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This chapter provides a short overview of all modules in the package semi_analytical2DV
and the required input and expected output. The modules have been ordered into
sections for the purpose of providing structure to this chapter.

Explanation of terms and colours

Behind the input variables we will mention several data types. While some data types may
be obvious, some others are explained in the table below:

Space-separated num- real numbers separated by one or more spaces. Do not use
bers comma’s or other markers to separate the numbers.

Grid-conform array n- anumpy array with n (i.e. some number) or fewer (1) dimensions.
dimensional More dimensions than # is not allowed. All axes should be grid
conform. That means that the length of a dimension should either
be 1 or equal to the size of the corresponding grid axis. If n is larger
than the grid size, the length of this axis is free. Note that a single

number counts as a grid-conform array.

General n-dimensional  either a grid-conform array or a numerical or analytical function.
In both cases they may » (i.e. some number) or fewer dimensions.

iFlow grid a grid variable with underlying subvariables as described in the
manual (Dijkstra, 2017b)

The cells with input variables have been colour-coded to indicate whether the variable is
likely to be given in the input file, computed by another module or given in the configuro-
tion file. By the very nature of iFlow this is only indicative and depends on the modules used.
As an example, almost any variable given in the input file may be used as a variable in a
sensitivity analysis. It then becomes an input parameter of the sensitivity analysis module in
the input file. The sensitivity analysis module delivers it to the module that uses this variable.
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Likely a parameter in the input file

Either in the input file or from another module

Likely a parameter computed by another module
Likely a constant in the configuration file src. config

Hydrodynamics

HydroLead

Leading-order hydrodynamics using a semi-analytical perturbation model. See Part | of

this manual.

Type

Normal

Submodules

tide

externally forced tidal flow. Forced by input parameters A0 and
phase0

Input

Av

roughness

grid

OMEGA

G

TOLERANCEBVP

Number. Length of the system in the x-direction.
General 1-dimensional. Width of the system.

General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

General 3-dimensional. Vertical eddy viscosity in m?/s.

General 3-dimensional. Second dimension is length 1.
Roughness coefficient s, (if BottomBC==’PartialSlip’) or zo (if
BottomBC==’NoSlip’). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

iFlow grid.

Number. Angular frequency of the lowest-frequency component
in rad/s

Number. Acceleration of gravity in m?/s

Number. If the bvp_solver is used to solve the ODE for the water
level, this number sets the tolerance or accuracy of the result,

Input  sub-
modules

AO

phaseO

Only tide

space-separated numbers. Water level amplitude at the seaward
boundary in metres. The first value corresponds to subtidal (should
equal 0) and the second value corresponds to the frequency with
angular frequency o (standard M, tide). Unlike the numerical2DV
package, it is not possible to include water level amplitudes higher
than than the M, component as a forcing of the leading order
hydrodynamics.

Only tide
space-separated numbers. Water level phase at the seaward
boundary in degrees. Similar to A0. First element should equal 0.

Output

zetal

u0

Numerical function 3-dimensional. Second dimension is length 1.
Leading-order water level elevation in metres. Saved as numerical
function with its x- and xx-derivative.

Numerical function 3-dimensional. Horizontal flow velocity, saved
as numerical function with its x-, z-, zz-, zzx-derivative.
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w0

Array 3-dimensional. Vertical flow velocity, saved as numerical
function with its z-derivative.

1.1.2 HydroFirst

First-order hydrodynamics using a numerical perturbation model. See Part | of this manual.

Type Normal
Submodules | tide externally forced tidal flow. Forced by input parameters A1 and
phasel.

river externally forced river flow. Forced by input parameter Q1.

adv internally generated flow by momentum advection.

nostress internally generated flow through velocity-depth-asymmetry; in-
teractions between the velocity gradient (i.e. the shape of the
velocity profile) and the water level.

stokes infernally generated tidal return flow that compensates for the net
mass fransport in the leading order.

baroc flow induced by a horizontal density gradient.

Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

Av General 3-dimensional. Vertical eddy viscosity in m?/s.

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient sy (if BottomBC=="PartialSlip’) oOr zo (if
BottomBC==’NoSlip’). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

G Number. Acceleration of gravity in m?/s

TOLERANCEBVP Number. If the bvp_solver is used o solve the ODE for the water
level, this number sets the tolerance or accuracy of the result.

RHOO Number. Reference density kg/m?

BETA Number. Conversion parameter for salinity in p = po(1+ )

Input  sub-| A1 Only tide
modules
space-separated numbers. Water level amplitude at the seaward
boundary in metres, see module HydroLead. Here, only a M,
amplitude can be prescribed, i.e. the first two numbers equal 0.
phasel Only tide

space-separated numbers. Water level phase at the seaward
boundary in degrees. Similar to A1. First two elements should equal
0.
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Q1 Only river
number. First-order river discharge at the landward boundary in
m3/s.

u0 Only stokes, nostress, adv
General 3-dimensional Leading-order horizontal flow velocity
(my/s).

zetal Only stokes, nostress
General 3-dimensional Leading-order water level elevation (m).
Second dimension should be length 1.

w0 Only adv
General 3-dimensional Leading-order vertical flow velocity (m/s).

s0 Only baroc
General 3-dimensional Leading-order salinity (psu).

Output zetal Numerical function 3-dimensional. Second dimension is length 1.
Leading-order water level elevation in metres. Saved as numerical
function with its x- and xx-derivative.

ul Numerical function 3-dimensional. Horizontal flow velocity.

wi Array 3-dimensional. Vertical flow velocity.

1.2 Sediment
1.2.1 SedDynamic

Type Normal

Submodules | erosion infernally generated sediment concentration and transport due
to bottom erosion.

noflux internally generated sediment concentration and transport due
to the no flux boundary condition at the surface.

sedadv infernally generated sediment concentration and transport due to
sediment advection also known as spatial settling lag. i.e. uc, +wc;.

Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

Av General 3-dimensional. Vertical eddy viscosity in m2/s.

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient sy (if BottomBC==’PartialSlip’) Or zo (if
BottomBC==’NoSlip’). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

astar Number. Average amount of sediment at the bottom for resuspen-
sion

ws Number. Settling velocity in m/s

Kh Number. Horizontal eddy diffusivity coefficient m?/s

grid

iFlow grid.
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zetal Numerical function 3-dimensional. Leading-order water level ele-
vation (m). Second dimension should be length 1.
OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s
RHOS Number. Density of the sea kg/m?
RHOO Number. Reference density kg/m?
G Number. Acceleration of gravity in m?/s
DS Number. Sediment grain size in m
Input  sub- | w0 all
modules
Numerical function 3-dimensional Leading-order horizontal flow
velocity (m/s).
zetal Only noflux
Numerical function 3-dimensional Leading-order water level ele-
vation (m). Second dimension should be length 1.
w0 Only sedadv
Numerical function 3-dimensional Leading-order vertical flow ve-
locity (m/s).
ul Only erosion
Numerical function 3-dimensional First-order horizontal flow veloc-
ity (m/s).
Output hatcO General 3-dimensional. Leading-order sediment concentration
amplitude.
hatcl General 3-dimensional. First-order sediment concentration ampli-
tude.
hatc2 General 3-dimensional. Second-order sediment concentration
amplitude. This amplitude is only due to river-river interaction.
c0 General 3-dimensional. Leading-order sediment concentration.
cl General 3-dimensional. First-order sediment concentration.
c2 General 3-dimensional. Second-order sediment concentration.
T General 1-dimensional. Transport function for the availability.
F General 1-dimensional. Diffusion function for the availability.

General 1-dimensional. Availability of sediment,







Insight info the hydrodynamical mechanisms that govern the flow and sediment transport
in estuaries is essential to learn more about processes that govern the current state or the
future fate of the estuary under investigation. This manual presents a detailed derivation
and description of a two-dimensional semi-analytical package for iFlow that aims at this.
This manual contains two parts discussing:

1. Hydrodynamics

2. Sediment dynamics

Every part of this manual will contain one or more chapters discussing the model equations,
their derivation or solution method. The final chapter in each part contains a detailed
description on the use of the provided iFlow modules.

The model is of the exploratory type (Murray, 2003) and is based on the perturbation
approach, earlier adopted by e.g. lanniello (1977, 1979), Chernetsky et al. (2010) for hy-
drodynamics, Chernetsky et al. (2010) for salinity and Chernetsky et al. (2010) for sediment
dynamics. The perturbation approach involves a scaling of the equations to distinguish
between the terms that balance at leading order and much smaller ferms that balance af
higher orders. Under suitable assumptions, the leading-order balance becomes linear and
therefore much easier to solve than the original non-linear set of equations. The approach
does however not neglect the non-linear terms or other higher-order terms. Instead, linear
estimates of these terms appear as forcing mechanisms to linear higher-order balances.
Theoretically, the full solution to the non-linear system is obtained when an infinite number
of higher-order balances is solved for. Practically, we typically solve for the leading- and
first-order balances, which provide a reasonably accurate estimate of the full solution. Due
to the linearity of the equations at each order, the effect of different forcing mechanisms
can be identified.

The model describes two-dimensional, width-averaged (2DV) physical quantities, i.e. sur-
face elevation {(x,r), horizontal and vertical flow velocity, u(x,z,¢) and w(x,z,t). respectively,
and sediment concentration ¢(x,z,z). in a straight channel of length L with varying longitu-
dinal bed profile H(x) and channel width B(x) (Fig. 2.1). The bottom profile H(x) (relative to
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the mean sea level defined at z = 0) and channel width B(x) are allowed to vary gradually
over the x-direction, i.e. with length scales corresponding to the length of the tidal wave.
The sidewalls of the channel are assumed to be vertical and tidal flats are not present.
The seaward boundary of the estuary is located at x = 0 and the landward boundary is
located at x = L. At the latter boundary the river flows into the domain. Details on the
functions that iFlow supports for the depth and width are provided in the manual on the
auxiliary module package.

The surface level relative to z = 0 is expressed as R+ { and is computed by the model. By
default the reference level R =0 and ¢ is equal to the surface level. The use of a non-zero
reference level is however required if the river bed is above MSL over part of the domain.
The depth H is then negative, which poses a problem in further calculations. In this case
iFlow computes the reference level R as a quick estimate of the mean surface level and
ensures that H 4+ R is always positive. More details on the computation of R are provided in
the part on hydrodynamics of the Numerical2DV package (Dijkstra, 2017a). In this manual,
the default reference level R = 0 is used in the analysis.

(a) Top view (b) Side view

Figure 2.1: Model domain. The model is two-dimensional in along-channel (x) and vertical
(2) direction and is width-averaged. The depth and width are allowed to vary smoothly
with x.
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Equations and assumptions

Model equations

It is assumed that the water motion in the estuary is dominated by tidal forcing, with effects
of river discharge being relatively small. Moreover, the effect of wind stress and wind waves
on the water motion is neglected. Under the above mentioned assumptions, momentum
and mass balance is expressed by the width-averaged shallow water equations:

¢
g +uny +wiy = —g&, —g/ %dz—i— (Ayuz)z, 3.1
0
Z
By
ux+wz+§u:0. 3.2

In these equations, {(x,t) is width-averaged surface elevation, and u(x,z,¢) and w(x,z,t) is
width-averaged horizontal and vertical flow velocity, respectively. Furthermore, ¢ is time,
g is gravitational acceleration, p is density, py is a constant reference density and 4, is
vertical eddy viscosity coefficient. The subscripts (.),. (.), and (.), denote the derivative
of a variable in the respective dimension. In Eq. (3.1), the left-hand side contains inertia
(first term) and advection (second and third term). The exerting forces are found on
the right-hand side, representing barotropic pressure gradient force, baroclinic pressure
gradient force and internal frictional force, respectively.

Egs. (3.1) and (3.2) are subject to horizontal and vertical boundary conditions. Furthermore,
a decision has to be made with respect to the salinity distribution and the turbulence
closure. These topics are treated below.
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Horizontal boundary conditions

The water motion is forced by a prescribed tidal elevation on the seaside of the estuary at
x = 0 that consists of a semi-diurnal (M,) and a My constituent

£(0,1) = Am, cos(o1) +Am, cos(201 — @), 3.3

where Ay, and Ay, are the amplitudes of the M, and My tidal constituents, respectively,
o = om, — 200, the phase difference between the M, and My tidal constituents and o the
tidal frequency.

At the landward boundary x = L, the channel is constrained by a weir with a constant river
discharge Q. Here, the tidal discharge is required to vanish, so

B(L) / (L, 2,1)dz = —Q. (3.4)

Vertical boundary conditions

At the free surface z = {, the boundary conditions are the no stress condition and the
kinematic boundary condition

Ayuz(x,8,1) =0, (no stress) 3.5
w(x,&,1) = & (x,0) +u(x, 1) 8 (x,1). (kinematic) Q.6

At the bottom z = —H, we assume the bed to be impermeable and prescribe a partial slip
condition (Schramkowski et al., 2002b)

w(x,—H,t) = —u(x,—H,t)H,, (impermeable bed) Q.7
Ayuz(x,—H,t) = spu(x,—H,1). (partial slip) 3.8)

Note that the partial slip condition is evaluated at the top of the constant stress layer
instead of at the true bed. Here, the parameter sy is the so-called stress parameter that
can still depend on the longitudinal coordinate. Following Friedrichs and Hamrick (1996)
and Schramkowski et al. (2002a), this dependency is taken to be linear in the local water
depth

SF=Sg, (Zﬁ?) ) 3.9

where sy, is constant and » a factor that generally varies between 1 and 3/2. Note that
the bottom boundary condition is a linear relation between bed shear stress and velocity,
which is a result of a Lorentz linearization procedure (Zimmerman, 1982).
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Salinity distribution

The channel density p(x,z,¢) of the estuarine water varies in general due to the salinity s,
suspended sediment concentration ¢ and temperature T. In this semi-analytical package
of iFlow v2.2, we neglect density gradients caused by suspended sediment and temper-
ature and, thus, density only varies due to salinity. The equation of state for the channel
density is faken to be linear (Chernetsky et al., 2010), and is given by

p = po(1+ Bys), 3.10)

where s is salinity in psu and B, a constant that converts salt fo density. It is assumed that the
salinity is vertically well-mixed, which means that the vertical variations of the salinity field
are small compared to its depth- and time-averaged value. Hence, we can write s ~ (s(x)),
where angular brackets (.) denote a fidal average. In this report, the hydrodynamic model
is diagnostic in salinity (hence density), where the expression for longitudinal salinity profile
is given by (Warner et al., 2005; Talke et al., 2009)

s(x)=§[1—tanh<x‘x")], 3.11)

XL

where § is the salinity at sea in psu, x. is the location in the estuary in meters where the
salinity gradient is largest and x; is the length scale in meters over which the salinity decays
(a measure for the size of the salt wedge).

Under the above mentioned assumptions, the baroclinic pressure gradient term in Eqg. (3.1)
can be rewritten as

¢

g/%dw —eBuls)(z— ). 3.12)

Turbulence closure

Following Friedrichs and Hamrick (1996), the vertical eddy viscosity coefficient A, is param-
eterized as

A(x) = Ay, (’ﬁ?)m, 3.13)

where A, is constant, m is a factor that generally varies between 0 and 3/2, and Hj is the
water depth at the entrance of the estuary. Hence, it is assumed that A, is independent of
height z and can be taken out of the parentheses in Eq. (3.1). Furthermore, asymmetry in
mixing that is a result of time-dependent stratification (Stacey et al., 2001, 2010; Cheng
et al., 2010) is neglected.

Scaling

The two equations for continuity (including the rewritten baroclinic pressure gradient term,
Eq. (3.12)) and momentum conservation, Egs. (3.1) and (3.2), are supplemented by the
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depth-averaged continuity, using Eqgs. (3.2), (3.6) and (3.7). The latter is used to derive the
ordinary differential equation for the water level. The three equations are repeated below

up + ity +wuz = —g 8+ gBi(sx) (2 — &) + (Avuz), (.14

ux+wz+%u:0, @3.15)
d B ¢

(:,+<dx+Bx>/udz:0. (3.16)
—H

The equations are transformed to a dimensionless system by using a scaling argument in
order to establish the order of magnitude of the several ferms. The equations are scaled
by using six typical scales, which are presented in Table 3.1.

Scale Dimensionless quantity
c M, tidal frequency t=07
Am, M, tidal amplitude at the seaward side | { =Au, ¢
L Estuary length x=L%
Hy Average depth at seaward side z=Hyz and H = HyH
By Average width at seaward side B=ByB
57 Typical salinity gradient Sy = S8
Derived scale Dimensionless quantity
U= % Typical horizontal velocity of the M, tide | u=Uia
U . . . .
=ML = 5Ay, Typical vertical velocity of the M, tide w=Ww
2 ~

o, = "TI’;O Typical eddy viscosity A, = A,

Table 3.1: Scales and derived scales for deriving the dimensionless equations.

This table presents three more scales that are derived from the other six. The velocity
scale U follows from expressing the depth-averaged conftinuity equation in dimensionless

quantities. Writing ffH udz = Hi, where the bar denotes the depth-integrated quantity, and
using the typical scales from Table 3.1 this results in

:  HU . .
O'AMZC;—i-%U (Ai) +———=Hi=0.

Thus, it follows that an appropriate scale U for the velocity is

U— GAMZL
Hy

Similarly, the derived vertical velocity scale W follows from substituting the scaled variables
into Eq. (3.15)
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and thus

e .
W:OU-max(l,Bf).
L B

The typical scale for the eddy viscosity follows from the stationary barotropic momentum
balance (A,u;), = g&. It follows that

oH}
D=
where
L oL
l = — =
Lw gHO

Here, A is the ratio of the estuary length L and the frictionless fidal wave length L,, up to a
factor 2x.

Scaling the momentum equation
The dimensionless momentum equation is then given by

U WU __ A, = _ _ - AU
OU ity + —- it + o= _& LM2 Ce+ 8B (55) (HoZ — A, §) + —

Rewriting this equation yields

A - n 1 A |
i e e+ 9] = = Gt () @ - D)+ 7 (Ao,
where
_ e o
U o

Here, pu is a factor determining the magnitude of the salinity gradient. The factor Ay, /Hy in
front of the advection term is assumed to be much smaller than unity. This provides the

motivation for ordering the equation around a small parameter € which is defined as
Avy
Hy '

The other factors that appear in the dimensionless momentum equation can be related
to the magnitude of e. These factors are considered below. Firstly, the magnitude of 1/42
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depends on the ratio of the length of the system and the frictionless tidal wave and is
usually considered to be close to unity. For many estuaries this is a good approximation,
e.g. for the Scheldt Estuary A ~ 1.8.

Secondly, it is assumed that the factor p in front of the salinity gradient is of order €. From
observations in well-mixed estuaries it usually follows that currents driven by the salinity
gradient are small compared to tidally driven currents.

The dimensional momentum equation then has terms of the following order of magnitude:

u + uity + wiu, = =g+ gB(sx) (2 — §) + (Ayu);
—~ O~ N Y
o) o) o) o)) o(e) o(1)

Scaling the depth-averaged continuity equation

The dimensionless form of the depth-averaged momentum equation (3.16) is

All terms are of the same order, except for the integration boundary €. The integral is
therefore linearized around 7 = 0 by a Taylor expansion according to

85 0 -
/ ﬁdZ:/~ﬁ(i,O,f)dZ+£Cﬁ()Z,O,t~)+HOT]
-A

The dimensional equation then has terms of the following order of magnitude:

d B 0
G+ =+ = / udz+Cu(x,0,¢) | =0.
~— H N———

ox B _
o(1) ~ VT — 240
o) o) o(1)

Scaling the boundary conditions
Horizontal boundary conditions
The dimensionless horizontal boundary condition at the entrance 1 = 0 reads

~ N A 5
£(0,f) =cosf+ M cos(f — @).
Awm,

It is assumed that Ay, /Ay, is Of order € and thus the dimensional form has terms of the
following order of magnitude

'The acronym HOT means ‘higher-order terms’.
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$(0,1) = Apm, cos(ot) +Ap, cos(20t — @)

(1) o(e)

The landward dimensionless boundary condition at ¥ = 1 reads

0

eg(1,7)

i1, di= ———= .
/ O A WA 0
—A(1)

It is assumed here that the term Q/(BoHoU) is of order . Furthermore, the upper bound
of the integral £ (1,7) is linearized around 7 = 0 by using a Taylor expansion (see previous
section). The resulting dimensional form has the following order of magnitude

0 0
/_Hu(L,z,t)dz+ (L (L 0.1) +HOT =~
—_— o) ——

o0) o)

Vertical boundary conditions

The momentum equation (3.14) has boundary conditions which are applied on the bed
and at the surface. The dimensionless boundary conditions at the surface 7z = ¢ read

Linearizing w(%,e,7) and a(x,e£, ) around z = 0 using a Taylor expansion results in

W(x,0,7) +elw:(%,0,7) = &G(x,7)+ € [ﬁ(i,o,f) + efﬁz(i,o,f)} Ge(x.1),

A A, [7:(%,0.7) + elz(%.0.1)| = o0.

The resulting dimensional form of the surface boundary conditions have the following order
of magnitude

w(x,0,1) = & (x,1) +u(x,0,1) & (x,1) — E(x,1)w(x,0,1) +HOT,
—_—

o(1) o(1) o(e)
Av“z(X,O»t) = —AVC(X,Z)MZZ(X,O,I) +HOT.

o(1) 40

The dimensionless boundary conditions on the bed 7 = —A read
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Here syHy /.7, is the dimensionless slip parameter. If this parameter is much smaller than
unity the bottom is stress free. If it is much larger than unity, the velocity at the bed vanishes
and the boundary condition reduces to the no-slip condition. The terms in these boundary
conditions must all be of equal order in order to obtain balanced equations, i.e. their
dimensional forms have the following order of magnitude

w(x,—H,t) = —u(x,—H,t)Hy(x), @.17)
o(1) o(1)

Ayuz(x,—H,t) = spu(x,—H,t). (3.18)
o(1) o(1)

Ordering & overview of the equations
The solutions u, w and { are written as a power series of the small parameter e
u:u0+u1+u2+...,
w:w0+w1+w2+...,
="+ + 8+,
where u!', w! and ¢! are assumed to be of order ¢, u?, w* and {? are of order &2, etcetera.
Substituting these series in the momentum, continuity and depth-averaged continuity
equations yields the systems of equations in leading order and first order. The solution

to the momentum equation yields u, the continuity yields w and the depth-averaged
continuity equation yields £.

Leading order system
At leading order, the dimensional system of equations describing the water motion reads

A, — ) = g, (3.19)

4 ud 4 20 =0, (3.20)
d B :

e+ <dx+Bx> /uodz:0. 3.21
—H

Note that in the momentum equation (3.19) at leading order, the advection terms uu, and
uw, do not reappear. Additionally, the assumption that the horizontal density gradient is
small has the consequence that the baroclinic pressure is of order € and is not present in
Eq. (3.19).

The corresponding boundary conditions read
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¢ = A, cos(ot), atx=0, @.22)
0

/ WOdz =0, atx=L, (3.23)

“H

wd = ,O, atz =0, (3.24)

Avug =0, atz =0, (3.25)

Avu?:sfuo, atz=—H, (3.26)

w' = —u’H,, atz=—H. 3.27)

3.3.2 First order system

At first order, ¢'(¢!), the dimensional momentum and continuity equations are given by

Al —u) =gl + & —gBi(si)z, (3.28)
u)lc-i-w;—l-%ul =0, (3.29)
d B 0
1 a | by 1 _
Gt (dﬁ B) (ZJ u dZ”) 0, (3.30)

where we have infroduced the following simplifying notations

é(vaJ) = uo(x,z,t)ug(x,z,t) +W0(xaz>t)ug(x7Z7t)7 3.31)
Y t) = §O )’ (x,1)|__p, (3.32)
x(x,t) = &0, )l (x,1)| - (3.33)

Here, & represents advection of momentum and v is related to the tidal return flow or
Stokes return flow, which is the result of a positive correlation between the zeroth order
vertical and horizontal tide. Finally, ¥ originates from the first order contribution of the stress
free boundary condition.

The boundary conditions for the system of equations at first order read

£ =Aw, cos(201 — ¢), atx =0, (3.34)
0

/uldz:—%—y, atx=1L, (3.35)

—H

wh =g +u08) —wl¢?, atz =0, (3.36)

Al =—-Ay, atz =0, (3.37)

Avuz1 zsful, atz=—H, (3.38)

w' = —u'H,, atz=—H. (3.39)
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As is apparent from Eq. (3.28)-(3.39), the first order velocity and water level are forced
externally by an M, tidal component and a constant river discharge and internally by the
salinity gradient, the leading order advection, and tidal return flow (Stokes return flow).



4.1

This chapter presents the derivation of the analytical solutions of the ordered equations
derived in Chapter 3. It is assumed that the solution to the equations consists of a sum
of tidal components and a subtidal component. Furthermore, we assume that all tidal
components are overtides of the M, tide. This assumption allows us to eliminate the time
derivatives from the equations and obtain sets of ordinary differential equations (ODEs).

Leading order solution

Since the leading order equations are forced by a single M, tidal component, solutions
can be written in the following exponential form

A

(u000,£%) = [ (x,2),0°(2.2), £ 2) | € 44 [ (1,2, 0" (x.2), €°

5

(wa]e ™. @D

Here, %, w°, £° are the complex amplitudes of the horizontal velocity, the vertical velocity
and the surface elevation, respectively. Furthermore, i is the imaginary unit and the
superscript (.)* denotes the complex conjugate of that variable.

Substituting the trial solution Eq. (4.1) into the momentum and continuity equations,
Eqgs. (3.19)-(3.21), leads to

A2, —ici® = gC?, 4.2)

oA

B
a0 +w? + Exﬁo =0, 4.3)

0

P d Bx A

icl%+ <E+E> /uodz:O. 4.4
—H
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Notice that here we only substituted the normal form of the complex amplitudes. Their
conjugates follow automatically.

Horizontal flow velocity

First, the momentum equation (4.2) is solved to obtain an expression for the horizontal
velocity amplitude #°. This equation is subject to the no stress boundary condition (3.25) at
the free surface z = 0 and the partial slip boundary condition (3.26) at the bottom z= —H.
Using the solution (4.1), these boundary conditions transform into

A,i2(x,0) =0, (4.5)
A2 (x,—H) — s ;0% (x,—H) = 0, (4.6)

respectively. The general solution of EQ. (4.2) can be expressed in the form

NN A0
U =i, +1u,,

where the particular solution ﬁg is any specific function that satisfies the inhomogeneous
equation (4.2) and the complementary solution 4° is a general solution of the correspond-
ing homogeneous equation. As it is assumed here that the vertical eddy viscosity is
independent of z, the homogeneous equation can be written as

0 10 .9

u.,.——u =0

Z ?
A,

and the characteristic equation is

5 io
T

v

=0.

Consequently, the complementary solution 2 reads

10 = Cre™M®  Cre ™M, @a.7
with
1e
v, = iT' (4.8)

From Eq. (4.2) it follows that &) is of the form ¢3¢0 and, thus, 9. = ), . = 0. Substitution in
Eq. (4.2) leads to
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—ioC3¢) = g8y,
and thus C; = —g/(io).

The general solution of 4 is thus

10 = Cre™at 4 Cre M2t — %5)9. 4.9
L

To obtain the coefficients C; and C,, the boundary conditions (4.5) and (4.6) are used.
Substituting Eq. (4.9) into EqQ. (4.5) yields

A, (rvi,C1 — v, G2) =0,

implying that C; = G, = C. Subsequently, substituting Eq. (4.9) into Eq. (4.6) and solving for C
leads to

2 ic Ayrm, sinh(ry, H) +spcosh(rv,H) ™ '

Substituting Eq. (4.10) info the general equation for 2%, Eq. (4.9), and rewriting in terms of
hyperbolic functions results in the expression for the horizontal velocity amplitude #°, i.e.

-0 _ gCO
i = £ (ayy, cosh(n,) - 1), @11
with
o, (x) = °f . 4.12)
2 (Ayrm, sinh(ru, H) + s ¢ cosh(ru, H))

Surface elevation

Next, the solution (4.1) along with the solution for 4° are substituted into the depth-
averaged continuity equation (4.4). With the third ferm on the left-hand side of Eq. (4.4)

4[],

% (aM2 sinh(rv, H) —H) ,

™,

w\w m\w
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and the second term on the left-hand side of EqQ. (4.4)

0
(/ﬁodz> = .gA)?<06M2 sinh(erH)—H)> ,
l ™, X
X

(e}
20 [ O
- { 0 (MZ sinh(ry, H) H> +

2

5 sinh(rv, H)+

é() aMz XM, — aMz ™, x
X
15 M,

(04
™M cosh(ry, H) (rvyHy + rv, .H) — Hx)] .

2

Eq.A(4.4) then gives a second-order linear ordinary differential equation (ODE) as a function
of {0

1180+ 1138 =0, 4.13)

with

Q
T, = sinh(rv, H) — H,

™,
B, oMy x .
T2 == ET] +Hx(aM2 COSh(’MZH) - 1) + W SIHh(erH)+
2
OM, "M, ;
;2 2% (rm, H cosh(ry, H) — sinh(rv, H)),
M,
0.2
3=—.
8

Eq. (4.13) is subject to the boundary conditions at the seaward, x = 0, and landward side
of the estuary, x=L,

£°(0) = A, 4.14)

0
/ #(L)dz=0. 4.15)
A

Eq. (4.13) generally needs to be solved numerically because of the non-constant coeffi-
cients in the ODE.

Intermezzo 4.1.1 — Special case. A special case in which an analytical solution for £° can
be found is when am, . rv,. and H are uniform in the x-direction and thus their derivatives
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w.r.t. x are zero. After rearranging terms, EqQ. (4.13) then reduces to

o2 5

= ¢’ =o0. (4.16)
g (m\TZ sinh(rv, H) — H)

2

5 B. ~
0 0
xx+§xCx -

Assuming {0 = e to be a solution to Eq. (4.16), it follows that p must be a root of the
characteristic equation

B, c?
Py o, 4.17)
¢

O\ o
n\TZZ sinh(rv,H) — H)

which has solutions

P12 = > 4.18)
The general solution of £° thus reads
é’ozcle”]x—i-czemx. 4.19)

Using the boundary condition at the seaward side of the estuary, Eq. (4.14), it follows that
c1+¢2 = Am,. From the landward boundary condition, Eqg. (4.15), it follows that 9(L) = 0.
Setting the derivative of Eq. (4.19) equal to zero, leads to the following expressions for ¢
and ¢;:

L
o AszzePZ
1= p]ePIL —pzePZL7
L
AszleFI
) =

plePIL — pzePZL ’

For readability Eq. (4.19), with the expressions for ¢; and ¢, defined above, can be
rewritten in hyperbolic form. Infroducing

P12 = 7[3 iﬁr7

with
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1B,

ﬁzif’

o2

r= |1+ — :
gf? (Wj sinh(rv, H) fH)

the hyperbolic expression for the surface elevation 50 of a converging channel with
constant coefficients is

EO _ [Tcosh(BI'(x—L))+sinh(BT'(x—L))
N I'cosh (BT'L) —sinh (BI'L)

Anye P, (4.20)

4.1.3 Vertical flow velocity

4.2

Finally, the vertical velocity w can be found by substituting the expression for #° into the
continuity equation (4.3). This results in an expression for vfz(z)

~0_ 8|7 By — -
Wi=s [(Cxx"‘ B CX> (1 — o, cosh(r,2)) 4.21)

&, (Ot cosh(ru,2) + O, i, czsinh (v, Z))} :

Integrating EqQ. (4.21) and using the kinematic boundary condition af the surface (Eq. (3.24)),
Wwo(x,0) = ic¢?, as integration constant, results in

Ww_ & (g Bep)(,_ O _
wo = G |:(Cxx+ B Cx) (Z M, Slnh(erz))
o ) ~| 4.22)

x . sinh o° 5
rf/[ (aMZ’x sinh(rm,z) + o, P, x (zcosh(erz) - (”Mm)) - —CO .

2 2

First order solutions

As is apparent from the first order system described by Egs. (3.28)-(3.39), the first order
velocity and water level are forced externally by an My fidal component and a constant
river discharge and internally by the salinity gradient, the leading order advection, and
tidal return flow (stokes flow). Since we assumed leading order solutions with a M, tidal
frequency, Eq. (4.1), the product of two leading order forcing terms, Egs. (3.31)-(3.33), with
an M, frequency result in a residual (M) and a M, frequency. Taking y(x,t) = £°(x,1)u®(x,0,1)
as an example, and using Eq. (4.1), this results in
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}/()CJ) — % {éO(X)eiaz + 50* (x)eiiw} [Ao(x ()) 1crt (x O) zcz}
[50()‘)’20*(%0)+50*(x)ﬁ0(x70)} _% {50( )i (x 0)e 2loz+go (x ) (x 0)e 721'61’

Moy My

PN

=1+

In the following sections we will derive the solutions for the residual (My) and M, contribu-
tions of the surface elevation and the horizontal velocity. Thereby, we will use (.) and [.] to
denote the residual (M) or fime-averaged and My contribution, respectively.

Contributions to the residual flow velocity and surface elevation

The equations for the residual flow are obtained by taking the tide-averaged component
of the first order equations. The momentum equation with its boundary conditions is then
given by

Al = gCl0 4 (€) — gBi(5y)z, (4.23)
£'°0) =0, (4.24)
0
o o .
_/1 @0(L,2)dz = g — (3L, @.25)
1}(x,0) = —(3), (4.26)
AVﬁlO(x7 _H) = Sfﬁlo(xv _H)a (427)

where the first number in the superscript refers to the order and the second number to
the frequency. Since the solution to !9 is linear, it can be constructed by adding the
contributions of the different forcing terms to the residual velocity, i.e.

ﬁlO _ ﬁbaroc + I:‘\no—slress + ﬁslokes + jriver + ﬁadv. (428)

The expressions for the contribution of each forcing term to the residual velocity can be
derived by taking into account only the terms in the momentum equation and appropriate
boundary conditions for each contribution.

Baroclinic pressure
For the baroclinic pressure contribution, the equations become

ApaBe = gEharoc — B (5,2, (4.29)
0

/ ﬁbarOC(L,z)dZ =0, (4.30)

“H

A% (x,0) =0, 4.31)

AP (x, —H) = 53" (x, —H). (4.32)
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Intfegrating Eq. (4.29) twice leads to

. b 1 .
ﬁlzjdroc _ é ;)arocz . *ﬁs <§x>22 + deIOC’ (433)
A, 2
s 1
ﬁbaroc — 2§ |:C)lcjarocz2 . gﬁs <§x>z3:| _|_Cbarocz_‘_Dbaroc7 (434)
v

where CP*°¢(x) and D**°¢(x) are integration constants to be determined using the boundary
conditions. From the boundary condition at z =0, Eq. (4.31), it follows that ¢baoc = 0,
Substituting Egs. (4.33) and (4.34) into the boundary condition at z = —H, Eq. (4.32), and
using CP¥°c = 0, results in the following expression for pbaroc;

H H? H?> H?
Dbaroc —_ (= baroc _ [ 2% A 4.35
(sf+2Av>g x (ZSf+6Av>gﬁs<sx> (4.39)

Substituting €b°¢ = 0 and DP¥°¢, Eq. (4.35), into Eq. (4.34) results in

2 2 3 3 2
abaroc __ [ £ —H _ E baroc _ [ % +H H o 4.36
e o C S LX) 436

The expression for é}’ar“ is obtained by substituting Eq. (4.36) into the boundary condition
atx =1, Eq. (4.30). Integrating Eq. (4.36) and equaling to zero leads to

H 1 )
+— | HB(Sx)
baroc _ _ <8AV 255 T

X H + i
3AV Sf

This flow contribution is also referred to as gravitational circulation. Numerically integrating
Eq. (4.37) with respect to x leads to an expression for the water level set-up {*°¢ due to
the baroclinic pressure gradient and the constraint of no net transport.

4.37)

Stress free boundary condition

For the contribution of the stress free boundary condition, the equations become

Ao = grostes, (4.38)
0

/ jno-stress (L,z)dz =0, 4.39)

—H

ﬁgo—stress (x’ 0) _ _<7AC>, (4.40)

Avﬁ[le-SIrCSS (x’ 7H) — SfﬁIIO—STICSS (x7 7H). (4.4] )
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Intfegrating Eq. (4.38) twice leads to

~no- 8 £no- -
u?o stress — S )?0 StreSSZ_’_CnO Stress7 (4.42)
A,
ANO-Stress g £no-stress 2 No-Stress no-stress 4 43
u = E X 7+C z+D y 4. )
v

where C"stess(x) and D"SsS(x) are integration constants to be determined using the
boundary conditions. From the boundary condition at z =0, Eq. (4.40), it follows that

Cro-stress _ _<£> 4.44)

Substituting Egs. (4.42) and (4.43) into the boundary condition at z = —H, Eq. (4.41), and
using the expression for C"sess | yields

H* H\ A
Dno—stress — _ - no-stress __ H v 5\ 4.4
(ZAv i Sf) 8 ( i Sf) W @49

Substituting the expressions for Cho-stess and Do-stess into Eq. (4.43) results in

o = (S ) g (s ) ), @.46)
v f f

The expression for é;“"m“ is obtained by substituting Eq. (4.46) into the boundary condition
atx =1, Eq. (4.39). Integrating Eq. (4.46) and equaling to zero leads to

H AN .
(2+S.><X>
S N M A 4.47)

H 1\
H —
& <3Av +sf>

Numerically integrating Eq. (4.47) with respect to x leads fo an expression for the water
level set-up or set-down {mostess due to the stress free boundary condition.

A
Cno—stress _
X

Stokes return flow
For the conftribution of the Stokes return flow, the equations become

Avﬁzz()kes _ gé)?tokes, (4.48)
0

/ BS(L ) dz = —(§(L)), (4.49)

—H

ﬁZtOkes(x,O) — 0’ (450)

A (x, —H) = 50 (x, ~H), 4.51)
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Intfegrating Eq. (4.48) twice leads to

ﬁztokes _ Aiv é;;tokesZ _"_Cstokes7 4.52)
ﬁstokes — % é;tokesZZ +Cst0kesz =+ Dstokes, (453)
v

where C°kes(x) and DSk (x) are integration constants fo be determined using the bound-
ary conditions. From the boundary condition at z =0, Eg. (4.50), it follows that Cstokes =,
Substituting Egs. (4.52) and (4.53) into the boundary condition at z = —H, Eq. (4.51), and
using the expression for Cs°kes, yields

H* H\
Dstokes _ _ = stokes. 4.54
<2Av+sf>gg‘ @54

Substituting the expressions for Cs°kes and D°kes into Eq. (4.53) results in

goos — (EHEHY s (.55)
2A, Sy

The expression for ﬁ;“’kes can be obtained by substituting Eq. (4.55) into the boundary
condition at x = 1, Eq. (4.49). This leads to

éjtokes — <A> ] (456)

gH? ( H + 1)
3Av Sf

Numerically integrating Eq. (4.56) with respect to x leads to an expression for the water
level set-up ¢*°ks due to the landward net fransport of water induced by the tide.

River flow

For the contribution of the river flow, the equations become

A e = griver, (4.57)
7 0
Ariver _
/ a™(L,z)dz = B(L)’ (4.58)
—H
et (x,0) = 0, (4.59)
A i (x, —H) = s ;0™ (x, —H). (4.60)

Integrating Eq. (4.57) twice leads to
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ﬁ?ver _ 8 A;iver 74 Criver, .61
A,
priver _ % A;iverZZ S criver, Drivcr, (4.62)
v

where C™e"(x) and D™Ve"(x) are integration constants to be determined using the boundary
conditions. From the boundary condition at z =0, Eq. (4.59), it follows that ¢river = 0,
Substituting Egs. (4.61) and (4.62) into the boundary condition at z = —H, Eq. (4.60), and
using the expression for Cver, yields

. H? H "
Drlver - - erer. 4.63
(3 +5) et 4.63)

Substituting the expressions for e and D" into Eq. (4.62) results in

) 2 _H2 H n.
urlver —_ (Z _ ) g river (464)
¥

The expression for fxriver can be obtained by substituting Eq. (4.64) into the boundary
condition at x =1, Eq. (4.58). This leads to

";iver _ Q . (4.65)

s (2 + 1
& 3AV Sf

Numerically integrating Eq. (4.65) with respect to x leads fo an expression for the water
level set-up £¥er due to river flow.

Advection of momentum
For the advection of momentum contribution, the equations become

A = gl + (&), (4.66)
0

/ Y(L,z)dz =0, 4.67)

—H

22" (x,0) =0, (4.68)

A (x, —H) = s (x, —H). (4.69)

Since the advection term & on the right-hand side of Eq. (4.66) is a function of z, we use
the method of variation of parameters to find a solution for 424", First, we must solve the
homogeneous equation 24" = 0, which leads to

uZZ

ﬁ:;lldv _ Cadv,hZ+Dadv,h7 (470)
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where C*%(x) and D! (x) are integration constants. Second, we solve the particular
equation for the water level forcing, 22 = g4 /A, which leads to

ﬁ;dg — 216; gﬁdvz2 + Cadv,pZ + Dadv,p’ @a.7mn

where 2P (x) and D*¥P(x) are integration constants. Third, we solve the particular equa-

tion for the advective forcing, 224" = (£)/A,. Since & is a function of z, we seek a pair of

functions, f(x,z) and g(x,z), so that the particular solution reads

i = fat+s, 4.72)

which has the same form as the homogeneous solution, Eq. (4.70). The first derivative of
ﬁ;dg with respect to z is

(@5%): = fiz+ f + 8- 4.73)

Now, let us assume that whatever f and g are, they will satisfy the following

frz+g.=0. 4.74)

The first derivative (ﬁ;dg)z is now equal to f and the second derivative (ﬁ;dg)zz equals £,. This
implies ’ 7

_ &
= A 4.75)
Substituting Eq. (4.75) into Eq. (4.74) gives
_
g = A 4.76)

Integrating Eqgs. (4.75) and (4.76) and substituting into Eq. (4.72) leads to

et ]
H —-H
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Adding Egs. (4.70), (4.71) and (4.77). results in the full expression for 424V, viz.

b4 b4
~adv g adv 2 adv adv < £ ! 1 / E\_I 3.1
- F O pAv oy S - 4.7
u 77+ Cz ) /<§>dz ; (?j)z dz, 4.78)

where v = cadvh 4 cadvp gng padv = padvh | padve - From the boundary condition at z =0,
Eq. (4.68), it follows that

CoV () = — 1 [ e @.79)

Substituting Eq. (4.78) and Eq. (4.79) into the boundary condition at z = —H, EqQ. (4.69),
results in the following expression for D

D" (x) = — (Zz )gCadV A <H+ ) /0 (4.80)
—H

Substituting the expressions for €2 and D into Eq. (4.78) results in

adv __ ZZ_HZ H Padv 1 +H+ /0
T\, s )8 T\l
“H
Z
1 /
— zd
+Av(/ / Z)
“H

4.81)

The expression for Cddv is obtained by substituting Eq. (4.81) into the boundary condition at
x=1, Eq. (4.67). Integrating Eq. (4.81) and equaling to zero leads to

. /(_4 (&yd7 — ZI zdz’) dz— (I;+/3;>_Z<é>dz
7
/

(4.82)

X

4.2.2 Contributions to the M, flow velocity and surface elevation

The equations for the My flow are obtained by taking the My-component, denoted by
[.]. of the first order equations (3.28)-(3.38). The momentum equation, depth-averaged
continuity equation and the appropriate boundary conditions are then given by
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Ayl —2ion' = g{!* +2[€], (4.83)
0
. o B ‘
L _p14, [ 9 Dx 14 a1
2ic (" + <ax+ B) Z{u dz+2[y]) =0, 4.84)
£14(0) = Apye ™™, (4.85)
0
[ i (Ladz = 20510, @.86)
“H
i (x,0) = —2[7], (4.87)
Ayl (x,—H) = s (x,—H). (4.88)
4.89)

Notice, that the factor 2 appearing in the equations is due to the substitution of the
trial solution Eq. (4.1). Similar to the residual velocity, the solution to 4! is linear and can
therefore be constructed by adding the contributions of the different forcing terms, i.e.

1214 _ ﬁtlde + ﬁno—stress + ﬁstokes + ﬁadv (490)

The salinity field and the river outflow have no My component and that an additional
forcing due to the externally imposed My-tide is present. To derive the expressions for the
different My velocity contributions only the appropriate terms due to the specific forcing
are taking intfo account. Since an additional inertia term (2ii'*) is present in the momentum
equation (4.83), solving it requires the same approach as was done for the M, flow velocity.
In the following, the different velocity contributions are derived.

External fide

The solution for the My flow velocity is derived in the same way as was done for the M, flow
velocity in Section 4.1. The only difference is that the forcing frequency is different, i.e. e
instead of ¢. The equations for the M, fide are given by

A% 2ot = g{lide, 4.91

£ (0) = Ape ', 4.92)
0

/ a9 (L, 2)dz = 0, (4.93)

—H

49% (x,0) = 0, (4.94)

A% (x, —H) = s % (x, —H). (4.95)

Following the same derivation steps as in Section 4.1, the solution for the My flow velocity
amplitude is

tide __ gé;ide h 1 A 96
u = 2iG (aM4COS (FM4Z)— )7 (4.96)
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with
Sf
= 4.97
oMy (Ayrm, sinh(ry, H) + sy cosh(rv,H))’ ( )
57
™= T 4.98)

To obtain the expression for @ide, Eq. (4.96) is substituted in the depth-averaged continuity
equation (4.84). This leads to the following second-order, linear, homogeneous ordinary
differential equation (ODE) for the water level

Fi{i% 4 Ry (1% — py 1% =, 4.99)
with
Fi = M Ginh(ry, H) — H, (4.100)
4
BX aM4_x .
F,= §F1 + Hy (o, cosh(rv, H) — 1) + —= sinh(rv, H)+ 4.101)
4
LAZ% = (rm,H cosh(rv, H) — sinh(ry, H)), 4.102)
™,
2
B=2 (4.103)
8

Notice that Eq. (4.99) is equal to Eq. (4.13) for the M, water level. Furthermore, the
coefficients Fi, F, and F; are similar to Ty, T, and T, respectively, except that the higher
frequency of the My fide is incorporated in ry,. oa, and F3. Finally, Eq. (4.99) needs to be
solved numerically since the variables oy, . rv, and H are functions of the longitudinal
coordinate x.

Stress free boundary condiition

The equations due to the My contribution of the stress free boundary condition are given
by

A, ﬁgzo—slress _Digpno-stress _ g éﬁ;o»stress7 4.104)
éno-stress (O) — 07 4.1 05)
0
/ jno-stress (L,z)dz=0, (4.106)
—H
ﬁgo-stress (x,0) = —2[7], “4.107)

ANO-Stress
A, i} (

x,—H) = 570" (x, —H). (4.108)
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The general solution to the momentum equation (4.104) is given by the contribution due
to the homogeneous equation and the water level forcing and reads, viz. (4.9),

jno-stress Ci ™Ma? +C26—m4z . %é;lo—stress' (4 1 OQ)
l

The unknowns C; and ¢, are obtained using the boundary conditions at the free surface
and the bottom. From the boundary condition at the free surface, Eq. (4.107), it follows
that

M. 4.110)

Pt

C=C1+ —
4
Subsequently, it follows from the bottom boundary condition, Eq. (4.108), that
B gg;lO—S[rCSS _ L ﬁ R ™ H

Substituting the expressions for C; and C¢;, Egs. (4.111) and (4.110), respectively, into
Eq. (4.109) results in

A
CHO-SII‘CSS
no-stress g X

u =222 (o, cosh(ry,z) — 1)—
2ic 4 4 4.112)

2
’1\(/111\2; [2] (Av’M4 COSh(rM4 (Z+H)) —|—Sf Sinh(rM“ (Z+H))) ’
4

To obtain the expression for 5;10'5““5, Eq. (4.112) is substituted info the depth-averaged con-
finuity equation (4.84). This leads to the following second-order, linear, non-homogeneous
ODE for the water level

F é)l&o—stress +B Eyo—stress —F éno—stress = Faoostresss 4.113)

with

. 2ic B, ., o (1 - (xM4) [2](’7\44 oMy, + 2rN[4‘x(1 - aM4))
Fho-stress = ? ((B[X] + [X]X> 2 - 3 > ’

"My vy

and F;, F>, and F; defined by Egs. (4.100)-(4.103), respectively. EqQ. (4.113) needs to be
solved numerically since the variables o, . rv, and H are functions of the longitudinal
coordinate x.
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Stokes return flow
The equations due to the M, contribution of the Stokes return flow are given by

A, ﬁzzokes _icpstokes _ g é;tokes, 4.114)

gutokes () _ ), 4.115)
0

/ A% (L 2)dz = —2[9(L)], 4.116)

-H

#5983 (1 0) 0, @17

Avﬁztokes _ Sfﬁstokes. 4.118)

The general solution to the momentum equation (4.114) is given by the conftribution due to
the homogeneous equation and the water level forcing. This solution is equal to Eq. (4.46)
and reads

ﬁstokes _ C1€rM4Z +C2€_rM4Z o %é;tokcs. (4" ]Q)
1

The unknowns C; and ¢, are obtained using the boundary conditions at the free surface
and the bofttom. From the boundary condition at the free surface, Eq. (4.117), it follows
that ¢, =G, =C.

Subsequently, it follows from the bottom boundary condition, Eqg. (4.118), that

#stokes
8 OC]\/[4 gx

C= o 4.120)
Substituting the expression for C, EQ. (4.120), into Eq. (4.119) results in
géstokes
ustokes —_ X (aM4 cosh(rM4z) _ 1) (4 121 )

2ic

To obtain the expression for f;mkes, Eq. (4.121) is substituted into the depth-averaged conti-
nuity equation (4.84). This leads to the following second-order linear non-homogeneous
ODE for the water level

F é;)tcokes T F E;tokes —F éstokes = Fiokes, (4.122)

with

dic (.. B, .
Fitokes = _? <[ ]x"’[ﬂ) .
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and F;, F, and F; defined by Egs. (4.100)-(4.103), respectively. EqQ. (4.122) needs to be
solved numerically since the variables oy, . rv, dNd H are functions of the longitudinal
coordinate x.

Advection of momentum

The equations when the contribution of the advection of momentum is considered,
become

A = 2ici™ = g{ +2[¢], (4.123)

£ (0) =0, (4.124)
0

/ Y(L,z)dz =0, (4.125)

—H

2" (x,0) =0, (4.126)

A (x, ~H) = 5, (x, ~H). 4.127)

Deriving the expression for 2%, we can add the solutions o the momentum equa-
tion (4.123) due to the different forcing tferms on the right-hand side of that equation.
We already know the solutions of the homogeneous equation and due to the water level
forcing, see EqQ. (4.109). The expression for #*Y' then becomes

~ — 8 zadv ~adv
B = Cre™a 4 Cre '7\"41—% j‘d —&—u‘;%. (4.128)

The solution ﬁ;dz due to the advection of momentum is found using the method of variation
of parameters. This method was already introduced in the section on the contribution of
advection of momentum to the residual flow velocity. What the method boils down to is
finding a solution that has a similar form as the solution to the homogeneous equation, but
with different factors in front of the functions f(x,z) = ¢™* and g(x,z) = ¢ "™+*. Hence, we
seek functions A(x,z) and B(x,z). such that

ﬁ;f‘g =Af+Bg, 4.129)

is a general solution of the non-homogeneous equation. We need only to calculate the
infegrals

A(x,z) = — / %g(x,z’)b(x,z’)dz’, (4.130)
~H
B(x,z) = / %f(x,z’)b(x,z’)dz’, 4.131)
—H

where W is the Wronskian of the functions f and g given by
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™Mu? o M2
W = L2 Sz | = —rmge Mate™Mat —py em ™Mate™at = 2y,
7M4e 4 _7M4e 4

A

Furthermore, b(x,z) = 2[&] is the non-homogeneous forcing term. Substituting W, f., g and b
in Egs. (4.130) and (4.131), results in

The final general solution to Eqg. (4.66) can be found by substituting Eq. (4.129) into
Eq. (4.128), using the expressions for f, g, A and B, and reads

1 A
BV = Cre™Mit 4 Cre ™M+ — Gy — iCj‘dV, (4.132)
™, 2ic
with
z z
G| = ™t /[é]e_rM4Z/le—€_rM4z/[é]erM4Z/le-
iy —-H

The unknowns C; and C, are obtained using the boundary conditions at the free surface,
Eq. (4.126), and at the bottom, Eq. (4.127). At the free surface, taking the derivative of
Eq. (4.132) with respect to z and equaling to zero results in

with

yve

|e™Ma*dz.

0
Ele ™idz+ / [
“H

At the bottom, substituting the expression for 724" into EqQ. (4.127) and rearranging results in

Padv
Cl = oM gcx _ l L + 1& GzeertH .
“\ 4ic 2\rw, sy
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Substituting the expressions for C; and ¢, into Eq. (4.132) gives

Fadv
G
uadv :gz%o- (OCM4 COSh(FM4Z) _ 1) +A rllvl _
vIMy (4.133)
o, G .
422 (A, n, cosh(rv, (z + H)) + sy sinh(rv, (2+ H))).
Ayrv, Sy

To obtain the expression for (f adv Eq, (4.133) is substituted info the depth-averaged continu-

X

ity equation (4.84). This leads to the following second-order linear non-homogeneous ODE
for the water level

RV 4 Rl _pEd — Ry, 4.134)

with

0
1/d By
Fadv:g((bC+B) (G2(1_aM4)_rZIG1dZ>, (4]35)

and F;, />, and F; defined by Egs. (4.100)-(4.103), respectively. Eq. (4.134) needs to be
solved numerically since the variables o, . rv, and H are functions of the longitudinal
coordinate x.
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5. Numerical implemeniatio_

This chapter describes the numerical implementation of the leading and first order hy-
drodynamics of the semi-analytical iFlow model package discussed in Chapters 3 and
4. In the code itself, documentation is present that describes each module and function
used to calculate water levels and velocities. Here, an overview of the structure of each
hydrodynamics module is given, together with somne more detailed information on how
the equations in Chapters 3 and 4 are implemented.

General structure of the hydrodynamics modules

The leading and first order hydrodynamics are coded in two separate modules and can
be found in the package folder of the used iFlow version, e.g. for version 2.4 the pathname
is

. ./packages/semi_analytical2DV/hydro/

Both hydrodynamics modules are designed as classes in which several functions are
defined; the compulsory __init__() and run() functions (see iFlow modelling framework
manual) fogether with ones that actually calculate the surface elevation and velocities.
The function structure and explanation for each module are given in Table 5.1. As can be
seen from the table, both modules have similar functions and module specific functions.
The functions that are similar include: calculation of the root of the characteristic equation
in r£ () and the coefficient a in af (), the definition of the boundary conditions in bes (),
and the callback functions system_ode () and system_ode_der (). The latter two are treated
in more detail in the following section.

The specific functions for the HydroLead module are waterlevel() and velocities() in
which the water level and velocities are calculated. The HydroFirst module contains
six functions each calculating the water level and horizontal velocity due to a specific
forcing mechanism. The reason is that the HydroFirst module loops over the first order
contributions that the user defined as output in the input file.
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Table 5.1: Function structure of the classes HydroLead and Hydrofirst.

Hydrolead ‘ HydroFirst

- rf: Calculates the root of the characteristic equation at location x; Egs. (4.8)
and (4.98)
- af: Calculates the coefficient alpha at location x; Egs. (4.12) and (4.97)
- bes: Defines the boundary conditions of the boundary value problem
- system_ode: Callback function that returns the derivatives of the dependent
variables in the ODE
- system_ode_der: Callback function that returns the partial derivatives of the
dependent variables in the ODE

- waterlevel: Calculates the water level due | - tide: Calculates the water level and hor-

to external M, tide by solving the boundary | izontal flow velocities due to external My

value problem; Eq. (4.13) fide; Egs. (4.96) and (4.99)

- . - stokes: Calculates the water level and hor-

- velocities: Calculates the horizontal and | o

vertical flow velocities; Eq. (4.11) izontal flow velocities due to Stokes return
flow; Egs. (4.55) and (4.122)

- nostress: Calculates the water level and

horizontal flow velocities due to the no-

stress boundary condition; Egs. (4.46) and

4113

- adv: Calculates the water level and hor-

izontal flow velocities due to advection of

momentum; Egs. (4.81) and (4.134)

- baroc: Calculates the water level and hor-

izontal flow velocities due to the baroclinic

pressure gradient; Eq. (4.36)

- river. Calculates the water level and

horizontal flow velocities due to river flow;

Eq. (4.64)

5.2 Solving the boundary value problem for the water level

The two hydrodynamics modules both use the scikits.bvp_solver package (see https:
//pythonhosted.org/scikits.bvp_solver/index.html foO find the documentation and how
to install it) to solve the differntial equation for the water level due to the external M,
tide, Eq. (4.13), the external My tide, Eq. (4.99), the stokes return flow, Eq. (4.122), the
no-stress boundary condition, Eq. (4.113), and the advection of momentum, Eq. (4.134).
The general form of the second order differential equation for the water level is

T+ Dl - =T, .1)

For the numerical implementation of this differential equation in the BVP solver (found in the
function system_ode), it needs to be transformed into two first order differential equations.

Introducing ¥, = ¢ and ¥» = &, Eq. (5.1) can be recast to

ay,
Fr Y, 6.2
av, 1

2= (B, — DY +Ty). (5.3)

dx T


https://pythonhosted.org/scikits.bvp_solver/index.html
https://pythonhosted.org/scikits.bvp_solver/index.html
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Unfortunately, scikit.bvp_solver cannot handle complex numbers in solving the problem.
Therefore, Egs. (6.2)-(6.3) need to be split intfo real and imaginary parts. Introducing
Y1 =y1 +iy; and Y> = y3 +iy4, this results in the following four equations that are implemented
in hydrodynamics modules of the function system_ode

dy,

E—yb

dy,

E*yé‘-a

@=R€{5}}’1—Im{ﬁ}yz—Re{Q})’H-lm{&}y +Re{£}
dx T T T [7° T[4 T [
e = {Rpns e ho i { prere (b ().

where Re{.} and Im{.} denote the real and imaginary part, respectively. Note that for the
external M, and M, tidal forcing, T, = 0.

To speed up computation time, scikits.bvp_solver allows the user to define the analytical
partial derivatives of the derivatives of the dependent variables, i.e. dy; /dx = y’j (G=1,...,4),
resulting in the following matrix that is implemented in the function system_ode_der

ALY A 0 0 1 0
Iy dys 0 0 0 1
. o . . . )
Y, 2, Reyzip —Imymy —Reym Imy 7,
A n . . n i
i av4 Imq 7 Reqz  —Im{7; —Rey7

With the calculated water levels of each forcing mechanism known, the corresponding
velocities are calculated using the analytical expressions derived in Chapter 4.
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6.1
6.1.1

Equations and assumptions

Sediment concentration equation

In addition to hydrodynamic model discussed in the previous part, the morphodynamic
model calculates the width-averaged sediment concentration ¢(x,z,¢) in the model do-
main. The sediment is assumed to consist of non-cohesive, fine particles that have a
uniform grain size (constant settling velocity) and are transported primarily as suspended
load. The sediment dynamics is described by the width-averaged sediment mass balance
equation (for a detailed derivation of this equation see Chernetsky, 2012)

B
¢ +ucy+we, = wge + (Kpey)x + EXKth + (Kycz)2, 6.1

where, ¢(x,z,t) is the width-averaged suspended sediment concentration, wy is settling
velocity and K;, and K, are the horizontal and vertical eddy diffusivity coefficient, respec-
tively. Usually, K, is assumed to be equal to the vertical eddy viscosity coefficient A,. On
the left-hand side of EqQ. (6.1), the first ferm is associated with temporal settling lag effects
(related to tidal asymmetry and local inertia, see Groen, 1967) and the second and third
term with spatial settling lag effects (related to the finite time for sediment particles to
settle, see Postma, 1954; de Swart and Zimmerman, 2009). On the right-hand side, the
first term is associated with the settling of sediment, whereas the other terms are due to
diffusive transport processes.

Vertical boundary conditions
At the free surface z = ¢, there is no transport of sediment through the water surface

WSC(X, Cat) +chz(xa Cat) _thx(xa Cvt)Cx(x’t) =0 6.2)
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At the bottom z = —H, it is assumed that the diffusive flux equals the erosion flux E

—Kyc,(x,—H,t)n, — Kycy(x,—H,t)n, = E. 6.3)

Here, 7 = (ny,n;) = (Hy/ ||, 1/]7|) is the unit normal vector at the bottom and the erosion
flux E is related to the so-called reference concentration ¢, through E = wyc,. In turn, the
reference concentration is defined as

_ ‘Th(xvt”

cx(x,1) = ps od'd, a(x), 6.4

where, p; is density of sediment, 1,(x,7) is the bed shear stress defined as

Tp = poAvuZ = Posyru. (65)

Here, py is reference density, g’ = g(p; — po)/po is reduced gravity, d, is grain size, and a(x)
is the availability of easily erodible sediment in mud reaches. The availability function is
unknown and is yet to be determined. This can be achieved by using the morphodynamic
equilibrium condition discussed in the next section.

Morphodynamic equilibrium condition

Following Friedrichs et al. (1998), we assume that the total amount of sediment in the
estuary varies on a timescale that is much longer than that at which the easily erodible
sediment is redistributed. In that case, the availability of sediment can be determined by
assuming that the tidally averaged transport of sediment is divergence free, i.e. there is a
balance between the tidally averaged erosion and deposition at the bottom z = —H(x).
This is also known as the morphodynamic equilibrium condition. Assuming that there is no
residual sediment flux through the seaward and landward boundaries, we can write this
condition as (for a detailed derivation of this equation see Chernetsky, 2012)

¢
B</ (uc—thx)dz> —0. 6.6)

The sediment concentration in the morphodynamic equilibrium still depends on the un-
known availability of sediment a(x). Since the sediment concentration depends linearly on
the availability of sediment, the morphodynamic equilibrium condition, Eq. (6.6), can be
rewritten in terms of a(x).

Fa,+Ta=0, ©.7)

with
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¢
uc* c?
P </ - Khadz>, ©.8)
H
: uc? c?
T— </(a_1<h <a>x)dz>, 6.9

where ¢ and ¢* are the parts of ¢ that are a function of a and a,, respectively. The solution
to Eq. (6.7) is

a(x)=Ae 0 | 6.10)

where A is an integration constant. Instead of an initial condition at the seaward boundary,
we prescribe the average amount of sediment at the bottom for resuspension,

a=2— 6.1

A
L
a, [ B(x)dx
A=—2 6.12)
L —_{%dx
[B(x)e ©° dx
0
6.2 Scaling

Similar to the momentum and mass balance equations for the water motion and corre-
sponding boundary conditions, the sediment mass balance equation and its boundary
conditions are transformed to a dimensionless form to determine the order of magnitude
of each term. The typical scales presented in Table 3.1 are augmented with one for the
sediment concentration, C, the availability of sediment, a, and the horizontal and vertical
eddy diffusivities, see Table 6.1.

A typical scale for the sediment concentration follows by scaling the reference concentra-
tion and using the expression 1, = ppA,u;

é, = CA,iiz|a, 6.13)
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Scale Dimensionless quantity
C= p;j,‘f;f;f* Typical sediment concentration c=C¢
ax Typical amount of available sediment | a = a,d
2 ~
Sy =ty =20 i Typical vertical eddy diffusivity K, = %R,
= G12 (AHL?) Typical horizontal eddy diffusivity Ky = K,

Table 6.1: Typical scales for deriving the dimensionless sediment mass balance equation.
See Table 3.1 for the typical scales used for the equations for the water motion.

with

co p;cof;f;a*_ 6.14)

The vertical eddy diffusivity is usually tfaken equal to the eddy viscosity and hence their
typical scale are the same.

The typical scale for the horizontal eddy diffusivity can be found by assuming that it can
be represented by a velocity scale multiplied by a length scale. Here, we take the tidal
velocity U and the tidal excursion length ¢ = U /o, leading to the following typical scale for
the horizontal eddy diffusivity,

2 2
%—UE—Z—GL2<IL;IN:> . 6.15)

Scaling the sediment mass balance equation
Using these typical scales, the dimensionless sediment mass balance equation is

AM2 ~~ ,.,,.,] Ws ~_ L%/h L~ %%N %
B

i+ Ho [qu“rWCz = GH()CZ E(thg)g E K¢z + GHg (kv~z~,)z“,- 6.16)

Similar to the hydrodynamics, we recognize the small parameter & = Aw, /Hp in front of
the sediment advection term. The factors in front of the other terms can be related to e.
First, from observations the factor ws/cHy in front of the first rhs ferm associated with the
settling of sediment is usually close to unity. Second, the factor .#;,/cL? is of order £2. Finally,
the vertical diffusion coefficient, K,, is usually taken equal to the vertical eddy viscosity
coefficient, A,. Hence, the factor in front of the vertical diffusion of sediment term .7, /ng
is of order one.

The dimensional sediment mass balance equation thus has terms of the following order of
magnitude:

B
¢+ ucy + wep = wsc; + (thx)x + JKth + (chz)z
~~ ~~ ~r —~~ “—— B ——
oy o) o) o) o) - a o
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Scaling the vertical boundary conditions

The sediment mass balance equation (6.1) has boundary conditions that act on the bed
and at the surface. The dimensionless boundary condition at the surface z = e{ reads

= EK),
Cc
oHy oH} cl?

0 (7,8, G5 T) = 617)

According o the typical scales infroduced in Tables 3.1 and 6.1, the first and second terms
are of order one, whereas the third term is of order &3, The resulting dimensional form of
the surface boundary condition has the following order of magnitude

wsc(x, §,0) + Kyeo (x, §,1) — Knex(x, §,1) Ge(x,1) = 0 (6.18)
——
o(1) o(1) O(e3)

At the bottom 7z = —H, the dimensionless boundary condition is

Ky o~ o~ 1 /.
_TI-IgchZ(x’ —HJ) - Tthx(x, —HJ)H" =

A,|iza. 6.19)

Apart from the second term on the left-hand side, which is of order €3, all the terms are of
order one. Hence, the dimensional bottom boundary condition has the following order of
magnitude

— Kyey(x,—H, 0)n, — Knex(x, —H, 1)y Wsp‘sf|( —H,1)|a(x). (6.20)

o(1) O(e2) o

Notice that in Eq. (6.19) we have used 1, = ppA,u,, whereas in Eq. (6.20) we have used
7, = posyu. Both expressions are possible, see Eq. (6.5), and are in accordance with the
partial slip boundary condition.

Scaling the morphodynamic equilibrium condition

The dimensionless morphodynamic equilibrium condition is

4
< / (Uﬁ@—"?khcx)dz> 0, 6.21)
A

where we have omiftted the width B in this equation. By substituting the typical scales
U and ¢, in this equation, we find that the first term is an order ¢ term and the second
term is an order €2 term. However, we know that the tidally averaged sediment transport
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(ac) is of order e as well, whereas the longitudinal gradient of the sediment concentration
(¢:) is of order one. As a result, both terms in Eq. (6.21) are of the same order €2 and the
dimensional expression for the morphodynamic equilibrium condition has the following
order of magnitude

¢
</ (e~ @)dz> —0. 6.22)

H 0(e) g(e2

—

Furthermore, we scale expression (6.11) that prescribes the average amount of sediment
in the system, resulting in

0 —1. 6.23)

It follows, that the nominator and the denominator are of the same order.

Ordering & overview of the equations

As infroduced in Section 3.2, the solution u, w, { and here also ¢ are written as a power
series of the small parameter ¢

u=u0+u1+u2+...,
w:w0+w1+w2+...,
E=80+8"+ %+,
c:co+cl—|—c2+...,

where u!', w! and ¢! are assumed to be of order ¢, u?, w> and {2 are of order &2, etcetera.

Substituting these series in the sediment mass balance equation, the boundary conditions
and the morphodynamic equilibrium condition yields the systems of equations in leading
order and first order.

Leading order concentration equation

At leading order, when assuming a constant vertical eddy diffusivity, the dimensional
sediment mass balance equation reads

c? — wsc(z) — ch(z)z =0, 6.24)

with boundary conditions
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wyc?(x,0,1) +chg(x70,t) =0, (6.25)
vacg(x, —H,1t) = E%(x), 6.26)
with
20 WsPs | o _ WsPsSf | 02
£ = S )| = L P ). ©6.27)

In these equations, the subscript [.], denotes evaluation of the physical variable at the
bottom and £° is the leading order erosion term (see Intermezzo 6.3.1). It thus follows from
Egs. (6.24)-(6.27) that the leading order sediment concentration is forced internally by the
leading order bottom shear stress.

Intermezzo 6.3.1 — Derivation of the first and leading order erosion terms, £° and E!. In this
intermezzo a derivation is given for the erosion terms £° and £! that arise in the bot-
tom boundary conditions of the leading and first order contributions to the sediment
concentration.

Using the power series expression for u and restricting attention up to first order terms,
with u® > u', we can write the magnitude of bottom shear stress 7, as

|T6| = posglul = posgy/ (U0 +u')? = pospy/ (10)? + 2ulul,

— 0 1 2”71 ~ 0 @ 1
= posylu|\[ 1+2-5 = posylu”| +posy g u,

~ posf|u0\ + posfsg(uo)ul,

where the first termis (1) and the second &'(¢). Hence, we find that

Wi Ps
pOg/ds

E: |Tb|%EO+EA'17

with

0 _ WsPsSy 2
gd, """
A w S
1 S?S fsg(uoz) [u10+u14]
g'd;

To determine the leading order erosion E° we need the harmonic decomposition of
\u;ﬂ\. This term only contains residual components and tidal components that are even
multiples of the M, tide (M4 etc.). More specifically, when writing «” as
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02

u®? = 190" 4 e e,

B —

the following harmonic series for [u%?| holds,

|u22| — Z azne2in6t7

n—=—oo

with

a223ﬁ02| i \" (=)
"m % ) 1—4n*

For the leading order concentration only the residual and My component are relevant
(n =0 and n = +1). Similarly, for the first order erosion term E! the harmonic components
of sg(u®?) are relevant, which can be written in the following harmonic series

with

B 2(_1)}1 ﬁgz 2n+1
4 = Z2n+ 1) \[a2 '

For the first order concentration only the M, and Mg components are relevant (n = 0 and
n==1)

6.3.2 First order concentration equation
At first order, the dimensional sediment mass balance equation is

¢} —wsel —Kyel = —u0d — w0l 6.28)

The corresponding boundary conditions are

wye! (x,0,1) + Kyel (x,0,) = —¢0(x,1) 0 (x,0,1), 6.29)
—Kycl(x,~H,t) = E'a(x), 6.30)
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with

Pl = WsPs

o) = P s () ). (6.31)

% g'd,

Here, E' is the first order erosion term (see Intermezzo 6.3.1). It follows from Eqgs. (6.28)-(6.30)
that the first order sediment concentration is forced internally by the first order bottom
shear stress (Eq. (6.30)), advection of sediment (Eq. (6.28)) and surface correction ferm
due to a Taylor expansion around z =0 (EqQ. (6.29)).

Second order concentration equation

In general, we do not consider the sediment balance at second order. However, near
the landward boundary all tidal velocity components vanish, and thus there is hardly
any tidal fransport, whereas river flow might still be strong enough to erode sediment
and transport it downstream. This transport mechanism is due to a second order, river
flow-induced sediment concentration ¢, . . that is subsequently advected by the river
flow. We argue that this fransport mechanism becomes dominant over tidal transport
mechanisms near the landward boundary and thus we include this mechanism in the

iFlow’s sediment dynamics.

The corresponding sediment mass balance equation at second order is

(CEerriver)t — Ws(Cover-siver)z — Ko (Chver-river )2z = 0, (6.32)

river-river river-river river-river

with boundary conditions

WSCx?i(\)/er—river (x? 0’ t) +K, (Cx?i(\)/er—river ()C, Oa t) )Z = 0» (633)
7KV(Cr2i(\)/er—river (x’ —H, t))z = Arziger—rivera (x)v 6.34)
with
A WsPsS f .
Egger—river =— ! [<‘M22(x,l‘) +u}11,0river(xvt)|> - <|u22(x,t)|>] . (6.35)

g'dy

In these equations, (.) denotes the tidal average. It follows from Eq. (6.35) that when river
flow becomes zero, so do £% and thus no sediment will be eroded by the river flow.

river-river
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Leading order solutions of sediment concentration

From the overview of the ordered equations, it followed that the leading order sediment
concenfration equation is only forced by the leading order bed shear stress. In turn, the
bed shear stress is a function of the leading order velocity at the bed u°(x, —H,t). Recalling
that the leading order velocity only consists of an M, tidal signal, it thus follows that the
concentration has a residual component and all tidal constituents with frequencies that
are an even multiple of the M, tidal frequency (i.e. My, Mg, etc.). Hence, the solutions for
u® and ¢°, omitting contributions with frequencies higher than the M, frequency, can be
written as

u° %1202 (x,2)e’"" + %ﬁm* (x,2)e”"", 7.1

CO _ COO()C, Z) + %604 (x,z)eZiGt + %604* (x,z)e—Zicrt7 (72)

Substituting the normal form of these frial solutions (the complex conjugates follow auto-
matically) in Eqg. (6.24) leads to

2i6604€2i6t — Wy (COO +€O462i0t) _Kv (COO +CAO4eZiGt) =0. (73)

Z ped

Since this equation is linear we can solve for ¢ and ¢ separately. This is done in the next
two sections.
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Tidally averaged part of the leading order sediment concentration
The tidally averaged sediment concentration equation reads

chgzo + wscgo =0, 7.4)

with boundary conditions,

w0 (x,0)+ chgo (x,0) =0, (7.5)
—K,2X(x,—H) = E%(x), (7.6)

with £% the leading order residual component of the erosion term (see Intermezzo 6.3.1).
Differentiating Eq. (7.4) once with respect to z and solving the resulting differential equation
leads to the following expression for ¢,

0 — 0 R A 7.7

where % is an amplitude and A is an integration constant. Using the boundary condition
at z=0, Eq. (7.5), it follows that A = 0. Subsequently, using the boundary condition at
z=—H, Eq. (7.6), it follows that

c% :Eooa(x)ef%H. 7.8)

Using the expressions for A and ¢, the expression for ¢ becomes

0 = Eooa(x)ef%(Hﬂ). 7.9

M, part of the leading order sediment concentration

From Eq. (7.3) it follows that My part of the sediment concentration equation is

K% 4w —2i0é% =0, (7.10)

with boundary conditfions,

ws ¢ (x,0) + K, ¢4 (x,0) = 0, AR

—1K,e%(x,—H) = E%a(x). (7.12)

Note that now we take the M4 harmonic component of the erosion term. The characteristic
equation of Eq. (7.10) is
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K2 4+ wyr —2ic = 0,

and the corresponding roots are

—ws A,
o= —g (7.13)
with Ay, = /w2 + 8ioK,. The general solution for ¢* now reads
O = Are F Age™, 714

where A; and A, are unknowns that need to be determined from the boundary conditions.
Substituting Eq. (7.14) into the boundary condition (7.11) for z = 0 leads to an expression for
Ay interms of A,

A — A2(1M4 —Ws)
! l1144 +WS .

Using the boundary condition (7.12) for z = —H yields an expression for A,,

4(Ay, + WS)EOA'a(x)

Ay = .
2 (AM4 +WS)2€_r2H _ (A'M4 _WS)Ze—rlH

With the expressions for A; and A, known, we can construct the solution for ¢%4,

First order solutions of sediment concentration

From the overview of the ordered equations in Section , it followed that the first order
sediment concentration equation is forced by the first order bed shear stress, a surface cor-
rection term because the transport across the time-dependent water surface is specified
at z =0 instead of the real surface z = £, and advection of sediment (spatial settling lag
effects). These forcing terms all consist of correlations between an M, signal and a residual
plus an M4 signal. It follows that the first order concentration has an M, component and alll
tidal constituents with frequencies that are an even multiple of the M, tidal frequency (i.e.
Mg, Myg. etc.). Omitting contributions with frequencies higher than the M, frequency, we
can write the solution for u' and ¢! as

14(X,Z giot + %ﬁm* (X,Z)E_Zim, (7.15)

u
ol — %612<X7Z)eict +%A'2* (LZ)eﬂ'az’ (7.16)

Because the first order system of equations presented in Section 6.3.2 is linear we can solve
for each forcing mechanism separately. Hence, we can write the solution for ¢!2 as
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A2 A2 ~12 ~12
€ =Cero + Choflux + Csedadv*

The individual contributions are treated in the next sections.

Contribution due to bottom erosion

Substituting the trial solutions for u°, ' and ¢! in Egs. (6.28)-(6.30) and considering only the
forcing term at the bottom, results in

K, (&), +ws (Garo) , — i0em =0, (7.17)

with boundary conditions

WSCAérzo (x70) + Kvéérzo (x’ O) =0, (7.18)
— 1K, (¢4 (x, —H))Z:Eua(x). 719

ero

Adopting the same solution method as for ¢, we find

el =B1e"* + By, (7.20)
with
rio= _Wzili(’wz 7.21)
 Ba(hag, —wy)
R (7.22)

4( Ay, + ws)Elza(x)
(Mg, +wy)2e 20 — (Apg, — wy)2e 1’

By = (7.23)

and Ay, = /w? +4ioK,.

Contribution due to the no flux condition at the surface

Substituting the trial solutions for u°, u' and ¢! in Egs. (6.28)-(6.30) and considering only the
forcing term due to the no flux condition at the surface, results in

A12 A2 : _Al2 _
KV (Cnoﬂux)zz + Wy (Cnoﬂux)z — U0 Chofiux = 07 (724)

with boundary conditions
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WSérllgﬂux (xv 0) + Kvérllgﬂux ()C,O) = —idéo* (x)604 (xv 0)7 (725)
K, (Cronux (v, —H)), = 0. (7.26)

Notice that the leading order residual concentration ¢ does not have a contribution
in the forcing tferm at z =0, as it is fime-independent. Furthermore, we only consider the
normal form of the M,-part of the correlation between the surface elevation and the
leading order concentration amplitudes.

is equal to that of ¢ and ¢!2 and reads

ero

The derivation of the solution for ¢!2

noflux

L2 = C1e" 4 Cre'™, 7.27)

Choflux

with r; and r, given by Eq. (7.21) and

icl0 04
(ws + Kyr1) — %(Ws —Kyrp)elr2—r)H’

C=— L]Cle(mfrl H (7.29)
rn

Ci=- (7.28)

Here, the subscript [.]; denotes the value of the physical variable evaluated at the surface.

Contribution due to sediment advection

Substituting the trial solutions for u?, ¢°, u', ¢! and additionally w®, which is a similar expression
as u°, in Egs. (6.28)-(6.30) and considering only the forcing term due to sediment advection,
results in

A2 Ws /1 A12 0,12 o
(Csedadv)zz + ? (Csedadv)z - fcsedadv - 7?’ (7.30)
v v v

with boundary conditions

WA‘éigdadv (x7 0) + Kvéigdadv (X, O) = 07 (73] )
K, (8iagaay (v, —H)) = 0. (7.32)

Here, the forcing ferm @ due to sediment advection is defined as
@ = 0" + w020 3 (ﬁ"z* &% 402 624) , (7.33)

where we only consider the normal form (~ ¢/°) of the forcing term. Notice that due to
the fact that the concentration amplitudes are a function of a(x), the derivatives with
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respect to x in Eq. (7.33) additionally yield terms that are a function of a,. The latter will be
important in solving for a using the morphodynamic equilibrium condition, see Section 7.4.

Solving for ¢!2, . from Egs. (7.30)-(7.32) is done in the same way as for the velocity am-

sedadv
plitude for the advection of momentum in Section 4.2.2. It involves seeking solutions for
the homogeneous equation and due to the sediment advection forcing. The general

expression for ¢l2, | is

Al2 _ rz mz_ Al2
Coedady = D1€71" +Dae?* + Cp,sedadv> (7.34)

with r » defined by Eqg. (7.21). Furthermore, D, and D, need to be determined using the
boundary conditions and ¢!2, ;. is the particular solution due to sediment advection. The
latter is found using the mejryhod of variation of parameters. Following the steps outlined in

Section 4.2.2, we find

cAlli?sedadv = D3e"'* — Dye™, (7.35)
with
: [0)
Dy — / L gy, (7.36)
Dy = / B gy, (7.37)
A,

Using boundary conditions (7.31) and (7.32), we find expressions for D; and D5,

0 0
(ws+Kyr2) [ ﬁe”ﬂ/dz’—(ws—l—l(vrl) J %e’”z/dz/
—H 2 —H 2

b= 7.38
1 (Ws Jrerl) — %(Wx JFK»rz)e(’Z_’l VH ’ ( )

0 0
(WS +er2) f ﬁeirzzl dZ/ — (WS + erl) f ﬁefrlz’ dz/
—H 2 _H H

b2 = : 7.39
’ (Ws +er2) - %(WY +er1)e(rl_r2)H ( )

The full solution for ¢!2, . now reads

sedadv

8iotaay = (D1 +D3)e"* + (Dy — Dy)e'™, (7.40)

with the variables D{-D, defined above.
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Second order solution of sediment concentration due to erosion by river
flow

The solution for the sediment concentration ¢2°, . . as a result of erosion by river flow is
equal to that of the tidally averaged part of the leading order sediment concentration ¢

and reads

20 _ £20

— ¥ (H+z
river-river river-riverd (x ) e K ( ) ) (7 A1 )

C

where £20

river-river

is given by Eq. (6.35).

Morphodynamic equilibrium condition; transport components

In the previous sections we derived the amplitudes of the sediment concentration due to
various physical processes. These amplitudes are functions of the still unknown sediment
availability a(x). To calculate the actual sediment concentrations we use the morphody-
namic equilibrium condition (6.6) o solve for a(x), which resulted in the following differential
equation for a,

Fa,+Ta=0.

Since we know the concentration amplitudes, we can obtain exact analytical expressions
for F and T that each contain several contributions that represent either an advective or
a diffusive fransport process. This allows us to assess each process separately, which highly
simplifies the analysis of sediment dynamics in estuaries. Below these different fransport
processes are given.

For readability we repeat the expressions for F and T below,

T— U) (”2 K, (2)) dz+ Couo(x,O)co(x,0)> .

The extra term that arises in the expression for T is called the Sfokes drift and is a result
of the fact that during flood more water is tfransported in a landward direction than is
fransported back to the seaward direction during ebb. The diffusive tfransport conftributions
of F consist of the diffusion by the tide and river, i.e. K,c® and Kjc2... respectively. In
addition, through the forcing @ (Eq. (7.33)), the sediment advection contribution has a
diffusive part, 22! . Here, the superscript []* denotes the part of the concentration

that is a function of a,. The contributions are thus,
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0
o 1 02 A12% ax ~02* A12,ax
Fyedadv - / 4ay {u Csedadv +iu Cedadv dz, (742)
—-H
9 COO
Fiftusion-tide = — / Khjdz, (7.43)
—H
0
Fiffusion-river = — /Kh%dz- (7.44)
—-H

The advective fransport conftributions of T stem mainly from interactions between the first
order velocity and leading order concentration, u'c®, and/or between the leading order
velocity and first order concentration, u’c!. Additionally, there are diffusive components by
the tide and the river, K, and K;,c?° a component by the erosion and consequent

x,river’
transport by the river flow, !9 ¢2°. and a component due to the Stokes drift, %% (x,0)c%(x,0).

In Table 7.1 the general expressions for each contribution of the advective transport is
given.

Table 7.1: Transport mechanisms

Transport mechanism Harmonic Forcing Expression

Velocity asymmetry residual river
baroclinic 0
i 00
advection | ulOchZ
no stress “H
Stokes

My ext. My tide

advection 0
L [A14404% | A14* 704
Stokes L@[“ et e dz

Nno stress B

Erosion asymmetry M, river
baroclinic
advection
Nno stress 0
Stokes f ﬁ [ﬁOZélZa* _|_’202*612a} dz
ext. M4 tide 7
no flux
sed. adv.

a

. . . . 0 .00
Diffusion residual M, tide - [ Ky (‘—) dz
-H x

20

0
river — [ K, (‘;) dz
-H X

0 20
River-river interaction  residual river [ uld S gy
—-H

river a

Stokes drift residual M, tide [foﬁm* % +¢o ﬁ‘)z%}
My M, fide goa T+ L T

a

Finally, when we substitute the known expressions for F and T into the availability expression,
Eq. (6.10), we obtain the availability a and thus the final expressions for the concentration
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¢ and its underlying components.






8.1

This chapter describes the numerical implementation of the leading and first order sed-
iment dynamics of the semi-analytical iFlow model package discussed in Chapters 6
and 7. In the code itself, documentation is present that describes the module and each
function used to calculate sediment fransport and concentration. Here, an overview of
the structure of sediment dynamics module is given.

General structure of the sediment dynamics module

The sediment dynamics module can be found in the package folder of iFlow, e.g. for
version 2.4 the pathname is

. ./packages/semi_analytical2DV/sediment/

The module is designed as a class in which several functions are defined; the compulsory
__init__() and run() functions (see iFlow modelling framework manual) together with
ones that actually calculate the sediment tfransport functions and concentration compo-
nents. The function structure and explanation for each module are given in Table 8.1.

The module first loads parameter values and calculated physical variables from the
DataContainer. Subsequently, it systematically runs through the steps to calculate the
sediment concentration. First, the sediment concentration amplitudes are calculated.
From those, the transport function T and diffusion function F and sediment availability a
are calculated. Finally, the sediment concentration components are computed. Note
that the module only calculates those sediment concentration components that are given
by the user on input.
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Table 8.1: Function structure of the class SedDynamic.

SedDynamic

- run: Builds the output dictionary with the concentration amplitudes ¢, the fransport and
diffusion functions T and F, the availability a and the concentrations c.

- erosion_lead: Calculates the erosion induced leading order sediment concentration
amplitudes ¢ and ¢* and their derivatives w.r.t. x and z; Egs. (7.9) and (7.14).

- erosion: Calculates the erosion induced first order sediment concentration amplitude
cl2: Eq. (7.20).

- erosion_second: Calculates the erosion induced second order sediment concentration
amplitude ¢22,. by the river flow; Eq. (7.41).

- noflux: Calculates the first order sediment concentration amplitude ¢!2; due fo the no
flux surface boundary condition; Eq. (7.27).

- sedadv: Calculates the first order sediment concentration amplitude c!2, = due to sedi-
ment advection; Eq. (7.40).

- availability: Calculates the availability of sediment; Egs. (6.10)-(6.12).

- dictExpand: Adds a maximum of two layers to a dictionary. Mainly used to build the

transport dictionary.
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