Response to Topical Editor

Thanks for submitting a revised version of your manuscript. I feel most comments from the reviewers were well addressed in the revised version, and the model documentation in GitHub has been improved considerably. I think this is a very significant step towards a more open and transparent development of climate and Earth system models, and I hope new improvements of this model will follow in the future with input from a broader community.

I only have one minor comment that I would like the authors to address in the final version. Although the manuscript mentions a test framework for Hector, and the source code does indeed have a number of test files, there is no mention about the functionality of these tests. I feel that for potential users and developers it is very important to know better what is being tested. Please include a short paragraph describing the test suit available.

The authors have addressed this comment in the text below:

“In keeping with Hector’s emphasis on modern, robust software design, the code includes an optional (i.e., not needed to compile and run the model) unit testing build target. Unit testing allows individual units of source code to be tested in a standardized and automatic manner, ensuring that they behave as expected after changes are made to the model source code. Current tests verify the behavior of the model coupler (message passing and dependency calculation); reading of input; time series; logging; and units checking. This functionality requires the 'googletest' library (http://code.google.com/p/googletest).”

Response to Reviewer 1

General comments

• Land carbon uptake in the model is represented by net primary production and not by gross primary production. This may have some conceptual and practical problems because, i) the autotrophic flux of carbon is not included in the calculations of the land-atmosphere C exchange, and ii) this land-atmosphere exchange can’t be compared against many available data products. For example, soil respiration fluxes, which include both autotrophic and heterotrophic sources can’t be compared with model predictions. Similarly, ecosystem level fluxes can’t be compared with eddy-covariance derived fluxes or GPP estimates from satellite products. Can you explain why the autotrophic component of the land C cycle is not included in the model? Do you plan to include this in the future, or is there a particular reason why you believe this should not be included?

As the reviewer notes, we have chosen, in this 1.0 version, to implement the terrestrial-atmosphere C exchange as the difference between NPP and RH, rather than breaking out GPP and RA separately. This makes for a simpler model but, again as the reviewer correctly notes, limits our ability to compare to, for example, remotely-sensed GPP. This is a choice that could (and probably will) be changed in the future; we’ve logged it as an "issue" on the project repository at https://github.com/JGCRI/hector/issues/53. We have added the following to the manuscript under section 7.0: “For example, Hector does not
currently simulate terrestrial gross primary production, a key metric of comparison to e.g. the FLUXNET database.”

• The documentation of the model in GitHub is incomplete and needs to be finished. In particular, the authors should describe better the steps for compiling and running the model in different OS. Given that this documentation is written in Markdown language, the authors should provide a step-by-step procedure for compiling and running a simulation using syntax highlighting. A demo on how to analyze the results using the R scripts would be also very useful.

All documentation of the model is now on Github wiki, including how to compile and run Hector in each OS, how to guides such as; add new components, unitvals, tseries and a demo of the R backend. All documentation is found at:
https://github.com/JGCRI/hector/wiki

• Figure 4 shows a very high sensitivity of Hector for predicting temperature anomalies. The slope after the 1960s is much larger in Hector than in the other models. Can you comment on this large sensitivity?

We have addressed and fixed the high temperature sensitivity after 1960 by including a variable ocean heat flux, as well as lagging the temperature effects from atmospheric [CO₂]. There are numerous processes that are not simulated in Hector that buffer the temperature effects of increasing GHGs. Therefore, we take a simple approach in this current version and lag our temperature. We have addressed this in the manuscript section 4.1, “As global temperatures rise, the uptake capacity of the ocean thus diminishes, simulating both a saturation of heat in the surface and a slowdown in ocean circulation with increased temperatures. Finally, the temperature effects from atmospheric [CO₂] are lagged in time, as there are numerous real-world processes not simulated in Hector buffering the temperature effects of increasing atmospheric [CO₂].” See figures 4 and 8 for updated global temperature change.

Technical and other comments

• Page 7076, lines 22-23. I would say that fully coupled Earth system models (atmosphere-ocean-land) are at the complexity end, and not just AOGCMs.

The authors agree with the reviewer and have edited the title as suggested: “To accomplish this, a hierarchy of climate models with differing levels of complexity and resolution are used, ranging from purely statistical or empirical models, to simple energy balance models, to fully-coupled Earth System Models (ESMs) (Stocker, 2011).”

•Page 7080, line 28. Change _ for d. The _ notation is commonly used for isotopes in C cycle models.

Equation edited as suggested. “dC/dt < ε”
• How do you calculate NPP\textsubscript{0} and RH\textsubscript{0}? I think this formulation of RH is potentially dangerous because you may respire more C than what is available in the pools of equation (8) and (9).

In regards to NPP\textsubscript{0} and RH: NPP\textsubscript{0}, the global preindustrial NPP flux, is specified a priori, not calculated. The use of RH\textsubscript{0} in Equation 5 was a mistake, for which we apologize. At any point in time, model RH is always a function of the current carbon stocks in soil and litter.

• Equation (12). What is the last term \(F_i \)? It seems to me that this term violates mass balance. What additional flux, different from all inputs and outputs, can modify the net change?

The last term \(F_i \) is now the carbon flux to/from the atmosphere to/from the ocean. Equation 12 has been changed accordingly:

\[
\frac{dG_i}{dt} = \sum_{j=1}^{in} F_{j\rightarrow i} - \sum_{j=1}^{out} F_{i\rightarrow j} + F_{atm\rightarrow i}
\]

• Page 7058, line 25. Replace ‘model’ for ‘version’.

Model has been changed to version as suggested by the reviewer.

• Equation (15). Why do you use a difference equation instead of a differential equation? Is this process discrete in time?

The reviewer brings up a good point. We updated equation 16 to reflect changes from a difference solution to an exact solution. Operating on a finite timescale introduces more error than an exact solution.

\[
C(t) = C_0 \times \exp \left(-\frac{1}{\tau} \right) + E \times T \times \left(1 - \exp \left(-\frac{1}{\tau} \right) \right)
\]

Response to Reviewer 2:

General comments

I have two major concerns with the manuscript: 1) experiments to validate Hector are not well described, and 2) Hector appear to have issues at longer timescales that are not well described or acknowledged. I recommend the authors include additional material on the performed experiments and fidelity of Hector at different timescales. The manuscript also need significant cleanup of typos and grammatical errors, and could benefit from improvement of figures.

The authors have since restructured the results section to better describe the experimental design. All experiments are run under prescribed emissions scenarios from the Representative Concentration Pathways (RCP 2.6, 4.5, 6.0, and 8.5). However, the CMIP5 data used to compare with Hector are from prescribed concentration scenarios, with the exception of atmospheric [CO\textsubscript{2}]. We acknowledge that this may not be a perfect
comparison, but the CMIP5 archive is limited in the number of models that ran scenarios with prescribed emissions.

As noted in the title, Hector is concerned with policy relevant timescales, notably the next 100-300 years. We agree with the reviewer that a more detailed explanation of the timescales is needed in the manuscript and have since updated this.

“Hector’s strengths lie within policy relevant time scales of decades to centuries. Studies suggest that 80% of the anthropogenic CO$_2$ emissions have an average atmospheric lifetime of 300-450 years (Archer et al., 1997; Rogner, 1997; Archer, 2005). Hector has all the necessary components to model the climate system from present day through the next approximately 300 years.”

Lastly, grammatical errors, and figures have been improved in the updated manuscript.

Specific comments

Title: The title of the paper does not appropriately describe the contents of this manuscript. The title suggests that this manuscript describes a global carbon cycle model, but Hector is a full climate model and the paper describes all the components of Hector. A better title might be something like, A simple object-oriented and open source model for scientific and policy analyses of the global climate system – Hector v0.1. I recommend that the authors revise the title to better reflect the overall contents of the paper.

The authors agree with the reviewer and have edited the title as suggested: “A simple object-oriented and open source model for scientific and policy analyses of the global climate system – Hector v1.0”

Introduction: The introduction is lacking a description of previous work in the field and needs to add citations and discuss the novelty of Hector. The authors properly describe the purpose of simple climate models, their general structure and implementation. But, the authors should cite previous simple climate models and explicitly explain why the design of Hector is novel. Relevant citations include but are not limited to Meinshausen et al. (2011), Joos et al. (2013), Glotter et al. (2014), and models described in van Vuuren et al. (2009) and Hof et al. (2011).

The authors have added significant changes to the introduction to better reflect the current state of simple climate modeling within Integrated Assessment Models.

“Depending on the purpose of the IAMs (economics, cost-benefit analysis, or more physical based processes), the corresponding climate and carbon component varies in complexity and resolution. For example, models like DICE, FUND, and MERGE have a highly simplified carbon/climate system (Nordhaus, 2008; Anthoff and Tol, 2014; Manne and Richels, 2005). IAMs focusing more on the physical processes of the natural system and the economy employ more complex representations of the climate/carbon system. Models like GCAM (Global Change Assessment Model) and MESSAGE use MAGICC as
Increasing in complexity, some IAMs include the climate/carbon system at gridded scales (e.g., IMAGE), and can be coupled to earth system models of intermediate complexity (e.g., MIT IGSM), or more recently coupled to a full earth system model (the iESM project) (Bouwman et al., 2006; Sokolov et al., 2005; Bond-Lamberty et al., 2014; Di Vittorio et al., 2014; Collins et al., 2015).

Results: The experimental design for the tests performed in this manuscript are not well described. There remain several ambiguities in Section 5 that must be clarified so results can be properly assessed. In general, figure captions should be expanded to explain the experimental design used to make that display. The authors may find it beneficial to add a table that describes all experiments performed, including Hector’s configuration for each experiment, input data used to drive Hector, and the model output (or data) that Hector is compared to. Specific examples of ambiguities related to experimental design include:

• For most figures, it remains unclear precisely when Hector is driven by an emissions scenario and when atmospheric carbon is prescribed. For example, is Figure 8 made using fixed exogenous CO2 concentrations or with emissions scenarios that reproduce RCPs? The authors should clarify when RCPs are used and when esmRCPs are used. An experimental design table (as described above) would help clarify here.

The authors have clarified this information in the text as well as in the figure caption.

“All CMIP5 variables used in this study are from model runs with prescribed atmospheric concentrations, except for comparisons involving atmospheric [CO2] which are from the emissions driven scenario (esmHistorical and esmRCP8.5) (Figures 3 and 5). We acknowledge that this comparison, between an emissions-forced model (Hector) and concentration-forced models (CMIP5), is not perfect. However, few CMIP5 models were run under prescribed emissions scenarios.”

• The paragraph on page 7081 (lines 4-16) that describes how atmospheric concentrations are prescribed needs to be re-written. If the model simply inverts concentrations to find emissions, it is not clear why the assumption in lines 14-15 is necessary. I am also not sure this statement would hold true for large perturbation scenarios, such as an instantaneous doubling (or more) of CO2. If this is how the authors perform the prescribed-CO2 experiments, it is vital that it be described carefully else results are not interpretable.

The paragraph on page 7081 explains some of the capabilities built into Hector to force its output to match a user-supplied time series. This is very helpful with testing and debugging the carbon cycle system within Hector. We do not invert concentrations to find emissions; instead for example, atmospheric CO2 concentrations are read into Hector and over write any calculated [CO2] values. The user-supplied time series can be started and stopped at any point. When the model exits the constrained time period, [CO2], in this case, becomes fully prognostic. We have updated the manuscript to better reflect this.
“Hector can be forced to match its output to a user-supplied time series. This is helpful to isolate and test different components. Available constraints currently include atmospheric CO$_2$, global temperature anomaly, total ocean-atmosphere carbon exchange, total land-atmosphere carbon exchange, and total radiative forcing.”

- Which “historical conditions” are used to run Hector (page 7089, lines 17-18)?

The text containing ‘historical conditions’ has been rewritten to better reflect the inputs use to run Hector in this study.

“Within this study, Hector is run with prescribed emissions from 1850 to 2300 under all four Representative Concentration Pathways (RCPs), freely available at http://tntcat.iiasa.ac.at/RcpDb/”

- Which models run esmRCP8.5 (page 7090, lines 11-12)? Are these different than the 11 CMIP5 models?

The authors have updated table 3 within the manuscript to reflect the models that ran esmHistorical and esmrcp85 (emissions prescribed scenarios).

- RCPs (by definition) are CO2 concentration pathways. What does it mean for atmospheric CO2 in Hector to be highly correlated with MAGICC for the four RCPs (Page 7091, lines 23-27)? Shouldn’t the definition of an RCP necessitate identical concentration pathways? This confusion also applies to figures 5-6, and is likely related to the confusion described in the second bullet. Please clarify.

The authors apologize for the confusion on the wording of RCPs and how they relate to the Hector output. We have clarified this issue in section 5.0 below: “RCPs by definition are concentration pathways; however, for all experiments within this manuscript we use the corresponding emissions trajectories from each RCP as input for Hector.”

- I disagree with the statements at the beginning of section 6.2. It is incorrect that models that accurately estimate historical climate are simply “assumed” to be reliable for future scenarios. The credibility of Hector in making future projections of the climate should not be based solely on the fact that it can reproduce historical trends. In fact, we see that Hector has problems at long timescales (where short timescales are more accurate—Figures 8 and 10), and even some errors appear in the historical record itself (Figure 4). The authors must re-write this paragraph, but more importantly, must be explicit about issues with the use of Hector over long timescales. There are issues with the fidelity of Hector at different timescales that are not acknowledged or described. Hector does not include the dissolution of calcium carbonate in its representation of the carbon cycle (to my knowledge) and therefore will not be dependable past _2000 years. But I do not know whether Hector is dependable up to 2000 years. Potential users of Hector would benefit
greatly from a dedicated discussion of its usefulness at different timescales. Specific
concerns with the fidelity of Hector include:

The authors fully agree with the reviewer that accurately simulating historical conditions
does not thereby make them reliable for future scenarios. We also agree with the
reviewer that a discussion of the timescales in which Hector is useful over is needed
within the manuscript (section 6.2).

“We compare Hector to MAGICC and CMIP5 under differing future climate projections.
Hector’s strengths lie within policy relevant time scales of decades to centuries. Studies
suggest that 80% of the anthropogenic CO$_2$ emissions have an average atmospheric
lifetime of 300-450 years (Archer et al., 1997; Rogner, 1997; Archer, 2005). Hector has
all the necessary components to model the climate system from present day through the
next approximately 300 years.”

• Hector is unable to reproduce 1970-2010 temperatures (Fig 4). These errors should be
described in the text, including possible explanations linked to underlying physics.

We have addressed and fixed the high temperature sensitivity after 1960 by including a
variable ocean heat flux, as well as lagging the temperature effects from atmospheric
$[\text{CO}_2]$. There are numerous processes that are not simulated in Hector that buffer the
temperature effects of increasing GHGs. Therefore, we take a simple approach in this
current version and lag our temperature. We have addressed this in the manuscript
section 4.1, “As global temperatures rise, the uptake capacity of the ocean thus
diminishes, simulating both a saturation of heat in the surface and a slowdown in ocean
circulation with increased temperatures. Finally, the temperature effects from
atmospheric $[\text{CO}_2]$ are lagged in time, as there are numerous real-world processes not
simulated in Hector buffering the temperature effects of increasing atmospheric $[\text{CO}_2]$. ”
See figures 4 and 8 for updated global temperature change.

• Atmospheric CO2 concentrations in figure 5 are only shown from 1850-2100. Is there a
reason why this plot isn’t extended to 2300 like figures 6-11? If model errors are
prevalent from 2100-2300, it is essential that this plot show the entire time range.

The CMIP5 archive of models that ran esmrcp85, do not run out to 2300. Therefore, we
can only compare out to 2100. The caption for Figure 5 has been updated:

“Figure 5: Atmospheric $[\text{CO}_2]$ from 1850 to 2100 under RCP 8.5 for Hector (blue),
MAGICC6 (green), Mauna Loa (purple), Law Dome (brown) and esmRCP 8.5
(prescribed emissions scenario) CMIP5 median, one standard deviation and model range
(pink, n=4 (1850-2000) and n=5 (2001-2100)). Note that the CMIP5 models run under
esmrcp85 do not extend to 2300.”

• Hector also appears unable to reproduce temperatures in CMIP5 models past year 2100
(Fig 8). This misrepresentation is downplayed in the text (page 7092, lines 11-20). It is
not sufficient to simple state that errors are negligible because correlations are high. It is
unclear whether this is an error in the temperature or the carbon cycle model of Hector
because the experiment is not well described. Please clarify.
Since fixing the temperature problem post 1960s, Hector is now closer to the CMIP5 median post 2100, than MAGICC6 is. Post 2100, Hector remains within the standard deviation of the CMIP5 models. We have included in the figure captions, the numbers of models for each scenario, for each time period. Post 2100, the number of model run out to 2300 drops off dramatically, which could be responsible for some of the differences between the CMIP5 median and Hector.

• The authors do a nice job highlighting deviations in the atmosphere-ocean flux in Hector from CMIP5 models after 2100 (Fig 10). However, these deviations do not seem trivial, and may impact long-term projections. If Hector cannot be trusted after 2100, this should be stated. Until a later version of Hector is released with an updated modeling approach, the authors should acknowledge these issues and should add discussion on the physical causes that may produce deviations from observations (or more complex models). The authors do include some discussion of the underlying physics at the end of section 6, but more should be included throughout the manuscript.

The authors agree with the reviewer and have since updated section 6.2 with more detail: “Hector’s calculation of air-sea fluxes is within the large CMIP5 model range up to 2100. However, after that Hector peaks close to 2150, while the CMIP5 models are beginning to decline. One potential reason for this discrepancy after 2100 is that in this version of Hector, we do not simulate changes in ocean circulation, potentially biasing fluxes too high after 2100. Most ESMs in CMIP5 show a weakening of the Atlantic meridional overturning circulation by 2100 between 15% and 60% under RCP 8.5 (Cheng et al., 2013). A slowdown in ocean circulation may result in less carbon uptake by the oceans, as seen in Figure 9. Another potential reason for this bias is Hector’s constant pole to equator ocean temperature gradient. Studies show that the Arctic is warming faster than the rest of the globe (e.g., Bintanja and van der Linden, 2013; Holland and Bitz, 2003; Bekryaev et al., 2010). A warmer high latitude surface ocean in Hector would suppress the uptake of carbon, potentially contributing to higher air-sea fluxes after 2100.”

Technical corrections - figures and tables

• All figures: Figure text is too small.
• Figure fonts and line size have been enlarged for all figures.
• Figure 2: Describe (in caption or key) the definitions of variables TT, EIL, EID, etc. A reference to Table 2 has been included in the figure caption.
• Figures 3-5, and 8: use consistent colors for models across figures. It is very hard to compare across figures when Hector output is shown as yellow in one plot and green in another.
The authors agree with the reviewer and have updated all figures to have the same color scheme.

• Figure 8: Label panels a, b, c, and d.

Figure 8 has been updated.

• Tables 1 and 2: Include references for initial condition values where applicable.

For example, the recent IPCC estimates a pre-industrial total oceanic carbon content of \(38,000\) GtC. Numbers here are closer to \(35,000\) GtC. This difference is not likely significant for Hector, but my confidence in the model would be higher with references to justify these numbers.

The authors agree with the reviewer and have added references for initial values where applicable in Table 1 & 2.

Technical corrections - text
(Note that I did not provide comments for sections 4.2.1-4.2.6, and suggest a different reader with expertise in this area to review this material.)

• Page 7077, line 5: #4 (modeling the carbon cycle) seems a subset of #1 (calculating future concentrations of greenhouse gases). Either remove #4 or move it up as an explicit subset of #1 (or explain what is meant, if I am missing something). The order should reflect the general order of operations in an SCM.

Sentence edited as suggested:
“Most SCMs have a few key features: 1) calculating future concentrations of greenhouse gases (GHGs) from given emissions while modeling the global carbon cycle; 2) calculating global mean radiative forcing from greenhouse gas concentrations; and 3) converting the radiative forcing to global mean temperature (e.g., Wigley, 1991; Meinshausen et al., 2011a; Tanaka et al., 2007b; Lenton, 2000).”

• Page 7077, line 7: Recommend changing the word “policy” to “decision making”.

Sentence edited as suggested:
“With these capabilities, SCMs play an integral role in decision making and scientific research.”

• Page 7077, lines 12-13: Recommend changing “have a simple representation” to “rely on simple representations”.

Sentence edited as suggested:
“Therefore, all IAMs rely on a simple representation of the global climate system.”

• Page 7077, lines 24-27: Consider re-writing the first sentence of this paragraph. There is also a grammatical error in this sentence: “therefore are used for run multiple simulations of future climate change…”
Lastly, SCMs are computationally efficient and inexpensive to run. Therefore, they are used to run multiple simulations of future climate change emissions scenarios, parameter sensitivity experiments, perturbed physics experiments, large ensemble runs, and uncertainty analyses (Senior and Mitchell, 2000; Hoffert et al., 1980; Harvey and Schneider, 1985; Ricciuto et al., 2008; Sriver et al., 2012; Irvine et al., 2012).”

- Page 7077, line 29: Please be more specific with wording choice for “fast enough”.

“Lastly, SCMs are computationally efficient and inexpensive to run.”

- Page 7078, line 5: “This study introduces Hector v0.1, an object-oriented, simple…”

“This study introduces Hector v1.0, an object-oriented, simple…”

- Page 7078, line 11: Consider changing the word “basic” to “fundamental”.

“One of the fundamental questions faced in developing a SCM is how much detail should be represented in the climate system.”

- Page 7082, line 19: typo – “-political”

Formatting issues with a ‘-’ have been corrected.

- Page 7083, line 6: typo – “NPP is modified by a the use-specified…”

Formatting issues with a ‘-’ have been corrected.

- Page 7083, line 7: Does (or can) beta change with time or temperature? If parameter is fixed, state that explicitly.

No, beta (the shape of the NPP response to CO2 fertilization) doesn't change with time. It does, optionally, change spatially: users can define separate beta values for different biomes, for example.

“These are commonly used formulations: NPP is modified by a user-specified carbon fertilization parameter, β (Piao et al., 2013), that is constant in time but not necessarily in space. For example, users can define separate β values for different biomes.”

- Page 7083, line 14: Do you mean Eqs. (7)-(9)? Correct if this is a typo.

The authors corrected this typo.

- Page 7083, eqs 7-9: Explicitly define all terms and/or refer to Table 1. Terms do not match those in Table 1 (e.g. FLC).
The authors have corrected this.

• Page 7084, lines 10-12: This assumption is essentially a statement of fixed equator-pole temperature gradient. But when the Earth warms, the poles tend to warm more than the equator. This assumption should be discussed explicitly, including under what conditions it would affect the performance of Hector

Within Hector it is assumed a fixed equator-pole temperature gradient in sea surface temperature. While this may not hold under future warming scenarios, v1.0 of Hector is a simple representation of the climate system and this change in temperature gradient is a major future improvement to the model. A warmer high latitude ocean will potentially result in less CO₂ uptake in the high latitude ocean. “We assume a constant pole to equator temperature gradient, but acknowledge that this assumption may not hold true if the poles warm faster than the equator.”

• Page 7084, lines 21-23: Carbon cycle description (section 3 up to 3.1) is incomplete. Presumably the model includes the non-linear effects in oceanic carbon uptake from changing ocean acidity as atmospheric carbon is transferred to the upper ocean, but these are not described. The relevant equations should be included here. Some discussion comes later on page 7093, but the pH dependence is not well described.

This has been addressed under section 3.0:
“We model the nonlinearity of the inorganic carbon cycle, calculating pCO₂, pH, and carbonate saturations based on equations from Zeebe and Wolf-Gladrow, (2001). The flux of CO₂ for each box i is calculated by:

\[F_i(t) = k \alpha \Delta pCO₂ \]

where \(k \) is the CO₂ gas-transfer velocity, \(\alpha \) is the solubility of CO₂ in water based on salinity, temperature, and pressure, and \(\Delta pCO₂ \) is the atmosphere-ocean gradient of pCO₂ (Takahashi et al., 2009). The calculation of pCO₂ in each surface box is based on the concentration of CO₂ in the ocean and its solubility (a function of temperature, salinity, and pressure).”

• Page 7089, line 17: Please be more specific with “other models”. Do the authors mean more complex models? Or widely used models? Or both?

Sentence edited as suggested:
“A critical test of Hector’s performance is to compare the major climatic variables calculated in Hector, e.g., atmospheric [CO₂], radiative forcing, and atmospheric temperature, to observational records and both simple and complex climate models.”

• Page 7090, line 8: Spell out “SD”.

Sentence edited as suggested: “standard deviation”

• Page 7090, line 24: Remove words “a few”.

DRAFT 11
Sentence edited as suggested: removed “a few”

- Page 7090, line 25-26: Consider re-wording sentence.

Sentence edited as suggested:
“After spinup is complete in Hector, atmospheric [CO₂] in 1850 is 286.0 ppmv, which compares well with observations from Law Dome of 285.2 ppmv.”

- Page 7091, line 19: Is Hector actually perfectly correlated here, or is R=1.0 from rounding? Please double check.

The authors have since removed the correlation values from the manuscript. We have replaced them with absolute changes over given time periods. We feel that this is a better comparison between all the models, than correlation. 2 models can be well correlated, but that does not necessarily suggest that they are in agreement.

- Page 7092, line 23: Grammatical error – “the higher the correlation and low RMSE between CMIP5 and : : :”. Presumably what is intended is “the lower the RMSE”.

The authors have since removed figure 9 from the manuscript as well.

- Page 7093, line 23: Change “see” to “estimate”.

Sentence edited as suggested:
“We estimate a significant drop in pH from present day through 2100. ”
A simple object-oriented and open source model for scientific and policy analyses of the global carbon cycle–climate system–Hector v1.00.1

Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland–College Park, 5825 University Research Court, College Park, MD 20740, USA

*Corresponding author: corinne.hartin@pnnl.gov
Abstract

Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.00.4, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global scale earth system processes. Hector has a three-part main carbon pool cycle: an one-pool atmosphere, land, and ocean. The model’s terrestrial carbon cycle includes primary production and respiration and fluxes primary production, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air-sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO$_2$], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways with equivalent rates of change high correlations ($R > 0.7$) of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project version 5. Hector’s flexibility is freely available under an open source license, and its modular design will facilitate a broad range of research in various areas.
1.0 Introduction

Projecting future impacts of anthropogenic perturbations on the climate system relies on understanding the interactions of key earth system processes. To accomplish this, a hierarchy of climate models with differing levels of complexity and resolution are used, ranging from purely statistical or empirical models, to simple energy balance models, to fully-coupled atmosphere-ocean general circulation models (AOGCMs) Earth System Models (ESMs) (Stocker, 2011).

Simple-Reduced-complexity or simple climate models (SCMs) lie in the middle of this spectrum, representing only the most critical global scale earth system processes with low spatial and temporal resolution, e.g., carbon fluxes between the ocean and atmosphere, primary production and respiration fluxes and primary production on land. These models are relatively easy to use and understand, and are computationally inexpensive. Most SCMs have a few key features: 1) calculating future concentrations of greenhouse gases (GHGs) from given emissions and while modeling the global carbon cycle; 2) calculating global mean radiative forcing from greenhouse gas concentrations; and 3) converting the radiative forcing to global mean temperature and 4) modeling the carbon cycle, an essential part of the climate system (e.g., Wigley, 1991; Meinshausen et al., 2011a; Tanaka et al., 2007b; Lenton, 2000).

With these capabilities, SCMs play an integral role in policy-decision making and scientific research. For example, energy-economic-climate models or Integrated Assessment Models (IAMs) are used to address issues on energy system planning, climate mitigation, and stabilization pathways, and land-use changes, pollution control,
and population policies (Wigley et al., 1996; Edmonds and Smith, 2006; van Vuuren et al., 2011). **AOGCMs-ESMs** are too computationally expensive to use in these analyses. Therefore, all IAMs rely on having a simple representation of the global climate system in which emissions data from the IAMs are converted to concentrations and then radiative forcing and global temperature are calculated.

Depending on the purpose of the IAMs (economics, cost-benefit analysis, or more physical based processes), the corresponding climate and carbon component varies in complexity and resolution. For example, models like DICE, FUND, and MERGE have a strongly highly simplified carbon/climate system (Nordhaus, 2008; Anthoff and Tol, 2014; Manne and Richels, 2005). IAMs focusing more on the physical processes of the natural system and the economy have a more complex representation of the climate/carbon system. Models like GCAM (Global Change Assessment Model) and MESSAGE use MAGICC as their SCM (Meinshausen et al., 2011a; Riahi et al., 2007; Calvin et al., 2011). Increasing in complexity, some IAMs include the climate/carbon system at gridded scales (e.g., IMAGE), and can be coupled to earth system models of intermediate complexity (e.g., MIT IGSM), or more recently coupled to a full earth system model (the iESM project) (Bouwman et al., 2006; Sokolov et al., 2005; Bond-Lamberty et al., 2014; Di Vittorio et al., 2014; Collins et al., 2015).

SCMs such as MAGICC, GENIE, and the climate emulation tool at RDCEP are also used as emulators of more complex **AOGCMs-ESMs**, such as MAGICC, GENIE, and the climate emulation tool at RDCEP (Meinshausen et al., 2011c; Schlesinger and Jiang, 1990; Challenor, 2012; Ratto et al., 2012; Lenton et al., 2009; Castruccio et al., 2014).
The components behavior of SCMs can be constrained to replicate the overall behavior of the more complex model ESM components. For instance, the climate sensitivity of a SCM can be made equal to that of an ESM AOGCM by altering a single model parameter. In particular, the One-SCM+ MAGICC model has been central to the analyses presented in the Intergovernmental Panel on Climate Change (IPCC) reports, and can be parameterized to emulate a large suite of AOGCMs-ESMs (Meinshausen et al., 2011a).

Lastly, SCMs are computationally efficient and inexpensive to run. Therefore, they are used *farto* run multiple simulations of future climate change emissions scenarios, parameter sensitivity experiments, perturbed physics experiments, large ensemble runs, and uncertainty analyses (Senior and Mitchell, 2000; Hoffert et al., 1980; Harvey and Schneider, 1985; Ricciuto et al., 2008; Sriver et al., 2012; Irvine et al., 2012). SCMs are fast enough computationally efficient in that multiple scenarios can be simulated, and a wide range of parameter values can be tested. MAGICC, the Bern CC model, and SNEASY are examples of a few models used for uncertainly analysis (Meinshausen et al., 2011c; Urban and Keller, 2010; Joos et al., 2001b). Specifically, SCMs have been useful in reducing uncertainties in future CO2 sinks, quantifying parametric uncertainties in sea-level rise, ice-sheet modeling, ocean-heat uptake, and aerosol forcings (Ricciuto et al., 2008; Sriver et al., 2012; Applegate et al., 2012; Urban and Keller, 2009).

This study introduces Hector v0.1.0, an open source, object-oriented, simple climate carbon-cycle model. Hector was developed with three main goals in mind. First, Hector
is an open source model. Hector is open source, an important quality given that the scientific community, funding agencies, and journals are increasingly emphasizing transparency and open source (E.P. White, 2013; Heron et al., 2013), particularly in climate change sciences (Wolkovich et al., 2012). With an open source model, a large community of scientists can access, use, and enhance it, with the potential for long-term utilization, improvement, and reproducibility (Ince et al., 2012). Second, a clean design using an object-oriented framework is critical for Hector development and future use. This allows for new components to easily be added to Hector, i.e. the model’s functionality to be easily extended in the future—not currently included in the core version. More importantly, in addition, this framework allows for easy coupling into IAMs, in particular GCAM. Lastly, Hector is a stand-alone simple climate model used to answer fundamental scientific research questions, uncertainty analysis, parameter sensitivities, etc.

One of the basic fundamental questions faced in developing a SCM is how much detail should be represented in the climate system. Our goal is to introduce complexity only where warranted, keeping the representations of the climate system as simple as possible. This results in fewer calculations, faster execution times, and easier analysis and interpretation of results. Sections 2, 3, and 4 describe the structure and components of Hector. Sections 5 and 6 describe the experiments, results and comparison of Hector against observational data and other models (MAGICC and CMIP5).
2.0 Model architecture

2.1 Overall structure and design

Hector is written in C++ and uses an object-oriented design that enforces clean separation between its different parts, which interact via strictly defined interfaces. The separation keeps each software module self-contained, which makes the code easy for users to understand, maintain, and enhance. Entities in the model include a command-line wrapper, the model coupler, various components organized around scientific areas (carbon cycling, radiative forcing, etc.) and visitors responsible for model output. Each of these is discussed below.

2.2 Model Coupler

Hector’s control flow starts with the coupler, which is responsible for: 1) parsing and routing input data to the model components; 2) tracking how the components depend on each other; 3) passing messages and data between components; 4) providing facilities for logging, time series interpolation, etc.; and 5) controlling the main model loop as it progresses through time. Any errors thrown by the model are caught by the wrapper, which prints a detailed summary of the error.

Input data are specified in flat text files, and during startup are routed to the correct model component for its initialization. Some of the key initial model conditions are summarized in Table 1 and Table 2. For more details of initial model conditions we urge the reader to download Hector v0.1.0 (https://github.com/JGCR/ Hector).

Components can send messages to each other during the model run, most often
requesting data. The messaging interface is also available to external subroutines, such as components of IAMs or other linked models. The coupler handles message routing (via the capability mechanism, below) and enforces mandatory type checking: e.g., if a component requests mean global temperature in °C but the data are provided in K, an error will be thrown (i.e., execution halts) unless the receiving component can handle this situation.

Visitor patterns- are units of code that traverse all model components and handle model output (Martin et al., 1997). Two visitors currently exist: one saves an easily-readable summary table to an output file, while the other writes a stream of model data (both standard outputs and internal diagnostics). After the model is finished running, this ‘stream’ file can be parsed and summarized by R scripts (R Development Core Team, 2014) included with the codeHector. Log files may also be written by any model entity, using facilities provided by the coupler. The full sequence of events during a model run is summarized in Figure 1.

2.3 Components

Model components are submodels that communicate with the coupler. From the coupler’s point of view, components are fully defined by their capabilities and dependencies. At model startup, before the run begins, components inform the coupler of their capabilities, i.e., what data they can provide to or accept from the larger model system. The coupler uses this information to route messages, such as requests for data, between components, such as requests for data. Components also register their dependencies, i.e., what data results they require from other components in order for
their to complete their computations. After initialization, but before the model begins to run, the coupler uses this dependency information to determine the order in which components will be called in the main control loop.

The model’s modular architecture, and the capability/dependency systems described above, allows swapping, enabling and disabling of model components directly via the input without recompiling. For example, this means that a user can test two different ocean submodels and easily compare results without having to rebuild the model.

2.4 Time step, spinup, and constraints

The model’s fundamental time step is 1 year, although the carbon cycle can operate on a finer resolution when necessary (Section 2.6.13.1). When the model is on an integer date (e.g. 1997.0) it is considered to be the midpoint of that particular calendar year, in accordance with Representative Concentration Pathway (RCP) data (Meinshausen et al., 2011b).

Like many models, Hector has an optional ‘spinup’ step, in which the model runs to equilibrium in an a historical, perturbation-free mode (Pietsch and Hasenauer, 2006). This occurs after model initialization, but before the historical run begins, and ensures that the model is in steady state when it enters the main simulation. During spinup, the coupler repeatedly calls all the model components in their dependency-driven ordering, using an annual time step. Each component signals whether it needs further steps to stabilize, and this process repeats until all components signal that they are complete.
Currently only the model’s carbon cycle makes use of the spinup phase. Spinup takes place prior to land use change or industrial emission inputs. The main carbon cycle moves from its initial, user-defined carbon pool values to a steady state in which $\frac{\delta C}{\delta t} < \varepsilon$ for all pools, where the convergence criterion ε is user-definable and by default $\varepsilon = 1$ Tg C yr$^{-1}$. From its default values the preindustrial carbon cycle will typically stabilize in 300-400 time steps.

Hector can be forced to match its output to a user-supplied time series. This is helpful to allow isolation and testing of different components. Available constraints currently include atmospheric CO$_2$, global temperature anomaly, total ocean-atmosphere carbon exchange, total land-atmosphere carbon exchange, and total radiative forcing. Most constraints operate by overwriting model-calculated values with user-supplied time series data during the run. The atmospheric [CO$_2$] constraint operates slightly differently, as the global carbon cycle is subject to a continuous mass-balance check. As a result, when the user supplies a [CO$_2$] record between arbitrary dates and orders the model to match it, the model computes [CO$_2$] at each time step, and any deficit (surplus) in comparison with the constraint [CO$_2$] is drawn from (added to) the deep ocean. The deep ocean holds the largest reservoir of carbon; therefore, small changes in this large pool have a negligible effect on the carbon cycle dynamics. When the model exits the constraint time period, atmospheric [CO$_2$] again becomes fully prognostic.

2.5 Code availability and dependencies
All Hector code is open source and available at https://github.com/JGCRI/hector/. The repository includes model code that can be compiled on Mac, Linux, and Windows, input files for the four Representative Concentration Pathways (RCP) cases discussed in Section 4.5, R scripts to process model output, and extensive documentation. We kept the Software dependencies as limited as possible, with only the GNU Scientific Library (GSL, Gough, 2009) and the Boost C++ libraries (http://www.boost.org) required. An optional unit testing build target requires the googletest framework (http://code.google.com/p/googletest). However, this is not needed to compile and run Hector. HTML documentation can be automatically generated from the code using the Doxygen tool (http://www.doxygen.org). All these tools and libraries are free and open source.

In keeping with Hector's emphasis on modern, robust software design, the code includes an optional (i.e., not needed to compile and run the model) unit testing build target. Unit testing allows individual units of source code to be tested in a standardized and automatic manner, ensuring that they behave as expected after changes are made to the model source code. Current tests verify the behavior of the model coupler (message passing and dependency calculation); reading of input; time series; logging; and units checking. This functionality requires the 'googletest' library (http://code.google.com/p/googletest).

3.0 Main Carbon Cycle Component
In the model’s default terrestrial carbon cycle, terrestrial vegetation, detritus, and soil are linked with each other and the atmosphere by first-order differential equations (Figure 2). Vegetation net primary production is a function of atmospheric [CO$_2$] and temperature. Carbon flows from the vegetation to detritus and then to soil, losing fractions to heterotrophic respiration on the way. Land-use change emissions are specified as inputs. An ‘earth’ pool debits carbon emitted as anthropogenic emissions, allowing a continual mass-balance check across the entire carbon cycle.

More formally, any change in atmospheric carbon, and thus [CO$_2$], occurs as a function of anthropogenic fossil fuel and industrial emissions (F_A), land-use change emissions (F_{LC}), and the atmosphere-ocean (F_O) and atmosphere-land (F_L) carbon fluxes. The atmosphere is treated as a single well-mixed box whose rate of change is:

$$\frac{dC_{atm}}{dt} = F_A(t) + F_{LC}(t) - F_O(t) - F_L(t)$$ \hspace{1cm} (1)

where, F_A is the anthropogenic emissions, F_{LC} is the land-use change emissions and F_O and F_L are the atmosphere-ocean and atmosphere-land fluxes. Note that the carbon cycle is solved under indeterminate time steps (represented in the text by equations with d/dt), while most other submodels of Hector are solved under a fixed time step of 1 year (equations with Δ). Future versions of Hector will incorporate indeterminate time steps within all components of the model. The overall terrestrial carbon balance (Equation 2) excluding user-specified land-use change fluxes at time t is the difference between net primary production (NPP) and heterotrophic respiration (RH). This is summed over user-specified n groups (each typically regarded as a latitude band, biome, or political units), with $n \geq 1$:
\[
F_L(t) = \sum_{i=1}^{n} NPP_i(t) - RH_i(t)
\]

(2)

Note that \(NPP\) here is assumed to include non-LUC disturbance effects (e.g., fire), for which there is currently no separate term. For each biome \(i\), \(NPP\) and \(RH\) are computed as a function of its preindustrial values \(NPP_0\) and \(RH_0\), current atmospheric carbon \(C_{atm}\), and the biome’s temperature anomaly \(T_i\), while heterotrophic respiration \(RH\) depends upon the pool sizes of detritus \((C_d)\) and soil \((C_s)\), and global temperatures:

\[
NPP_i(t) = NPP_0 \times f(C_{atm}, \beta_i)
\]

(3)

\[
f(C_{atm}, \beta_i) = 1 + \beta_i \log \left(\frac{C_{atm}}{C_0} \right)
\]

(4)

\[
RH_{s,d}(t) = C_{s,d} \times f_{rs,rd} \times Q_{10i} \frac{T_i(t)}{10}
\]

(5)

\[
T_i(t) = T_G(t) \times \delta_i
\]

(6)

These are commonly used formulations: \(NPP\) is modified by a user-specified carbon fertilization parameter, \(\beta\) (Piao et al., 2013), that is constant in time but not necessarily in space. Optionally, it can change spatially. For example, users can define separate \(\beta\) values for different biomes. \(RH\) changes are controlled by a biome-specific \(Q_{10}\) value. Biomes can experience temperature changes at rates that differ from the global mean \(T_G\), controlled by a user-specified temperature factor \(\delta\). Note that in equation (5), soil RH depends on a running mean of past temperatures, an attempt to representing the slower propagation of heat through soil strata.

Land carbon pools (vegetation, detritus, and soil) change as a result of \(NPP\), \(RH\), and land-use change fluxes, whose effects are partitioned among these carbon pools. In addition, carbon flows from vegetation to detritus and to soil (Figure 2). Partitioning
fractions \((f)\) control the flux quantities between pools (Table 2). For simplicity Equations 8-10 omit the time \(t\) and biome-specific \(i\) notations, but each pool is tracked separately for each biome at each time step:

\[
\begin{align*}
\frac{dC_V}{dt} &= NPP_{nv} - C_V(f_{vd} + f_{vs}) - F_{LCf_{lv}} \\
\frac{dC_D}{dt} &= NPP_{nd} + C_Vf_{vd} - C_Df_{ds} - RH_{det} - F_{LCf_{ld}} \\
\frac{dC_S}{dt} &= NPP_{ns} + C_Vf_{vs} + C_Df_{ds} - RH_{soil} - F_{LCf_{ls}}
\end{align*}
\]

The ocean-atmosphere carbon flux is the sum of the ocean’s surface fluxes \(F\):

\[
F_O(t) = \sum_{i=1}^{n} F_i(t)
\]

The surface fluxes of each individual box are directly calculated from an ocean chemistry submodel described in detail by Hartin et al. (in prep). We model the nonlinearity of the inorganic carbon cycle, calculating \(pCO_2\), \(pH\), and carbonate saturations based on equations from Zeebe and Wolf-Gladrow, (2001). The flux of \(CO_2\) for each box \(i\) is calculated by:

\[
F_i(t) = k \alpha \Delta pCO_2
\]

Where \(k\) is the \(CO_2\) gas-transfer velocity, \(\alpha\) is the solubility of \(CO_2\) in water based on salinity, temperature, and pressure, and \(\Delta pCO_2\) is the atmosphere-ocean gradient of \(pCO_2\) (Takahashi et al., 2009). The calculation of \(pCO_2\) in each surface box is based on the concentration of \(CO_2\) in the ocean and its solubility (a function of temperature, salinity, and pressure). At steady state, the cold high latitude surface box (>55°, subpolar...
gyres) acts as a sink of carbon from the atmosphere, while the warm low latitude
surface box (<55°) off gases carbon back to the atmosphere. Temperatures of the
surface boxes are linearly related to atmospheric global temperatures (see section 4.1),

\[T_{HL} = \Delta T - 13 \quad \text{and} \quad T_{LL} = \Delta T + 7 \quad (\text{Lenton, 2000}). \]

but The ocean model, modeled after
Lenton et al., (2000) and Knox and McElroy, (1984), circulates carbon through four
boxes (two surface, one intermediate depth, one deep), via water mass advection and
exchange, simulating a simple thermohaline circulation (Figure 2). At steady state,
approximately 100Pg of carbon are transferred from the high latitude surface box to the
deep box based on the volume of the box and transport in Sv (10^6 m^3 s^-1) between the
boxes. The change in carbon of any box \(i \) is given by the fluxes in and out, with \(F_{atm\rightarrow i} \) as
the atmosphere-ocean carbon flux:

\[
dC_i \over dt = \sum_{j=1}^{in} F_{j\rightarrow i} - \sum_{j=1}^{out} F_{i\rightarrow j} + F_{atm\rightarrow i}
\] (12)[13]

As the model advances, the carbon values in PgC is converted to dissolved inorganic
carbon (DIC) change in each box. The new DIC values are used within the chemistry
submodel to calculate pCO_2 values at the next time step.

3.1 Adaptive-time step solver

The fundamental time step in Hector is currently one year, and most model
components are solved at this resolution. The carbon cycle, however, can operate on a
variable time step, helping to stabilize ensuring accurate ODE solutions, even under
particularly high-emissions scenarios. This will also allow future sub-annual applications
where desired. The adaptive time step accomplished using the gsl_odeiv2_evolve_apply
solver package of GSL 1.16, which attempts many different step sizes to reliably (i.e., with acceptable error) keep truncation error within a specific tolerance when advancing the model. Thus all the carbon cycle components handle indeterminate time steps less than or equal to \(\leq 1 \) year, and can signal the solver if a too-large time step is leading to instability. The solver then re-attempts the solution, using a series of smaller steps. From the coupler’s point of view, however, the entire model continues to advance in annual increments.

4.0 Other Components

4.1 Global Atmospheric Temperature

Near surface global atmospheric temperature is calculated by:

\[
\Delta T(t) = \lambda \cdot RF(t) - F_H(t)
\]

(13)(14)

where, the user-specified \(\lambda \) is the climate feedback parameter, defined as \(\lambda = S' / S \), where \(S' \) is the climate sensitivity parameter (3 Kelvin) and \(S \) is the equilibrium climate sensitivity for a doubling of CO\(_2\) (3.7 Wm\(^{-2}\)) (Knutti and Hegerl, 2008). \(RF \) is the total radiative forcing and \(F_H \) is the ocean heat flux. \(F_H \) is calculated by a simple sigmoidal expression of the ocean heat uptake efficiency \(k \) (W m\(^{-2}\) K\(^{-1}\)) (that decreasinges with increasing global temperatures) and multiplied by the atmospheric temperature change prior to the ocean’s removal of heat from the atmosphere \((T_H) \) (Raper et al., 2002):

\[
\Delta F_H(t) = k \cdot \Delta T_H(t)
\]

(14)
As global temperatures rise, the uptake capacity of the ocean may diminish slightly, simulating both a saturation of heat in the surface and a slowdown in ocean circulation with increased temperatures. Finally, in order to better simulate the late 20th-century rise in global temperature, the temperature effects from atmospheric [CO$_2$] are lagged in time, as there are numerous real-world processes not simulated in Hector that will buffer the temperature effects of increasing atmospheric [CO$_2$]. Future versions of Hector will likely address some of these processes for a better representation of the climate system.

4.2 Radiative Forcing

Radiative forcing is calculated from a series of atmospheric greenhouse gases, aerosols, and pollutants (Eq. 15-17, 19-25, 2716, 18-22, 25, 29-30). Radiative forcing is reported as the relative radiative forcing. The base year user-specified forcings are subtracted from the total radiative forcing to yield a forcing relative to the base year (1750). In the current model of Hector, the gases other than CO$_2$ are only used for the calculation of radiative forcing.

4.2.1. CO$_2$

Radiative forcing from atmospheric [CO$_2$] in W m$^{-2}$ is calculated based on Meinshausen et al. (2011a):

$$RF_{CO_2} = 5.35 \times \log \frac{C_a}{C_0} \quad (15)$$

where, 5.35 W m$^{-2}$ is a scaling parameter from Myhre et al. (1998), C_a is the current atmospheric [CO$_2$] in ppmv and C_0 is the preindustrial [CO$_2$] in ppmv.
4.2.12 Halocarbons

The halocarbon component of the model can accept an arbitrary number of gas species, each characterized by a name, a lifetime \(\tau \) (yr), a radiative forcing efficiency \(\alpha \) (W m\(^{-2}\) pptv\(^{-1}\)), an optional user-specified preindustrial concentration (pptv), and a molar mass (g). For each gas, its concentration \(C_i \) at time \(t \) is then computed based on a specified emissions time series \(E \), assuming an exponential decay from the atmosphere:

\[
C(t) = C_0 \times \exp \left(-\frac{1}{\tau} \right) + E \times \tau \times \left(1 - \exp \left(-\frac{1}{\tau} \right) \right)
\]

\(E \) is corrected for atmospheric dry air mole constant (1.8) and the molar mass of each halocarbon. The default model input files include these parameters and a time series of emissions for C2F6, CCl4, CF4, CFC11, CFC12, CFC113, CFC114, CFC115, CH3Br, CH3CCl3, CH3Cl, HCF22, HCF141b, HCF142b, HFC23, HFC32, HFC125, HFC134a, HFC143a, HFC227ea, HFC245ca, HFC245fa, HFC4310, SF6, halon1211, halon1301, and halon2402.

Radiative forcing by halocarbons, and other gases controlled under the Montreal Protocol, SF\(_6\), and ozone are calculated via:

\[
RF = \alpha \left(C(t) - C(t_0) \right)
\]

where \(\alpha \) is the radiative efficiency (input parameters) in W m\(^{-2}\) pptv\(^{-1}\), and \(C \) is the atmospheric concentration.
4.2.3 Ozone

Tropospheric ozone concentrations are calculated from the CH$_4$ concentration and the emissions of three primary pollutants: NO$_x$, CO, and NMVOCs, modified from Tanaka et al. (2007a):

$$O_3(t) = (5.0 \times \ln(CH_4)) + (0.125 \times ENO_x) + (0.0011 \times ECO) + (0.0033 \times EVOC)$$ \hspace{1cm} (18)

where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt et al., 2001). The radiative forcing of tropospheric ozone is calculated from a linear relationship using a radiative efficiency factor (Joos et al., 2001a):

$$RF_{O3} = 0.042 \times [O_3]$$ \hspace{1cm} (19)

4.2.2 Ozone

Tropospheric ozone concentrations are calculated by the current CH$_4$ concentration and the emissions of three primary pollutants: NO$_x$, CO, and NMVOCs (2007a):

$$O_3(t) = O_3(2000) + 5.0 \ln\left[\frac{CH_4(t)}{CH_4(2000)}\right] + 0.125 [eNO_x(t) - eNO_x(2000)] + 0.0011 [eCO(t) - eCO(2000)] + 0.0033 [eVOC(t) - eVOC(2000)]$$ \hspace{1cm} (18)

where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt et al., 2001). The radiative forcing of tropospheric ozone is calculated from a linear relationship using a radiative efficiency factor (Joos et al., 2001a) and a pre-industrial value of ozone of 25 DU (IPCC, 2001):
\[RF_{O_3} = 0.042 \times [O_3] - [O_3]_{prx} \]

(19)

4.2. BC and OC

The radiative forcing from black and organic carbon is a function of the black carbon and organic carbon emissions (\(e_{EBC}\) and \(e_{EOC}\)).

\[RF_{BC} = 0.0743 \times 10^{-9} \text{ Wm}^{-2} \text{Tk}^{-1} \times E_{EBC} \]

(20)

\[RF_{OC} = -0.0128 \times 10^{-9} \text{ Wm}^{-2} \text{Tk}^{-1} \times E_{EOC} \]

(21)

The coefficients \(0.0743 \times 10^{-9}\) and \(-0.0128 \times 10^{-9}\) include both indirect and direct forcings of black and organic carbon (fossil fuel and biomass) (Bond et al., 2013, table C1).

4.2.54 Sulphate Aerosols

The radiative forcing from sulphate aerosols is a combination of the direct and indirect forcings (Joos et al., 2001a).

\[RF_{SO_x \text{Direct}} = -0.435 \text{ Wm}^{-2} \times \frac{E_{SO_x(t)}}{E_{SO_x(t=0)}} \]

(22)

\[RF_{SO_x \text{Indirect}} = -0.68 \text{ Wm}^{-2} \times \left(\ln \left(\frac{E_{SN} + E_{SO_x(t)}E_{SO_x(t=0)}}{E_{SO_x(t=0)}} \right) \right)^{-1} \]

(23)

The direct forcing by sulphate aerosols is proportional to the anthropogenic sulphur emissions (GgS yr\(^{-1}\)) divided by the sulphate emissions from 2000. The indirect forcing by sulphate aerosols is a function of the anthropogenic and natural sulphur emissions.

Natural sulphur emissions, denoted by \(E_{SN}\), are equal to 42000 GgS. A time series of annual mean volcanic stratospheric aerosol forcing (W m\(^{-2}\)) is supplied from
Meinshausen et al. (2011b) and is added to the indirect and direct forcing for a total sulphate forcing.

4.2. \textbf{N2O and Methane (CH}_4\text{)CH4}

The change in [CH\textsubscript{4}] is calculated directly from CH\textsubscript{4} emissions, and sinks of CH\textsubscript{4} in the troposphere (based on the lifetime of OH), stratosphere, and soil based on Wigley et al. (2002).

\begin{equation}
\Delta CH_4 = \frac{E(CH_4)}{2.78} - \frac{[CH_4]}{T_{OH}} - \frac{[CH_4]}{T_{strat}} - \frac{[CH_4]}{T_{soil}}
\end{equation}

where E is total CH\textsubscript{4} emissions (Tg yr-1) from both natural and anthropogenic sources, 2.78 (Tg ppb-1) is the conversion factor, and T are the lifetimes of the tropospheric sink (T\textsubscript{OH}), the stratospheric sink (T\textsubscript{strat} = 120 year), and the soil sink (T\textsubscript{soil} = 160 year). Note, that within Hector, natural emissions are held at a constant 300 Tg yr-1.

The lifetime of OH is a function of [CH\textsubscript{4}], and the emissions of NO\textsubscript{x}, CO and VOC, based on Tanaka et al. (2007a).

\begin{equation}
\text{ln}(OH)\textsubscript{t} = -0.32 \left(\text{ln}[CH_4]\textsubscript{t} - \text{ln}[CH_4]\textsubscript{t0} \right) + 0.0042 \left(E(NO_x)\textsubscript{t} - (E(NO_x)\textsubscript{t0}) \right) - 0.000105 \left(E(CO)\textsubscript{t} - (E(CO)\textsubscript{t0}) \right) - 0.00315 \left(E(VOC)\textsubscript{t} - (E(VOC)\textsubscript{t0}) \right)
\end{equation}

The radiative forcing equation for CH\textsubscript{4} (Joos et al., 2001a) is a function of the concentrations (ppbv) of both CH\textsubscript{4} and N\textsubscript{2}O:

\begin{equation}
RF_{CH_4} = 0.036 \ Wm^{-2} \left[\sqrt{[CH_4](t)} - \sqrt{[CH_4](t0)} \right]
\end{equation}

\begin{equation}
- f(CH_4(t), N_2O(t_o)) - f(CH_4(t_o), N_2O(t_o))
\end{equation}

The function f accounts for the overlap in CH\textsubscript{4} and N\textsubscript{2}O in their bands is:
\[f(M, N) = 0.47 \]
\[\times \ln(1 + (2.01 \times 10^{-5}) \times (MN)^{0.75} + (5.31 \times 10^{-15}) \times M \]
\[\times (MN)^{1.52} \]

4.2.7 N₂O

The change in [N₂O] is a function of N₂O emissions, and the lifetime of N₂O based on Ward and Mahowald (2014).

\[\Delta N₂O = \frac{E(N₂O)}{4.8} - \frac{[N₂O]}{T_{N₂O}} \]

where E is total N₂O emissions (Tg N yr⁻¹), both natural and anthropogenic, 4.8 (Tg N ppbv⁻¹) is the conversion factor, and \(T_{N₂O} \) is the lifetime of N₂O. We set natural emissions of N₂O to linearly decrease from 11 Tg N yr⁻¹ in 1765, to 8 Tg N yr⁻¹ in 2000 and are then held constant at 8 Tg N yr⁻¹ to 2300. The lifetime of N₂O is a function of its initial lifetime (\(T₀ \)) and concentration ([N₂O]₀).

\[T_{N₂O} = T₀ \times \left(\frac{[N₂O]₀}{[N₂O]} \right)^{-0.05} \]

The radiative forcing equation for N₂O (Joos et al., 2001a) is a function of the concentrations (ppbv) of both CH₄ and N₂O and their radiative efficiency:

\[RF_{N₂O} = 0.12 \ Wm^{-2} \left[\sqrt{[N₂O]₀} - \sqrt{[N₂O]} \right] - f[CH₄(t₀), N₂O(t₀)] \]

\[- f[CH₄(t₀), N₂O(t₀)] \]
The function f accounts for the overlap in CH$_4$ and N$_2$O in their bands is the same as equation 27:

$$
f(M, N) = 0.47 \times \ln(1 + (2.01 \times 10^{-5}) \times (MN)^{0.25} + (5.31 \times 10^{-15}) \times M + (MN)^{1.52})$$

Note, we are not explicitly calculating concentrations of CH$_4$ and N$_2$O within Hector, instead we have input files of concentrations.

4.2.86 Stratospheric H$_2$O from CH$_4$ oxidation:

The radiative forcing from stratospheric H$_2$O is a function of the [CH$_4$] concentrations (Tanaka et al., 2007a). The coefficient 0.05 is from Joos et al. (2001a) based on the fact that the forcing contribution from stratospheric H$_2$O is about 5% of the total CH$_4$ forcing (IPCC, 2001). The 0.036 value of the coefficient corresponds to the same coefficient value used in the CH$_4$ radiative forcing equation.

$$RF_{stratH2O} = 0.05 \times \left\{ 0.036 \text{ Wm}^{-2} \times \left(\sqrt{[CH4]_t} - \sqrt{[CH4]_{t0}} \right) \right\} \quad (2731)$$

5.0 Model eXperiments and Ddata Sources

A critical test of Hector’s performance is to compare the major climatic variables calculated in Hector, e.g., atmospheric [CO$_2$], radiative forcing, and atmospheric temperature, to observational records and other models both simple and complex climate models. Within this study, Hector is run under prescribed emissions under historical conditions from 1850-2005 to 2300 and then under for all four Representative Concentration Pathways (RCPs) out to 2300 freely available at
http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=about (Moss et al., 2010; van Vuuren et al., 2007; Clarke et al., 2007; Wise et al., 2009; Riahi et al., 2007; Fujino et al., 2006; Hijioka et al., 2008; Smith and Wigley, 2006). The RCPs are plausible future scenarios that were developed to improve our understanding of the coupled human climate system. RCPs by definition are concentration pathways; however, for all experiments within this manuscript we use the corresponding emissions trajectories from each RCP as input for Hector. All necessary emission and concentration inputs are from the four RCPs (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) freely available at (Meinshausen et al., 2011b; Riahi et al., 2011; van Vuuren et al., 2011a; van Vuuren et al., 2011b; Masui et al., 2011; Thomson et al., 2011; van Vuuren et al., 2011d).

Comparison data was obtained from a series of models. We compared Hector results to MAGICC, a SCM widely used in the scientific and IAM communities, for global variables such as atmospheric CO$_2$, radiative forcing, and temperature (e.g., Raper et al., 2001; Wigley, 1995; Meinshausen et al., 2011a). We also compare Hector to a suite of eleven Earth System Models included in the 5th Coupled Model Intercomparison Project (CMIP5) archive (Taylor et al., 2012) (Table 3). All CMIP5 data were converted to yearly global averages from the historical period through the RCPs and their extensions. One standard deviation of the annual global averages and the CMIP5 model spread range was calculated for each variable using the RCMIP5 (http://github.cm/JGCRI/RCMIP5) package in R. All CMIP5 variables used in this study are from model runs with prescribed atmospheric concentrations, except for comparisons involving atmospheric [CO$_2$] which are from the emissions driven scenario.
(esmHistorical and esmRCP8.5) (Figures 3 and 5). We acknowledge that this is not a perfect comparison, between an emissions-forced model (Hector) versus, and concentration-forced models (CMIP5), is not perfect. However, very there is a significant lack offew CMIP5 models that are were run under prescribed emissions scenarios available. The models that run esmRCP8.5 are typically earth system models used to investigate the carbon cycle in further detail.

Lastly, we compare Hector to observations of atmospheric [CO$_2$] concentrations from Law Dome (1010-1975) and Mauna Loa (1958 – 2008), (Keeling and Whorf, 2005; Etheridge et al., 1996). Global temperature anomalies are from HadCRUT4 (Morice et al., 2012). Observations of air-sea and air-land fluxes are from the Global Carbon Project (GCP) (Le Quéré et al., 2013). Lastly, observations of surface ocean pH are from Bermuda Atlantic Time Series (BATS) and Hawaii Ocean Time Series (HOTS) (Bates, 2007; Fujieki et al., 2013).

6.0 Results and Discussion

6.1 Historical

A critical test of Hector’s performance is how well it compares to historical and present day climate from observations, MAGICC, and a suite of CMIP5 models. Rates of change and root mean square errors were calculated. We carried out a few statistical tests on Hector (e.g., correlation and root mean square error) for all Hector’s primary outputs variables, which are summarized in Table 4. After spinup is complete in Hector, the atmospheric [CO$_2$] in 1850 is 286.0 ppmv, which compares well with observations.
from Law Dome of 285.2 ppmv. Compared to observations, MACGICC6, and CMIP5 data from 1850 to 2005, Hector captures the global trends in atmospheric [CO$_2$] (Figure 3) with correlation coefficients of $R > 0.99$ and an average root mean square error (RMSE) of 2.85 ppmv (Table 4a), when compared to observations, MAGICC6, and CMIP5 data from 1850-2005. Rate of change of atmospheric [CO$_2$] from 1850-2005 is slightly lower than the observations, MAGICC6, and CMIP5. Hector can be forced to match atmospheric [CO$_2$] records (section 2.4), but we disabled this feature to highlight the full performance of the model. Note however, that in the MAGICC6 results a similar feature was used to force the output to match the historical atmospheric [CO$_2$] record.

Historical global atmospheric temperature anomalies (relative to 1850) are compared across Hector, MAGICC6, CMIP5, and observations from HadCRUT4 (Figure 4). Hector is running without the effects of volcanic forcing, leading to the smoother representation of temperature with time. Atmospheric temperature change from Hector (0.98 °C) over the period 1850 to 2005 closely match the CMIP5 temperature change (1.01 °C), both slightly higher than the observational record. Over this time period a Hector has anis well correlated to (> 0.8) to observations and models with an average RMSE of 0.124 °C. Note that with a simple climate models like Hector, we not intende do not aim to capture temperature variations in temperature due to interannual/decadal variability found in either in-ESMs or the real world; instead they are interested in simulating the overall trends in global mean temperature change.
6.2 Future Projections

Hector’s strengths lie within policy relevant time scales of decades to centuries, and here we compare Hector to MAGICC and CMIP5 under differing future climate projections. Results from all four RCPs are broadly similar when comparing Hector, to MAGICC6, and CMIP5; we display here RCP8.5 results as representative. Within the modeling community, models that best simulate the historical and present day climate are assumed to be credible under future projections. We are confident in Hector’s ability to reproduce historical trends and are therefore confident in its ability to simulate future climate changes. We compare Hector to MAGICC and CMIP5 under differing future climate projections. Studies suggest that 80% of the anthropogenic CO$_2$ emissions have an average atmospheric lifetime of 300-450 years (Archer et al., 1997; Rogner, 1997; Archer, 2005). Hector has all the necessary components to model the climate system from present day through the next approximately 300 years, other processes become important: dominant longer term cycles are processes.

Figure 5 highlights historical trends in atmospheric [CO$_2$], along with projections of atmospheric [CO$_2$] under esmRCP8.5 from 1850 to 2100. Note that the emissions forced scenario only extends to 2100 and not to 2300 like the concentration forced scenarios (e.g., Figure 8). Both Hector and MAGICC6 are on the low end of the CMIP5 median, but fall within one standard deviation and model range, with a RMSE of 9.0 ppmv is perfectly correlated with MAGICC and CMIP5 over this period and with a RMSE of 9.2 ppmv (Table 4b). Hector and MAGICC6 diverge from the CMIP5 median most notably after 2050, but are both still within the low end of the CMIP5 model spread.
The CMIP5 archive does not provide emissions prescribed scenarios for all RCPs; we can only compare Figure 6 compares atmospheric \([\text{CO}_2]\) from Hector and MagicC6 under all four RCP scenarios out to 2300 (Figure 6). Hector’s change in \([\text{CO}_2]\) (1472.13 ppmv) from 1850 to 2300 is slightly lower than MagicC6 (1600.0 ppmv) for RCP 8.5. This is most likely due to different representations of the global carbon cycle. Hector is well correlated with MagicC6 from 1850 out to 2300 for the four RCPs. Under all of the scenarios except for RCP 8.5, atmospheric \([\text{CO}_2]\) within Hector fluctuates around the MagicC6 atmospheric \([\text{CO}_2]\) values, with the most notable fluctuations under low carbon emissions. This is due to changes in the flux of carbon over the land as net primary production and respiration change with \(\text{CO}_2\) fertilization and temperature effects.

We compare Hector to MagicC6 for changes in radiative forcing under the four RCPs (Figure 7). Radiative forcing was not an output provided from within the CMIP5 models archive and therefore we can only compare Hector and MagicC6. Hector is offset slightly lower compared to MagicC6, which is expected since atmospheric \([\text{CO}_2]\) is slightly lower. Over the period 1850 to 2300 Hector (12.80 W m\(^{-2}\)) and MagicC6 (12.24 W m\(^{-2}\)) are comparable in their change in radiative forcing, is well correlated (1.0) with MagicC6 with a RMSE of 0.265 W m\(^{-2}\). One noticeable difference between MagicC6 and Hector during the historical period is the decreases in radiative forcing. This is due to We acknowledge that the correlation is lower under the historical period (0.79), because as noted above, these are may be due to slight differences in the representation of atmospheric gases, pollutants, and aerosols between the two models.
the effects of volcanic emissions on radiative forcing. For simplicity, we have chosen to run Hector without these effects.

Figure 8 compares global temperature anomalies from Hector to MAGICC6 and CMIP5 over the four RCPs, from 2005 to 2300. Hector simulates the CMIP5 median more closely than MAGICC6 across all four RCPs, with a temperature change under RCP 8.5 for Hector of 8.59 °C, compared to MAGICC6 of 7.30 °C, while the temperature change for CMIP5 is 9.57 °C (Table 4c) and MAGICC6 are comparable in their temperature change across the four RCPs. However, both are lower than the CMIP5 median under RCP 2.6, 4.5 and 8.5, with the largest discrepancy under high CO2 emissions in RCP 8.5. To highlight this close comparison, temperature change over the entire record (1850-2300) for Hector is 9.58 °C, which is within 1.0 °C of the CMIP5 median, while MAGICC6’s temperature change is greater than 2.5 °C away from the CMIP5 median. The median does 66 is1 Regardless, Hector is still highly correlated (>0.97) to MAGICC6 and CMIP5 for RCP 8.5, with a RMSE of 0.52 °C compared to CMIP5 (Table 4c). The fluctuations seen in RCP 2.6 within atmospheric [CO2] are also apparent in the atmospheric temperature trends. However, the general trends of temperature change, peaking around 2050 and then slowly declining out to 2300 are captured within Hector. (Cheng et al., 2013)

Another way to visualize model performance is a Taylor diagram (Figure 9) compactly summarizes model performance simulating of global temperature change relative to 1850, from 1850 to 2300 for RCP 8.5. In this figure, the closer the points...
are to the reference point (Hector) the higher the correlation and low RMSE between CMIP5 models and MAGICC6. Those points with a standard deviation similar to that of Hector experience the same amplitude of temperature change over this time period (MAGICC6). All of the models are highly correlated with Hector, with a large range in their standard deviations ($1-5^\circ$C).

Figures 9 and 10 present a detailed view of carbon fluxes under RCP 8.5, for CMIP5 and observations (negative represents carbon flux to the atmosphere). The ocean is a major sink of carbon through 2100, becoming less effective with time in both Hector and the CMIP5 models. MAGICC6 does not include air-sea fluxes in its output, and because it is not open source we were unable to obtain these values. Therefore, we compare air-sea fluxes of CO$_2$ to MAGICC5.3, the version currently used in the IA model, Global Change Assessment Model (Calvin et al., 2011), updated with explicit BC and OC forcing as described in Smith and Bond (2014). Hector’s calculation of air-sea fluxes is within the large CMIP5 model range up to 2100. However, after that Hector peaks close to 2150, while the CMIP5 models are beginning to decline. The correlation is high between Hector and CMIP5 over the historical period (0.95). However, the correlation, but drops off significantly between 2005 and 2300 (0.10) (Table 4c). This is an active area of research, investigating the differences between Hector and CMIP5 after 2100. One potential reason for this discrepancy low correlation after 2100 could be due to the fact that we are only comparing to three models that run the RCP extension to 2300 (bcc-csm1-1, IPSL-CM5A-LR, and MPI-ESM-LR). With more models included after 2100 a larger spread of fluxes, Hector may be better correlated. is - that in this version of
Hector, we do not simulate changes in ocean circulation, potentially biasing fluxes too high after 2100. Most ESMs in CMIP5 show a weakening of the Atlantic meridional overturning circulation by 2100 between 15% and 60% under RCP 8.5 (Cheng et al., 2013). A slowdown in ocean circulation may result in less carbon uptake by the oceans.

Another potential reason for this bias is Hector’s constant pole to equator ocean temperature gradient. Studies show that the Artic is warming faster than the rest of the globe (e.g., Bintanja and van der Linden, 2013; Holland and Bitz, 2003; Bekryaev et al., 2010). A warmer high latitude surface ocean in Hector would suppress the uptake of carbon, potentially bringing the air-sea fluxes closer to the CMIP5 median after 2100. The average correlation over the CMIP5 models over 1850-2300 is higher at 0.80, with a RMSE of 1.45 PgC yr$^{-1}$ (Table 4b).

The land fluxes have a large range of uncertainty into the future within the CMIP5 models. Hector follows the general trends of the land acting as a sink of carbon initially with a gradual switch to a carbon source after 2150. Fluxes of carbon over the land are less well correlated to the CMIP5 median compared to the air-sea fluxes, 0.55 (historical) and 0.65 (RCP 8.5), but it is important to note that CMIP models tend to show huge divergences in their land responses to changing climate (e.g., Friedlingstein et al., 2006), which is evident by the large range in CMIP5 models (Figure 10). Hector simulates the general trends, of increasing carbon sink and then a gradual decline to a carbon source after 2100. Both land and ocean fluxes within Hector agree well the observations from Le Quere et al., (2013) and other sources.
One feature in Hector that is unique amongst SCMs. Lastly, a unique feature of Hector is its ability to actively solve the carbonate system in the upper ocean (Hartin et al., in prep). This feature allows us to predict changes in ocean acidification, calcium carbonate saturations and other parameters of the carbonate system.

Figure 1 shows low latitude (<55°) pH for Hector compared to CMIP5 and observations from 1850 to 2100 under RCP 8.5. We estimate model projects a significant drop in pH from present day through 2100, which may lead to detrimental effects on marine ecosystems (e.g., Fabry et al., 2008).

7.0 Conclusions

Hector reproduces the large-scale couplings and feedbacks on the climate system between the atmosphere, ocean, and land. Hector falls within the range of the CMIP5 model spread and tracks matching well with MAGICC. Our goal was not to simulate the fine details or parameterizations typically found in large-scale, complex models, but instead to represent only the most critical global processes in a reduced-complexity form. This allows for fast execution times, ease of understanding, and straightforward analysis of the model output. To help with the analysis of Hector we included within the online database of Hector, R scripts to process Hector’s output as well as the comparison data.

Two of Hector’s key features are its open source license and modular design. This allows the user to manipulate the input files and code at will, for example to enable/disable/replace components, or include components not found...
within the core version of Hector. For example, the user can design a new submodel (e.g., sea-ice) to answer specific climate questions relating to that process. Hector is hosted on a widely-used open source software repository (Github), and thus changes and improvements can be easily shared with the scientific community. Because of these critical features, Hector has the potential to be a key analytical tool in both the policy and scientific communities. We welcome user input and encourage use, modifications, and collaborations with Hector.

While Hector has many strengths, the current 1.0 version certainly has are a few some limitations that later versions of Hector hope to address and weaknesses. For example, Hector does not currently simulate terrestrial gross primary production, a key metric of comparison to e.g. the FLUXNET database. For example, Hector does not have differential radiative forcing and atmospheric temperature calculations over land and ocean. This is may be a problem, as e-land responds to changes in emissions of greenhouse gases and aerosols much quicker than the ocean, leading to different temperature responses over the land and ocean (REFERENCE (Hansen et al., 2005). In addition, it does not currently simulate terrestrial gross primary production, a key metric of comparison to e.g. the Fluxnet database. Also, Hector does not explicitly deal with oceanic heat uptake, except via a simple empirical formula—Surface temperatures are calculated based on a linear relationship with atmospheric temperature and heat uptake by the ocean is parameterized by a constant heat uptake efficiency—we assume a constant pole to equator temperature gradient. We acknowledge that this assumption may not hold true if the poles warm faster than the
While Hector can reproduce global trends in atmospheric CO$_2$ and temperature, we cannot investigate ocean heat uptake in the deep ocean using Hector. Currently, there is placeholder in Hector for a more sophisticated sea-level rise submodel. The current edition of Hector uses inputs of concentrations of CH$_4$ and N$_2$O to calculate radiative forcing from CH$_4$ and N$_2$O. Ideally we would like Hector to calculate concentrations from emissions of CH$_4$ and N$_2$O. This would allow for quick integration within IAMs.

Future plans with Hector include addressing some of the above limitations and conducting numerous scientific experiments, using Hector as a stand-alone simple climate carbon-cycle model. Also, Hector is also being incorporated into Pacific Northwest National Laboratory’s Global Change Assessment Model to begin running for policy-relevant experiments. Hector has the ability to be a key analytical tool used across many scientific and policy communities due to its modern software architecture, open source, and object-oriented structure.

Code Availability

Hector is freely available at https://github.com/JGCRI/hector. The specific Hector v0.1.0 referenced in this paper, as well as code to reproduce all figures and results shown here, is available at https://github.com/JGCRI/hector/releases/tag/v0.1.0

Author contributions

C.A.H. and B.P.B.-L. developed the ocean and terrestrial carbon models, respectively, and led the overall development of Hector. R.P.L. and P.P. wrote critical code for
Hector’s coupler and carbon cycle solver. A.S. helped with the development of the atmospheric forcing components. C.A.H. wrote the manuscript with contributions from all co-authors.

Acknowledgements

This research is based on work supported by the U.S. Department of Energy, Office of Science, Integrated Assessment Research Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830.
References:

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, Journal of Climate, 19, 3337-3353, 10.1175/JCLI3800.1, 2006.

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates:

DRAFT 54
Table and Figure Captions:

Table 1: Initial model conditions prior to the spinup phase. Carbon values change slightly after spinning up to a steady state, assuming a pre-industrial steady state.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Initial Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>*C_{atm}</td>
<td>Atmospheric Carbon</td>
<td>588.1</td>
<td>PgC</td>
<td>Murakami (2010)</td>
</tr>
<tr>
<td>*C_D</td>
<td>Detritus Carbon</td>
<td>55.0</td>
<td>PgC</td>
<td>Denman et al. (2007)</td>
</tr>
<tr>
<td>*C_S</td>
<td>Soil Carbon</td>
<td>1782.0</td>
<td>PgC</td>
<td>Denman et al. (2007)</td>
</tr>
<tr>
<td>*C_V</td>
<td>Vegetation Carbon</td>
<td>550.0</td>
<td>PgC</td>
<td>Denman et al. (2007)</td>
</tr>
<tr>
<td>C_{DO}</td>
<td>Deep Ocean</td>
<td>26000.0</td>
<td>PgC</td>
<td>Ocean carbon (deep, intermediate and surface) totaling ~3800PgC **</td>
</tr>
<tr>
<td>C_{HL}</td>
<td>Surface Ocean High Latitude</td>
<td>140.0</td>
<td>PgC</td>
<td></td>
</tr>
<tr>
<td>C_{IO}</td>
<td>Intermediate Ocean</td>
<td>8400.0</td>
<td>PgC</td>
<td></td>
</tr>
<tr>
<td>C_{LL}</td>
<td>Surface Ocean Low Latitude</td>
<td>770.0</td>
<td>PgC</td>
<td></td>
</tr>
<tr>
<td>F_L</td>
<td>Atmosphere-Land Carbon Flux</td>
<td>0.0</td>
<td>PgC yr$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>F_O</td>
<td>Atmosphere-Ocean Carbon Flux</td>
<td>0.0</td>
<td>PgC yr$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>NPP$_0$</td>
<td>Net Primary Production</td>
<td>50.0</td>
<td>PgC yr$^{-1}$</td>
<td>Approximate global value, Nemani et al. (2003)</td>
</tr>
<tr>
<td>T_G</td>
<td>Global Temperature Anomaly</td>
<td>0.0</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{HL}</td>
<td>Temperature of high latitude surface ocean box</td>
<td>2.0</td>
<td>°C</td>
<td>Lenton (2000)</td>
</tr>
<tr>
<td>T_{LL}</td>
<td>Temperature of low latitude surface ocean box</td>
<td>22.0</td>
<td>°C</td>
<td>Lenton (2000)</td>
</tr>
</tbody>
</table>

* parameters appearing in the input file.

** in order to obtain a steady state in Hector, carbon values in the intermediate box are less than reported Denman et al. (2007).
Table 2: Model parameters for the land and ocean carbon components.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{ds}</td>
<td>annual fraction of detritus carbon that is transferred to soil</td>
<td>0.60</td>
<td>The following fractions (f) were selected to be generally consistent with previous simple earth system models (e.g., Meinshausen et al., 2011a; Ricciuto et al., 2008; Murakami et al., 2010).</td>
</tr>
<tr>
<td>f_{ld}</td>
<td>annual fraction of land use change flux from detritus</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>f_{ls}</td>
<td>annual fraction of land use change flux from soil</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>f_{nv}</td>
<td>annual fraction of land use change flux from vegetation</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>f_{nd}</td>
<td>annual fraction of NPP carbon that is transferred to detritus</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>f_{ns}</td>
<td>annual fraction of NPP carbon that is transferred to soil</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>f_{nv}</td>
<td>annual fraction of NPP carbon that is transferred to vegetation</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>f_{rd}</td>
<td>annual fraction of respiration carbon that is transferred to detritus</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>f_{rs}</td>
<td>annual fraction of respiration carbon that is transferred to soil</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>f_{vd}</td>
<td>annual fraction of vegetation carbon that is transferred to detritus</td>
<td>0.034</td>
<td></td>
</tr>
<tr>
<td>f_{vs}</td>
<td>annual fraction of vegetation carbon that is transferred to soil</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>*Q10</td>
<td>Q10 respiration</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>T_H</td>
<td>High-latitude circulation</td>
<td>$4.9e7 \text{ m}^3 \text{ s}^{-1}$</td>
<td>Tuned to give ~ 100 PgC from surface to deep</td>
</tr>
<tr>
<td>T_T</td>
<td>Thermohaline circulation</td>
<td>$7.2e7 \text{ m}^3 \text{ s}^{-1}$</td>
<td>Tuned to give ~ 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PgC from surface to deep</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>*E_{ID}</td>
<td>Water mass exchange – intermediate to deep</td>
<td>$1.25 \times 10^7,\text{m}^3\text{s}^{-1}$</td>
<td>Lenton, 2000; Knox and McElroy, 1984</td>
</tr>
<tr>
<td>*E_{LI}</td>
<td>Water mass exchange – low latitude to intermediate</td>
<td>$2.0 \times 10^8,\text{m}^3\text{s}^{-1}$</td>
<td>Lenton, 2000; Knox and McElroy, 1984</td>
</tr>
</tbody>
</table>

1504 1505 * parameters appearing in the input file.
Table 3: CMIP5 ESM models used within this study. We use the same suite of models as found in Friedlingstein et al. (2014). Note, not all variables are reported for each model under all scenarios.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Name</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcc-csm1-1</td>
<td>Beijing Climate Center, Climate System Model, version 1.1</td>
<td>Beijing Climate Center, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meteorological Administration, China</td>
</tr>
<tr>
<td>CanESM2*</td>
<td>Second Generation Canadian Earth System Model</td>
<td>Canadian Center for Climate Modeling and Analysis, BC, Canada</td>
</tr>
<tr>
<td>CESM1-BGC*</td>
<td>Community Earth System Model, version 1.0-Biogeochemistry</td>
<td>National Center for Atmospheric Research, United States</td>
</tr>
<tr>
<td>GFDL-ESM2G</td>
<td>Geophysical Fluid Dynamic Laboratory Earth System Model with GOLD ocean</td>
<td>Geophysical Fluid Dynamics Laboratory, United States</td>
</tr>
<tr>
<td></td>
<td>component</td>
<td></td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>Hadley Centre Global Environmental Model, version 2 (Earth System)</td>
<td>Met Office Hadley Centre, United Kingdom</td>
</tr>
<tr>
<td>inmcm4</td>
<td>Institute of Numerical Mathematics Coupled Model, version 4.0</td>
<td>Institute of Numerical Mathematics, Russia</td>
</tr>
<tr>
<td>IPSL-CM5A-LR</td>
<td>L’Institut Pierre-Simon Laplace Coupled Model, version 5A, coupled with</td>
<td>Institut Pierre Simon Laplace, France</td>
</tr>
<tr>
<td></td>
<td>NEMO, low resolution</td>
<td></td>
</tr>
<tr>
<td>MIROC-ESM*</td>
<td>Model for Interdisciplinary Research on Climate, Earth System Model</td>
<td>Atmosphere and Ocean Research Institute; National Institute for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Studies, Japan Agency for Marine-Earth Science and Technology,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japan</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>Max Planck Institute Earth System Model, low resolution</td>
<td>Max Planck Institute for Meteorology, Germany</td>
</tr>
<tr>
<td>MRI-ESM1*</td>
<td>Meteorological Research Institute Earth System Model, version 1</td>
<td>Meteorological Research Institute Earth, Japan</td>
</tr>
<tr>
<td>NorESM1-ME*</td>
<td>Norwegian Earth System Model, version 1, intermediate</td>
<td>Norwegian Climate Center, Norway</td>
</tr>
</tbody>
</table>
 resolution

* Models used in emissions forced scenarios (esmhist and esmrcp85).

Table 4: Skill of root mean square error (RMSE) - for Hector versus observations, CMIP5, and MAGICC, correlation coefficients (R) and root mean square error (RMSE) for atmospheric [CO2], surface temperature anomaly, radiative forcing, fluxes of carbon (ocean and land), and low latitude surface ocean pH and change (Δ) in atmospheric [CO2], surface temperature anomaly and radiative forcing for Hector, CMIP5, observations, and MAGICC6.

Historical 1850 - 2005

<table>
<thead>
<tr>
<th>Variable</th>
<th>Skill</th>
<th>Hector</th>
<th>Observations</th>
<th>MAGICC</th>
<th>CMIPS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CO2]*</td>
<td>RMSE</td>
<td>--</td>
<td>2.85</td>
<td>2.95</td>
<td>2.21</td>
<td>ppmv</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>85.78</td>
<td>94.47</td>
<td>95.0</td>
<td>103.30</td>
</tr>
<tr>
<td>temperature</td>
<td>RMSE</td>
<td>--</td>
<td>0.15</td>
<td>0.13</td>
<td>0.15</td>
<td>deg C</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>0.98</td>
<td>0.91</td>
<td>0.76</td>
<td>1.01</td>
</tr>
<tr>
<td>Forcing</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>0.39</td>
<td>--</td>
<td>W m⁻²</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>2.16</td>
<td>1.75</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ocean Flux</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.25</td>
<td>PgC yr⁻¹</td>
</tr>
<tr>
<td>Land Flux</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.27</td>
<td>PgC yr⁻¹</td>
</tr>
<tr>
<td>pH</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.004</td>
<td>unitless</td>
</tr>
</tbody>
</table>

* [CO2] observations are an average of Law Dome and Mauna Loa.

RCP 8.5 1850 - 2300

<table>
<thead>
<tr>
<th>Variable</th>
<th>Skill</th>
<th>Hector</th>
<th>MAGICC</th>
<th>CMIPS</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CO2] *</td>
<td>RMSE</td>
<td>--</td>
<td>10.41</td>
<td>7.54</td>
<td>ppmv</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>1557.91</td>
<td>1695.0</td>
<td>--</td>
</tr>
<tr>
<td>temperature</td>
<td>RMSE</td>
<td>--</td>
<td>0.12</td>
<td>0.52</td>
<td>deg C</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>9.58</td>
<td>8.05</td>
<td>10.57</td>
</tr>
<tr>
<td>Forcing</td>
<td>RMSE</td>
<td>--</td>
<td>0.26</td>
<td>--</td>
<td>W m⁻²</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td></td>
<td>12.80</td>
<td>12.24</td>
<td>--</td>
</tr>
<tr>
<td>Ocean Flux</td>
<td>RMSE</td>
<td>--</td>
<td>1.39</td>
<td>--</td>
<td>PgC yr⁻¹</td>
</tr>
<tr>
<td>Land Flux</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>3.86</td>
<td>PgC yr⁻¹</td>
</tr>
<tr>
<td>pH</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>0.003</td>
<td>unitless</td>
</tr>
</tbody>
</table>

* CMIP5 [CO2] only to 2100.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Hector</th>
<th>MAGICC</th>
<th>CMIP5</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CO$_2$]*</td>
<td>RMSE</td>
<td>--</td>
<td>10.07</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>1472.13</td>
<td>1600.0</td>
<td>--</td>
</tr>
<tr>
<td>temperature</td>
<td>RMSE</td>
<td>--</td>
<td>0.09</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>8.59</td>
<td>7.30</td>
<td>9.57</td>
</tr>
<tr>
<td>Forcing</td>
<td>RMSE</td>
<td>--</td>
<td>0.03</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>10.65</td>
<td>10.49</td>
<td>--</td>
</tr>
<tr>
<td>Ocean Flux</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>1.41</td>
</tr>
<tr>
<td>Land Flux</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>4.59</td>
</tr>
<tr>
<td>pH</td>
<td>RMSE</td>
<td>--</td>
<td>--</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*CMIP5 [CO$_2$] only to 2100.
Figure 1: Model phases for the coupler (left) and a typical component (right). Arrows show flow of control and data. The greyed spinup step is optional.
Figure 2: Representation of Hector’s carbon cycle, land, atmosphere, and ocean. The atmosphere consists of one well mixed box. The ocean consists of four boxes, with advection and water mass exchange simulating thermohaline circulation (see Table 2 for description of parameters). At steady state, the high latitude surface ocean takes up carbon from the atmosphere, while the low latitude surface ocean off gases carbon to the atmosphere. The land consists of a user defined number of biomes or regions for vegetation, detritus and soil. At steady state the vegetation takes up carbon from the atmosphere while the detritus and soil release carbon back into the atmosphere. The earth pool is continually debited with each time step to act as a mass balance check on the carbon system.
Figure 3: Historical atmospheric [CO₂] from 1850 to 2005 for Hector (blue), CMIP5 median, standard deviation, and model range (pink, n=4), MAGICC6 (green), Law Dome (teal), and Mauna Loa (purplebrown). Note CMIP5 data are from the prescribed emissions -historical scenario (esmHistorical). Notice that MAGICC6, however, is constrained to matches the observational record. We have the capabilities of running Hector under numerous constraints. WithinAlthough Hector can be run with similar constraints, in this study we are running Hector was unconstrained to highlight the full performance of the model. n=4 is the number of CMIP5 models used to produce this figure.
Figure 4: Historical global temperature anomaly relative to 1850 for Hector (blue), MAGICC6 (green), CMIP5 median, standard deviation and model spread range (pink, \(n=8 \)), and historical observations from HadCRUT4 (purple). Hector is running without the effects of volcanic forcing, leading to a smoother representation of temperature with time.
Figure 5: Atmospheric [CO$_2$] from 1850 to 2100 under RCP 8.5 for Hector (blue), MAGICC6 (green), Mauna Loa (purple brown), Law Dome (teal) and esmRCP 8.5 (prescribed emissions scenario) CMIP5 median, one standard deviation and model spread range (pink, n=4 (1850-2000) and n=5 (2001-2100)). Note that the CMIP5 models run under esmrcp85 do not extend to 2300.
Figure 6: Atmospheric [CO$_2$] from 1850 to 2300 for RCP 2.6 (yellow), RCP 4.5 (green), RCP 6.0 (blue), RCP 8.5 (purple), Hector (solid) and MAGICC6 (dashed).
Figure 7: Relative radiative forcing from 1850 to 2300 for Hector (solid) and MAGICC6 (dashed) for all four RCP scenarios, 2.6 (red), 4.5 (green), 6.0 (blue), 8.5 (purple). Hector has the option to enable or disable radiative forcing from historical volcanic emissions. We have opted to disable this for ease of comparison across all RCPs.
Figure 8: Global temperature anomaly relative to 1850 for (a) RCP 2.6 (b) RCP 4.5 (c) RCP 6.0 and (d) RCP 8.5, comparing Hector (blue), MAGICC6 (green), and CMIP5 median, standard deviation and model spread-range (pink). The CMIP5 models under RCP 6.0 used in this study do not extend to 2300. Note the change in scales between the four panels. Number of CMIP5 models in a) n=7 (2006-2100) and n=5 (2101-2300), b) n=9 (2006-2100) and n=6 (2101-2300), c) n=6 (2006-2100), d) n=9 (2006-2100) and n=3 (2101-2300).
Figure 9: Taylor diagram of global temperature anomaly relative to 1850, from 1850 to 2300 for RCP 8.5, Hector (), MAGICC6 (), CMIP5 median (red), and CMIP5 models (grey).
Figure 109: Global air-sea fluxes of carbon under RCP 8.5, Hector (blue), MAGICC5.3 (purple, note that this is not the current version of MAGICC), CMIP5 median, standard deviation, and model range (red/pink, n=9 (1850-2100) and n=4 (2101-2300)), and observations from GCP (green) (Le Quéré et al., 2013). The break in the graph at 2100 signifies a change in the number of models that ran the RCP 8.5 extension.
Figure 104: Global air-land fluxes of carbon under RCP 8.5, Hector (blue), CMIP5 median, standard deviation, and model range CMIP5 (red/pink, n=8 (1850-2100) and n=2 (2101-2300)), and observations from GCP (green) (Le Quéré et al., 2013). The break in the graph at 2100 signifies a change in the number of models that ran the RCP 8.5 extension.——
Figure 112: Low latitude (< 55) ocean pH for RCP 8.5, from 1850 – 2100, Hector (blue), CMIP5 median, standard deviation, and model range (pink, n=6) and observations from BATS (green) and HOTS (purple).