Interactive comment on “Optimization of a prognostic biosphere model in atmospheric CO$_2$ variability and terrestrial biomass” by M. Saito et al.

Anonymous Referee #1

Received and published: 26 September 2013

General comments and overall evaluation:

Data assimilation for terrestrial ecosystem model is now one of the best solutions for improving the simulation accuracy. Saito et al. did very interesting work on simultaneous assimilation of three different data streams: atmospheric CO2, AGB, and NPP, then finally gained the moderately good accordance between the simulations and the observations. The efforts proved a new feature for optimizing the TEM’s parameters, and also brought the direction for further improvement of VISIT. However, this paper is suffering from insufficient explanation on the optimization scheme and from insufficient analysis on the optimization of which parameter reduced the uncertainty on model simulation, and on how the three data steams improved your model simulation.
First of all, the authors did not show the way to change the parameter numbers in iterative optimization process. Do you deterministically estimate the next step parameter numbers by tangent linear algorithm like TAF for all the parameters at once over multidimensional parameter field? or Do you move the parameter number with prescribed interval for each parameter and move its number toward the direction where you get smaller misfit function (calculate S(m)/p x 15 PFTs x 13 parameters for each iteration)?

How you calculate the Chi2 for three different data streams is poorly explained. I understand as you calculate Chi2 differently for each three different data streams with parameter, then sum them up. Also what is the difference between Chi2 and Eqn 4? Or do you calculate the Chi2 for CO2+Chi2 for AGB+Chi2 for NPP+Chi2 for params at once? Which is correct? You should also make the list of Chi2 value for each term in both prior and posterior status. Moreover, you should mention why you can use the standard deviations in the calculation of the 7.5o grid mean values for AGB and NPP as the uncertainties for AGB and NPP (denoted as CD). How to set them is quite important information determining the relative influence by each term on reducing the misfit function.

Relative influence by each parameter and by each data stream on reducing the mismatch is unclear. You compared the fractional shift in parameter value (1 – P_post/P_prior) in Fig 2. It does not allow us to understand on which parameter has reduced the mismatch between modeling and observation the most itself. I first recommend you to show the relative change in parameter numbers based on parameter uncertainty ((P_prior-P_post)/P_prior_uncertainty) instead of current fractional shift, 1 – P_post/P_prior. Also if possible, you’d better show us the relative reduction in parameter uncertainty, 1–sigma_post/sigma_prior, where sigma is a standard deviation of the respective parameter uncertainty before or after assimilation, which comes from 2nd derivative of misfit function, and which may not be able to be calculated by your optimization method, I guess. I am also very interested in the case if you assimilate either of atmospheric CO2 or of biometric data: AGB and NPP. Will single data assim-
ilation improve other data streams? Which data stream is more influential separately on annual NEP, CO2 seasonality, and physiological parameter shift?

Reliability of three data streams should be discussed. Atmos CO2 concentration seems to have relatively minor uncertainty due to normalized sampling methods. But, other AGB and NPP may have large uncertainty on their accuracies. Both are from satellite data, which potentially suffer from changeable sampling accuracy depending on satellite angle (too low angle in high latitudes) and surface optical condition (Cloudy condition in Tropical regions). GPPDI AGB data also must have suffered from ununiformed field sampling methods. More than that, I like to know if it was good idea to incorporate three different items for improving the simulation. I guess that only assimilation of atmos CO2 conc is enough to simulate well against AGB and NPP simulation. Because number of data points is much larger in atmos CO2 than in other two, usually large Chi2 for atmos CO2 will prevent the optimization of VISIT to match with AGB and NPP observations. Of course, it really depends on how you set the data uncertainty in misfit function. At least, anyway, for seasonality, the annual mean values of AGB and NPP will not affect that much.

This time, the authors did optimize only the physiological parameters. But, I guess that phenology and soil water physics-related parameters are also very important for ecosystem modeling. So, the remaining discrepancy would be improved by further parameter optimization. Discuss them.

Totally, the paper is to be improved its explanation on parameter optimization scheme and misfit estimation scheme, and the expression on the improvement of parameter uncertainty and misfit between modeling and observation.

Minor comments:

Text: This paper should apply the present tense on every sentence because this is the modeling research not the field measurement.
Page 9, Line 23: First of all, I like to know if the authors assimilated three observations simultaneously or separately. If you did simultaneously, the formulation should have two more terms for NPP and AGB.

Page 10, Line 6-7: If you assimilate for three variables, you have to have three terms for variables + one term for parameter. Why don’t you have them? i.e. $S(m) = \frac{1}{2}(\text{Chi2 for CO2} + \text{Chi2 for AGB} + \text{Chi2 for NPP} + \text{Chi2 for parameters})$

Page 10, Line 10-11: How did you determine the criteria for CM? Is there any proper observation or literature for them (This study fixed CM at 10% around each mp, and at 2 oC for Topt and Tmin.)?

Page 10, Line 20-21: You have to tell us how to move the parameter numbers in iteration. You move the number by the prescribed small interval to make the slope of $S(m)/\text{parameter vector}$, and do that for each parameter again and again to reach the sufficiently small Cai2. Am I right? Also you have to tell how many iterations were done, and what is the criteria to stop the iteration.

Page 12, Line 12-14: Why did you use them as uncertainties? It’s the standard deviation in spatial distribution but the uncertainty on estimation accuracy.

Page 12, Line 17, $X^2 = 9.80$ for AGB and NPP: Are Chi2s same for both AGB and NPP, respectively? Or 9.8 is the sum of Chi2 for AGB and NPP?

Page 12, Line 17-19: Show us the prior Chi2 values. I know that prior Chi2 does not have much meanings cos it can be any number as long as you put arbitral numbers for prior parameters. But, like to know how the combination of AGB and NPP made change in Chi2.

Page 12, Line 20-21: Can’t you estimate the relative contribution on reducing the Chi2 by each parameter? Current relative shift in parameter number actually shows how the prior and posterior parameters are different in terms of absolute number. But, we do not know yet the actual influence by each parameter for total simulation accuracy.
think that at least you have to show the relative change of parameters: \((\text{param}_{\text{post}} - \text{param}_{\text{prior}})/\text{param}_{\text{uncertainty}}_{\text{prior}}\)

Page 18, Line 1: AGB.

Page 19, Line 7-10: You can express the simultaneous shift in two parameters by calculating the covariance of relative change in parameter number, then show them up in 13x13 matrix table. These parameter co-shifts are very important.

Page 19, Line 18, NEP of 2.0 PgC yr\(^{-1}\): I have a big concern about this number. How could the NEP be positive? Cos, the VISIT was spun-up for 2000 yrs with present climate to get the C storage equilibrium. If the initial state of storage was fixed to produce neutral C flux, NEP cannot be shifted positively even the physiological parameters were modified. Another thing is that the size of NEP, which corresponds to residual net terrestrial C uptake of 2.6 PgC yr\(^{-1}\) in IPCC (2007), proves that the VISIT underestimates the NEP. You have to consider the harvest for Forest and Cropland, and other carbon flows as you mentioned about forest fire.

Page 20, Line 10: I admit that the authors succeeded to incorporate three data streams at once for optimizing the VISIT parameters. But, you never explained us how better you could simulate the ecosystem flux and storage and atmospheric CO2 concentration compared to the prior simulations. And you should tell us which data stream and which parameter is more influential to reduce the misfit between modeling and observation.

Interactive comment on Geosci. Model Dev. Discuss., 6, 4243, 2013.