Simulations over South Asia using the weather research and forecasting model with chemistry (WRF-Chem): chemistry evaluation and initial results

R. Kumar1, M. Naja1, G. G. Pfister2, M. C. Barth2, C. Wiedinmyer2, and G. P. Brasseur3

1Aryabhatta Research Institute of Observational Sciences, Nainital, 263129, India
2Atmospheric Chemistry Division, NCAR, Boulder, CO 80307-3000, USA
3Climate Service Center, GKSS, Hamburg 20146, Germany

Received: 15 December 2011 – Accepted: 16 December 2011 – Published: 3 January 2012
Correspondence to: M. Naja (manish@aries.res.in)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

This study presents annual simulations of tropospheric ozone and related species made for the first time using the WRF-Chem model over South Asia for the year 2008. The model simulated ozone, CO, and NO\textsubscript{x} are evaluated against ground-based, balloon-borne and satellite-borne (TES, OMI and MOPITT) observations. The comparison of model results with surface ozone observations from seven sites and CO and NO\textsubscript{x} observations from three sites, indicate the model’s ability in reproducing seasonal variations of ozone and CO, but show some differences in NO\textsubscript{x}. The modeled vertical ozone distribution agrees well with the ozone soundings data from two Indian sites. The vertical distributions of TES ozone and MOPITT CO are generally well reproduced, but the model underestimates TES ozone, OMI tropospheric column NO\textsubscript{2} and MOPITT total column CO retrievals during all the months except MOPITT retrievals during August–January. Largest differences between modeled and satellite retrieved quantities are found during spring when intense biomass burning activity occurs in this region. The evaluation results indicate large uncertainties in anthropogenic and biomass burning emission estimates, especially for NO\textsubscript{x}. The model results indicate clear regional differences in the seasonality of surface ozone over South Asia with estimated net ozone production during daytime (11:30–15:30 h) over inland regions of 0–5 ppbv h−1 during all seasons and of 0–2 ppbv h−1 over marine regions during outflow periods. The model results indicate that ozone production in this region is mostly NO\textsubscript{x}-limited. This study shows that WRF-Chem model captures many important features of the observations and gives confidence to using the model for understanding the spatio-temporal variability of ozone over South Asia. However, improvements of South Asian emission inventories and simulations at finer model resolution, especially over the complex Himalayan terrain in Northern India, are also essential for accurately simulating ozone in this region.
1 Introduction

The anthropogenic emissions of several key trace gases and aerosols have increased substantially in recent years over Asia due to rapid growth in industrial, transportation, urbanization and agricultural activities (e.g., Akimoto, 2003; Ohara et al., 2007; Tanimoto et al., 2009). Tropical Asia is also a region of high photochemical activity due to strong solar insolation and high amounts of water vapor. The rising emissions and high photochemical activity can potentially enhance the concentrations of several secondary pollutants such as ozone and secondary organic aerosols, which along with primary pollutants have a wide range of potential consequences for health, vegetation, ecosystems, visibility, radiation budget and atmospheric chemistry. Among different Asian regions, South Asia is the least studied region although pollutants have been seen to influence the atmospheric composition and radiation budget over the cleaner Indian Ocean (e.g., Lal et al., 1998; Lelieveld et al., 2001; Ramanathan et al., 2001; Lawrence and Lelieveld, 2010) and pristine Himalayas (e.g., Hegde et al., 2007; Kumar et al., 2010; Marcq et al., 2010; Decesari et al., 2010). Further, strong convection during summer/monsoon is also seen to transport South Asian pollutants to the Mediterranean Sea (e.g., Lawrence et al., 2003; Park et al., 2007). Therefore, it is important to study the spatio-temporal distribution of trace species over this region as well as the impact of South Asian pollutants on the air quality and radiation budget of downwind regions.

Numerous efforts have been made since the early 1990s to conduct in situ measurements of both trace gases (e.g., Lal et al., 2000; Naja et al., 2004; Beig et al., 2007; Reddy et al., 2008) and aerosols (e.g., Sagar et al., 2004; Moorthy et al., 2005; Niranjan et al., 2006; Ramachandran and Rajesh, 2007; Satheesh et al., 2009) over the Indian region. Additionally, an international intensive field campaign called Indian Ocean Experiment (INDOEX) (Ramanathan et al., 2001; Lelieveld et al., 2001) was conducted to study the export of pollutants from South Asia to the surrounding pristine oceanic environments. Another field campaign called Integrated Campaign for
Aerosols, gases and Radiation Budget (ICARB) (Moorthy et al., 2008) was conducted to characterize the physico-chemical properties and radiative effects of trace gases and aerosols over the Indian subcontinent. However, these efforts focused largely on the measurements of basic trace gases (ozone, CO, NO\textsubscript{x}, lighter non-methane hydrocarbons (NMHCs)) and measurements of other gases and radicals like hydroxyl and peroxy radicals, other oxides of nitrogen and heavier NMHCs are nearly non-existent. In view of the above, an intensive field campaign (Regional Aerosol Warming Experiment – Ganges Valley Aerosol Experiment) (http://www.arm.gov/sites/amf/pghe) with primary focus on aerosols is being carried out over Northern India with ARIES, Nainital as a main site. Further, poor spatial coverage and lack of continuous measurements hinders the sufficient understanding of the spatio-temporal distribution of these species over India. The scarcity of measurements makes the application of chemical transport models and satellite observations essential for understanding the distribution of trace species and ozone photochemistry over this region.

A few studies have employed global and regional scale models over the South Asian region to simulate the spatio-temporal variabilities in ozone, CO and NO\textsubscript{x} over the Indian region (e.g., Kunhikrishnan et al., 2006; Beig and Brasseur, 2006; Roy et al., 2008; Engardt, 2008; Sheel et al., 2010). But all these studies used offline chemical transport models, which may miss important information about the short-term atmospheric processes due to inherent decoupling of the meteorological and chemistry components. In this study, a fully coupled online regional air quality model known as the “Weather Research and Forecasting model coupled with Chemistry” (WRF-Chem) (Grell et al., 2005) has been employed for the first time to conduct a yearlong (2008) simulation over South Asia. One main objective of this study is to evaluate the WRF-Chem model over the South Asian region against observations from multiple platforms and to identify the errors and biases in the model simulations. Model evaluation studies are important to establish the model’s credibility for future use, which has not been done so far over the South Asian region. The meteorological fields simulated by the model have been evaluated against observations from ground-based, satellite-borne and balloon-borne
instruments and NCEP/NCAR reanalysis fields (Kumar et al., 2011). The evaluation of the meteorological variables including temperature, dew point temperature, water vapor, zonal and meridional wind components, precipitation, and tropopause pressure and the comparison of the model's meteorological biases and errors against a set of benchmarks revealed that the meteorological fields simulated by the model are of sufficient quality for use in chemical transport modeling.

The evaluation of modeled ozone, carbon monoxide and nitrogen oxides is based on comparison to ground-based, balloon-borne and satellite-based observations over the Indian region. The use of satellite-based measurements for evaluating chemical transport models has become common in the recent years, particularly in regions with limited availability of ground-based observations as is the case for India (e.g., Pfister et al., 2004; Herron-Thorpe et al., 2010; Sheel et al., 2010). The comparison between satellite retrievals and model simulations has also been used to identify uncertainties in the CO and NOx emissions estimates (e.g., Allen et al., 2004; Han et al., 2009). Here, model results are evaluated against ozone retrievals from the Tropospheric Emission Spectrometer (TES), CO retrievals from the Measurements of Pollution in the Troposphere (MOPITT) and NO2 retrievals from the Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment-2 (GOME-2). The outline of the manuscript is as follows. Section 2 brings a description of the customized WRF-Chem model configuration used in this study. Different datasets obtained from ground-based and space-borne measurements, methodology used for comparing model results with observations and statistical metrics used to assess the model performance are described in Sect. 3. The results from this study are presented in Sect. 4 and are summarized in Sect. 5.

2 The model description

This study uses the version 3.1.1 of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) developed under the collaborative efforts of several research institutes led by NOAA, NCAR and DOE/PNNL (http://ruc.noaa.gov/wrf/
Anthropogenic emissions of CO, NO\textsubscript{x}, SO\textsubscript{2}, non-methane volatile organic compounds (NMVOC), PM\textsubscript{10}, PM\textsubscript{2.5}, BC and OC are taken from the Intercontinental Chemical Transport Experiment – Phase B (INTEX-B) inventory (Zhang et al., 2009) and the Reanalysis of Tropospheric Chemical Composition (RETRO) (http://retro.enes.org/index.shtml) database. The emissions from RETRO are used where the INTEX-B inventory does not provide data. The spatial distributions of the anthropogenic emissions of CO, NO\textsubscript{x} and NMVOC over the simulation domain along with that of population density are shown in Fig. 1. The population density is significantly higher over the Indo-Gangetic Plain region followed by Bangladesh and southern parts of India. The distributions of CO, NO\textsubscript{x} and NMVOC emissions more or less follow the distribution of population density.

The percentage contributions of different sectors namely domestic, industry, power and transport sectors to the total annual anthropogenic emissions of major species (CO, NO\textsubscript{x}, SO\textsubscript{2}, NMVOC, BC, OC and PM\textsubscript{2.5} and PM\textsubscript{10}) are shown in Table 1. It is seen that domestic sources (mainly biofuel burning in cooking stoves) are the largest contributors to CO (41\%) and NMVOC (38\%) emissions while NO\textsubscript{x} emissions are dominated by the power (36\%) and transport (34\%) sectors. The larger contribution from domestic sources explains why CO and NMVOC emission sources are spatially more wide-spread, particularly in the rural areas, as compared to the NO\textsubscript{x} emission sources. The emissions of particulate matter over the simulation domain are also dominated by the domestic sources.

In addition to the spatial variability, the seasonal variability in anthropogenic emissions over the Asian region has also been suggested to play an important role in air quality simulations (e.g., Han et al., 2009). Since the INTEX-B inventory only provides
annual fluxes, the seasonal variation in anthropogenic emissions is extracted from the RETRO inventory and is applied to the annual fluxes from INTEX-B emissions. The estimated seasonal variation is found to be significant only for anthropogenic CO, NO\textsubscript{x} and NMVOC emissions (Fig. 2a). The application of a seasonal variation leads to highest anthropogenic emissions during winter and lowest during summer/monsoon.

Daily varying emissions of trace species from biomass burning are provided to the model through the Fire Inventory from NCAR (FINN version 1) (Wiedinmyer et al., 2011) and biomass burning emissions are released at the lowest model level. The seasonal variations in biomass burning CO, NO\textsubscript{x} and NMVOC emissions are shown in Fig. 2b, and the spatial distribution of MODIS derived fire locations used by FINN is shown in Fig. 3. Biomass burning emissions also exhibit a distinct seasonal cycle with highest values during spring and lowest during summer/monsoon. This is expected because spring is the post harvesting season and open crop residue burning is the major practice for clearing agricultural fields in this region (Venkataraman et al., 2006). The total annual biomass burning emissions used by the model for different species are also shown in Table 1. It is seen that total biomass burning emissions are significantly lower than the anthropogenic emissions during all the months except for CO emissions over Burma during February–April. Biogenic emissions of trace species are calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006).

The gas-phase chemistry is represented by the Regional Atmospheric Chemical Mechanism (RACM) which includes 237 reactions among 77 chemical species (Stockwell et al., 1997). The aerosol module is based on the Modal Aerosol Dynamics Model for Europe/Secondary Organic Aerosol Model (MADE/SORGAM) (Ackermann et al., 1998; Schell et al., 2001). The initial and boundary conditions for the chemical fields are based on the Model for Ozone and Related Chemical Tracers-version 4 (MOZART-4) results (Emmons et al., 2010). The time step for the chemistry simulation has been set to that used for the meteorological simulations, i.e. 180 s, and model results are output every hour. Further details regarding the static geographical fields, initial
and lateral boundary conditions for meteorological fields, parameterization of different physical processes, integration schemes and analysis nudging are provided in Kumar et al. (2011) and are not repeated here.

3 Datasets and evaluation methodology

3.1 Ground-based and balloon-borne observations

This study uses surface ozone observations reported from seven sites in India: Ahmedabad (23.0° N, 72.6° E, ~ 49 m a.m.s.l.) (Lal et al., 2000), Gadanki (13.5° N, 79.2° E, ~ 375 m a.m.s.l.) (Naja and Lal, 2002), Mt. Abu (24.6° N, 72.7° E, ~ 1680 m a.m.s.l.) (Naja et al., 2003), Pune (11.7° N, 77.6° E, ~ 600 m a.m.s.l.) (Beig et al., 2007), Anantapur (14.7° N, 77.6° E, ~ 331 m a.m.s.l.) (Reddy et al., 2008), Nainital (29.4° N, 79.5° E, ~ 1958 m a.m.s.l.) (Kumar et al., 2010) and Thumba (8.6° N, 77.0° E, ~ 2 m a.m.s.l.) (David and Nair, 2011). The geographic locations of all these sites are shown in Fig. 1 by white filled circles. These sites are representative of different chemical environments ranging from urban (Ahmedabad), semi-urban (Pune) and rural (Anantapur and Gadanki) to coastal (Thumba) and high-altitude cleaner (Mt-Abu and Nainital) sites. These sites also cover nearly the entire latitudinal extent of India from about 8° N (Thumba) to about 30° N (Nainital). Surface ozone observations at these sites have been made using online ozone analyzers based on the well known technique of ultraviolet photometry, which is shown to have an absolute accuracy of about 5% (Kleinman et al., 1994). Additionally, surface measurements of CO and NO\textsubscript{x} from Ahmedabad, Mt. Abu and Gadanki have also been used to evaluate the model simulations. CO observations were made either by analyzing the whole air samples with gas chromatography or by using online CO analyzers based on non-dispersive infrared spectroscopy, while NO\textsubscript{x} measurements were made using online analyzers based on the chemiluminescence technique (e.g., Lal et al., 2000; Naja and Lal, 2002; Naja et al., 2003). NO\textsubscript{x} values reported in these observational studies could be higher than actual values due to use of Molybdenum convertors in the analyzers.
In addition to the surface observations, ozonesonde data at Delhi and Thumba have also been obtained for the period 2000–2009 from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) (http://woudc.org/). Ozonesonde data from WOUDC have been used widely for evaluating satellite retrievals (e.g., Worden et al., 2007; Nassar et al., 2008) and model simulations (e.g., Emmons et al., 2010) and to study long-term trends in tropospheric ozone (e.g., Logan, 1994; Cooper et al., 2010). The ozonesonde measurements over India are carried out by the Indian Meteorological Department (IMD) and are based on a modified electrochemical Brewer Bubbler ozone sensor (Shreedharan, 1968) for which the precision is estimated to be better than ±2% at the peak of the ozone layer (WMO, 1994). These IMD ozonesondes have participated in the Jülich Ozone Sonde Intercomparison Experiment (JOSIE) held in 1996 (Harris et al., 1998). Ozonesonde data from these sites have also been used to study the long-term trends in tropospheric ozone over the Indian region (Saraf and Beig, 2004).

3.2 Satellite-borne observations

This study uses Tropospheric Emission Spectrometer (TES) retrieved vertical profiles of ozone, Measurement of Pollution in the Troposphere (MOPITT) retrieved vertical profiles and total column of CO and Ozone Monitoring Instrument (OMI) retrieved tropospheric column NO$_2$ abundances. TES aboard NASA’s Earth Observing System (EOS)-Aura platform is an infrared Fourier transform spectrometer which measures the Earth’s radiance in the 650–3050 cm$^{-1}$ (15.4–3.3 µm) spectral range with a ground footprint of about 5 km × 8 km in nadir mode (Beer et al., 2001). Aura operates at an altitude of about 705 km in sun-synchronous polar orbit with a local overpass time of about 1345 h ±15 min. The radiances measured by TES in the 995–1070 cm$^{-1}$ (10.1–9.3 µm) spectral range are used to retrieve atmospheric ozone concentrations (Bowman et al., 2002; Worden et al., 2004) using an optical estimation approach (Rodgers, 2000). Here, Version 0004 Level 2 TES ozone retrievals from the nominal operational mode (global-survey mode) are used. In the clear sky conditions, TES nadir ozone profiles...
have approximately 4 degrees of freedom (DFS), two of which generally belong to the troposphere (Bowman et al., 2002; Worden et al., 2004). The vertical resolution of TES nadir ozone profiles as estimated from averaging kernels and error covariances is typically 6–7 km in the troposphere (Worden et al., 2004). The comparison of TES nadir ozone profiles with ozonesonde measurements indicates a positive bias of 3–10 ppbv (Worden et al., 2007; Nassar et al., 2008).

MOPITT aboard the NASA EOS-Terra satellite, flying in a sun-synchronous orbit (local mean solar time of about 1030 in ascending node), is a gas filter radiometer and measures the thermal infrared radiation (near 4.7 µm) with a ground footprint of about 22 km × 22 km. These radiances are then used to retrieve CO mixing ratios profile and total column amounts (Deeter et al., 2003a) using an optimal estimation method (Rodgers, 2000). This study uses version 4.0 Level 2 MOPITT data products which provide CO mixing ratios at 10 pressure levels between the surface and 100 hPa with a difference of 100 hPa between the levels. The DFS of MOPITT CO retrievals is estimated to be more than 1 over the tropical and midlatitude regions (Deeter et al., 2004). MOPITT CO retrievals have been validated against aircraft CO measurements (Emmons et al., 2004, 2007, 2009) and are found to positively biased by about 20%.

The Ozone Monitoring Instrument (OMI) is also flying aboard NASA’s EOS-Aura satellite and measures the radiation backscattered by the Earth’s atmosphere and surface over the 0.27–0.5 µm wavelength range with a spatial resolution of about 13 km × 24 km at nadir in normal operational mode. The radiances measured by OMI are used for daily global retrievals of several trace species such as ozone, NO₂, BrO, SO₂, HCHO and aerosols. Here, we use the tropospheric column NO₂ datasets available from KNMI (Royal Netherlands Meteorological Institute) because it provides access to the averaging kernel and a priori profiles that play a major role in comparing model results to satellite retrievals (e.g., Emmons et al., 2004). More details on the algorithm used to determine the tropospheric column NO₂ abundances at KNMI are given in Bucsela et al. (2006). The comparison of OMI retrieved tropospheric column NO₂ amounts at KNMI with INTEX-B aircraft measurements indicate good
correlation ($r^2 = 0.67$, slope = 0.99 ± 0.17) between two quantities with no significant biases (Boersma et al., 2008). OMI retrievals are found to correlate well ($r = 0.64$) with MAX-DOAS ground-based measurements (Kramer et al., 2008). However, a number of recent studies have suggested that KNMI OMI retrieval is biased positively, most likely with a magnitude of 0–30 % irrespective of season (e.g., Boersma et al., 2009a; Zhou et al., 2009).

Level-2 tropospheric column NO$_2$ retrievals from Global Ozone Monitoring Experiment-2 (GOME-2) derived by KNMI are also used apart from OMI retrievals. Tropospheric column NO$_2$ retrievals from GOME-2 are retrieved using essentially the same approach as used for OMI although some differences exist due to the unique properties of two instruments (Boersma et al., 2007). The size of the GOME-2 viewing pixel ($40 \text{ km} \times 80 \text{ km}$) is also different than OMI ($13 \text{ km} \times 24 \text{ km}$). GOME-2 NO$_2$ retrievals have not been validated directly with in situ observations but are found to compare well with the validated SCIAMACHY retrievals (e.g., Boersma et al., 2009a).

3.3 Evaluation methodology

The model results are compared with ground-based observations by bi-linearly interpolating the model output to the geographical locations of these sites. Unlike in situ observations, satellite retrievals cannot be compared directly with the model output. This is because the retrievals of trace gases from radiances measured by the satellites depend on the relative sensitivity of the retrievals to different altitudes in the atmosphere and on the a priori information about the retrieved trace gas amounts. Thus, any modeled profile must account explicitly for a priori information and sensitivity of retrieved profiles to the true retrievals (as given by the averaging kernel) before its comparison with satellite retrieval.

A two step approach is employed here to compare model results directly with the satellite data. In the first step, best quality satellite retrievals are selected and the model output is co-located in both space and time with these best quality retrievals. In
the second step, the spatially and temporally matched model results are transformed using the averaging kernel and a priori profiles used in the satellite retrievals to obtain a model profile that a satellite instrument would measure for the modeled state of the atmosphere in the absence of other errors. These steps are discussed below.

3.3.1 Data filtering and model-satellite co-location

The best quality satellite retrievals are selected by using quality assurance flags and cloud cover information available with each satellite product. TES retrievals are screened for cloudy scenes and unphysical retrievals by selecting the retrievals corresponding to average cloud optical depth of less than 0.1, retrieval quality flag of 1 and O₃ C-cure quality flag of 1 (Osterman et al., 2009). This screening filtered out 55, 69, 81 and 67% of the total TES retrievals during winter (DJF), spring (MAM), summer (JJA) and autumn (SON), respectively. The influence of clouds on OMI retrievals is reduced by selecting pixels with cloud fraction less than 0.3 and unreliable retrievals are removed by selecting pixels with tropospheric column flag equal to 0 (Boersma et al., 2009b). The cloud screening criteria used here is same as is used for generating the level-2G cloud-screened tropospheric NO₂ product from OMI (Celarier, 2009). The screening procedure removed 51, 60, 68 and 53% of total OMI retrievals during winter, spring, summer and autumn, respectively. GOME-2 retrievals are also filtered by selecting pixels with cloud fractions less than 0.3 and tropospheric column flag equal to 0. The number of samples accepted for TES, OMI and GOME-2 is lowest during summer because of the prevalence of cloudy conditions over the simulation domain. Unlike TES and OMI, MOPITT retrievals are performed only for cloud-free pixels. MOPITT retrievals were screened for pixels with DFS value greater than or equal to 1. The DFS condition removed 21%, 11%, 14% and 17% of total MOPITT retrievals during winter, spring, summer and autumn, respectively. The best quality retrievals are then co-located in space and time with model output using the method described in (Kumar et al., 2011).
3.3.2 Averaging kernels and a priori profiles

This section describes the procedures used for transforming modeled ozone, CO and NO\textsubscript{2} profiles for direct comparison with TES, MOPITT and OMI retrievals. The model data co-located with the best quality satellite retrievals is first mapped onto the pressure grids of the different sensors. The model top is located at 10 hPa while the TES pressure grid extends up to 0.1 hPa, therefore modeled ozone profiles above 10 hPa are approximated by appending the TES a priori profile. The appended modeled profile is then interpolated to a fine level pressure grid (800 levels from 1260 to 0.046 hPa) and then a mapping matrix is used to interpolate the fine level modeled profile to the 67 pressure level TES grid following Worden et al. (2007). The TES averaging kernel \(A_{\text{TES}} \) and a priori constraint vector \(X_{\text{a priori}} \) are then applied to the WRF-Chem ozone profile \(X_{\text{int}} \) (which is now on TES pressure grid) to obtain the WRF-Chem ozone profile WRF-Chem (AK) through the following equation:

\[
\text{WRF-Chem}^{(\text{AK})} = X_{\text{a priori}} + A_{\text{TES}}[X_{\text{int}} - X_{\text{a priori}}]
\] (1)

The WRF-Chem (AK) accounts for TES sensitivity and vertical resolution. A similar procedure is used to transform the modeled CO profiles using MOPITT averaging kernels and a priori profiles. However, a simple linear interpolation is used to interpolate the modeled profile on to the ten pressure level MOPITT grid from 1000 to 100 hPa (Deeter et al., 2003b).

The procedure for transforming the WRF-Chem simulated tropospheric column NO\textsubscript{2} abundances for comparison to OMI and GOME-2 retrievals is different from that used for TES and MOPITT. This procedure requires the user to calculate the tropospheric averaging kernels \(A_{\text{trop}} \) through the following equation:

\[
A_{\text{trop}} = A \frac{\text{AMF}}{\text{AMF}_{\text{trop}}}
\] (2)

where \(A \) is the total column averaging kernel and AMF and AMF\textsubscript{trop} are the air mass factors for the total columns and tropospheric columns, respectively. The tropospheric
averaging kernels are then applied to the tropospheric vertical profiles of NO$_2$ simulated by WRF-Chem using the following equation:

$$Y_{\text{trop}} = A_{\text{trop}} X_{\text{trop}}$$ \hspace{1cm} (3)

where Y_{trop} is the transformed model profile and X_{trop} is the tropospheric WRF-Chem NO$_2$ profile interpolated to the OMI/GOME-2 pressure grid. The tropopause pressure used for estimating tropospheric WRF-Chem profiles is taken from the OMI/GOME-2 data.

3.4 Statistical metrics

Five statistical metrics namely index of agreement (d'), root mean square error (RMSE), mean normalized gross error (MNGE), mean bias (MB) and mean normalized bias (MNB) are used to assess the model performance. These metrics were developed by Yu et al. (2005) and have been successfully used in several studies for evaluating the performance of regional air quality models (e.g., Zhang et al., 2006; Han et al., 2009). The index of agreement determines the model skill in simulating the variations around the observed mean and is a dimensionless quantity that varies between 0 (no agreement between model and observations) and 1 (perfect agreement). The MB provides the information about the absolute bias of the model with negative values indicating underestimation and positive values indicating overestimation by the model. The MNB represents the model bias relative to observations and RMSE considers error compensation due to opposite sign differences and encapsulates the average error produced by the model. The MNGE represents mean absolute difference between model and observations relative to the observations. The mathematical definition of all these statistical metrics is provided in the auxiliary material.
4 Results of model evaluation

4.1 Ground-based and ozonesonde observations

This section presents the comparison of WRF-Chem simulated ozone, CO and NOx with ground-based and balloon-borne observations available over the Indian region. Since some of the ground-based observations are available for 1993–2000 while other data are representative of 2000–2010, published data are used here to demonstrate the model’s skill in simulating the seasonal variations of these species. The deviations in monthly average modeled surface ozone from annual average are compared against ground-based observations (Fig. 4) and it is seen that the seasonal variation in surface ozone over India is simulated reasonably well by the model.

In general, surface ozone is lowest during summer and higher during other seasons. Ozone levels at all the sites except Nainital peak around late autumn to early spring while those at Nainital are highest during April/May with a secondary peak during October/November. Surface ozone at Pune (in South West India) shows a clear maximum in late winter and early spring, while the two sites in Western India (Ahmedabad and Mt Abu) show maximum ozone in late autumn and early winter. This indicates regional differences in the ozone seasonality over the Indian region. The regional differences in ozone seasonality will be explored further using TES retrievals in the next section.

Lower ozone levels observed over the Indian region during summer are in sharp contrast with the seasonal patterns observed typically in North America and Europe (e.g., Logan, 1985; Solberg et al., 2008) but are similar to those observed over East Asia (e.g., Pochanart et al., 2003; Wang et al., 2006). The summer season over India is generally dominated by cloudy conditions and extensive rainfall due to monsoonal circulation which transports pristine marine air-masses from the Arabian Sea, Indian Ocean and Bay of Bengal to the Indian landmass and leads to low levels of ozone (e.g., Lal et al., 2000; Jain et al., 2005; Roy et al., 2008; Kumar et al., 2010). The cloudy conditions and rainfall indirectly affect the concentration of pollutants by perturbing the solar radiation, which in turn affects the emissions of ozone precursors (e.g. biogenic...
VOC emissions) and photochemical production of ozone. Enhanced wet scavenging of trace species during the monsoon season might further contribute to reduced ozone levels. The suppression of photochemical ozone production under rainy and cloudy conditions has been observed in both urban (e.g., Lal et al., 2000) and rural (Wang et al., 2008) areas. WRF-Chem ozone levels show significant reduction during summertime at all the sites except at Nainital and it is seen that these reduced values are in good agreement with the observed values at these sites. An earlier study employing an offline regional model with comparable spatial resolution showed an overestimation of ozone levels during summer over India (Roy et al., 2008). The online treatment of meteorology and chemistry in WRF-Chem could be a possible reason for the improved simulation of summertime ozone values.

Nainital is located in the Himalayan region, where topography is highly complex and the height of mountain-tops changes by about 2000 m over a distance of less than 50 km. Therefore, the model resolution of 45 km is unable to resolve the meteorological features induced by rapidly varying topography around Nainital. To assess the impact of the model resolution, we performed a nested domain run for 10 days during 10–20 July 2008. The selection of this period has been motivated by back-air trajectory analysis (not shown), which revealed consistent influence of marine air-masses at Nainital during this period. The nested domain covers the Northern Indian region with 121 × 115 grid points and has a spatial resolution of 15 km (see auxiliary material, Fig. S1). The model simulated surface ozone from the nested domain is found to agree very well with surface ozone observations at Nainital (see auxiliary material, Fig. S2) as mean bias reduced from 17 ppbv, in the base run, to 3 ppbv in the nested domain model run. This suggests that errors in surface ozone simulations over the Central Himalayan region during summer/monsoon can be reduced by employing the model at a higher spatial resolution. However, longer simulations are required for lending more confidence to this finding. A high resolution annual simulation could not be performed for this study due to limited computational resources.
The seasonal variations of MOZART simulated surface ozone at these sites are also shown in Fig. 4. Qualitatively, the ozone seasonality is reproduced well by MOZART at some sites but the performance of WRF-Chem is better than MOZART particularly in capturing the increase in ozone levels during the autumn season. The comparison of absolute values (not shown) also indicates that MOZART generally overestimates the summertime ozone values at all sites likely due to the coarse horizontal resolution of MOZART. At the global model resolution, the model has limited ability in simulating cloud cover and underestimation of cloud cover will enhance the photochemical ozone production. Transport and dilution errors will also impact the model ozone.

The seasonal variations in the deviations of near surface monthly average CO and \(\text{NO}_x\) from annual average observed at Ahmedabad, Mt. Abu and Gadanki are also compared to those simulated by WRF-Chem and MOZART (Fig. 5). The seasonal variation of CO is reproduced well by the model for all three sites with highest values during late autumn–winter and lowest during summer/monsoon. Discrepancies between the observed and modeled \(\text{NO}_x\) seasonalities are evident at all the sites. The reasons for larger discrepancies in the \(\text{NO}_x\) simulations will be discussed in more detail in Sect. 4.2. The seasonal variations in MOZART CO and \(\text{NO}_x\) values are similar to WRF-Chem except for \(\text{NO}_x\) variations at Mt-Abu. Interestingly, MOZART CO values at Ahmedabad (urban site) are found to be lower than WRF-Chem values while they are similar to WRF-Chem at Mt. Abu (high altitude site) and Gadanki (rural site), which likely is due to the coarser resolution of MOZART-4. Previous studies (e.g., Tie et al., 2010) showed that models at finer resolution capture more local features around urban emission sources, while coarser resolution models tend to dilute concentrations from localized emission sources.

In addition to the ground-based observations, the vertical distribution of the model simulated ozone at Delhi and Trivandrum is also compared with a ten year (2000–2009) climatology derived from ozonesonde observations. The comparison for winter, spring, summer and autumn is depicted in Fig. 6. The total number of ozonesonde profiles used to obtain the climatology for Delhi and Trivandrum are 104 and 103, respectively.
Both the ozonesonde and model data are averaged over 100 hPa pressure intervals. The vertical gradient as well as the seasonal variability of tropospheric ozone at both the sites is reproduced well by the model with average modeled values falling within one standard deviation of the climatological mean value below 200 hPa. However, the model underestimates the observed ozone values in the middle and upper troposphere in winter and slightly in spring over Delhi. MOZART ozone values also fall within one standard deviation (Fig. 6) of the climatological mean value and show vertical gradient and seasonal variability similar to WRF-Chem.

4.2 Space-borne observations

The comparison of model simulated ozone, CO and NO\textsubscript{x} against in situ observations presented in the previous section indicates that the model qualitatively reproduces the observed features of lower tropospheric ozone and CO seasonality, but shows discrepancies in simulating NO\textsubscript{x} seasonal variations. However, the model bias and errors were not quantified mainly due to differences in the time periods of observations and model simulations. Further, the comparison was limited to a few sites and thus information about the model performance over larger spatial scales was not obtained. In this section, satellite observations of ozone, CO and NO\textsubscript{2} are used to assess the model performance over the entire domain and to quantify the errors and biases in model simulations. The possible sources of uncertainties in the model simulations are also discussed.

4.2.1 Comparison with TES ozone retrievals

The vertical profiles of model simulated and TES retrieved ozone during winter (DJF), spring (MAM), summer (JJA) and autumn (SON) 2008 are shown in Fig. 7. Both the model and TES values are averaged over 100 hPa pressure intervals. Similar to the comparison with ozonesonde observations, the vertical gradients and the seasonal variability of TES retrieved ozone profiles are reproduced well by the model. The model
generally agrees well with TES retrievals below 300 hPa, but overestimates TES ozone above 300 hPa. The absolute difference between average modeled and TES retrieved values below 300 hPa is less than 12 ppbv during all the seasons, which is comparable to the positive bias of 3–12 ppbv reported in TES retrievals against ozonesonde observations (e.g., Nassar et al., 2008). The difference between WRF-Chem and TES values increases to 10–50 ppbv above 300 hPa. Larger differences between WRF-Chem and TES in the upper troposphere could be due to errors in ozone inflow from domain boundaries as comparison of TES retrievals with MOZART output within ±10° longitudinal and latitudinal bands around the domain boundaries revealed that MOZART ozone levels are higher by 10–70 ppbv than TES retrievals above 300 hPa.

The monthly statistical analysis of TES retrieved and model simulated lower tropospheric (surface to 500 hPa) ozone is shown in Table 2. The upper limit of 500 hPa, used in the comparison, is similar to that used in validation studies of TES ozone retrievals (Worden et al., 2007; Nassar et al., 2008) and ensures that TES retrievals have sufficient sensitivity in the comparison region. Worden et al. (2007) showed that TES averaging kernel rows for pressure values between the surface and 500 hPa peak around 600–700 hPa indicating that TES has good sensitivity in this region. The index of agreement between model and TES varies between 0.64 and 0.9 during different months, which indicate good model performance in simulating the observed variation around the TES retrieved mean value. The model systematically underestimates the TES retrievals leading MB values ranging from 0 to −11 ppbv during all the months. The MB is smallest from August to February (−1 to −3 ppbv). MNB, RMSE and MNGE also show similar temporal variations and the estimated range is 0 to −16 %, 10–17 ppbv and 14 to 20 %, respectively. Larger differences during spring and early summer could be indicative of additional ozone precursor sources (e.g. biomass burning) and processes during this period.

TES retrievals are also used to examine the regional variability in the lower tropospheric ozone over the Indian region and to investigate whether the model is capable of capturing the spatio-temporal heterogeneity. In this context, the seasonal variation of
model simulated lower tropospheric (surface to 500 hPa) ozone is compared with the co-located TES retrievals over four geographical regions of India: North India (28–37° N, 70–81° E), West India (21–28° N, 67–81° E), East India (21–28° N, 81–93° E) and South India (15–21° N, 72.5–87° E and 8–15° N, 74–80.5° E) (Fig. 1). The seasonal variation is also examined for the geographical region of Burma, including some part of East India (15–30° N, 93–100° E) that is characterized by lower anthropogenic emissions and very high fire activity especially during winter and spring (Fig. 3). The comparison over Burma is intended to provide better insight into the model’s response to emissions from biomass burning. Seasonal variations of model simulated and TES retrieved lower tropospheric ozone values over these five regions are shown in Fig. 8.

The seasonal variations in TES retrievals are captured well by the model except in spring, when modeled ozone levels are somewhat lower. Regional differences in seasonality are also evident from Fig. 8. Except for North India, ozone is lowest during summer-monsoon season, which as previously mentioned, is associated mainly with the prevalence of cloudy conditions and extensive rainfall due to monsoonal circulation. For North India we find highest ozone during spring-summer and lowest values during winter. The spring to summer decrease in ozone values is observed during June over South India and Burma, while in July over West and East India.

To understand the regional differences in ozone seasonality over these regions, model simulated 2 m height water vapor mixing ratios and surface-reaching daytime (07:30–17:30 IST; IST is 5.5 h ahead of GMT) solar radiation are analyzed. The water vapor mixing ratios are found to be highest during summer/monsoon over all the regions but their values are significantly smaller over North India (2–11 g kg\(^{-1}\)) than those over other regions (4–21 g kg\(^{-1}\)) (Supplement, Fig. S3a). Like ozone, the seasonal variations in solar radiation over North India are also different from the other regions with highest values in spring-summer (Supplement, Fig. S3b). This suggests that regional differences in ozone seasonality over India are associated with temporal differences in the start of the monsoon and the arrival of pristine marine air masses to the respective regions. Such latitudinal differences in transition from spring maximum
to summer minimum have also been reported over East Asia and associated with the spatially varying influence of Asian monsoon (e.g., He et al., 2008; Lin et al., 2009).

Another notable regional difference is observed during the transition from autumn to winter season. TES ozone over South India continues to increase from summer through autumn to winter while ozone over other regions increases from summer to autumn and decreases or becomes steady during winter. This is due to the availability of higher solar radiation over South India as compared to other regions during winter (Supplement, Fig. S3b). The differences between TES and WRF-Chem are largest during spring and particularly over North India. The poor agreement between the model and TES over North India is likely associated with improper representation of surface properties and errors in meteorological simulations due to complex topography over this region (Kumar et al., 2011). The errors in model simulated ozone during spring could also result, in part, due to underestimation of CO and NO\textsubscript{x} by the model (likely due to underestimation of CO and NO\textsubscript{x} emissions by biomass burning) as shown in subsequent sections.

4.2.2 Comparison with MOPITT CO retrievals

The spatial distributions of model simulated and MOPITT retrieved seasonal mean total column CO during winter, spring, summer and autumn of the year 2008 are shown in Fig. 9. Both model and MOPITT data are averaged over a 0.25° × 0.25° grid. The MOPITT retrieved total column CO values are mostly representative of the free tropospheric CO, which is the region where MOPITT retrievals have highest sensitivity. The spatial variability as well as the seasonal variation of the MOPITT retrieved total column CO is reproduced well by the model. In general, both the model and MOPITT are highest during winter, decrease during spring, attain minimum levels during summer and increase again during autumn.

The percentage difference between model and MOPITT relative to MOPITT retrieved total column CO abundances is also shown in Fig. 9. The model is generally within ±20% of MOPITT, but mostly underestimates MOPITT during spring and
overestimates MOPITT during other seasons. The monthly variation of different statistical metrics calculated using the co-located WRF-Chem and MOPITT retrievals is shown in Table 3. The index of agreement varies between 0.63 and 0.84 indicating that the model performs generally well in simulating the variations around the MOPITT mean. The model systematically underestimates MOPITT retrievals from February to July with MB ranging from -0.33×10^{17} to -2.21×10^{17} molecules cm$^{-2}$ and overestimates MOPITT during August–January with MB ranging from 0.05×10^{17} to 1.32×10^{17} molecules cm$^{-2}$. The mean bias is highest during spring (high fire activity season). MNB, RMSE and MNGE also show similar seasonal variability and are estimated to be about 7 to -9.3%, 2.38×10^{17} to 3.45×10^{17} molecules cm$^{-2}$ and 8 to 11\%, respectively.

The relationship between WRF-Chem and MOPITT retrieved total column CO is further portrayed in terms of scatter plot analysis in Fig. 10. Data over India and Burma are represented by red triangles and green squares, respectively while data over the other regions are shown as grey filled circles. The correlation coefficients (r) for these regions are estimated to be 0.43 to 0.91 during all the seasons. The agreement between WRF-Chem and MOPITT is better during winter and autumn as compared to spring and summer. Lowest r values during summer could in part be associated with a fewer number of samples due to wide-spread cloud cover associated with monsoonal circulation over this region and also due to larger errors in meteorological parameters during summer. WRF-Chem and MOPITT column CO over the entire domain are generally distributed between the $y = 0.5x$ and $y = 2x$ lines. However, MOPITT CO retrievals for both Burma and India are mostly overestimated by WRF-Chem during all the seasons except during spring when they are underestimated. Since biomass burning constitutes the major fraction of total CO emissions over Burma, therefore it is suggested that CO emissions from biomass burning could be slightly underestimated. The overestimation of MOPITT CO retrievals during other seasons (characterized by low fire activity) indicates slight overestimation of anthropogenic emissions over this region.
The seasonal variations in the model simulated and the MOPITT retrieved total column CO abundances over the defined five regions agree well as shown in Fig. 11. The seasonal variation in both the model simulated and MOPITT retrieved total column CO over Burma are much different from the Indian regions. Total column CO over Burma is highest during March/April while those over the Indian regions are highest during winter. The March/April maximum in CO over Burma is associated with intense high biomass burning activity during these months. Biomass burning activity over India is also highest during spring but biomass burning does not increase total column CO values significantly because CO emissions from biomass burning over the defined four Indian regions are estimated to be lower than the corresponding anthropogenic CO emissions by 2–32% while those over Burma are estimated to be higher than the anthropogenic CO emissions by 3–31%.

In addition to the total CO column, the model simulated vertical distributions of CO are also compared to MOPITT retrievals for different seasons (Fig. 12). The vertical gradient of MOPITT CO retrievals is captured well by the model during all the seasons with differences in the order of -15 ppb to 12 ppbv. These values are comparable to the bias ($<20\text{ ppbv}$) reported in MOPITT retrievals against in situ aircraft measurements (Emmons et al., 2004).

4.2.3 Comparison with OMI NO$_2$ retrievals

The spatial distributions of the model simulated and OMI retrieved seasonal mean tropospheric column NO$_2$ during winter, spring, summer and autumn 2008 are shown in Fig. 13. Both model and OMI data are averaged over a $0.25^\circ \times 0.25^\circ$ grid. Like OMI, the model shows highest tropospheric column NO$_2$ abundances over the Indo-Gangetic Plain region during all the seasons but overall underestimates OMI NO$_2$.

The percentage differences between WRF-Chem and OMI relative to OMI tropospheric column NO$_2$ (Fig. 13) show that the model tends to underestimate the OMI retrievals by 20–50% with differences as high as 90% during summer. For some regions,
e.g. along the northern boundary of the domain, some parts of the Indo-Gangetic Plain region, Arabian Sea and Bay of Bengal we find that the model overestimates OMI by 0–45% with highest differences in winter and spring. The monthly statistical analysis of co-located WRF-Chem and OMI tropospheric column NO$_2$ abundances are listed in Table 4. The index of agreement between model and OMI (0.47–0.57) are smaller than those calculated from the comparison with TES and MOPITT indicating worse model performance in simulating the NO$_2$ variability compared to CO and O$_3$ variability. The estimated MB ranges from -0.52×10^{15} to -1.22×10^{15} molecules cm$^{-2}$ and MNB varies between about -26.6% and 152.1% over the simulation domain. RMSE is estimated as 1.10×10^{15} to 2.13×10^{15} molecules cm$^{-2}$ and MNGE as 71 to 236%.

The discrepancies between WRF-Chem and OMI are further illustrated by means of scatter plots in Fig. 14. The scatter plot analysis confirms the systematic underestimation of OMI retrievals by WRF-Chem during all the seasons and over most of the domain. Retrieved and modeled tropospheric column NO$_2$ abundances over India are generally distributed between the $y = 5x$ lines, i.e., the agreement is within a factor of 5. Over Burma, better agreement is found during winter and autumn ($y = 3x$), while during spring and summer we find differences larger than a factor 5. The correlation coefficients over these regions are estimated to be 0.34 to 0.65 during all the seasons except over Burma during spring ($r = -0.01$) and summer (0.01). The poor agreement between model and OMI during summer over Burma could be related to very low levels ($< 1 \times 10^{15}$ mol cm$^{-2}$) of tropospheric column NO$_2$ over this region. These low levels are comparable to the retrieval error of $0.5–1.0 \times 10^{15}$ mol cm$^{-2}$ reported for OMI tropospheric column NO$_2$ (Boersma et al., 2007). Burma is significantly influenced by biomass burning activities during spring (Fig. 3) and larger model-OMI discrepancies in this region are likely due to underestimation of NO$_x$ emissions from fires. Like Burma, the model also underestimates OMI retrievals over other regions influenced by the fires during spring such as Indian regions due south of 25°N, Indus Plain in Western Pakistan (Figs. 3 and 13). The uncertainties in datasets of fuel load, emission factors, combustion efficiency and burned area are the likely contributors to errors in biomass
burning emission inventories and these errors must be reduced to improve the model performance in regions influenced by intense biomass burning activity.

The model also underestimates OMI retrievals over the model domain during seasons of low fire activity (summer and autumn) and this indicates that also the anthropogenic NO\textsubscript{x} emissions are underestimated over the South Asian region. The errors in anthropogenic emission estimates arise mainly due to uncertainties in basic energy consumption, emission factors and socio-economic datasets used for constructing emission inventory. In addition to the uncertainties in anthropogenic emission estimates, the use of year 2006 anthropogenic emissions in the present model simulations (year 2008) may also explain some of the discrepancies. Analysis of historical data (1980–2003) from the Regional Emission Inventory for Asia (REAS) shows that Indian NO\textsubscript{x} emissions have increased by about 177 % (~7.7 % per year) from 1980 to 2003 (Ohara et al., 2007). Tropospheric column NO\textsubscript{2} abundances have also shown positive trend over India from 1996 to 2006 (Ghude et al., 2008).

To examine the impact of the reported increase in anthropogenic emissions from 2006 to 2008, two 10-day sensitivity model runs are performed during July and December, respectively, with NO\textsubscript{x} emissions increased by 15 %. July and December correspond to the months of low and high anthropogenic NO\textsubscript{x} emissions, respectively (Fig. 2a). These sensitivity runs show that increasing the emissions by the reported growth rate increase the model simulated tropospheric column NO\textsubscript{2} amounts over inland by 5–15 % during July and by 5–25 % during December. Tropospheric column NO\textsubscript{2} amount over the oceanic regions increases by less than 10 %. The largest increase in tropospheric column NO\textsubscript{2} abundances is seen over the Indo-Gangetic Plain region. While adjusting the emissions for temporal trends, does increase the model values, it only accounts for a small part of the differences to OMI retrievals. These results suggest the need for substantial improvements in the anthropogenic NO\textsubscript{x} emission inventories in order to accurately simulate the NO\textsubscript{x} distribution over South Asia. Some other important sources that can possibly lead to discrepancies are NO\textsubscript{x} emissions from microbial activity and lightning, which are not considered in the emission
inventory used here. The soil NO\textsubscript{x} emissions over the Indian region are shown to be important in rural areas during summer when heavy precipitation induces strong NO\textsubscript{x} pulses. The average soil NO\textsubscript{x} emissions flux from these pulses is estimated to be 23–28 ng N m-2 s-1, while lightning is suggested to contribute very little to NO\textsubscript{x} emissions over the Indian region (Ghude et al., 2010).

To confirm the reality of these large differences in NO\textsubscript{x} simulations, the model simulated tropospheric NO\textsubscript{2} is also compared with GOME-2 retrievals. The spatial distributions of model simulated and GOME-2 retrieved tropospheric column NO\textsubscript{2} abundances during the four seasons of 2008 are shown in Fig. 15 along with percentage difference between WRF-Chem and GOME-2 relative to GOME-2 retrievals. GOME-2 retrievals and modeled values are averaged over 1°x1° grid considering larger size (40 km x 80 km) of GOME-2 viewing pixel. Like OMI and WRF-Chem, GOME-2 also shows highest tropospheric NO\textsubscript{2} values over the Indo-Gangetic plain during all the seasons. Similar to OMI retrievals, the model also underestimates the GOME-2 retrievals over most of the Indian region by 10–50 % during all the seasons and overestimates them over some parts of the IGP region. In contrast to OMI retrievals, the model overestimates the GOME-2 retrievals over the regions (e.g., Himalayan region, Arabian Sea and Bay of Bengal) of very low tropospheric column NO\textsubscript{2} abundances (< 1 × 1015 molecules cm-2). However, it should be noted that GOME-2 values over these regions are comparable to the error of 0.5–1.0 × 1015 molecules cm-2 reported for GOME retrievals.

The seasonal variations in tropospheric NO\textsubscript{2} simulated by WRF-Chem over the defined five regions are compared with co-located OMI and GOME-2 retrievals in Fig. 16. Both OMI and GOME-2 tropospheric NO\textsubscript{2} columns show a general increase from winter to spring over all regions, decrease during summer/monsoon season and increase again during autumn. Model simulated NO\textsubscript{2} values show a systematic increase during autumn but fails to show springtime higher levels. Highest OMI NO\textsubscript{2} values over India are observed in May while over Burma in March. The seasonal variations in OMI and GOME-2 tropospheric column NO\textsubscript{2} are found to agree well with the seasonal variability
of fire counts (not shown) in the respective regions. The largest discrepancies during spring again point to uncertainties in the biomass burning emission estimates apart from the uncertainties in anthropogenic emission estimates. Interestingly, WRF-Chem values are closer to GOME-2 retrievals than OMI but similar variations in both the WRF-Chem datasets (co-located with OMI and GOME-2) indicate that differences estimated between model and satellite retrievals and the inferences drawn about the NO$_x$ emissions from these differences may be real.

The evaluation results confirm that the model is capable of reproducing many of the observed patterns and overall captures the seasonal variation in surface ozone and CO across the Indian region. The evaluation against TES and MOPITT satellite retrievals also lends confidence to the model’s ability in simulating general seasonal patterns of lower tropospheric ozone and total column CO. Regional differences in the seasonal variations of ozone, CO and NO$_2$ are also reproduced by the model. While there are weaknesses in the model performance, e.g. in representing the magnitude and seasonality of NO$_2$ columns, the evaluation results give confidence that the model provides meaningful information to examine the spatio-temporal distribution of surface ozone over India.

4.3 Analysis of modeled surface ozone

The spatial distributions of model simulated monthly mean surface ozone during January, April, August and October (representing winter, spring, summer and autumn) over South Asia along with 10 m wind vectors are depicted in Fig. 17. During January, ozone levels are highest (> 55 ppbv) over central and eastern parts of India, the Arabian Sea along the coast and the Northern Bay of Bengal. Interestingly, ozone values along the coasts during January are higher than those over land. This indicates en-route additional photochemical ozone production in offshore continental polluted air due to strong tropical solar radiation and effects of marine boundary layer. The marine boundary layer suppresses the loss of pollutants associated with ventilation and dry deposition due to its shallower and less turbulent nature. In addition, subsidence of
ozone rich free tropospheric air during night-time could also increase ozone levels into the marine boundary layer. Higher ozone levels simulated over these oceanic regions are consistent with the observations made during INDOEX (e.g., Lal and Lawrence, 2001; Stehr et al., 2002) and other ship cruises (e.g., Naja et al., 2004; Srivastava et al., 2011). A small region of ozone values less than 16 ppbv is also discerned over Northern India during January, which is likely due to lower solar radiation and titration of ozone by higher NO\textsubscript{x} levels as indicated by analysis of modeled solar radiation and NO\textsubscript{x} values and also higher anthropogenic NO\textsubscript{x} emissions in this region (Fig. 1). Ozone values over Tibetan Plateau are also higher (45–65 ppbv) than those over the adjacent Northern Indian IGP areas.

Moving to spring, modeled ozone remains high in Eastern India and increases in Northern parts of India, but the high ozone concentrations in Southern India and along the coast disappear. This is associated with changes in wind patterns from offshore to onshore, which transports cleaner marine air-masses to the inland regions. It should be mentioned, that ozone values during spring may be underestimated due to underestimation of CO and NO\textsubscript{x} concentrations by the model (Sect. 4.2). Lowest ozone values are simulated for August with average surface ozone not exceeding 40 ppbv over most of India. The levels of ozone precursors are also found to be low during August (Figs. 11 and 16). The strong inflow of marine air-masses into the Indian region leads to the development of cloudy and rainy conditions which, in turn, reduces the solar radiation and suppresses photochemical ozone production during August. Lower levels of ozone precursors may be associated with washout (HNO\textsubscript{3}) and vertical transport (CO) to higher altitudes induced by deep convection (e.g., Fu et al., 2006; Park et al., 2007). The marine air-masses do not influence the regions north of 30° N and thus higher ozone values (> 55 ppbv) are still seen in those regions and over Tibetan Plateau.

During October, modeled ozone again increases over nearly the entire Indian region and over the entire Indo-Gangetic Plain (IGP) and Central India reach the seasonal peak. Highest ozone mixing ratios (70–80 ppbv) are seen over the eastern part of
the IGP. This increase is associated with an increase in solar radiation and ozone precursors concentrations associated with a change in wind patterns from onshore to offshore. Like January, the offshore transport of pollutants leads to higher ozone mixing ratios along the coastal regions.

To gain further insights into the spatial and temporal variability of surface ozone, the ozone net production (ONP) due to photochemistry is estimated for daytime (11:30–15:30 LT) over the model domain. ONP is calculated as the difference between gross ozone formation ($P(O_3)$) and loss ($L(O_3)$) rates given by the following equations:

\[P(O_3) = k_1[\text{HO}_2][\text{NO}] + \sum_i k_{2i}[\text{RO}_2][\text{NO}]\phi_i \]

\[L(O_3) = k_3[\text{O}(^1\text{D})][\text{H}_2\text{O}] + k_4[\text{OH}][O_3] + k_5[\text{HO}_2](O_3) \]

where k_1–k_5 represent the rate coefficients of the $\text{HO}_2 + \text{NO}$, $\text{RO}_2 + \text{NO}$, $\text{O}(^1\text{D}) + \text{H}_2\text{O}$, $\text{OH} + \text{O}_3$ and $\text{HO}_2 + \text{O}_3$ reactions and ϕ is the yield of NO$_2$ from RO$_2$ + NO reaction. The spatial distributions of average daytime ONP during January, April, August and October over the model domain are depicted in Fig. 18. In general, ONP values are positive over land and negative over the oceanic and parts of the Himalayan regions during all seasons. Positive ONP values arise due to dominance of ozone production from the combination of higher levels of ozone precursors and strong daytime solar radiation. Positive ONP values are also discerned along the coast in January and October indicating net daytime ozone production in the continental outflow even over oceanic regions. ONP values remain between 0 and -1 ppbv h^{-1} during daytime over the cleaner environments.

During January, ONP values are highest over central-eastern and coastal regions of India with magnitudes of 2–5 ppbv h$^{-1}$ and are within 0–2 ppbv h$^{-1}$ over other parts of India and Burma. Positive ONP values with magnitudes less than 2 ppbv h$^{-1}$ are also observed over the regions of the Arabian Sea and the Bay of Bengal experiencing outflow of continental air. Positive ONP values over these oceanic regions disappear during April due to the reversal in wind patterns. ONP values show an increase of
about 1 ppbv h\(^{-1}\) over northern parts of IGP and slight decrease over Central India during April. Lowest ONP values are estimated in August with magnitudes less than about 2 ppbv h\(^{-1}\) over most of India. The low ONP values again indicate suppression of photochemical activity during August (monsoon season). In October, ONP values increase by a factor of 2–3 over the entire Indian region relative to August due to increased solar radiation and reversed wind patterns. Daytime ONP values during October reach up to 4–5 ppbv h\(^{-1}\) over the IGP region. Net daytime ozone production in the outflow regions over the Arabian Sea are also seen during October. These results clearly indicate that the spatial and seasonal patterns of surface ozone over South Asia are determined by photochemical net ozone production and closely linked to the varying influence of marine air-masses associated with monsoonal circulation.

The model results are further used to examine the relative importance of NO\(_x\) and NMHCs in ozone production over South Asia. Sillman (1995) showed that model simulated afternoon ratios of CH\(_2\)O to NO\(_y\), H\(_2\)O\(_2\) to HNO\(_3\) and O\(_3\) to (NO\(_y\)-NO\(_x\)) are very useful indicators of the ozone production regime. The critical values of the ratios CH\(_2\)O/NO\(_y\), H\(_2\)O\(_2\)/HNO\(_3\) and O\(_3\)/(NO\(_y\)-NO\(_x\)) separating the two ozone production regimes, are suggested to be 0.28, 0.4 and 7, respectively with lower values indicating a VOC-limited regime while higher values correspond to a NO\(_x\)-sensitive regime (Sillman, 1995). CH\(_2\)O/NO\(_y\) has been successfully used to distinguish ozone production regimes over the urban areas of Shanghai (Geng et al., 2007) and Mexico (Tie et al., 2007).

The spatial distributions of the simulated monthly average afternoon (11:30–14:30 LT) CH\(_2\)O to NO\(_y\) ratio during January, April, August and October 2008 is shown in Fig. 19. The ratio is less than 0.28 over some parts of the IGP during winter indicating hydrocarbon limited ozone production regime over this region. The rest of the Indian region appears to be NO\(_x\)-limited throughout the year. Interestingly, the ratio is seen to be lower over the shipping routes in the Arabian Sea and Indian Ocean reflecting the critical role of shipping NO\(_x\) emissions in ozone production over the cleaner marine regions. The H\(_2\)O\(_2\)/HNO\(_3\) ratio (not shown) is estimated to be less than 0.4 only in
a few grid cells over the IGP region during October and the $O_3/(NO_y-NO_x)$ (not shown) is estimated to be greater than 7 over the region for all seasons. These results confirm the dominance of a NO$_x$-limited ozone production regime over India. NO$_x$-limited ozone production over South Asia might be associated with the fact that emissions in this region are influenced largely by incomplete combustion process, particularly by biofuel burning, and thus have higher NMHC to NO$_x$ emission ratio as compared to other regions of the Northern Hemisphere (Lawrence and Lelieveld, 2010). Earlier, it was also shown using observed ozone-CO and ozone-NO$_x$ correlation over some of the sites that the emissions of ozone precursors and thus ozone levels are largely determined by incomplete combustion process (Naja and Lal, 2002; Naja et al., 2003). The sensitivity runs performed by increasing NO$_x$ emissions over the model domain by 15 and 30% did not alter the ozone production regime much except for some regions in Northern India where ozone production regime changed from NO$_x$-limited to NMHC-limited. The decrease in CH$_2$O to NO$_y$ ratios is, however, observed over the whole domain with the increase in NO$_x$ emissions.

5 Discussions and summary

The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used, for the first time, to simulate the spatial and temporal variability of tropospheric ozone and related species over the South Asian region for the year 2008. Anthropogenic emissions of different species are provided to the model by inserting a regional emission inventory (INTEX-B) into a global emission inventory (RETRO). Daily varying emissions from biomass burning are calculated using MODIS derived fire locations while biogenic emissions are calculated online within the model using MEGAN. Model simulated ozone, carbon monoxide and nitrogen oxides are compared with co-located ground-based, balloon-borne and space-borne observations. Ground-based observations include surface ozone from seven sites and CO and NO$_x$ observations from three sites, while balloon-borne observations are available from two sites in the
Indian region. Space-borne observations include retrievals of ozone from TES, nitrogen dioxide from OMI and GOME, and carbon monoxide from MOPITT. The errors and biases in model simulation are quantified through a set of statistical metrics.

The evaluation results indicate that the model has a good ability of simulating the seasonal variations of surface ozone and CO over the Indian region but shows some differences for NO$_x$ seasonality particularly during spring. The vertical distribution of ozone is also simulated well by the model. The index of agreement, between model simulations and satellite retrievals from TES, OMI and MOPITT, is estimated to be 0.47–0.9 indicating that model is capable of reproducing the overall spatial and temporal variability of ozone, CO and NO$_2$. However, bias analysis indicates that TES retrieved lower tropospheric ozone values and OMI retrieved tropospheric column NO$_2$ values are underpredicted by the model during all seasons. MOPITT total column CO retrievals are underpredicted during February–July while they are overestimated during other months. The largest difference between model and observations are seen during spring, which is also the season of intense biomass burning activity and is related to uncertainties in the emissions and the treatment of biomass burning sources. Large discrepancies between model and OMI tropospheric column NO$_2$ abundances for seasons other than spring also point towards large uncertainties in anthropogenic NO$_x$ emission estimates.

Chemical and meteorological model fields are used to understand the spatio-temporal variability of surface ozone and the analysis clearly indicates regional differences in the seasonality of surface ozone over South Asia. The inland regions show net ozone production (0 to 5 ppbv h$^{-1}$) while the cleaner marine and mountainous regions show net ozone destruction (0 to −2 ppbv h$^{-1}$) during daytime. Net ozone production (0–2 ppbv h$^{-1}$) is also seen over the marine regions experiencing outflow from the South Asian region. Highest net ozone production rates are seen over the Indo-Gangetic Plain (IGP) region and some cities located along the coastal regions of India. Ozone production over South Asia is estimated to be limited mostly by NO$_x$ except for some regions over the Indo-Gangetic Plain region during winter.
This study lends confidence to the use of WRF-Chem for analyzing the spatial and temporal variability in trace gases over India. Differences in modeled and satellite retrieved values of ozone and its precursors are due to a number of factors (e.g. model transport and chemistry, coarse model resolution, errors in satellite retrievals, etc.), but uncertainties in CO and NO$_x$ emission estimates over this region are the largest uncertainty. It is essential to improve the emission estimates over this region as these uncertainties will lead to errors in simulating the ozone production over South Asia, which in turn will pose a major limitation to regional air quality management. It is also highly desirable to have extensive ground-based observations in South Asia, particularly in Northern India where air quality is poor and the conditions are more complex due to highly complex terrain of the Indo-Gangetic Plain and Himalayan region. Much more validation of space-borne observations using ground-based instruments also needs to be conducted for the India region. Detailed and focused modeling work together with an increased number of observations will enable a better understanding of tropospheric chemistry and current and future air quality over India, which is presently lacking.

Supplementary material related to this article is available online at: http://www.geosci-model-dev-discuss.net/5/1/2012/gmdd-5-1-2012-supplement.pdf.

Acknowledgements. M. Naja and R. Kumar are thankful to Shyam Lal, Ram Sagar and C. B. S. Dutt for their keen interest in this work and acknowledge support from ISRO-ATCTM project. We are also thankful to Louisa Emmons and Helen Worden for their help and fruitful discussions. The datasets for boundary conditions, biogenic emissions and the programs used to process these datasets are downloaded from the website http://www2.acd.ucar.edu/wrf-chem/. We also thank the teams of MOPITT, OMI and TES for providing the retrievals of these gases. The National Center for Atmospheric Research is supported by the National Science Foundation.
References

Kumar, R., Naja, M., Pfister, G. G., Barth, M. C., and Brasseur, G. P.: Simulations over

Osterman, G. (Ed.), Bowman, K., Eldering, A., Fisher, B., Herman, R., Jacob, D., Jourdain, L.,

Satheesh, S. K., Moorthy, K. K., Babu, S. S., Vinoj, V., Nair, V. S., Beegum, S. N., Dutt, C. B. S.,

Tie, X., Madronich, S., Li, G., Ying, Z., Zhang, R., Garcia, A., Lee-Taylor, J., and Liu, Y.: Characterization of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-

Zhang, M., Uno, I. Zhang, R., Han, Z., Wang, Z., and Pu, Y.: Evaluation of the Models-3
Community Multi-Scale Air Quality (CMAQ) modeling system with observations obtained during the TRACE-P experiment: comparison of ozone and its related species, Atmos. Environ., 40, 4874–4882, 2006.

Table 1. Annual total anthropogenic CO, NO\textsubscript{x}, SO\textsubscript{2}, NMVOC, BC, OC, PM\textsubscript{2.5} and PM\textsubscript{10} emissions included in the model. The relative contributions from different source categories to the total emissions over the simulation domain are also listed.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total annual anthropogenic emissions (Gg)</th>
<th>Domestic Percentage contribution from the sector</th>
<th>Total annual biomass burning emissions (Gg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total annual emissions (Gg)</td>
<td>Domestic</td>
<td>Industry</td>
</tr>
<tr>
<td>CO</td>
<td>76 326</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>6 196</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>SO\textsubscript{2}</td>
<td>9 343</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>NMVOC</td>
<td>11 962</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>BC</td>
<td>562</td>
<td>59</td>
<td>24</td>
</tr>
<tr>
<td>OC</td>
<td>15 554</td>
<td>85</td>
<td>10</td>
</tr>
<tr>
<td>PM\textsubscript{2.5}</td>
<td>46 01</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>57 94</td>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>
Table 2. Seasonal variation in Index of Agreement (d), Mean Bias (MB), Mean Normalized Bias (MNB), Root Mean Square Error (RMSE) and Mean Normalized Gross Error (MNGE) computed using the co-located WRF-Chem and TES ozone values (year 2008) in the lower troposphere (Surface – 500 hPa). The total number of data points (N) used in the calculation is also listed.

<table>
<thead>
<tr>
<th>Month</th>
<th>d</th>
<th>MBa</th>
<th>MNBb</th>
<th>RMSEa</th>
<th>MNGEb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.64</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>14</td>
<td>4103</td>
</tr>
<tr>
<td>Feb</td>
<td>0.65</td>
<td>–1</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>4020</td>
</tr>
<tr>
<td>Mar</td>
<td>0.76</td>
<td>–5</td>
<td>–6</td>
<td>12</td>
<td>16</td>
<td>2919</td>
</tr>
<tr>
<td>Apr</td>
<td>0.75</td>
<td>–10</td>
<td>–15</td>
<td>15</td>
<td>18</td>
<td>3007</td>
</tr>
<tr>
<td>May</td>
<td>0.68</td>
<td>–11</td>
<td>–16</td>
<td>16</td>
<td>20</td>
<td>2351</td>
</tr>
<tr>
<td>Jun</td>
<td>0.76</td>
<td>–10</td>
<td>–14</td>
<td>17</td>
<td>18</td>
<td>1111</td>
</tr>
<tr>
<td>Jul</td>
<td>0.81</td>
<td>–7</td>
<td>–8</td>
<td>14</td>
<td>17</td>
<td>1412</td>
</tr>
<tr>
<td>Aug</td>
<td>0.90</td>
<td>–3</td>
<td>–1</td>
<td>11</td>
<td>17</td>
<td>2082</td>
</tr>
<tr>
<td>Sep</td>
<td>0.88</td>
<td>–3</td>
<td>–2</td>
<td>10</td>
<td>16</td>
<td>3068</td>
</tr>
<tr>
<td>Oct</td>
<td>0.83</td>
<td>–2</td>
<td>–1</td>
<td>10</td>
<td>14</td>
<td>3575</td>
</tr>
<tr>
<td>Nov</td>
<td>0.75</td>
<td>–2</td>
<td>0</td>
<td>11</td>
<td>15</td>
<td>2668</td>
</tr>
<tr>
<td>Dec</td>
<td>0.67</td>
<td>–1</td>
<td>2</td>
<td>10</td>
<td>15</td>
<td>3134</td>
</tr>
</tbody>
</table>

a Unit: ppbv
b Unit: %
Table 3. Seasonal variation in Index of Agreement (d), Mean Bias (MB), Mean Normalized Bias (MNB), Root Mean Square Error (RMSE) and Mean Normalized Gross Error (MNGE) computed using the co-located WRF-Chem and MOPITT retrieved total CO column values. The total number of data points (N) used in the calculation is also listed.

<table>
<thead>
<tr>
<th>Month</th>
<th>d</th>
<th>MBa</th>
<th>MNBb</th>
<th>RMSEa</th>
<th>MNGEb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.74</td>
<td>1.18</td>
<td>−5.0</td>
<td>2.58</td>
<td>8.1</td>
<td>146 900</td>
</tr>
<tr>
<td>Feb</td>
<td>0.83</td>
<td>−1.13</td>
<td>−4.2</td>
<td>2.71</td>
<td>7.9</td>
<td>116 336</td>
</tr>
<tr>
<td>Mar</td>
<td>0.84</td>
<td>−1.77</td>
<td>−6.4</td>
<td>3.45</td>
<td>10.2</td>
<td>179 429</td>
</tr>
<tr>
<td>Apr</td>
<td>0.75</td>
<td>−2.21</td>
<td>−8.8</td>
<td>3.66</td>
<td>11.4</td>
<td>189 166</td>
</tr>
<tr>
<td>May</td>
<td>0.74</td>
<td>−2.02</td>
<td>−9.3</td>
<td>2.86</td>
<td>10.5</td>
<td>140 377</td>
</tr>
<tr>
<td>Jun</td>
<td>0.67</td>
<td>−0.78</td>
<td>−2.8</td>
<td>2.65</td>
<td>9.6</td>
<td>51 872</td>
</tr>
<tr>
<td>Jul</td>
<td>0.63</td>
<td>−0.33</td>
<td>−0.1</td>
<td>2.41</td>
<td>9.1</td>
<td>47 443</td>
</tr>
<tr>
<td>Aug</td>
<td>0.71</td>
<td>0.05</td>
<td>1.8</td>
<td>2.17</td>
<td>8.9</td>
<td>64 440</td>
</tr>
<tr>
<td>Sep</td>
<td>0.69</td>
<td>0.68</td>
<td>5.2</td>
<td>2.22</td>
<td>10.2</td>
<td>117 444</td>
</tr>
<tr>
<td>Oct</td>
<td>0.75</td>
<td>1.10</td>
<td>6.9</td>
<td>2.41</td>
<td>10.5</td>
<td>166 349</td>
</tr>
<tr>
<td>Nov</td>
<td>0.82</td>
<td>1.08</td>
<td>5.7</td>
<td>2.38</td>
<td>9.0</td>
<td>190 242</td>
</tr>
<tr>
<td>Dec</td>
<td>0.78</td>
<td>1.32</td>
<td>6.0</td>
<td>2.71</td>
<td>9.0</td>
<td>152 983</td>
</tr>
</tbody>
</table>

a Unit: $\times 10^{17}$ molecules cm$^{-2}$

b Unit: %
Table 4. Seasonal variation in Index of Agreement (d), Mean Bias (MB), Mean Normalized Bias (MNB), Root Mean Square Error (RMSE) and Mean Normalized Gross Error (MNGE) computed using the co-located WRF-Chem and OMI tropospheric column NO$_2$ values. The total number of data points (N) used in the calculation is also listed.

<table>
<thead>
<tr>
<th>Month</th>
<th>d</th>
<th>MBa</th>
<th>MNBb</th>
<th>RMSEa</th>
<th>MNGEb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.55</td>
<td>−0.52</td>
<td>39.7</td>
<td>2.05</td>
<td>104.5</td>
<td>469 899</td>
</tr>
<tr>
<td>Feb</td>
<td>0.57</td>
<td>−0.48</td>
<td>54.1</td>
<td>1.67</td>
<td>117.9</td>
<td>429 402</td>
</tr>
<tr>
<td>Mar</td>
<td>0.51</td>
<td>−0.89</td>
<td>29.8</td>
<td>1.93</td>
<td>110.2</td>
<td>469 997</td>
</tr>
<tr>
<td>Apr</td>
<td>0.52</td>
<td>−0.92</td>
<td>6.4</td>
<td>1.75</td>
<td>90.6</td>
<td>460 174</td>
</tr>
<tr>
<td>May</td>
<td>0.49</td>
<td>−1.22</td>
<td>−14.1</td>
<td>2.13</td>
<td>79.8</td>
<td>425 992</td>
</tr>
<tr>
<td>Jun</td>
<td>0.49</td>
<td>−0.91</td>
<td>−21.4</td>
<td>1.46</td>
<td>75.2</td>
<td>282 182</td>
</tr>
<tr>
<td>Jul</td>
<td>0.47</td>
<td>−0.81</td>
<td>−26.6</td>
<td>1.23</td>
<td>71.3</td>
<td>283 854</td>
</tr>
<tr>
<td>Aug</td>
<td>0.49</td>
<td>−0.69</td>
<td>−13.9</td>
<td>1.10</td>
<td>75.5</td>
<td>288 881</td>
</tr>
<tr>
<td>Sep</td>
<td>0.51</td>
<td>−0.69</td>
<td>152.1</td>
<td>1.16</td>
<td>236.0</td>
<td>307 633</td>
</tr>
<tr>
<td>Oct</td>
<td>0.54</td>
<td>−0.64</td>
<td>42.1</td>
<td>1.37</td>
<td>113.8</td>
<td>431 737</td>
</tr>
<tr>
<td>Nov</td>
<td>0.55</td>
<td>−0.75</td>
<td>71.0</td>
<td>1.82</td>
<td>142.9</td>
<td>407 270</td>
</tr>
<tr>
<td>Dec</td>
<td>0.54</td>
<td>−0.68</td>
<td>58.6</td>
<td>2.10</td>
<td>126.6</td>
<td>393 442</td>
</tr>
</tbody>
</table>

a Unit: $\times 10^{15}$ molecules cm$^{-2}$

b Unit: %
Fig. 1. Spatial distributions of total anthropogenic (a) CO, (b) NO$_x$, and (c) non-methane volatile organic compounds (NMVOC) emissions and (d) population density over the simulation domain. The emissions are representative of January. Regional classification of (1) North India, (2) West India, (3) East India, (4) South India and (5) Burma is also shown along with the locations of surface ozone observation sites (white filled circles) over the Indian region.
Fig. 2. Seasonal variations in domain-wide (a) anthropogenic and (b) open biomass burning emissions of CO, NOₓ and non-methane volatile organic compounds (NMVOCs) used by the model. The black solid line represents annual average emission.
Fig. 3. Spatial distribution of the MODIS derived fire locations over the model domain during winter (DJF), spring (MAM), Summer (JJA) and Autumn (SON) of the year 2008. These fire locations are used in FINN for estimating the biomass burning emissions. Numbers in the parenthesis denote total fire counts in each season.
Fig. 4. Comparison of the observed and WRF-Chem simulated seasonal variations in surface \(\Delta \) ozone at seven sites located within the Indian region. Note that, except for Nainital, the observations are not representative of the year 2008. These sites are representative of urban (Ahmedabad), semi-urban (Pune), rural (Anantapur and Gadanki), coastal (Thumba) and high-altitude cleaner (Mt-Abu and Nainital) chemical environments, respectively. The standard deviations in monthly average ozone levels at these sites are generally 5–20 ppbv depending upon the season.
Fig. 5. Comparison of the observed and WRF-Chem simulated seasonal variations in surface ΔNO_x (left panel) and ΔCO (right panel) at three sites located within the Indian region. Note the scales vary among the sites and that the observations are not representative of the year 2008. The standard deviations in monthly average CO levels at these sites are generally 50–200 ppbv and those in NO$_x$ levels are generally 1–6 ppbv.
Fig. 6. Comparison of the vertical profiles of ozone mixing ratios observed by ozonesondes and simulated by WRF-Chem at Delhi and Trivandrum. The observed profiles shown here are averages of all the ozonesonde measurements available during 2000–2009. Seasonally averaged MOZART ozone profiles for both sites are also shown to demonstrate the influence of boundary conditions.
Fig. 7. Comparison of the vertical profiles of ozone mixing ratios retrieved by TES and simulated by WRF-Chem during winter, spring, summer and autumn 2008. WRF-Chem profiles are transformed using TES averaging kernel and a priori profile before this comparison. The vertical profiles are obtained using co-located WRF-Chem and TES data. Numbers on the right in each panel give the difference in ozone mixing ratios between WRF-Chem and TES (WRF-Chem–TES).
Fig. 8. Seasonal variations in WRF-Chem simulated and TES retrieved ozone in the lower troposphere (surface-500 hPa) over the five regions defined in Fig. 1.
Fig. 9. Spatial distributions of WRF-Chem simulated and MOPITT retrieved total column CO during winter (DJF), spring (MAM), summer (JJA) and autumn (SON) 2008. Note that WRF-Chem profiles are smoothed with MOPITT averaging kernel before comparison.
Fig. 10. Scatter plot between seasonally averaged WRF-Chem simulated and MOPITT retrieved total column CO during winter, spring, summer and autumn of the year 2008. Others correspond to the areas not covered by regions 1–5 shown in Fig. 1. The correlation coefficients for each region are also shown.
Fig. 11. Seasonal variations in WRF-Chem simulated and MOPITT retrieved CO total column over the five regions defined in Fig. 1.
Fig. 12. Comparison of the vertical profiles of CO mixing ratios retrieved by MOPITT and simulated by WRF-Chem during the winter, spring, summer and autumn seasons 2008. WRF-Chem profiles are transformed using MOPITT averaging kernel and a priori profile before this comparison. The vertical profiles are obtained using co-located WRF-Chem and MOPITT data. The difference between WRF-Chem simulated and MOPITT retrieved average CO value (ppbv) is also shown for each level.
Fig. 13. Spatial distributions of WRF-Chem simulated and OMI retrieved tropospheric column NO$_2$ during winter (DJF), spring (MAM), summer (JJA) and autumn (SON) 2008. Note that WRF-Chem profiles are smoothed with OMI averaging kernel before comparison.
Fig. 14. Scatter plot between seasonally averaged WRF-Chem simulated and OMI retrieved tropospheric column NO₂ during winter, spring, summer and autumn 2008. Others correspond to the areas not covered by regions 1–5 shown in Fig. 1. The correlation coefficients for each region are also shown.
Fig. 15. Spatial distributions of WRF-Chem simulated and GOME-2 retrieved tropospheric column NO$_2$ during winter (DJF), spring (MAM), summer (JJA) and autumn (SON) 2008. Note that WRF-Chem profiles are smoothed with GOME-2 averaging kernel before comparison.
Fig. 16. Seasonal variations in WRF-Chem simulated, OMI and GOME-2 retrieved tropospheric column \(\text{NO}_2 \) values over the regions defined in Fig. 1.
Fig. 17. Spatial distribution of WRF-Chem simulated surface ozone during January, April, August and October of the year 2008. Monthly mean 10 m wind vectors are also shown.
Fig. 18. Spatial distributions of WRF-Chem simulated daytime (08:30–17:30 LT) ozone net production during January, April, August and October 2008.
Fig. 19. Spatial distributions of WRF-Chem simulated afternoon (11:30–14:30 LT) CH$_2$O to NO$_y$ ratio during January, April, August and October of the year 2008.