient (i.e., cost-minimizing) solution. The shaded region gives the 90% ensemble range of trade-off curves 5 

and the bold line denotes the ensemble mean trade-off curve. 
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