Response to referee 1:

We first thank the referee for his very insightful comments, which helped us a lot to clarify and improve this paper.

Comments and responses:

1. For a paper in a geoscience journal, a main focus of the paper should be on the application. They should be discussed in the beginning of the paper addressing the interests of the readers of the journal. At the moment the geoscience application first appears in Chapter 4.
 -> The introduction has been revised so that a greater focus is placed on the application.

2. Is it aim of this article to give a documentation of the Optimal Experimental Design Toolbox? This should be described in some other paper. Chapter 3 should be less technical.
 -> Technical details in chapter 3 have been removed or shortened.

3. Some explanations and conclusions in Chapter 4 on the numerical results should be reconsidered. For details see below.

Minor comments:

p 6442ff: Say "estimation of model parameters" instead of "optimization ..."
 -> changed (except at the title of the paper and the title of chapter 2)

p 6442f: Choice of the estimator: the estimator should be derived from the statistical properties/distribution of the measurement errors, e.g. a maximum likelihood estimator
 -> incorporated

p 6442: Set of feasible model parameters, described by bounds: what is the use of an estimate if the bounds (which have been specified by the modeler) are active?
 -> The bounds can be determined by physical meanings. For example, a concentration cannot be negative thus it can be meaningful even if it is on a boundary.
 -> For the presented optimal experimental design theory, it is reasonable to assume that the unknown exact parameter vector \hat{p} is not at the bounds. (See assumption A5.) However, this does not mean that estimated parameters p_n are not allowed to be at the bounds.

p 6443: Can psi be assumed to be injective?
 -> This is in practice certainly rarely the case. A less restrictive assumption would be the convexity.
 -> changed

p 6443: Use of SQP for PE is not really a good idea, for large residuals it may converge to statistically unstable solutions, see Bock et al. 2013 better use Gauss-Newton For exp. design SQP is ok.
 -> So far, we have gained good experience with SQP for PE. Can you please explain why large residual minimizers are no good estimators? Please look in the supplement for an example of a large residual minimizers which is a good estimator.

p 6443 l 24: "normally distributed"
 -> changed

p 6443f: What are the regularity assumptions? E.g. for the inverse of $M_n(p)$ it is: $\nabla_p f(p)^T$ has full (column) rank.
 -> regularity assumptions incorporated

p 6445 l 23-13: The operation "set to infinity" is not differentiable, which is needed for application of SQP.
 -> Matlab's SQP algorithm can recover from infinity. If an infinite function value is reached during the optimization, the algorithm attempts to take a smaller step. Thus, if the
optimization
is started with a regular design, singular designs do not make any trouble.

p 6446: Experimental design: what about optimizing the x_i?
-> This formulation is useful if additional experimental designs should be chosen from a finite number of experimental designs. Otherwise, the optimization problem can be reformulated so that the additional optimal design variables have to be optimized directly.

p 6447 l 2: "occur nonlinearly"
-> changed

p 6447 l 24: typo: can be solved
-> changed

p 6449 l 19: For derivative based optimization of the exp design problem, e.g. by SQP, a mixed derivative is required to compute the gradient of the objective.
-> That's right. However, the user needs to provide only the derivatives with respect to the model. All other derivatives are computed automatically and are not listed here for this reason.

p 6450 l 21: "initial guess" instead of "initial estimation"
-> changed

p 6457 l 26: "normally distributed"
-> changed

p 6458 l 11ff: If you also use the high water levels of the tidal inundation as experimental design variable, you need derivatives wrt. this quantity for the SQP optimization. How do you compute them? (In contrast, derivatives wrt. the w_i only need nabla f.)
-> The experimental design variables are not directly optimized. Instead, the corresponding weights are optimized. That is, derivatives with respect to the weightings are needed. These are automatically calculated. Derivatives with respect to the experimental design variables are not needed.

p 6459f: The phrase "maximal accuracy" is misleading. Of course the accuracy can always be improved further by performing additional measurements.
-> "maximal accuracy" replaced by "best achieved accuracy"

p 6459f: Which gamma did you choose in the robust approach? How big is the standard part of the objective compared to the robustification part?
-> The 95%-quantil of the chi-squared-distribution was used for gamma.
-> quantil incorporated
-> The standard part is around one thousandth of the robustification part. Which means that the robustification part dominates in the robust approach.

p 6459ff: Conceptionally, the relaxed solution should be better than the discrete one, because the feasible set is larger, Unless you compare local relaxed to global discrete minima which is not a fair comparison.
-> Here, the formulation was misleading. The solution of the discrete problem was compared with the solution of the continuous (relaxed) problem projected onto an integer solution.
-> In the article, the terms "exact" and "approximate" solution of the discrete problem are used now.

p 6459 l 12: typo: worst -> worse
-> changed

p 6459 l 15: "occur nonlinearly"
-> changed

p 6459 l 22f and p 6460 l 16f: This is because here the different (constant) standard deviations only mean a different scaling of the objective of the exp. design opt. problem. Only if the standard deviations are non-constant within the experiments, the weighting by $1/\sigma$ becomes relevant.
p 6460 l 24: replace greater by bigger, e.g.
-> changed

p 6460 l 27f: This explanation sounds weird. See remark above. The behavior should depend on the actual nonlinearity of the problem.
-> On the one hand, the nonlinearity is included, by optimizing the worst case quality within a confidence region. On the other hand, the worst case quality is approximated by the solution of the linearized problem. It may be that this additional approximation offsets the gain by considering the nonlinearity.

p 6462 l 14ff: This kind of results also occurs for linear models. This may indicate why the robust approach is not needed.
-> The model is nonlinear in the parameters and the robust approach yields different results than the standard approach. The robustification part is many times larger than the standard part.

p 6472: Fig. 2: 1. input should be the "RHS of the differential equation".
-> changed
Response to referee 2:

We thank the second referee for his informative comments, which helped us a lot to improve and clarify this paper.

Comments and responses:

Abstract: The abstract is concise and gets to the point although perhaps a sentence to give a general geosciences context would help.
-> A sentence about the general geosciences context is added at the beginning of the abstract.

Introduction: Like the abstract this is concise, however a few key things are missing for me
1) What is the original contribution of the article? Given that there is no literature or context included in the introduction its difficult to know what this is. If the originality is the Matlab toolbox then some context is needed to explain what was available prior to this toolbox. 2) I would expect at least a few good examples of these methods being used in geosciences to be referenced. The start of the paper currently has no focus and reads more like an introductory textbook.
-> Explain what was available prior to this toolbox added.
-> Reference for application on geosciences added.
-> Introduction revised to emphasize the focus more.

Section 2.1 P6443, L15: Sorry I don’t understand what you mean by model parameters are assumed to be compact? Also, just below, I’m not familiar with the use of the term injective. Maybe these could be defined.
-> Compact and injective are two common terms in mathematics. Compact is (in this case) equivalent to closed and bounded and refers to the set of model parameters.
-> (closed and bounded) as additional explanation inserted
-> The term injective is no longer found in the current version of the article.

Section 2.2 “Provided certain regularity conditions are met” Could you explain what these are at some point for completeness?
-> regularity conditions inserted

Section 2.5: Check English in sentence “if the parameters occur nonlinear in the model” -> if the model parameters are nonlinear.
-> changed

P6451, L15: Is there a memory space issue with saving intermediate results. Actually more generally could you comment on the memory efficiency and what might be a limiting factor in the size of problem that can be handled?
-> Subsection "3.4 Execution time and memory consumption" included. Here, the memory consumption and limiting factors are described.

Section 4 P6454, L20:
I think the example is from geosciences rather then geophysics.
-> changed

Also it’s not clear what you mean by two models... I initially assumed there was a sediment concentration/deposition model coupled to a hydrodynamic model. But later its clear this is not the case. Personally I would merge section 4 and 4.1 and re-order the text to make it clearer to understand. At the moment the description of the model is spread over several paragraphs, which is quite confusing.
-> In the beginning of section 4, an explanation was added that both model describe a sediment concentration and only differ in their complexity.
-> We would like to keep the separation of section 4 and 4.1 because section 4 contains the general description and utility of both models whereas section 4.1 contains their mathematical description.

When you go on to implement the models it was not clear to me if the test case was based around something real or if the
modelling example was entirely synthetic. I probably missed a key statement on this but I think it needs to be much clearer how the model was set up.

-> Insertions added (in Chapter 1 and Chapter 4) that the test case is based on a real application example.

How were the values in table 1 obtained?
-> They have been estimated with data from local historic tide gauge data.
-> explanation added

What are the typical ranges for the values in table 2?
-> Typical ranges added for Table 2 and 3.

Also it should possible to combine tables 3,4&5 and have all the results in one place.
-> Table 4 and 5 merged in Table 2 and 3.

I would also be tempted to combine Fig 16 with 17 and Fig 14 with 15 and 12 with 13, but this is purely stylistic.
-> We decided not to combine these figures since then ten curves/bars would be in a figure which would be to overloaded.

Conclusions: These are very concise and really only state the obvious. I would include a paragraph with the conclusions from the geoscience models and also comment on how widely you might expect these conclusions to apply, particularly in the case of higher dimensional models. Most geoscientific models are substantially more complex than the test cases you have implemented here. For example, salt marshes are often simulated using distributed rather than point based models, while a river sediment transport model would include components to handle bed and bank erosion, a number of sediment transport mechanisms and the flow hydraulics, they might also measure multiple model states e.g. sediment load and velocity. I’m not suggesting the paper needs to test many different model types but the discussion/conclusions should expand to cover this more ‘realistic’ range of numerical models and what issues a geoscientist is likely encounter.

-> conclusion extended (especially with respect to more complex models)
Optimization of experimental designs and model parameters exemplified by sedimentation in salt marshes

Joscha Reimer¹, Mark Schuerch², and Thomas Slawig¹

¹Institute of Computer Science, Future Ocean - Kiel Marine Sciences, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
²Institute of Geography, Future Ocean - Kiel Marine Sciences, Christian-Albrechts-University Kiel, 24098 Kiel, Germany

Correspondence to: Joscha Reimer (jor@informatik.uni-kiel.de)

Abstract. Geosciences are a highly suitable field of application for optimizing experimental designs and model parameters especially since in this field many data are collected.

The weighted least squares estimator for model parameters was optimization of model parameters is presented together with its asymptotic properties. A popular approach to optimize experimental designs called local optimal experimental designs is described together with a lesser known approach which takes into account a potential nonlinearity of the model parameters. These two approaches were have been combined with two different methods to solve their underlying discrete optimization problem.

All presented methods were implemented in an open source MATLAB toolbox called the Optimal Experimental Design Toolbox whose structure and handling was is described.

In numerical experiments, the model parameters and experimental design were optimized using this toolbox. Two existing models for sediment concentration in seawater and sediment accretion on salt marshes of different complexity served as application example. The advantages and disadvantages of the different approaches were compared, and an evaluation of the approaches was performed.

1 Introduction

Mathematical models are a fundamental concept in science. Often, they contain only roughly known model parameters. A common way to make such models more realistic is to optimize these parameters so that the model output is more consistent with measurement results.

The measurements required for this purpose are often time consuming or costly. For this reason, it is desirable that the information content of the obtained measurement results is maximal.

Several conditions under which measurements are carried out are controllable. These conditions are also known as experimental setup or experimental design. This can be, e.g., the point in time, the location or the method of the measurements which are optimized based on measurements. The resulting accuracy of the model parameters depends on the conditions, also called experimental setups or experimental designs, under which these measurements are carried out. These experimental designs can be optimized so that the information content resulting accuracy is maximized. Thus, the number of measurements necessary for a certain accuracy of the model parameters and accordingly of the model itself can be considerably effort and cost of measurements can be significantly reduced.

The main problem in optimization of experimental designs is therefore particularly interesting for geosciences, where much money is spent on data collection. However, only few application examples exist in this field. See, e.g., Pronzato and Pázman (2013) for an overview. This article aims to promote this approach in geosciences and exemplarily apply it to an existing salt marsh accretion model.

In optimizing experimental design, the main problem is to quantify the information content. In general, this can only be done approximatively. There are several approaches to quantify the information content and hence to optimize experimental designs. See, e.g., Pronzato and Pázman (2013) for an overview. Usually, these approaches are a tradeoff between accuracy and computational effort. In general, it is difficult to say whether
a higher computational effort is justified by a higher accuracy.

In this paper, two models for sediment concentration in seawater served as application examples. Their model parameters had to be adapted to the local environmental conditions. The measurements required for this purpose are very time-consuming. For this reason, it should be evaluated which approach is most suitable to optimize their experimental designs.

After this introduction, four different approaches to optimize experimental designs together with the weighted least squares estimator for model parameters are presented in Section 2. Each of these four approaches makes a different trade-off between accuracy and computational effort.

One approach is based on the linearization of the model with respect to the parameters and is the most common used approach called local optimal experimental design. The second more robust approach takes into account a potential non-linearity of the model parameters. Both approaches are combined with two different approaches of solving the underlying discrete optimization problem.

The presented approach, as far as the authors know, there is no open-source software available that can apply all these four approaches. So far, the only software using the presented robust approach is VPLAN introduced in Körl [2002] which is not open source. For this reason, this approach was implemented in MATLAB. For the local optimal approach, several implementation are available but none (open source) software which is written in MATLAB, so this approach was implemented as well. These methods, together with methods to optimize experimental designs and model parameters were implemented in an open-source MATLAB toolbox called the Optimal Experimental Design Toolbox. The structure and handling of this toolbox is described in Section 3.

The numerical experiments carried out with the models for sediment concentration and their results are shown in Section 4. These models can be used as a basis to predict the survival capability of salt marshes under the influence of expected global sea level rise. To use these models for local salt marshes, their parameters have to be adapted to the local environmental conditions. The required measurements are very time-consuming and costly. Employing the presented approach here, the experimental designs could be optimized and performed more efficiently. The two models are described together with the attendant numerical experiments and the associated results in Section 4.

2 Optimization of model parameters and experimental designs

The first step to the optimization of model parameters is the choice of the estimator. This maps the measurement results onto an estimated model parameters. These optimal estimated parameters are often defined so that they minimize a so-called misfit function. The misfit function quantifies the distance between the measurement results and the model output.

The most widely used class of estimators are the estimator should be derived from the statistical properties of the measurement errors, e.g., a maximum likelihood estimator. Often, the measurement errors are assumed to be normally distributed. This leads to the least squares estimators. They are the most widely used class of estimators since their introduction by Gauss and Legendre (see, e.g., Sigler [1981]).

Their simplest form is the ordinary least squares estimator. Its misfit function is the sum of the squares of the differences between each measurement result and the corresponding model output. A generalization is the weighted least squares estimator which has advantages in case of heteroscedastic measurement errors. This estimator and its asymptotic properties are presented in the following subsection. The generalized least squares estimator is a further generalization which takes into account a stochastic dependence of the measurement errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is presented. For this purpose, some notations and assumptions are introduced.

The model function is denoted by

\[f : \Omega_x \times \Omega_p \rightarrow \mathbb{R}. \]

Here, \(\Omega_x \subseteq \mathbb{R}^{n_x} \) is the set of feasible experimental designs and \(\Omega_p \subseteq \mathbb{R}^{n_p} \) the set of feasible model parameters from which the unknown exact parameter vector \(\hat{p} \in \Omega_p \) is to be determined. Often, these sets are defined by lower and upper bounds.

The measurement result for each design \(x \in \Omega_x \) is considered as a realization of a random variable \(\eta_x \). Each random variable \(\eta_x \) is assumed to be normally distributed with expectation \(f(x, \hat{p}) \) and standard deviation \(\sigma_x > 0 \).

\[\eta_x \sim \mathcal{N}(f(x, \hat{p}), \sigma_x^2) \text{ for every } x \in \Omega_x. \]

Furthermore, these random variables are assumed to be pairwise stochastically independent, i.e.,

\[\eta_x \text{ and } \eta_{x'} \text{ stochastically independent for every } x, x' \in \Omega_x. \]
A1b) \(\eta_x \) and \(\eta_{x'} \) are stochastically independent for every \(x, x' \in \Omega_x \).

If we consider \(n \geq n_p \) measurement results
\(y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n \) with corresponding experimental designs \(x_1, \ldots, x_n \in \Omega_x \), the weighted least squares estimation \(p_n \) and the corresponding estimator \(\hat{P}_n \) is defined as

\[
p_n := P_n(y) := \arg \min_{p \in \Omega_p} \psi_n(y, p)
\]

(1)

where the misfit function \(\psi_n \) is defined as

\[
\psi_n : \mathbb{R}^n \times \Omega_p \rightarrow \mathbb{R}, (y, p) \mapsto \sum_{i=1}^{n} \left(\frac{y_i - f(x_i, p)}{\sigma_{x_i}} \right)^2
\]

A2) \(f(x, \cdot) \) is continuous for every \(x \in \Omega_x \).

A3) \(\Omega_p \) is compact (closed and bounded).

If \(\psi_n(y, \cdot) \) is also assumed to be injective convex, the minimum is also unique.

The optimal parameters parameter estimation \(p_n \) in (1) can be calculated with an optimization method for continuous optimization problems. A possible method is the SQP algorithm which is, e.g., described in Nocedal and Wright (1999) chapter 18).

2.2 Asymptotic properties

Provided certain regularity conditions are met, the least squares estimators are consistent, asymptotically normally distributed and asymptotically efficient.

This asymptotic properties were first proved by Jennrich (1969) for the ordinary least squares estimator and also discussed in Malinvaud (1970) and Wu (1981). In White (1980), these properties were proved for the weighted least squares estimator and for the generalized least squares estimator in White and Domowitz (1984). A good summary for all three can be found in Amemiya (1983).

Consistency means that the estimated parameters converge in probability to the unknown exact parameters as the number of measurements goes to infinity. That is

\[
P_n \xrightarrow{P} \hat{p} \text{ as } n \rightarrow \infty
\]

for the weighted least squares estimator \(P_n \) with the unknown exact model parameters \(\hat{p} \).

For consistency, the following assumptions are sufficient in addition to the previous assumptions A1 to A3. (Seber and Wild 2003 page 565)

A4a) \(n^{-1} B_n \) converges uniformly with

\[
B_n : \Omega_p \times \Omega_p \rightarrow \mathbb{R}, (p, p') \mapsto \sum_{i=1}^{n} \nabla_{x_i} f(x_i, p) \nabla_{x_i} f(x_i, p') \sigma_{x_i}^{-2}
\]

A4b) \(\hat{D}(p, \hat{p}) = 0 \Rightarrow p = \hat{p} \) for all \(p \in \Omega_p \) with \(\hat{D} := \lim_{n \rightarrow \infty} n^{-1} D_n \) and

\[
D_n : \Omega_p \times \Omega_p \rightarrow \mathbb{R}, (p, p') \mapsto \sum_{i=1}^{n} \left(f(x_i, p) - f(x_i, \hat{p}) \right)^2 \sigma_{x_i}^{-2}.
\]

An estimator is asymptotically efficient if its variance converges to the Cramér-Rao bound as the number of measurements goes to infinity. The Cramér-Rao bound (see Cramér (1946) and Rao (1945)) is a lower bound for the variance of any unbiased estimator.

For the assumed measurement distribution (22) and (22) with \(n \) measurements, this bound asymptotic efficiency. the following assumptions are sufficient in addition to the previous assumptions A1 to A4. (Seber and Wild 2003 page 571)

A5) \(\hat{p} \) is an interior point of \(\Omega_p \). Let \(\Omega_p \subset \Omega_p \) be an open neighborhood of \(\hat{p} \).

A6) \(f(x_i, \cdot) \) is twice continuously differentiable in \(\Omega_p \).

A7) \(n^{-1} M_n \) converges uniformly with

\[
M_n : \Omega_p \rightarrow \mathbb{R}^{n_p \times n_p}, p \mapsto \sum_{i=1}^{n} \nabla_{p_i} f(x_i, p) \nabla_{p_i} f(x_i, p)^T \sigma_{x_i}^{-2}.
\]

A8) \(n^{-1} H_n \) converges uniformly with

\[
H_n : \Omega_p \rightarrow \mathbb{R}^{n_p \times n_p}, p \mapsto (\sum_{i=1}^{n} (\nabla_{p_i} f(x_i, p)^2 \sigma_{x_i}^{-2}))_{i,j=1,\ldots,n_p}.
\]

A9) \(\hat{M}(\hat{p}) \) is invertible with \(\hat{M} := \lim_{n \rightarrow \infty} n^{-1} M_n \).

In this case, the Cramér-Rao bound of the weighted least squares estimator \(P_n \) is the inverse of the Fisher information matrix

\[
M_n(\hat{p}) := \sum_{i=1}^{n} \left(\frac{\partial^2}{\partial p_i \partial p_j} f(x_i, \hat{p}) \sigma_{x_i}^{-2} \right)
\]

if the inverse exists. Here, \(\nabla_{p_i} f(x_i, \hat{p}) \) denotes the gradient of \(f(x_i, \cdot) \) at the point \(\hat{p} M_n(\hat{p}) \).

In this case Under these assumptions, the asymptotic behavior of the weighted least squares estimator can be summarized by its convergence in distribution as follows

\[
\sqrt{n}(P_n - \hat{p}) \overset{D}{\rightarrow} \mathcal{N}(0, M_n(\hat{p})^{-1}) \text{ as } n \rightarrow \infty.
\]

See, e.g., (Seber and Wild 2003 chapter 12) and (Walter and Pronzato 1997 chapter 3).
2.3 Optimal experimental designs

The accuracy of the weighted least square estimator \(P_n \) can be described by its covariance matrix. Due to the asymptotic distribution (2), this can be approximated by the inverse of the information matrix \(M_n(p_n) \), provided the matrix \(M_n(p_n) \) is nonsingular, i.e.,

\[
\text{cov}(P_n) \approx M_n(p_n)^{-1}.
\]

(3)

Therefore, the unknown model parameters can be determined more accurately the smaller the (approximated) covariance matrix of the estimator is.

Criteria such as the trace or determinant, are used in order to compare these matrices. (See, e.g., El-Monsief et al. (2009) for an overview of various criteria.) If the approximation (3) is used and \(M_n(p_n) \) is singular, the value of \(\phi \) is set to infinity.

In the context of optimizing experimental designs, we assume \(n \geq 0 \) measurements have been carried out and designs for additional measurements should be selected from \(m \) designs \(x'_1, \ldots, x'_m \in \Omega_\alpha \). The choice for each design \(x'_i \) is expressed by a weight \(w_i \in \{0, 1\} \) where 1 indicates the selection and 0 the contrary.

Hence, the resulting information matrix, depending on the choice \(w \in \{0, 1\}^m \) and the parameter vector \(p_n \in \Omega_p \), is defined as

\[
M_n(w, p_n) := M_n(p_n) + \sum_{i=1}^m w_i \nabla_p f(x'_i, p_n) \nabla_p f(x'_i, p_n)^T / \sigma_{x'_i}^2.
\]

If the covariance matrix is approximated by the inverse of the information matrix, optimal (additional) designs, with respect to a criterion \(\phi \), are expressed by a solution of

\[
\text{arg min}_{w \in \{0, 1\}^m} \phi(M_n(w, p_n)^{-1}).
\]

(4)

These optimal designs are called local optimal designs because these designs are only optimal regarding the previously optimized model parameters, model parameter estimation \(p_n \) and not the unknown exact model parameters \(\hat{p} \).

Potential constraints on the choice of the designs can be realized by constraints on the weight \(w \). For example, the number or the costs of the measurements can be limited by linear constraints on \(w \). These constraints have to be considered in the above optimization problem (4).

The formulation (4) is useful if additional experimental designs should be chosen from a finite number of experimental designs. Otherwise, the optimization problem can be reformulated so that the additional optimal design variables have to be optimized directly.

2.4 Calculation of optimal experimental designs

A straightforward way to solve the optimization problem (4) is to test all possible values of \(w \). This direct approach is only practical for small \(m \).

For bigger \(m \), the optimization problem (4) is solved approximately. For this purpose, it is solved in the continuous rather than the discrete setting, i.e., the constraint \(w \in \{0, 1\}^m \) is relaxed to \(w \in [0, 1]^m \). Accordingly, the problem

\[
\text{arg min}_{w \in [0, 1]^m} \phi(M_n(w, p_n)^{-1})
\]

is solved.

A possible algorithm to solve this continuous optimization problem is the SQP algorithm which is, e.g., described in Nocedal and Wright (1999, chapter 18).

After the continuous problem (5) is solved, the solution is projected onto the integers with heuristics. An easy way is to round the continuous solution. Another is to sum up all continuous weights and then to choose as many designs with the highest continuous weights. Potential constraints on \(w \) still have to be considered by solving the continuous problem and the following projection onto an integer solution. The second heuristic, e.g., preserves constraints on the number of designs to choose.

Our numerical experiments with the application examples in Section 3 have shown that the solutions of the continuous problem (5) are already close to integer values. This behavior was also observed, for example, in Körkel (2002) and Körkel et al. (2004).

2.5 Robust optimal experimental designs

The information matrix \(M_n \) depends on the estimated parameters \(p_n \) if the parameters occur nonlinear in the model. This may lead to suboptimal designs if \(\nabla_p f(\cdot, p_n) \) differs strongly from \(\nabla_p f(\cdot, \hat{p}) \).

For this reason, we now consider a method which takes into account a possible nonlinearity of the parameters. This robust method was presented in Körkel (2002) and Körkel et al. (2004).

The main idea of the method is not to optimize the quality of the covariance matrix for a single parameter vector \(p_n \), as in (4), but to optimize the worst case quality within a whole domain which contains the unknown exact parameter vector \(\hat{p} \) with high probability.

For this purpose, a confidence region which contains \(\hat{p} \) with probability \(\alpha \in (0, 1) \) is approximated by

\[
G_n(\alpha) := \{ p \in \mathbb{R}^n | \| p - p_n \|_{M_n(p_n)^{-1}}^2 \leq \chi_2(\alpha) \}.
\]

(6)

Here, \(\chi_2(\alpha) \) is the \(\alpha \)-quantile of the \(\chi^2 \)-distribution and \(\| v \|_A := \sqrt{v^T A v} \) denotes the energy norm of the vector \(v \in \mathbb{R}^n \) with respect to the positive definite matrix \(A = \mathbb{R}^{n \times n} \).

The approximation of the confidence region arises from linearization of the model function \(f \) in point \(p_n \) and the assumption \(P_n \sim \mathcal{N}(\hat{p}, M_n(p_n)^{-1}) \).

If the worst case quality in the entire region \(G_n(\alpha) \) shall be optimized, the optimization problem (4) becomes

\[
\text{arg min}_{w \in \{0, 1\}^m} \max_{p \in G_n(\alpha)} \phi(M_n(w, p)^{-1}).
\]

(7)
This min-max optimization problem can be solved only with considerable more computational effort compared to the optimization problem \((4)\). In order to reduce this effort, the function \(\phi(M_n(w, \cdot)^{-1})\) is linearized in point \(p_n\) in the following way.

\[
\phi(M_n(w, p)^{-1}) \approx
\phi(M_n(w, p_n)^{-1}) + \nabla_p(\phi(M_n(w, p)^{-1}))^T(p-p_n)
\]

The resulting inner maximization problem can be solved analytically. It is

\[
\max_{p \in G_n(\alpha)} \phi(M_n(w, p_n)^{-1}) + \nabla_p(\phi(M_n(w, p)^{-1}))^T(p-p_n)
\]

as can be seen, e.g., in \cite{korkel2002}. With this approach the optimization problem \((7)\) is replaced by

\[
\arg \min_{w \in \{0,1\}^n} \phi(M_n(w, p_n)^{-1}) + \gamma(\alpha)^{\frac{1}{2}} \|\nabla_p(\phi(M_n(w, p)^{-1}))\|_M(p_n),
\]

This optimization problem again can be solved approximatively by solving the corresponding continuous problem and projecting this solution onto an integer solution as described in the previous subsection.

It should be noted that in this approach \((8)\), the first and second derivatives of the model is used. In contrast, only the first derivative is used for local optimal designs \((4)\).

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental design is its efficiency. The efficiency of an experimental design \(w \in \{0,1\}^n\) regarding a criterion \(\phi\) and with \(n\) previous measurements is defined as follows.

\[
E_{\phi}(w) := \min_{w \in \{0,1\}^n} \frac{\phi(M_n(\hat{w}, \cdot)^{-1})}{\phi(M_n(w, \cdot)^{-1})}
\]

It should be noted that the searched parameter vector \(\hat{p}\) is used here. If this is not known, thus the efficiency can not be calculated.

The efficiency is always between 0 and 1 and is larger the better the experimental design is.

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous section for optimization of model parameters and experimental designs as a MATLAB toolbox named the Optimal Experimental Design Toolbox.

MATLAB (see \cite{mathworks2011}) was chosen because it supports vector and matrix operations and provides many numerical algorithms, especially for optimization. Moreover, MATLAB supports object oriented programming and therefore permits a simple structuring, modification and extension of the implementation. Another advantage of MATLAB is that it can easily interact with C and Fortran.

The toolbox is available at the Git repository (see \cite{Reimer2013,Reimer2013} at GitHub under the GNU General Public License (see Foundation 2007)). It includes extensive commented source code and a detailed help integrated in MATLAB.

3.1 Provision of the model function

For the methods described in Section 2 the model function and its first and second derivative with respect to the model parameters are required.

Actually, the model function is required for the parameter optimization and, depending on the optimization method, also the first derivative. The first derivative is also required for the experimental design optimization. If the robust method is used also the second derivative is required.

The first step for using the Optimal Experimental Design Toolbox is to provide these functions. The model interface prescribes how this should be done. The functions to provide these functions. They need not be written in MATLAB itself, since MATLAB can call functions in C, C++ or Fortran.

The toolbox has several possibilities to provide the derivatives automatically. The model_fd class, e.g., provides the derivatives by approximation with finite differences. If the model function is given as an explicit symbolic function, the model_explicit class can provide the derivatives by symbolic differentiation with the Symbolic Math Toolbox. Listing 1 shows, for example, how a model_explicit object is created.

Figure 1. Create a model with a symbolic model function

```matlab
model_object = model_explicit('p^2', 'p', 'x')
```

For the case the model function is given as a solution of an initial value problem, the Optimal Experimental Design Toolbox contains the model_ivp class. This class solves the parameter dependent initial value problem and calculates the necessary derivatives. Listing 2 shows how a model_ivp object is created.

Figure 2. Create a model with a model function given as solution of an initial value problem

```matlab
model_object = model_ivp('yc(t,sys, [a,b], y, a, b, [0,1])
```

The class takes advantage of the fact that the integration and differentiation of the differential equation can be interchanged if the model function is sufficiently often continu-
3.2 Setup of the solver

Another important class in the Optimal Experimental Design Toolbox is the solver class. This class provides the methods for the optimization of parameter estimations, model parameters and experimental designs. To perform one of these optimizations, a solver object is provided by the solver class. First, a solver object has to be instantiated (see Listing 2) and the necessary informations have to be passed to the solver object. Create a solver object.

First of all, the model represented by an object which implements the model interface. On the one hand, this is the model which has to be set by the set_model method (see Listing 3).

Potential accomplished measurements can be set via the set_accomplished_measurements method. These measurements consist of the corresponding experimental designs together with their variances of the measurement errors. Also the measurement results themselves have to be passed for a parameter estimation (Listing 4).

Finally, if an optimization of experimental designs shall be performed, the selectable measurements have to be set by the set_selectable_measurements method (Listing 5). These measurements consist of the experimental designs and the variances of the measurement errors again.

3.3 Optimization of experimental designs and model parameters

Once the solver object is configured as described in the previous subsection, experimental designs or model parameters can be optimized via the get_optimal_measurements (see Listing 2) respectively the get_optimal_parameters (see Listing 3) method. Constraints on the experimental designs or model parameters can be passed to the corresponding method.

The get_optimal_measurements method can solve the optimization problem directly by trying all possible combinations or by solving the corresponding continuous problem and projecting onto an integer solution. For solving approximatively.

For the approximative solving, the continuous problem - the implementation of is solved with the SQP algorithm (see Nocedal and Wright [1999] Chapter 18) provided by the fmincon function of the Optimization Toolbox. Its solution is projected onto an integer solution by the second heuristic described in 2.4.

The first derivative of the objective function is provided in analytical form. This saves much of the computing time compared to derivatives calculated by finite differences. The Hessian matrix is approximated by the BFGS-update (see Broyden [1970], Fletcher [1970], Goldfarb [1970] and Shanno [1970]).

Matlab’s SQP algorithm can recover from infinity. If an infinite function value is reached during the optimization, the algorithm attempts to take a smaller step. Thus, if the optimization is started with a regular design, singular designs do not make any trouble.

The get_optimal_parameters method uses the Trust-Region-Reflective (see Coleman and Li [1994] and Coleman and Li [1996]) or the Levenberg-Marquard algorithm (see Levenberg [1944], Marquardt [1963] and Moré [1977]) provided by the lsqnonlin function of the Optimization Toolbox to solve the least squares problem resulting from the parameter estimation. The first derivative of the objective function is also provided analytically.

Furthermore, the expected quality of the resulting parameter estimation for any selection of experimental designs can be calculated using the get_quality method of the solver object.
ject. Thus, for example, the increase in quality by adding or removing experimental designs can be determined.

In the methods of the Optimal Experimental Design Toolbox, often reusable (intermediate) results occur. The toolbox takes advantage of this by internally saving and reusing appropriate results. Thus

3.4 Execution time and memory consumption

The total time required for the optimization of the model parameters or an experimental design depends crucially on the time required for evaluating the model function and its first and second derivative with respect to the model parameters.

When optimizing model parameters, the model function and its first derivative has to be evaluated several times with different model parameter vectors at the accomplished measuring points. When optimizing experimental designs, the model function and its first and second derivative has to be evaluated for one model parameter vector but at the accomplished and selectable measuring points.

Generally, the execution time is significantly reduced. Multiple occurring matrix multiplications within a calculation are an example. Also, reusable results are cached between different method calls increases with the number of parameters, the number of selectable measurements and the number of accomplished measurements.

The implementation of this toolbox favors a low execution time of a low memory consumption. For this reason, (intermediate) results within a method call and between successive method calls are saved and reused. An example scenario are multiple occurring matrix multiplications within a method call. Another example is a re-optimization of designs with other constraints, such as another maximum number of allowed measurements. Here, the derivatives of the model function calculated in the previous optimization is reused.

Due to the described caching strategy, the total memory consumption depends linearly on the number of (accomplished and selectable) measurements and quadratically on the number of parameters. Nevertheless, it should be possible to solve problems with hundreds of parameters and thousands of measurements on a standard computer.

3.5 Changeable options

Many settings for the optimization of experimental designs or model parameters are changeable. These can be altered by the *set_option* method of the *solver* object (see Listing 9). The desired options can be set using property-value pairs, as already known from MATLAB. This means, the name of the option has to be passed to the method as first argument and the new value as second argument.

Figure 9. Change an option

```
solver_object.set_option('option_name', option_value)
% 1. input: the name of the option which should be changed
% 2. input: the new value of the option
```

Estimation method: For example, the *The estimation method* for the quality of experimental designs can be selected by the *estimation_method* option. The standard *point estimation method* and the robust *region estimation method*, both presented in Section 2.5 are supported. The *region estimation method* is the default setting.

Confidence level: Moreover, the level of confidence for the confidence region at the *region estimation method*, represented by *a* in Section 2.5, can be set by the *alpha* option. The default value is 0.95.

Prior parameter estimation: Furthermore, it can be chosen whether a parameter optimization should be performed before optimizing experimental designs. This would improve the estimations of the quality of experimental designs. This can be set by the *parameter_estimation* option and the values yes or no. To save computational time no previous parameter optimization is performed by default.

Quality criterion: The quality criterion, which is applied to the covariance matrix and represented in Section 2.1 as *φ*, can also be chosen. Therefore, an object of a class which implements the *criterion* interface have to be passed with the *criterion* option. The criterion interface prescribes the syntax of the criterion function and its necessary derivatives. The trace of the covariance is the default criterion and implemented by the *criterion_A* class.

Parameter scaling: Furthermore, it can be chosen whether the covariance matrix *model parameter should be scaled before applying the quality criterion or not by the *scale_covariance_matrix* option and the values yes and no. Scaling the covariance matrix allows to optimize the quality of each parameter uniformly, optimizing experimental designs or the model parameters themselves. Scaling means a uniform impact of all model parameters and is enabled by default. The *model parameters* are scaled by default for the parameter optimization, too. This can be changed by the *options_are_postSUBSCRIPTNBp parameter option and scaleSUBSCRIPTNB with the values yes and no.

Optimization algorithm for experimental design:

Finally, the optimization algorithm for the *The exact and the approximative approach for the optimization of experimental design problem can be configured. The direct and the relaxed method, described in 2.4 can be chosen as solution algorithm. The corresponding option is *ed_algorithm* chosen with the *ed_algorithm*
option and the values are direct respectively direct and local_sqp. For time reasons by default the experimental design problem is solved by the relaxed method approximative approach. Furthermore, the number of function evaluations and iterations by the SQP algorithm can be constrained by the options ed_max_fun_evals and ed_max_iter.

Optimization algorithm for parameter estimation:

Similarly, the The optimization algorithm for the parameter estimation problem can be configured chosen with the po_algorithm option. The Trust-Region-Reflective (see Coleman and Li (1994) and Coleman and Li (1996)) and the Levenberg-Marquard algorithm (see Levenberg (1944). Marquard (1963) and More (1977)) can be chosen as solution algorithm with the option po_algorithm and the values trust-region-reflective respectively with the values trust-region-reflective and levenberg-marquardt. The Trust-Region-Reflective algorithm is the default algorithm. By default the model parameters are scaled for the optimization. This can be influenced by the po_scale_parameter option and the values yes and no. Furthermore, the number of function evaluations and iterations can be limited through the options po_max_fun_evals and po_max_iter.

3.6 Help and documentation

The Optimal Experimental Design Toolbox also provides an extensive integrated help. It can be viewed in the command window by the MATLAB command help or in the help browser of MATLAB by its doc command (see Listing 1.2). Get the documentation.

The layout of the help of the Optimal Experimental Design Toolbox is based on the design of the help also used by MATLAB and other toolboxes. Thus the user does not have to get used to a new layout. The help includes, besides Besides system requirements and version informations, a user’s guide with a step by step instruction how to optimize experimental designs and model parameters is included. Demos show how to work with the toolbox in practice. In addition, a detailed description for every class and method is available.

The layout of the help of the Optimal Experimental Design Toolbox is based on the design of the help also used by MATLAB and other toolboxes. Thus the user does not have to get used to a new layout.

4 Application examples

In this section, numerical experiments together with their results regarding the optimization of model parameters and experimental designs are presented for two models from geophysics, namely for of different complexity. Both models describe the sediment concentration in seawater which floods during tidal inundation of coastal salt marshes.

Coastal salt marshes have an important ecological function with their diverse flora and as a nursery for migratory birds. Furthermore they have the ability of dissipating current and wave energy and therefore reducing erosional forces at dikes and coastal areas.

With these models, the vertical accretion of coastal salt marshes can be predicted. If When considering expected global sea level rise is considered too(?), the future ability of coastal salt marshes to grow faster as sea increases adapt to rising sea levels and thus to survive can be estimated. Depending on this, measures to protect these salt marshes can be taken.

This application example arose in cooperation with the Geographical Institute of the Christian-Albrechts University of Kiel. There, the parameters of these two models should be determined. Carrying out the required measurements of the sediment concentrations in time consuming Calibration of the model parameters requires measurements of suspended sediment concentration during tidal inundation, which are time-consuming and laborious. For this reason, it is advantageous to know under which conditions and how many measurements should be carried out.

4.1 The models

Both models are zero-dimensional point models, which describe the sediment concentration in seawater that floods during tidal inundation of coastal salt marshes within a tidal cycle. The first model (C2-model) has two model parameters, was described in (Timmerman et al. 2002), and adapted for the local salt marshes in Schuur et al. (2013) a salt marsh in the German Wadden Sea (South-Eastern North Sea), located near Hoernum in the southern part of the island of Sylt (Germany), by . The second model (C3-model) has three model parameters, is an extension of the first model and subject of current research.

4.1.1 The C2-model

The first model is called the C2-model. Here, the sediment concentration in the channel is modeled by the function $C : [t_S, t_E] \rightarrow \mathbb{R}^+$ and has the unit kg/m3. Furthermore, t_S is the start time of the inundation of the salt marsh and t_E the end time. The concentration C is given implicit as solution of the initial value problem

$$C'(t) = \begin{cases} \frac{w_S C(t) + (C_0 - C(t)) h'(t)}{h(t)-E} & \text{if } h'(t) > 0 \\ \frac{w_S C(t)}{h(t)-E} & \text{else} \end{cases}$$

for all $t \in (t_S , t_E)$ and $C(t_S) = C_0$. (10)

Here, $C_0 \geq 0$ is the initial sediment concentration of the flooding seawater and $w_S \geq 0$ the settling velocity of the sediment in the unit suspended sediment in kg/m3. Moreover, the
function
\[h : \mathbb{R} \to \mathbb{R} , t \mapsto \frac{a}{1 + (\frac{t - x_0}{b})^2} + h_{HW} - h_{MHW} \]
describes the time-dependent water surface elevation and \(E \) the elevation of the marsh both in meters and relative to a fixed datum. Here, \(a, b, x_0 \) are constants describing the change in the water level, \(h_{MHW} \) the mean high water level and \(h_{HW} \) the high water level of a certain tidal inundation in meters. The start and end time \(t_S \) and \(t_E \) of the inundation are the points where the height \(h \) equals the elevation of the marsh \(E \).

The sediment concentration \(C \) thus decreases continuously within a tidal cycle depending on the settling velocity \(w_S \) which is described by the term
\[\frac{w_s C(t)}{h(t)} - E \]
in (10). During the flood phase, the reduced sediment concentration is partially compensated by new inflowing sea water. This is described by the term
\[\frac{(C_0 - C(t))h'(t)}{h(t) - E} \]
in the first case of (10).

The values used in the water surface elevation function \(h \), for the local salt marsh, are shown in Table 1.

These have been estimated by non-linear regression analysis using local historic tide gauge data from 1999-2009 (at Hoernum Hafen, Germany). The continuous high-resolution (see also [Schulz et al. 2012]) and the high water level \(h_{HW} \) of the current tidal inundation is measured or taken from predictions (6 minutes) time series has, therefore, been split into the individual tidal cycles beforehand.

<table>
<thead>
<tr>
<th>Table 1. Values used for the water surface elevation function (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>3.7506</td>
</tr>
</tbody>
</table>

The high water level \(h_{HW} \) of the current tidal inundation is measured or taken from predictions.

The initial sediment concentration \(C_0 \) and the settling velocity \(w_S \) are only roughly known and therefore model parameters. Initial estimations Reference values derived from literature values and typical ranges can be found in Table 22. See ? for \(C_0 \) and ? for \(C_0 \) and \(w_S \).

4.1.2 The C3-model

The second model is an extension of the C2-model and is called the C3-model. Here the model parameters \(C_0 \) and \(w_S \) are substituted by
\[C_0 = k(h_{HW} - E) \]
\[w_s = r(C_0)^s = r k^s(h_{HW} - E)^s. \]

Where \(k \geq 0, r \geq 0 \) and \(s \geq 0 \) are unknown model parameters. Reference values derived from literature values and typical ranges (where available) can be found in Table 3. See ? and ? for the setting index \(s \) and ? for \(k \).

On the one hand, in this model, a linear relationship between the initial sediment concentration and the high water level is assumed, where during heavy flooding a higher sediment concentration is assumed. On the other hand (and ?) Additionally, a relationship between the initial sediment concentration and the settling velocity is assumed (?). This is an empirical approximation of the so-called flocculation effect process (?).

Initial estimations for the parameters in this model can be found in Table ??.

Table 3. Estimated parameter values Values for the C3-model

<table>
<thead>
<tr>
<th>Estimated-reference value</th>
<th>(k)</th>
<th>(r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical range</td>
<td>0.25</td>
<td>(10^{-6})</td>
<td>0.5</td>
</tr>
<tr>
<td>Start value</td>
<td>4.25</td>
<td>(2 \times 10^{-4})</td>
<td>3</td>
</tr>
<tr>
<td>Optimization bound</td>
<td>(10^{-4})</td>
<td>(10^{-4})</td>
<td>(10^{-1})</td>
</tr>
</tbody>
</table>

4.2 Numerical experiments

We performed several numerical experiments to compare the benefit of optimized with unoptimized measurement conditions. Also, the benefit of different approaches to optimization measurement conditions was compared. Using these results, an appropriate approach for the optimization of conditions for real measurements was selected.

The approaches introduced in Section 2 and implemented by the Optimal Experimental Design Toolbox described in Section 4 were used for the numerical experiments. For that, we used the model_ivp class which allows to calculate the solution of an initial value problem and its first and second derivatives with respect to the model parameters. The C2-model was implemented by the model_C2 class and the C3-model by the model_C3 class which is a subclass of the model_C2 class.

For our numerical experiments, we used the model output with the model_reference parameters in Tables ?? and ? plus an additive normal normally distributed measurement error with zero expectation as artificial measurement results. As standard deviation of the measurement error, we once chose \(10^{-2} \) and once \(10^{-1} \).

In our numerical experiments, we alternately selected a fixed number of experimental designs and estimated the
model parameters with corresponding measurement results. We carried out each experiment ten times and averaged the results to minimize the influence of randomness.

For the initial parameter estimation, we used the values presented in Table 22. Initial parameter values \(C_0, w_0, l, r, \sigma\) and initial values \(5.2 \times 10^{-7}, 12.5, 2 \times 10^{-2}, 3\).

Moreover the bounds for the model parameters shown in Table 22 were used for the parameter estimations. Parameter bounds \(C_0, w_0, l, r, \sigma\) lower bound \(10^{-3}, 10^{-8}, 10^{-4}, 10^{-8}\) \(10^{-1}\) upper bound \(10^3, 10^1, 1.5\) the start values and bounds in Tables 2 and 3 were used. The bounds were chosen so that the typical range of values is covered, but also more extreme values are possible. The starting values were chosen slightly outside the typical ranges to represent a poor initial guess.

The experimental designs for these models consist of the time point of the measurement and the high water level of the tidal inundation. A set of thirty selectable experimental designs was specified. They were obtained by combining three different high water levels of the tidal inundation (1.5m, 2.0m and 2.5m) with ten time points equidistantly spread over the inundation period.

For choosing the experimental designs, we compared the standard and the robust approach presented in Section 3 with the trace as quality criterion together with uniformly distributed experimental designs. In the robust approach, a confidence level of 95\% was used. The optimization problems for the experimental designs were once solved exact in the discrete variant exactly and once approximatively in the relaxed variant. (See Section 2.4.) To evaluate all these methods, we compared the resulting parameter estimations with the correct model parameters from Tables 22 and 23.

We further investigated whether the number of measurements after which new experimental designs are optimized had an impact on the accuracy of the parameter estimation. For this purpose, different numerical experiments were performed where the parameters and experimental designs have been optimized after each one, three resp. five measurements. Altogether fifty measurements were simulated at each experiment with the \(C_2\)-model. For the \(C_3\)-model, hundred and fifty measurements were simulated at each experiment since the model is more complex and therefore a sufficiently accurate estimation of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations

In this subsection, we compare the accuracy of the parameter estimations resulting from the previously described numerical experiments. Some results are illustrated in Figures 10 and 11.

4.3.1 Results for the \(C_2\)-model

The accuracy of the parameter estimations for the \(C_2\)-model only improved marginally after four to twelve measurements independently of the choice of the experimental designs. The maximal accuracy was achieved. Accuracy improved faster the more frequently the experimental designs and parameters were optimized. However, the maximal best achieved accuracy was independent of the frequency.

With uniformly distributed experimental designs the maximum best achieved accuracy was slightly worse than with optimized experimental designs. Additional four to six more measurements were needed compared to optimized experimental designs in order to achieve their accuracy.

Although the parameters nonlinearly occur in this model, it made close to no difference whether the standard or the robust approach for the optimization of the experimental designs was used.

In both approaches, the accuracy was slightly better in the approximatively solving of the discrete optimization problem has resulted in a slightly worse accuracy at the first iterations if the discrete optimization problem was solved directly as if the relaxed optimization problem was solved. Thereafter, the difference was very small. The solutions of the relaxed continuous optimization problems were almost always nearly integer.

The different standard deviations of the measurement errors only influenced the maximal accuracy achieved. Best achieved accuracy which was of course higher at a higher standard deviation. This can be explained by the fact that different constant standard deviations only mean a different scaling of the objective of the experimental design optimization problem. Thus, different constant standard deviations do not affect its solution.
4.3.2 Results for the \(C_3 \)-model

![Graph showing error in parameter estimation for \(C_3 \)-model and three measurement per iteration with standard deviation \(10^{-2} \) of the measurement error.]

Figure 11. Averaged error in the parameter estimation from ten optimization runs with the \(C_3 \)-model and three measurement per iteration with standard deviation \(10^{-2} \) of the measurement error.

After ten to twenty-five measurements, the accuracy of the parameter estimations for the \(C_3 \)-model with optimized experimental designs only improved slightly. Again, the \textit{maximal accuracy was achieved} \textit{accuracy improved} faster, the fewer measurements were performed per iteration and the \textit{maximal best achieved accuracy} was independent of the number of measurements per iteration.

With uniformly distributed experimental designs, the \textit{maximal best accuracy} was achieved after twenty-four to sixty measurements. Furthermore, the \textit{maximal best achieved accuracy} was worse by about a factor of ten compared to the \textit{best accuracy} achieved by (standard) optimized experimental designs.

The standard approach for optimizing experimental designs resulted in a slightly better accuracy compared to the robust approach. Again, if the underlying optimization problem was solved in the discrete rather than in the relaxed variant, the accuracy was slightly better for both approaches.

For both approaches, the difference between the accuracy achieved with the \textit{exact solution of the discrete optimization problem} and the \textit{accuracy achieved with the approximate solution} was small but recognizable and almost constant over the iterations. Also in these experiments, the solutions of the relaxed \textit{continuous} optimization problems were almost all nearly integer.

Again, the different standard deviations of the measurement errors only influenced the \textit{maximal accuracy achieved best achieved accuracy}.

4.3.3 Conclusions regarding the approach for optimizing experimental designs

Optimized experimental designs provided a much more accurate parameter estimation than uniformly distributed experimental designs independent of the chosen optimization approach. Furthermore, only about half as many measurements were needed to achieve the same accuracy with optimized experimental designs as with uniformly distributed experimental designs. In the more complex model, the difference was even \textit{greater}. The robust approach achieved no higher accuracy compared to the standard approach. In the complex model, the robust approach was even slightly less accurate. This may indicate that the \textit{additional approximations in the robust approach offset the increase in accuracy}, which should be \textit{achieved gain in accuracy} by taking into account the nonlinearity is \textit{offset by the additional approximations in the robust approach}. Since a considerably higher computational effort is associated with the robust approach, the standard approach should be preferred, at least for these models.

The \textit{direct solution exact solving} of the discrete optimization problems compared to the \textit{solution of the continuous relaxed optimization problems approximatively solving} only resulted in a small increase in accuracy. The fact that the \textit{solutions of the relaxed optimization problems approximate solutions} were almost all nearly integer was another indication that the difference between both solutions was small. This fact was also observed, for example, in Körkel (2002) and Körkel et al. (2004). For these reasons and because the \textit{direct exact solving} requires much more computational effort, the \textit{relaxed problem should be solved approximative solving should be preferred}, at least for these models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental designs. Some results are illustrated in Figures 12 and 13.

![Graph showing averaged efficiency for the experimental designs from ten optimization runs with the \(C_2 \)-model and three measurement per iteration with standard deviation \(10^{-2} \) of the measurement error.]

Figure 12. Averaged efficiency for the experimental designs from ten optimization runs with the \(C_2 \)-model and three measurement per iteration with standard deviation \(10^{-2} \) of the measurement error.
The results emphasized the already seen importance of the optimization of the experimental designs. In particular, the advantage in the case of few measurements carried out so far was highlighted. Again, the slight advantage of the standard approach over the robust approach was visible. With increasing number of accomplished measurements, the selection strategy of new measurements became less important as the amount and thus the influence of the new measurements compared to those of the accomplished measurements decreased.

4.5 Distribution of optimal measuring points

In this subsection, we compare the distribution of the measuring points optimized in the previously described numerical experiments. Graphical representation of the distribution of the measuring points from some numerical experiments are shown in Figure 14 and 15.

4.5.1 Distribution for the C2-model

Figure 14. Averaged frequency of measurements from ten optimization runs with the C2-model and three measurement per iteration with standard deviation 10^{-2} of the measurement error.

The optimized measuring points were almost exclusively located at the start and end of the inundation periods. At the start of the inundation period, both approaches in the discrete exact variant favored lower high water levels unlike both approaches in the relaxed approximatively variant which favored higher high water levels. At the end of the inundation period, the standard approach in both variants favored lower high water levels unlike the robust approach in both variants which favored higher high water levels.

4.5.2 Distribution for the C3-model

Figure 15. Averaged frequency of measurements from ten optimization runs with the C3-model and three measurement per iteration with standard deviation 10^{-2} of the measurement error.

For the C3-model the optimized measuring points accumulated at the end of the inundation periods. All approaches favored lower high water levels. With an increasing number of measurements per iteration the robust approach in both variants also preferred measurements in the middle of the inundation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal measuring points

The numerical experiments showed that measurements at the start and end of the inundation periods should be preferred for the C2-model.

Measurements at the start of the inundations can be justified by the fact that one parameter of the model is the concentration at the start of the inundation. The fact that the settling velocity as second model parameter most affects the concentration at the end of the inundations justifies measurements here. This can be confirmed by an examination of the ordinary differential equation of the model derived with respect to the settling velocity. The derivative of the model with respect to the settling velocity is zero at the start of the inundation and is getting smaller the further the inundation progresses. Its absolute greatest value it thus reached at the end of the inundation.

The experiments with the C3-model showed that here measurements at end of the inundation periods should be preferred. In this model, the concentration at the start is no parameter but is affected by a parameter that also influences the settling velocity. For this reason, measurements are not suggested at the start.

For both models the high water level seemed to play a minor role for the choice of measuring points.

As a rule of thumb one can say that measurements should be carried out at the end of an inundation period and also some at the start if the C2-model is used.

5 Conclusions

In this paper we presented two different approaches for optimizing experimental design for parameter estimations. One
method was based on the linearization of the model with respect to its parameters, the other takes into account a possible nonlinearity of the model parameters. Both methods were implemented in our presented Optimal Experimental Design Toolbox for MATLAB.

Using application examples, by employing the presented approach for two existing salt marsh models, we showed that model parameters can be determined much more accurately if the corresponding measurement conditions were optimized. Especially for time-consuming or costly measurements, it is therefore useful to optimize the measurement conditions with the Optimal Experimental Design Toolbox.

This gain in accuracy is not limited to the application examples. In general, using the implemented methods, the accuracy of the parameters of any model can be maximized while minimizing the measurement costs, provided that the related assumptions are fulfilled. However, the required execution time for the optimization increases with the number of model parameters and (accomplished and selectable) measurements. Parallelization techniques in the optimization as well as in the model evaluation itself can counteract this effect.

In addition to the parallelization, the optimization in the toolbox could also be extended to techniques of globalization, so that the chance of getting into a local minimum is reduced.

The results concerning the application examples have not significantly differed in spite of various approaches for optimizing experimental design. For this reason, the approach with the least computational effort is recommended. However, this recommendation can not be applied readily to other (more complex) models. Here, the performance of the approaches should be compared again if possible.

Furthermore, it has been found that measurements at the beginning and end of the inundation period are particularly important for the application examples. The high water level of the inundation seemed to play a minor role. These results, however, can not be applied easily to other models. Usually, a separate optimization of experimental design makes sense here.

References

Körkel, S.: Numerische Methoden für Optimale Versuchspla-

Schuerch, M., Vafeidis, A., Slawig, T., and Temmerman, S.: Modeling the influence of changing storm patterns on the ability of a

Wu, C.-F.: Asymptotic Theory of Nonlinear Least Squares Estima-

Acknowledgements. This project was funded by the Deutsche Forschungsgemeinschaft (DFG) Cluster “The Future Ocean.”