Interactive comment on “The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 1: The limited-area atmospheric chemistry model COSMO/MESSy” by A. Kerkweg and P. Jöckel

A. Kerkweg and P. Jöckel
kerkweg@uni-mainz.de

Received and published: 15 November 2011

Dear Volker, dear referees,

first of all we express our appreciation for your comments, in particular for the in-depth re-analysis of our tracer tests. Indeed, we went fatally wrong in the interpretation of our results, which forced us to rewrite the complete section (5.2.1) on “Tests with artificial tracers without emission”, including figure updates and modifications of the conclusions. The good result is, however, that by this revision we are able to show that the transport characteristics of COSMO/MESSy are of sufficient quality for atmospheric chemistry applications.

The specific comments are answered below.

• A) Please state clearly ...

We reorganised the section roughly along this red-line:

– What transport processes are we looking at?: advection, convective transport, vertical diffusion.
– What do we expect from them?: mass conservation, monotonicity and positive definiteness.
– How are our tests designed?: tracers with three different initial patterns, combined with 5 different transport process combinations
– Discussion of the results for monotonicity, positive definiteness and conservation of mass
– Summary

• Example: Homogeneous tracer H ...

This has been our key misinterpretation. We completely agree and show in the revision the evolution of the tracer masses and of the dry air mass in the domain.

• As far as I understood, the influx and outflux is not explicitly calculated ...

This is also correct. We state this more clearly: "... Inside a regional model domain the mass of a specific tracer is not expected to be conserved. With a perfect transport scheme, however, the mass budget of passive tracers (i.e., without
sources or sinks in the regional domain) is expected to be closed, implying that
the tracer mass within the domain plus inflow minus outflow in/out of the domain
is conserved. The latter (inflow and outflow) are determined, at least implicitly,
by the boundary conditions. As there is no in- and outflux budgeting routine in
COSMO/MESSy yet, our analyses are somewhat limited, but as a first step ar-
tificial passive tracers are used to diagnose, to the extent possible, the mass
conservation, positive definiteness and monotonicity of the transport processes
as implemented in COSMO/MESSy. ..."

- I suggest to replace (or add) the figure 5a by ...

The revised figure (now Fig. 6) shows the evolution of the dry air mass and of the
tracers H and $V_1 + V_2$ within the domain, each normalised to the corresponding
time average, so they can be directly compared. The results is: the mass of H
and the sum of masses of V_1 and V_2 strictly follow the mass of dry air.

In addition, two more panels show the masses (normalised to their time average
and divided by the mass of dry air normalised to its time average) of the V_1 and V_2 tracers. The corresponding discussion is added to the text.

- Example V_1 / V_2. This case is even more tricky. ...

We also agree with that. From the evolution of masses of V_1 and/or V_2 indi-
vidually no information on the mass conservation can be deduced. However,
our new analysis shows that $V_1 + V_2 = H$ in very good approximation through-
out the domain and the simulation (and the boundary conditions). As a conse-
quence, this also holds for the sum of integrated (over the domain) tracer masses:
$M(V_1) + M(V_2) = M(H)$. $M(H)$ (see above) follows exactly the evolution of the
dry air mass. From this strict linearity, we can almost conclude that the tracer
transport is not subject to mass conservation violations, except for those poten-
tially caused by mass-wind inconsistencies (Jöckel et al., 2001).

- B) Figure 6 indicates a mass correction by TRACER_PDEF ...

We now write: "... The generic MESSy sub-submodel TRACER_PDEF (Jöckel
et al., 2008) provides the possibility to detect negative tracer mixing ratios, for
instance caused numerically, to correct them (locally) to zero, and to diagnose
the corresponding mass conservation violation. This has been applied here. ..."

- It would be good to have a ...

We now indeed conclude that the tracer transport characteristics are of sufficient
quality for atmospheric chemistry applications.

- page 13 "The latter (inflow and outflow) are determined ...

See third comment above.

- A violation of the homogeneity of the H tracer ...

This statement has been wrong and does not longer occur.

- Conclusion / abstract ...

We think that our revised tracer tests, which are also mentioned in the abstract
and conclusions of the revised manuscript are of potential interest to other limited
area modelers as well.
References:

Interactive comment on Geosci. Model Dev. Discuss., 4, 1305, 2011.