Reply to “Geosci. Model Dev. Discuss., 7, C2669–C673, 2014”

Referee #1: The paper describes an attempt to study uncertainties in irrigation water requirements simulated for wheat growing in the Murray-Darling Basin (MDB) in Australia caused by the structure of the model and by the parameters used in it. In general the paper is well written and interesting but I have serious doubts that the setup of the study is useful to address the objectives described in the manuscript. My major points of criticisms are:

Referee #1: 1.) The authors use six empirical methods to calculate evapotranspiration in order to study the structural uncertainty of the model and five crop coefficient sets (needed to convert the ET of a reference crop to the one of a wheat crop) to study the parameter uncertainty in the model. Results of the so created ensemble of model runs (6 ET methods x 5 kc-sets) are weighted then according to their performance in representing measured data to derive a weighted ensemble mean and the ensemble range around the weighted mean. Such a setup is useful to compare results of complex models when the knowledge about the accuracy of the models is limited. However, the methods used to compute ET in this study have been extensively evaluated in previous research.

Authors: We agree that the ET methods we investigate have been widely used and evaluated in ecosystem model applications, but there is no consensus on which ET method is the best. This is particular the case, if (a) relevant input data are missing to drive a more sophisticated method, such as Penman-Monteith or Shuttleworth-Wallace. Moreover, if (b) the scale of the study is regional to global (see p.7529, lines 19-26), the ET method becomes a major source of uncertainty which is independent from the model complexity, because every model in hydrology, climate science and crop modelling relies on an estimate of ET and differences between methods have been reported by others (see page 7540, lines 5-16).

Despite this general knowledge, most studies use a single ET method, disregarding that ET simulations impact model predictions to a large extent. An objective method to evaluate model performance in combination with ensemble predictions could improve this limitation. The “Reliability Ensemble Averaging (REA)” technique is such a method, which has been also applied in hydrology to less complex models. We now use it for the first time to predict irrigation water requirements in this study. Similar to climate science, where REA has been developed, the accuracy of our model results is difficult to assess,
as direct validation data are not available. We are able to show that REA leads to a
decrease of model uncertainty, which is particular important in data scarce regions
where common physically based methods such as the Penman-Monteith approach are
limited in their application. We therefore think that the selected approach is valuable and
provides interesting insight for modellers from a variety of research disciplines.

Referee #1: Based on comparisons with lysimeter measurements performed in different
climatic environments it is well known that the Penman-Monteith (PM) method usually
performs best when high quality measurements of all the required weather variables are
available. The other ET-methods used in the study are less precise because they ignore
some important weather variables or relationships between them determining site
specific evapotranspiration. As such, I don't understand the value of applying additional
inaccurate methods and of creating some “artificial” uncertainty. In other words: what is
the additional value of the weighted ensemble mean as compared to the direct use of
the PM method (maybe with site specific adjustment of the resistance terms)?

Authors: We agree that Penman-Monteith performs best. But in many model
applications, e.g. simulations for irrigation management, catchment scale modelling or
estimation of large scale water consumption (see p.7529, lines 19-26), other methods
such as Priestly-Taylor and in particular Hargreaves-Samani are in use. These models
give by far different results. We give an example of the “potential” uncertainty which
arises if relevant information on climate data is missing which is a crucial information.
But we also show that REA is a potential interesting approach to reduce this uncertainty,
if more than one ET method is used in simulation studies.

Referee #1: 2.) To “evaluate” the performance of the ET methods the authors used
class-A pan data measured at 34 stations (page 7532, lines 16-23). By doing this the
authors evaluate evapotranspiration calculated for a reference crop (ET) by measured
evaporation from an open water surface (E) which is certainly not the same. The
agreement derived from this comparison is then used as a weighting parameter to
compute the weighted ensemble mean. Again, I doubt that this weighted ensemble
mean will represent an improvement to the direct use of the PM-method. But the authors
can test this by comparing the performance of PM56 to the ensemble mean of the other
methods.

Authors: For the application of REA, a comparison of model simulations and
observations is needed to calculate the model performance criterion (page 7535, lines 2-7 “…capability of each ensemble member to represent real world data by its bias.”). We
could have treated PM56 as being an “observation” in the sense of a benchmark model.
However, we think that a more independent test is more appropriate in the sense of
REA and therefore decided to use those observations that are at hand: class-A pan observations. To account for the difference of class-A pan evaporation and reference crop ET, we used a commonly applied correction factor (pan-coefficients according to McMahon et al. (2013)) to derive crop ET from class-A pan measurements. Most often, ET estimates are not compared to any measurements at all, leaving modelers with no information on how good their model application is. We therefore think that a comparison to class-A pan is for sure not perfect, but better than no testing at all. This will be acknowledged in a revised version of the paper.

Referee #1: 3.) Parameter uncertainty is evaluated by using 5 sets of crop coefficients. These coefficients relate the ET of a wheat crop to the ET of the reference crop surface. The factors describing the differences between the ET of wheat and the one of the reference grass surface are described in detail in Allen et al. (1998), for example. Methods to reduce uncertainties in crop coefficients would be to (i) adjust standard crop coefficients by considering the local conditions (wheat management, wetting interval, aridity, growing period length) or (ii) using a process based crop model that directly accounts for the underlying processes. APSIM, for example, has been developed in Australia and was frequently applied for the local conditions. I doubt that the set of the crop coefficients used in this study really provides a representative picture on the expected parameter uncertainty.

Authors: We are aware that there are more site specific and regionally adapted Kc values even if crop coefficients are in first instance meant to adjust ETo to a specific crop type, reflecting albedo, crop height, surface resistance, soil evaporation (Allen et al., 1998). But in contrast to the widely existing assumption, that better adapted Kc values lead to improved crop ET estimations, we show that the uncertainty related to the choice of Kc is small compared to the uncertainty inherent to the ET model structure (or method) in itself. We highlight the calculation of uncertainty of irrigation water requirement in this manuscript and a method how to reduce it. The importance of the consideration of uncertainty has also been reported elsewhere as stated in the manuscript (page 7543 lines 21-25): “Despite the growing importance of IRR for today’s agriculture and the effect on surface (Hoekstra et al., 2012) and groundwater (Wada et al., 2010) resources, few studies have dealt with the predictive uncertainty of this requirement (e.g. Wada et al., 2013) and how to reduce it.”

Referee #1: 4.) While the authors focus on potential uncertainties caused by the ET calculation method and the crop coefficients, there is little explanation why these two factors were selected and how some other factors may affect the uncertainties in irrigation water requirement calculated in this study.
The model applied here uses some very crude assumptions (e.g. that runoff is fixed to 20% of precipitation, see equation 2). In addition, it does not account for the spatial heterogeneity in soil or crop conditions. From this perspective it’s hard to see what readers can learn from the results and what can be generalized for other sites, models and investigated factors.

Authors: The straight forward single crop coefficient concept has been recently applied in various studies (page 7528 lines 27-28, page 7529 lines 1-14). The focus is drawn on crop coefficient parameters and ET methods, as both are crucial features in assessing irrigation water requirements as is already described on page 7528, 15-26.

Authors: Maybe we were not clear enough in describing the scope of the study, and we will certainly address this better in a revised version of the manuscript. We fully agree with the reviewer that there are crude assumptions in some of the ET methods we applied. However, these ET methods are used worldwide in many simulation studies, without any considerations to improve the methods (e.g. the 20% precipitation reduction by runoff in the CROPWAT model). That is why we implemented them as given. In almost all studies, researcher use only one ET method with a single, often spatially independent Kc set. As a result, some scientist ask to at least use better adapted, local Kc sets. However, we show in our work that for any large scale studies, the uncertainty introduced by Kc parameterization is small compared to the uncertainty introduced by the ET method. Of course, this is not the case for any local model application, where crop conditions and spatial heterogeneity needs to be considered. But this is not done in large scale model applications.

Authors: Both factors, i.e. crop coefficient and evapotranspiration, have been reported to be important for the performance of models based on the single crop coefficient concept as reported by others (see 7540 5-19; 7542 1-15) and we address this part of uncertainty in this study.

The fixed fraction of runoff is adapted from the default setting of the Cropwat model.

Referee #1: Page 7527, lines 9-11: “We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement.” Please notice that only one parameter was tested. Therefore this conclusion is to general.

Authors: Will be rewritten to “We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach.”
Referee #1: Page 7527, lines 16-18: “We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.” To support this conclusion it is required to show the additional value of the multi-model ensemble predictions, as compared for example to a single application of the Penman-Monteith method. I can still not see it here.

Authors: We disagree in this point. As explained in our rebuttal to comment 2). Using REA, we show that we are able to reduce the predictive uncertainty by considering a number of “uncertain” single models.

Referee #1: Page 7527, lines 21-25: “Globally, the proportion of fresh water consumption by agriculture is large (9087 km3 yr-1) (Hoekstra and Mekonnen, 2012) and is projected to increase in the future in order to support the increasing world population. More precisely, most of the change in freshwater consumption will arise from the increasing irrigation demand by crops (De Fraiture and Wichelns, 2010).” It’s required to be more precise. The first figure on fresh water use refers to the sum of irrigation water and natural rainfall while the second statement refers to irrigation only. That future irrigation water requirements will increase is not sure. Models accounting for the reduction in transpiration due to increased atmospheric CO2 concentration show constant or even declining trends. Therefore this section does not reflect the state of knowledge.

Authors: A likely effect of changes of atmospheric CO2 concentration is not part of this study. But even by considering the biophysiological effect of reduced transpiration, the need for additional irrigation water is very likely in the future. This is mainly driven by demographic development and changes in food diets. Accordingly, we will rewrite the passage as follows: “Globally, the proportion of fresh water consumption by agriculture from rainfall as well as surface and groundwater resources is large (9087 km3 yr-1) (Hoekstra and Mekonnen, 2012). It is projected that water demand is increasing in the future, particular by irrigation agriculture, in order to support the increasing world population with food (Foley et al., 2011; De Fraiture and Wichelns, 2010; Hanjra and Qureshi, 2010; Wada and Bierkens, 2014).”

Referee #1: Pages 7527-7531 (introduction): The authors describe here what they have done in the paper but the objectives remain unclear. Is the objective to quantify
uncertainties in irrigation water estimates in models of the same type or is it to develop
and present a new method for uncertainty assessment? How does this study compare to
all these crop model comparisons published within the last 2-3 years? Wouldn’t it be
better to replace the crop coefficient approach by a real simulation of crop growth
instead of just applying different sets of kc-values with unknown representativeness?

Authors: We might have not been clear enough with the objectives of our study, which
we certainly will improve in a revised version of our manuscript. The study is more than
a simple model intercomparison, for which a number of studies have been published in
the past years and which are cited in our manuscript. We go beyond a simple
intercomparison: how can we derive better predictions by using an ensemble of well-
known ET methods and which are the likely causes of predictive uncertainty in ET
estimations. We are convinced, that ensemble modeling could overcome some of the
shortcomings of today’s global estimations of water resources, given the large
uncertainties in ET estimation.

Authors: Regarding the concern raised in relation to the Kc approach we argue, that the
Kc approach is widely applied across many model applications in regions worldwide, in
particular for predicting, e.g., irrigation requirements, global water resources,
groundwater depletion, water footprint, virtual water trade. The advantage of this
approach is that it can be used in regions where less data are available where the
application of a comprehensive crop model is not possible. This approach has also been
applied for a number of studies in the Murray-Darling Basin (Barton and Meyer, 2005;
Harris, 2002; Hughes, 1999; Meyer, 1999). Even though we know that the Kc approach
has limitations and that real simulations of crop growth would improve predictions, it
remains unlikely that this will be happening on the macroscale.

Referee #1: Page 7531, lines 15-17: “The applicability of six different ETo methods is
evaluated by using available measured class-A-pan evaporation measurements of 34
stations in the MDB over a 21 years time period” ET is evaluated with E => does not
seem to be very useful

Authors: In order to make class-A pan measurements comparable with reference ETo
one has to use pan coefficients (Allen et al., 1998). We converted class-A pan
evaporation with pan-coefficients published by McMahon et al. (2013) which are given in
a monthly resolution at 68 sites across Australia. Please see page 12 lines 13-16 in the
manuscript for further details: “Pan evaporation differs from evaporation from a cropped
surface through a different albedo, heat storage and humidity above the surface. For this
reason, the class-A pan data have been adjusted with monthly pan coefficients
(McMahon et al., 2013) to better compare them with ETo simulations of open surface
waters. On an annual average, class-A pan evaporation of 1,558 mm yr\(^{-1}\) were reduced by 9% to 1,422 mm yr\(^{-1}\) across all stations.”

Referee #1: Page 7532, section 2.1 Study site and data: What about uncertainty in input data (e.g. land use, weather) and their interaction with model structure? Uncertainties in humidity and wind speed will likely affect PM but not some other methods like Hargreaves or Priestley-Taylor

Authors: We are glad that the reviewer agrees with us that an accounting of the uncertainty behind ET estimation is complex and includes many sources. A full accounting of the global uncertainty in a spatial context of ET estimation would be for sure interesting, but not achievable at the moment; though on the long term it is highly needed. To our knowledge, our work is one of the few studies that takes a closer look at a part of this uncertainty in the field of macroscale irrigation requirement studies. We focus on two important sources of uncertainty, which have been reported to be relevant for predicting irrigation requirements (Howell et al., 2004; Siebert and Döll, 2010; da Silva et al., 2013). The other sources of uncertainty, i.e. land use, weather and many others, are also important but not in the particular scope of this study.

Referee #1: Page 7533, equation (2): Which data or findings support the very basic assumption that 80% of total precipitation becomes effective?

Authors: The fixed fraction of runoff is adapted from the default setting of the CROPWAT model according to the FAO56 guidelines. It was not our intention to improve any of the ET methods, but rather apply them as given.

Referee #1: Page 7536, lines 17-18: “The median daily ET\(_o\) for APET is 3.6 mm d\(^{-1}\), PM56 3.9 mm d\(^{-1}\), HS 3.8 mm d\(^{-1}\), PPET 5.2 mm d\(^{-1}\), PT 6.4 mm d\(^{-1}\) and TURC 3.4 mm d\(^{-1}\).” Please check the calculation routine and the underlying data for the calculations with Priestley-Taylor. An overestimate in the here reported range is very unlikely and not supported by the previous literature!

Authors: We will again check the amount of the ET predicted by the PT method and include this in a revised version of the paper.
Literature

Harris, G. A.: Irrigation: water balance scheduling, Queensland Department of Primary Industries and Fisheries, (DPI Note FSOS46), 2002.

Hughes, J. D.: Southern Irrigation SOILpak. For irrigated broad area agriculture on the Riverine Plain in the Murray and Murrumbidgee valleys., NSW Agriculture, Orange, 1999.

Reply to “Geosci. Model Dev. Discuss., 7, C2866–C2868, 2015”

Referee #2: The authors analyses the uncertainty in estimating irrigation water requirement by applying six models for ETpot and 5 Kc values (in total 30 simulations). They found that the uncertainty caused by different model approaches is much larger than uncertainty caused by Kc values. Furthermore, they state, that multi model ensemble prediction provide reliable estimates which can be used for management.

Referee #2: In principle study this is an interesting, well conducted study. Nevertheless, I do have some concerns with respect to the general approach. Six different ETpot models were applied and tested against class A pan data although it is well known that class A pan data may not be the best method to measure ETpot and not for all stations pan-coefficients were available. Therefore, uncertain class A pan data were used in an uncertainty study assuming that class A pan data are certain.

Authors: We are aware of that the utilization of class A pan data in our manuscript comes along with uncertainties and we did not assume that the data are certain. But isn’t this the case for every kind of measurement? The alternative is not to calibrate and verify models and apply them in an unobserved fashion (which is most often done when evapotranspiration is being simulated in hydrology). Class A pan data at least provide insight into patterns and evaporation behavior.

Another reason for using Class A pan data is that there are no other measurements at hand, which we could use instead. This is a general problem in simulations of evapotranspiration. Despite that this water balance component significantly contributes to the total balance, researchers often simulate it without any data for calibration or validation at all. Knowing that there is not one perfect model, reliability ensemble averaging (REA) utilizes the information provided by several models of the cohort.

Finally, the idea of using the REA method is, that one component of REA, i.e. R_B, weights the different models concerning how good they match observed values. Hence, an estimate of the natural background variability (i.e. of the bias) of the target variable (as stated on 7535, lines 4-6) is needed. This is the reason why we have used Class A pan data in the course of our REA experiment.

Referee #2: Furthermore, all other uncertainties related to climate (radiation, temperature, rainfall, ...) and uncertainty related to regionalization of the punctual information are ignored.
Authors: We agree that the forcing data itself introduce additional uncertainties. However, this is not part of this study and it would clearly go beyond the scope of our work presented here. Nevertheless, on the long term we think that more research needs to be put in the investigation of the global predictive uncertainty of models, where all sources of uncertainty are evaluated, i.e. spatial input data uncertainty (e.g. soil and land use information), model forcing data uncertainty (e.g. climate data), parameter uncertainty, and model structure uncertainty. This would allow to distinguish between the different sources and identify those components that contribute most to the predictive uncertainty of modeling (e.g. Exbrayat et al. 2014).

We will extent the discussion and discuss other sources of uncertainty as well, i.e. regionalization, class-A pan data and forcing data.

Referee #2: The six ETpot methods differ in data demand and representation of the underlying processes. Some of them use empirical parameters (like PT). These parameters were taken as certain although they are also uncertain. One could have calibrated the empirical parameters of the ETpot equations using the class A pan and studying the effect on IRR. An interesting question would also how the selection of the ETpot method (there are much more in literature, see Bormann) do effect the findings.

Authors: Yes, we could have used more ET functions, but we have restricted our analysis to the most commonly applied methods in the region as described in the introduction (page 7530 lines 13-25). The consideration of other ET functions would have extended the picture drawn in this manuscript, but the overall message would have remained the same.

Further, we did not want to calibrate each method. This is almost never done when ET is simulated on large scale. Moreover, the idea of the REA approach is not to identify one best model and improve it, but to use the information of several models in a statistical way. Here we show that this concept is straightforward to use and helps to improve predictions of water requirement on the large scale.

Referee #2: It seems that the authors assume that nothing is known concerning the applicability of different ETpot methods to specific regions like the MDB. For me the argument is not convincing that many models do use these approaches because in this case one has to train the user to apply only models applicable to specific questions and regions.

Authors: We argue that in many studies, in particular in macroscale or global studies, the choice of the ET function is not validated in a regional context, in particular if the crop coefficient concept is applied as described in the introduction (page 7529, lines 15-
25. page 7530, lines 1-12). We recommend to compare different methods in such a
case and suggest to apply a method to reduce the uncertainty, e.g. by reliability
ensemble averaging.

Referee #2: The data in Tab. 1 already show that the uncertainty related to ETpot is
much larger than the uncertainty related to Kc. Kc,mid for example varies between 1 and
1.15 which is max. 15% compared to the range of 2.4 to 6.4 mm/d in ETpot data (nearly
100%). If this is the story, one cold have stopped here.

Authors: Yes, but in addition to calculate the uncertainty of a single model or a model
parameter, we show an option to reduce the uncertainty by using a method (REA) which
is commonly applied in climate sciences. Again, our objective is not to find one best
model, but rather use the information content of several models. In that sense, we show
that the REA concept is a helpful method in geospatial model applications.

Referee #2: If the main message is that ensemble averaging improves the prediction of
IRR than I wonder if all ETpot models should be considered although it is clear that
some of them are not reliable. If the argument is that it is not clear for other regions
which ETpot model is reliable (I would not agree with such a statement) then one has to
consider much more approaches as used by Bormann.

Authors: We agree that Bormann (2011) gives a more complete picture of the structural
differences between ET methods. Instead of using all methods presented by Bormann
(2011), we have considered the most commonly applied methods in Australia. We think
that the consideration of more functions would not have changed the outcome of our
work.

Referee #2: I recommend repeating the uncertainty analysis but leaving out the two
ETpot methods evaluated as poor. Furthermore, I recommend to “calibrate” the
empirical parameters of the ETpot data using class A pan data and discuss
regionalization as well as other uncertainties.

Authors: The elimination of one ET method for whatever reason is subjective. The
reliability ensemble averaging method gives an objective criterion to weight the different
models, so that models with a poor performance (weighting factor R_B) or models which
differ in a large extent from the simulated ensemble average (weighting factor R_D),
receive a lower weight. By doing so, REA automatically punishes poorer performing
models – there is no need to act as suggested by the referee due to the method we
apply.
Referee #2: The paper is well written. I only wonder why the authors discuss CO2 dependency (pages 7542-7543) because this is a very specific aspect not covered by the paper. I would delete this part.

Authors: Will be deleted.

Literature

Bormann, H.: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations, Climatic change, 104(3), 729–753, 2011.
Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

S. Multsch¹, J.-F. Exbrayat²,³, M. Kirby⁴, N. R. Viney⁴, H.-G. Frede¹ and L. Breuer¹

[1]{Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35390 Giessen, Germany}

[2]{School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK}

[3]{Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia}

[4]{CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia}

Correspondence to: S. Multsch (Sebastian.Multsch@umwelt.uni-giessen.de)

Abstract

Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements.
for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

1 Introduction

1.1 Predicting crop water needs

Globally, the proportion of fresh water consumption by agriculture from rainfall as well as surface and groundwater resources is large (9,087 km³ yr⁻¹) (Hoekstra and Mekonnen, 2012). It is projected that water demand is increasing in the future, in particular by irrigation agriculture, in order to support the increasing world population with food (Foley et al., 2011; De Fraiture and Wichelns, 2010; Hanjra and Qureshi, 2010; Wada and Bierkens, 2014). Globally, the proportion of fresh water consumption by agriculture is large (9,087 km³ yr⁻¹) (Hoekstra and Mekonnen, 2012) and is projected to increase in the future in order to support the increasing world population. More precisely, most of the change in freshwater consumption will arise from the increasing irrigation demand by crops (De Fraiture and Wichelns, 2010). Therefore, strategies based on improved irrigation methods and local adaptations of management practices are likely to be implemented to anticipate this trend. Such strategies are often developed using decision
support systems that are informed by mathematical models. For example, irrigation management has been optimized by modelling and measurements for crops grown in Central Asia (Pereira et al., 2009) or for irrigated cotton in the High-Plains region of Texas (Howell et al., 2004). Others have investigated water use efficiency (Wang et al., 2001) or crop water productivity (Liu et al., 2007) by modelling experiments for irrigated crops grown in China.

All these models depend on the calculation of evapotranspiration (ET) which represents the evaporation from a surface and transpiration from plants. In the case of agricultural crops, ET is equal to the crop water needed for crop growth and yield production. Globally, evapotranspiration represents about two thirds of the total rainfall on land, while evapotranspiration from crops amounts for about 8% (Oki and Kanae, 2006), and is insofar the most important term of the water balance. The basic concept for deriving crop water needs of irrigated crops has been initially reported by Jensen (1968) and is proposed by Allen et al. (1998) as the single crop coefficient concept. The crop specific evapotranspiration (ET_c) is derived from reference evapotranspiration (ET_o) and a crop specific coefficient (K_c):

$$ET_c = ET_o \cdot K_c \quad (1)$$

with ET_o given in [mm] and dimensionless K_c. ET_o can be calculated by standardise potential evapotranspiration (PET) to a short (grass) or tall (alfalfa) reference crop. In the case of the Penman-Monteith equation (Monteith, 1965; Penman, 1948) standardized fixed values for albedo (0.23), plant height (0.12 cm) and surface resistance (70 m s^{-1}) are assumed (Allen et al., 1998; Jensen et al., 1990). K_c is commonly calculated on the basis of field experiments (e.g. Ko et al., 2009; da Silva et al., 2013) and varies with the crop development.

Such an approach is part of many irrigation management models, including Cropwat (Smith, 1992), ISAREG (Pereira et al., 2009), ISM (George et al., 2000) or global crop water models (Siebert and Döll, 2010). Moreover, the single crop coefficient concept is the basis for the simulation of crop water needs in many studies. For example, Lathuillière et al. (2012) have derived water use by terrestrial ecosystems and have shown that ET declines over a 10 year period by about 25% in response to deforestation and replacement by agriculture in Brazil. They showed that irrigation water requirement (IRR) is relevant for terrestrial water fluxes and a reliable estimation is crucial for the closure of the water cycle. In another study future climate
impacts on groundwater in agriculture areas have been investigated (Toews and Allen, 2009). They showed that larger return flows to the groundwater can be related to increased IRR under warmer temperatures and longer vegetation periods. Moreover, the crop coefficient concept is also the basis for the water footprint (volume of water consumed or polluted to produce one unit of biomass) assessment of crops (Mekonnen and Hoekstra, 2011) and has been used to determine water requirements and the water footprint of the agriculture sector in Saudi Arabia (Multsch et al., 2013). In almost all studies, researcher use only one ET\textsubscript{o} method with a single, often spatially independent K\textsubscript{c} set. As a result, some scientist ask to at least use locally better adapted, local K\textsubscript{c} sets at least (Ko et al., 2009; da Silva et al., 2013). For this reason, the investigation of predictive uncertainty of IRR is needed, in particular in the frame of large scale assessments.

1.2 Sources of predictive uncertainty

Major sources of uncertainties should be considered in the study design, quantified throughout the modelling process (Refsgaard et al., 2007) and communicated as part of the results to the end users. Uncertainties related to large scale estimations of the IRR have only rarely been analysed. For example, Siebert and Döll (2010) have studied the uncertainty in predicting green (rainfall consumed by crops) and blue (consumed surface and groundwater by crops in terms of irrigation) water consumption by using different ET\textsubscript{o} equations on a global scale. They observed a significant difference of blue water consumption, i.e. required irrigation, and only a small change in green water consumption between model runs while using two classical ET\textsubscript{o} equations. More recently, Sheffield et al. (2012) pointed out that using a more up-to-date parameterization of PET to calculate drought indices led to different conclusions on drought occurrence globally.

Generally, model predictive uncertainty can be lead back to four sources, input uncertainty, output uncertainty, structural uncertainty and parametric uncertainty (Renard et al., 2010). The last two, structural and parametric uncertainty, are addressed in this study with a focus on the prediction of IRR. As part of the parametric uncertainty, the parameterization of equations to quantify natural or anthropogenic processes has received considerable interest, particularly in conceptual rainfall-runoff modelling (Beven, 2006; Vrugt et al., 2009). In case of modelling crop water needs according to Eq. 1, K\textsubscript{c} is an important model parameter. K\textsubscript{c} values for a large number
of crops are provided by the FAO56 irrigation guidelines (Allen et al., 1998) which are commonly used for irrigation planning. However, it has been highlighted that an adjustment to the global K_c is needed if the simulations are used for irrigation planning on a local to regional scale (Ko et al., 2009; da Silva et al., 2013). Nevertheless, it is still unclear whether a local adaption of K_c leads to a better model performance. For this reason, we quantify the parametric uncertainty of model parameterisation with different K_c sets.

The model structure also introduces uncertainties, as any model remains a simplification of the real world. In the context of modelling water resources, all hydrological and crop growth models rely on the estimation of ET. According to equation 1, ET_o is required to estimate crop specific evapotranspiration. ET_o equations are often divided into categories according to the input data (Bormann, 2011; Tabari et al., 2013): temperature based equations such as Hargreaves-Samani (HS) equation (Hargreaves and Samani, 1985), radiation based equations such as Priestley-Taylor (PT) (Priestley and Taylor, 1972) or combined equations such as the FAO56 Penman-Monteith (PM56) equation (Allen et al., 1998), that further takes wind speed into account. Nevertheless, in many cases it was shown that the variability among PET methods is large (Fisher et al., 2011; Kite and Droogers, 2000). Because most water resources models rely on some calculation of ET_o, we see it as a crucial source of structural uncertainty that is rarely considered.

1.3 Reduction of predictive uncertainty by ensemble modelling

Ensembles of model predictions can be developed by different sets of model parameterization (single-model ensemble) and model structures (multi-model ensemble). The weighting of model ensembles according to their fit to observational data has become of interest to reduce the uncertainty and to derive a more robust predictions and projections. Giorgi and Mearns (2002) have introduced the reliability ensemble averaging technique (REA) in climate research. Basically, different models are weighted according to their performance in representing measured data and according to the distance of individual models to the ensemble average prediction to quantify the convergence of different models. This approach has been applied more recently for predicting catchment nitrogen fluxes (Exbrayat et al., 2013) and calculating water balances and land use interaction (Huisman et al., 2009).
In a first step, we analyse the relative contributions of the structural and parametric model uncertainty in hind casts of IRR of wheat across the Murray-Darling-Basin (MDB), Australia. Simulations are calculated using the spatial decision support system SPARE:WATER (Multsch et al., 2013). In a second step, we apply the REA methodology to reduce the predictive uncertainty of IRR. The general procedure is as follows:

- The applicability of six different ET₀ methods is evaluated by using available measured class-A-pan evaporation measurements of 34 stations in the MDB over a 21 years time period;
- 30 different model realisations are setup in a multi-model ensemble by combining various ET₀ equations (n=6) and crop coefficient data sets (n=5);
- IRR is calculated by forcing the multi-model ensemble with climate time series of 21 years (monthly data) for 3,969 sites (each 1 km² x 1km²) in the MDB where irrigated wheat has been grown according to the land use allocation in 2000;
- The 30 model realisations are weighted according to their performance in representing measured data and their distance to the ensemble average.

By doing so, we quantify structural (ET₀ method) and parametric (Kc set) uncertainty and apply REA to provide a robust estimate of IRR and the confidence interval around it. The underlying research question is how can we derive better predictions by using an ensemble of well-known ET₀ methods as well as Kc sets and which are the likely causes of predictive uncertainty in IRR estimations. Finally, we show a procedure to reduce predictive uncertainty of IRR.

2 Methods and data

2.1 Study site and data

The MDB covers about 1 million km² of south-east Australia (Fig. 1). Irrigation agriculture in the MDB sums up to 17,600 km², which is equal to 65% of the total irrigation agriculture in Australia. Total water withdrawal for irrigation in 2006 amounted to 7.36 km³ yr⁻¹ (ABS, 2006). Wheat is the second most important crop grown in MDB after grazing pastures, covering 3,969
km² in 2006 and was therefore selected for this case study for which IRR and its underlying uncertainty was calculated. The cropping areas have been taken from a land use map from 2006 (ABARES, 2010) with a spatial resolution of 0.01° x 0.01° (~1 km x 1 km). We assume a fixed land use distribution over time in our model study to clearly target the uncertainty in ET₀ method and crop coefficients. Climate data for 1986-2006 were taken from the SILO Data Drill of the Queensland Department of Natural resources and Water (https://longpaddock.qld.gov.au/silo/(Jeffrey et al., 2001)) with a spatial resolution of 0.05° x 0.05° (~5 km x 5 km). We used the same weather dataset over all 3,969 1 x 1 km land grid cells overlapped by a 5 x 5 km grid cell in the weather data. The model was forced with monthly data. For validation, we compared simulated ET₀ to measured class-A pan data from 34 stations throughout the MDB. The class-A pan data were obtained from Patched Point Dataset of the Queensland Department of Science, Information Technology, Innovation and the Arts, (http://www.longpaddock.qld.gov.au/silo/ppd/). Measured data have been adjusted with monthly pan-coefficients according to McMahon et al. (2013) to represent evaporation from open surface water. For stations where no pan-coefficient was available we used the one from the nearest station.

2.2 Simulation of irrigation requirement with SPARE:WATER

SPARE:WATER (Multsch et al., 2013) is a spatial decision support system for the calculation of crop specific water requirements and water footprints from local to regional scale. Input parameter for the simulation are climate data, irrigation management (irrigation water quality, irrigation efficiency, irrigation method), a digital elevation model and crop characteristics such as maximum crop height and length of growing season as well as sowing and planting date. In a first step, the water requirement of growing a crop is simulated for each grid cell according to the spatial resolution of the input data. In a second step, the water footprint for spatial entities such as administrative boundaries or catchments is calculated considering statistical data on crop yield and harvest area. Water footprints for geographic entities are given as volume of water consumed per year (e.g. km³ yr⁻¹) and water footprints for specific crops as volumes of water consumed per biomass (m³ t⁻¹).
In this study the calculation of the IRR is calculated as the difference between ET$_c$ and effective rainfall (P_{eff}). The latter one is estimated from the difference of surface run-off (RO) and precipitation (P). RO is derived as a fixed fraction of 20% of total P. The fixed fraction of runoff is adapted from the default setting of the FAO CROPWAT model (Smith, 1992). On this basis, IRR is calculated according to Eq. 2:

$$\text{IRR} = \max\left(ET_c - P_{\text{eff}}, 0\right)$$

with IRR, ET$_c$ and P_{eff} given in [mm]. ET$_c$ is calculated based on the single crop coefficient approach initially proposed by Jensen (1968) and recommended by Allen et al. (1998) according to Eq. 1. The input parameters for this method are the length of four individual stages (initial season, growth season, mid-season and late season) during the growing season and three related crop coefficients (K_c). These define the ratio between ET$_o$ and ET$_c$ for each part of the growing season. We have considered five different K_c data sets (Table 1). The most common dataset has been proposed from the FAO56 Irrigation and Drainage Guidelines (Allen et al 1998). This approach has been applied for calculating crop water footprints (Mekonnen and Hoekstra, 2011) and is part of the widely used Cropwat model (Smith 1992). It has been discussed that locally adapted K_c sets are superior in simulating site-specific crop water requirement than global ones (Ko et al., 2009; da Silva et al., 2013). Thus, further data sets have been collected from various sources which represent site-specific relationships between ET$_o$ and ET$_c$ for areas in the MDB.

ET$_o$ has been calculated with six different methods (Table 2). Two of them are classified as combined methods (PM56, PPET), three are radiation-based methods (PT, TURC, APET) and one is a temperature based method (HS). All of them are commonly applied function, e.g. PM56 and HS are included in Cropwat (Smith, 1992) and Aquacrop (Steduto et al., 2009), two models to quantify crop water and IRR, widely used and promoted by the FAO. The cropping system model EPIC (Williams, 1989) additionally allows the use of the PT equation, while the global vegetation model LPJmL (Fader et al., 2010) and the global water model WaterGap (Döll et al., 2003) are restricted to PT. APET and PPET have been particularly tested for the utilisation under Australian weather conditions in several (Chiew et al., 2002; Chiew and Leahy, 2003; Donohue et al., 2010).
2.3 Reliability Ensemble averaging

We used two types of ensemble averaging techniques, which differ in the weighing technique. We calculated an equally weighted average of all 30 model realisations (6 ET$_o$ methods x 5 K$_c$ datasets) for every grid cell which sum up to 3,969 cells (1 x 1 km) in the MDB where irrigated wheat is grown according to the land use allocation in 2006. However, this method does not consider the capability of its ensemble members to predict a target value nor does it value the agreement of model predictions amongst each other. Therefore, we apply the REA technique that was initially proposed by Giorgi and Mearns (2002) to reduce uncertainties in climate change projections (see appendix C for details). Moreover, it was used in impact studies targeting land use change impacts on hydrology (Huisman et al., 2009) and water quality scenario projections (Exbrayat et al., 2013).

The strength of the REA method is that it considers both the quality of a model prediction (performance) and its position within an ensemble of prediction (convergence). The aim is to provide a best estimate of predictions and a robust assessment of the confidence interval around it. The REA weighting scheme estimates two factors, model performance (R_B) and model convergence (R_D). R_B represents the capability of each ensemble member to represent real world data by its bias B. R_D is a measure of the distance D of a single model to the equally weighted ensemble average. Both are limited by the natural background variability (ε). The combined effect known as reliability factor (R) is derived as:

$$R = \left[\frac{\varepsilon}{abs(B)} \right] \times \left[\frac{\varepsilon}{abs(D)} \right]$$

(3)

In this study, ε is calculated from measured class-A pan evaporation for 34 climate stations in the study region for the time period from 1986 to 2006. The class-A pan data has been adjusted with monthly pan coefficients for climate stations in Australia (McMahon et al., 2013). We calculated the annual mean evaporation [mm] for each year and each station and used the 50% confidence interval (difference between the 25% and 75% percentile) of 224 mm to define ε. The consideration of the difference between upper and lower percentiles has been recommended by...
Giorgi and Mearns (2002). Model performance is measured by the RMSE between measured (class-A pan) and predicted ET$_o$ for each model (i).

The convergence criterion R_D is calculated in an iterative procedure. The difference between the average IRR of each ensemble member i and the ensemble average is calculated. Under the consideration of the natural background variability ε a first guess of R_D (for each ensemble member) is predicted as well as a first guess of the REA average. This procedure is repeated by considering the newly derived REA average until the ensemble convergence, so that the difference between ensemble members and the REA average cannot be reduced by additional iterations (see Giorgi and Mears (2002) for a complete methodological description). The error of the equally weighted ensemble average is described by the RMSE between IRR_i predicted by model i (with n=30 models) and the equally weighted ensemble average irrigation water requirement (\(\bar{IRR}\)). The error of the reliability ensemble average (RMSE$_{REA}$) is derived from the reliability factor of each model (R_i), the irrigation water requirement predicted by model i (IRR_i) and the REA weighted ensemble average (\(\bar{IRR}_{REA}\)). The RMSE represents an approximate 60-70% confidence interval under the assumption that the amount of irrigation is distributed somewhere between normal and uniform.

3 Results

3.1 Validation of ET$_o$ methods

We applied six ET$_o$ equations to 34 sites in the MDB for which measured class-A pan evaporation data were available from 1986 to 2006 (Fig. 2). Class-A pan data represent the evaporation from an open water surface and integrate all climate factors driving evaporation such as radiation, wind speed, humidity and temperature. Pan evaporation differs from evaporation from a cropped surface through a different albedo, heat storage and humidity above the surface. For this reason, the class-A pan data have been adjusted with monthly pan coefficients (McMahon et al., 2013) to better compare them with ET$_o$ simulations of open surface waters. On an annual average, class-A pan evaporation of 1,558 mm yr$^{-1}$ were reduced by 9% to 1,422 mm yr$^{-1}$ across all stations.
The median daily ET_o for APET is 3.6 mm d$^{-1}$, PM56 3.9 mm d$^{-1}$, HS 3.8 mm d$^{-1}$, PPET 5.2 mm d$^{-1}$, PT 6.4 mm d$^{-1}$ and TURC 3.4 mm d$^{-1}$. According to the root-mean-squared-error (RMSE) PM56 gave the most reliable results. The median of ET_o for APET, PM56 and HS are close to the median of the measured evaporation rate of 3.7 mm d$^{-1}$. Apart from PT and PPET, the other methods underestimate ET_o, especially where class-A pan data are larger than 6 mm d$^{-1}$.

The relationship between measured and simulated ET_o is linear as shown by the coefficients of determination r^2 ranging from 77% (PT) to 88% (PPET).

The simulated ET_o is normally distributed if a single station and one year is tested (Shapiro test for normality: alpha>0.1 for each year and station). The difference between the 34 stations is up to two times larger than the inter-annual difference in the 21 years period. Thus, spatial variability is larger than temporal variability in the MDB. The intra-annual variability shows a different picture. The median ET_o in the summer months is up to four times larger than the ET_o during winter months for all ET_o methods, except PPET and PT with a six times larger ET_o in summer than in winter months.

Four of the six methods simulate the measured data with a high r^2 and a low RMSE. The difference between the methods itself is large, in particular through the high ET_o estimates by PT and PPET. Thus, the structural uncertainty through the ET_o method is substantial and needs to be considered for the prediction of IRR which is addressed in the next chapters.

3.2 Irrigation water requirement and its variability

The IRR of wheat has been simulated using an ensemble of thirty model realisations for each of the 3,969 1 km × 1 km irrigated cells in the MDB for 21 years. Average values of IRR for all model realisations are shown in Table 3. In most cases, the largest estimates are given by the combinations of the Kc set Hughes with the ET_o method PT. These are almost 2.5 times higher than the lowest average IRR calculated by the combination of TURC with the Kc set Harris. It is obvious that changing ET_o method results in a larger variation of calculated IRR than using a different Kc set. Hence, the average IRR give a first idea about variability due to model structures and parameters.
Over a large watershed such as the MDB local differences in IRR may be large while catchment wide water management plans define thresholds for water withdrawal, for example due to water rights or water resources protection measures. A given threshold may require heterogeneous local adaptations of irrigation management and a change in cropping patterns. Figure 3 shows the probability that a certain amount of IRR is exceeded in the MDB on average over the 21 year period. It illustrates the range of IRR predicted by the ensemble of all 30 model realisations for each grid cell. Two groups can be identified that are separated by ET\textsubscript{o} methods. The first group is composed of PPET and PT calculations. In this case, IRR is up to twice as high as compared to predictions by other models. The second group is formed by APET, HS, PM56 and TURC with substantially lower calculations of less than 500 mm in most cases. We note that the parametric uncertainty is almost negligible compared to the uncertainty introduced by the various ET\textsubscript{o} methods.

3.3 Ensemble averaging, uncertainty and weighting

Ensemble predictions have become an important tool to account for different model structures and parameters (Exbrayat et al., 2013; Huisman et al., 2009; Wada et al., 2013). The consideration of ensembles is especially helpful to increase our confidence in simulations when no validation data are at hand, such as projections of Earth’s future climate under specified emission scenarios. Here we apply the concept of ensemble prediction to simulations of IRR. Two different ensemble averages, expressed as the exceedance probability of the IRR of wheat are shown in Fig. 4. The first one represents the equally weighted average of irrigation (IRR, black line). The second one represents a weighted average using the reliability ensemble averaging (\(\overline{IRR}_{REA} \), red line, see methods description) that weights predictions based on their performance and agreement with other ensemble members. This prevents dismissing some model structure, a process that can be rather subjective. Also, even an overall poorly performing model can contribute to the optimal information extracted from the ensembles (Viney et al., 2009), or may outperform better performing models once boundary conditions are changed (Exbrayat et al., 2013).

We use the inverse of the cumulative daily RMSE (Fig. 2) of the ET\textsubscript{o} methods during the growing season to calculate the criterion \(R_B \) (RMSE 154 mm for APET, 123 mm for PM56,
142 mm HS, 232 mm PPET, 373 mm PT, 166 mm TURC). The convergence criterion R_D was calculated based on the difference of the predicted irrigation given by a single ensemble member and the equally weighted ensemble average (see Methods description). Overall, the PT model combinations have the lowest reliability factors of between 0.51 and 0.6 followed by PPET with 0.96, a result driven by the poorer performance of these methods to simulate pan-evaporation (Fig. 2), and the outlying positions of simulations using PT and PPET (Fig. 3). All other models are weighted similarly, a result in accordance with the similar performance and simulated values exhibited by these methods (see Table 4 for details).

The application of the reliability factor leads to a decrease of the calculated total IRR in each grid cell as well as to a decrease of its overall uncertainty (Fig. 4). The uncertainty range is given by the ensemble average plus/minus the RMSE in each grid cell, assuming that modelling errors are normally distributed.

Exceedance probability curves might support defining thresholds in irrigation planning with consequences for decision makers through, for example, the adaptation of improved irrigation practice (e.g. from full to deficit irrigation, installation of advanced irrigation techniques) or the purchase of additional water rights. For example, a limit of available irrigation water of 400 mm per growing season will be exceeded less frequently in the MDB if the REA average IRR is considered (45%) in comparison to the equally weighted average (66%).

The spatial distribution of the equally weighted and the REA weighted ensemble averages are shown in Fig. 5a and b. The equally weighted average of IRR ranges between 124 and 691 mm with an average across the MDB of 424 mm (Fig. 5a). Thus, spatial variability is large and western and northern areas require five to six times more irrigation than in the south-east. The REA derived average IRR ranges between 104 mm and 663 mm across the river basin (Fig. 5b) with an average of 405 mm. Depending on the location this value is up to 18% lower as compared to simulations based on the equally weighted average (Fig. 5c). Also, the uncertainty range decreases as consequence of the REA method by about 10% across the MDB with maximum values of around 26% when comparing equally and REA weighted RMSE (Fig. 5d-f). The largest change in uncertainty can be found in the south-east of the MDB and also in areas towards the east (Fig. 5f). Thus, REA not only leads to a decrease of predicted IRR but also to a
reduction of its uncertainty. The uncertainty is reduced because the REA is drawn toward the group of the better ET₀ methods that also agree well between themselves.

4 Discussion and conclusions

The simulation of IRR strongly varies amongst ET₀ methods. Bormann (2011) recommended that the selection of the ET₀ method should be based on the validation of ET₀ with real world observations rather than only on the availability of climate input data. This is due to the general large variability among ET₀ methods, which was also revealed in a study where PT was set as a benchmark model and the RMSE between ET₀ methods was analysed (McMahon et al., 2013). Likewise, the influence of a single ET₀ method on the prediction of crop yields was also reported for an agriculture site in Europe (Balkovič et al., 2013) where ET₀ estimates by PT were 40% higher and those by Penman-Monteith 10% lower in comparison to HS. We also found a large variability among ET₀ methods in our study. However, similar ranges across Australia for ETo have been reported by others (Chiew et al., 2002) for APET, PPET and PM56 as well as lower values for PT. Lascano et al (2010) as well as Lascano and Van Bavel (2007) have shown that methods to calculate ET based on combination methods, i.e., Penman-Monteith, tend to underestimate ET by as much as 25%, especially in dry climates.

Bormann (2011) further recommended that the reliability of ET₀ equations should be tested in a spatial context, especially if applied on large scale. For various regions across Australia, a large range of mean annual ET₀ between 1,700 mm (PT) and 3,670 mm (PPET) was reported (Donohue et al., 2010). To investigate the spatial heterogeneity within the MDB we analysed results of the 34 class-A pan stations. Overall, the performance of four of the ET₀ methods was good with RMSEs around 1 mm day⁻¹, except for three stations in the north. PPET performed less well with RSME increasing to 2 mm day⁻¹ while the PT value ranged up to 4 mm day⁻¹. However, we found no consistent spatial pattern. We are aware that the utilization of class-A pan data comes along with uncertainties. We and we did not assume that the data are error-free certain, but for the application of REA, a comparison of model simulations and observations is needed to calculate the model performance criterion. We could have treated PM56 as being an “observation” in terms of the sense of a benchmark model. However, we think that a more
independent test is more appropriate in the sense of REA and therefore decided to use those observations that are at hand: class-A pan observations. To account for the difference of class-A pan evaporation and reference crop ET, we used a commonly applied correction factor (pan-coefficients according to McMahon et al. (2013)) to derive crop ET from class-A pan measurements. Most often, ET estimates are not compared to any measurements at all, leaving modelers with no information on how good their model application is. We therefore think that a comparison to class-A pan is for sure not perfect, but better than not testing at all.

ET\(_o\) estimates using the PM56 method revealed the best performance criteria in our study. PM56 considers the most meteorological input parameters thereby possibly best representing the altering dry and wet conditions across the MDB over the year. The better performance of physically based equations in comparison to more empirical approaches for the simulation of ET\(_o\) has also been reported by others (Donohue et al., 2010). PT performed least well in our study and resulted in up to two times larger estimates than other ET\(_o\) methods. This is somewhat contrasting with other studies (Chiew et al., 2002; Donohue et al., 2010) where PT gave lower ET\(_o\) values in comparison to methods such as APET and PPET.

One reason is that Donohue et al. (2010) have considered the actual albedo from remotely sensed vegetation cover (Donohue et al., 2008) for the estimation of the net incoming solar radiation. In our calculations, an albedo of a reference crop 0.23 (short crop, i.e. grass) has been considered according to the guidelines for ET\(_o\) from Allen et al. (1998). Another likely reason for this observation is that the PT equation is based on the Penman-Monteith equation in which the aerodynamic term is replaced by a constant (alpha) which is commonly set to 1.26 under Australian climatic conditions (Chiew and Leahy, 2003) and which we also applied. The consideration of region-specific alpha for the MDB could have increased the performance of PT in our study. The HS equation is commonly applied in situations where meteorological data are scarce, because the equation depends on more readily available temperature and extra-terrestrial radiation derived from latitude and day of the year. A reason for its good performance in our study could be that the semi-arid climate in most of the MDB is favourable for the HS equation, which is supported by Tabari (2010) who conclude that HS is a good candidate model for warm humid and semi-arid sites, but fails under cold humid climates. However, the poor response of
HS to changing climatic boundary conditions has also been criticized in a study on global drought simulations (Sheffield et al., 2012).

We combined the six ET_o methods with five K_c sets to address stochastic parametric uncertainty for irrigated wheat in the MDB. We show that the ET_o method uncertainty range exceeded the uncertainty range of K_c sets. Thus, the K_c sets have a minor influence on predicted IRR. At first sight, this seems to be contrasting to others who have stated that adapted, regional K_c sets are required to estimate reliable IRR rates. For instance, da Silva et al. (2013) reported that K_c sets from FAO56 lead to errors in plot scale irrigation planning under tropical conditions. Similar observations were reported for semi-arid conditions in the Texas High Plains region (Ko et al., 2009), highlighting the importance of regionally based K_c sets. While regional adaptation of K_c might be important at smaller scales, e.g. on the farm level, we conclude that large scale applications do not necessarily need to focus on this potential contribution of uncertainty. Rather, effort should be put into finding appropriate ET_o methods, or even better, utilize ensemble predictions to cover a more realistic range of predictions. Our study confirms this latter recommendation, as we could not identify a single best ET_o method for the MDB. Especially in cases where no data for a direct evaluation of model results are available the application of model ensembles gives insight to the predictive uncertainty, e.g., being helpful in the development of best management practices (Exbrayat et al., 2013), study of land use (Huisman et al., 2009) or climate change (Exbrayat et al., 2014).

Besides the uncertainty introduced by local to global K_c values the utilisation of the single crop coefficient concept itself comes along with errors, which are not addressed in this study. For example, Lascano (2000) shows how K_c varies as a function of time (50 days) and how it changes when using a daily, 3 and 8-day moving average. Moreover, the temporal resolution of ET_o calculation, i.e., hourly vs. daily is an important component and errors associated with the method of irrigation (surface, drip, sprinkler) cannot be neglected, but are beyond the uncertainty calculation of this study. We acknowledge that we do not consider uncertainties in boundary conditions (e.g. relevance of CO2 concentration, land-use management options, climatic variability) although these may be non-negligible. For example, atmospheric CO2 has been reported as a driving factor of ET in North America, South America and Asia regions besides climate forcing (Shi et al., 2013). Others - Bocchiola et al. (2013) reported that changes in future
precipitation regimes will have the greatest impact on the calculated water footprint (reflecting high ET rates) of maize in Italy and that changes in CO₂ and warming were less important (Bocchiola et al., 2013). Conversely, water use was more driven by agricultural management than by regional climatic variation in a water footprint analysed for an irrigation district in China (Sun et al., 2013). Statistical correction of model forcing data (such as bias correction of precipitation) has also been reported to alter ET estimates as shown by Ye et al. (2012) for the Upper Yellow River in China with changes of up to 29% of ET. Beyond that, the forcing data themselves introduce additional uncertainties. However, this is not part of this study and it would clearly go beyond the scope of our work presented here. Nevertheless, on the long term more research needs to be put in the investigation of the global predictive uncertainty of models, where all sources of uncertainty are evaluated, i.e. spatial input data uncertainty (e.g. soil and land use information), model forcing data uncertainty (e.g. climate data), parameter uncertainty, and model structure uncertainty. Thus, an even more complete picture of global model uncertainty can only be shown by considering all sorts of predictive uncertainty, including model input data, validation data, and spatial input data in addition to the impact of model structural and parametric uncertainty as presented here.

However, we argue that future management practices or the impact of climate change cannot be reliably evaluated due to the large uncertainty that exists in the ET₀ method, the basis of water resources modelling. We partially cope with this problem by applying the REA technique to extract the most relevant information from our simulations. The advantage of REA in decision making has already been shown for other fields of research, such as the development of N reduction scenarios to improve surface water quality (Exbrayat et al., 2013) or estimation of the effect of land use change on water budgets and hydrological fluxes (Huisman et al., 2009). Despite the growing importance of IRR for today’s agriculture (Siebert and Döll, 2010) and the effect on surface (Hoekstra et al., 2012) and groundwater (Wada et al., 2010) resources, few studies have dealt with the predictive uncertainty of this requirement (e.g. Wada et al. (2013)) and how to reduce it.
Acknowledgements

We acknowledge the generous funding of the Deutsche Forschungsgemeinschaft (DFG, grant BR2238/11-1) that allowed a cooperation visit of the first author to CSIRO Land and Water and the ARC Centre of Excellence for Climate System Science in Australia. The research was further supported by a grant from KACST, Saudi-Arabia and the CAWa project (AA7090002).

References

Harris, G. A.: Irrigation: water balance scheduling, Queensland Department of Primary Industries and Fisheries, (DPI Note FSO546), 2002.

Hughes, J. D.: Southern Irrigation SOILpak. For irrigated broad area agriculture on the Riverine Plain in the Murray and Murrumbidgee valleys., NSW Agriculture, Orange, 1999.

Table 1. The five crop parameter sets for Kc.

<table>
<thead>
<tr>
<th>Name (Reference)</th>
<th>Spatial reference</th>
<th>Kc_{ini}</th>
<th>Kc_{mid}</th>
<th>Kc_{end}</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO56 (Allen et al., 1998)</td>
<td>Global</td>
<td>0.7</td>
<td>1.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Harris (Harris, 2002)</td>
<td>Queensland</td>
<td>0.3</td>
<td>1.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Kirby (Kirby et al., 2012)</td>
<td>Murray-Darling Basin</td>
<td>0.4</td>
<td>1.15</td>
<td>0.4</td>
</tr>
<tr>
<td>Meyer (Meyer, 1999)</td>
<td>Griffith, MDB</td>
<td>0.4</td>
<td>1.05</td>
<td>0.5</td>
</tr>
<tr>
<td>Hughes (Hughes, 1999)</td>
<td>Murray and Murrumbidgee valleys</td>
<td>0.3</td>
<td>1.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Table 2. The six equations applied for the calculation of reference evapotranspiration.

<table>
<thead>
<tr>
<th>Method</th>
<th>Abbreviation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAO-56 Penman-Monteith (Allen et al., 1998)</td>
<td>PM56</td>
<td>[\text{PET}{PM56} = \frac{0.408 \cdot \Delta \cdot (R_n - G) + \frac{900}{T{\text{mean}} + 273} \cdot u_2 \cdot (e_s - e_a)}{\Delta + \gamma \cdot (1 + 0.34 \cdot u_2)}]</td>
</tr>
<tr>
<td>Priestley-Taylor (Priestley and Taylor, 1972)</td>
<td>PT</td>
<td>[\text{PET}_{PT} = \alpha \left[\frac{\Delta}{\Delta + \gamma} \right] \cdot \frac{(R_n - G)}{\lambda}]</td>
</tr>
<tr>
<td>Hargreaves-Samani (Hargreaves and Samani, 1985)</td>
<td>HS</td>
<td>[\text{PET}{HS} = 0.0023 \cdot (T{\text{mean}} + 17.8) \cdot (T_{\text{max}} - T_{\text{min}})^{0.5} \cdot R_a \cdot 0.408]</td>
</tr>
<tr>
<td>Turc (Allen, 2003; Turc, 1961)</td>
<td>TURC</td>
<td>[\text{PET}{TURC} = \alpha_T \cdot \frac{T{\text{mean}}}{T_{\text{mean}} + 15} \cdot \frac{23.8856 \cdot R_s + 50}{\lambda}]</td>
</tr>
<tr>
<td>Areal – PET (Morton, 1983)</td>
<td>APET</td>
<td>[\text{PET}{APET} = b_1 + b_2 \left(\frac{1 + \gamma \cdot p}{\Delta} \right)^{-1} \cdot R{TP}]</td>
</tr>
</tbody>
</table>
| Point – PET (Morton, 1983) | PPET | \[\text{PET}_{PPET_{\text{Energy-Balance}}} = R_n - \lambda_p \cdot f_T \cdot (T_p - T_{\text{mean}}) \]
\[\text{PET}_{PPET_{\text{Vapor-Transfer}}} = f_T \cdot (e_s - e_a) \] |

With \(\text{PET}_{PM56} \), \(\text{PET}_{PT} \), \(\text{PET}_{HS} \), \(\text{PET}_{TURC} \), \(\text{PET}_{APET} \), \(\text{PET}_{PPET_{\text{Energy-Balance}}} \) and \(\text{PET}_{PPET_{\text{Vapor-Transfer}}} \) in [mm], extra-terrestrial radiation \(R_s \), solar radiation \(R_s \), net radiation \(R_n \), soil heat flux density \(G \) and net radiation at equilibrium temperature \(R_{TP} \) in [MJ m\(^{-2}\)], equilibrium temperature \(T_p \), mean \(T_{\text{mean}} \), minimum \(T_{\text{min}} \) and maximum \(T_{\text{max}} \) air temperature in [°C], wind speed \(u_2 \) at 2 m height [m s\(^{-1}\)], atmospheric pressure \(p \), saturated \(e_s \) and actual \(e_a \) vapour pressure in [kPa], slope of vapour pressure curve \(\Delta \) and the psychometric constant \(\gamma \) in [kPa °C\(^{-1}\)], latent heat of vaporization \(\lambda \) in [MJ kg\(^{-1}\)], and the dimensionless empirical constants \(b_1 \) and \(b_2 \) [-], the heat transfer coefficient \(\lambda_p \) [-], the vapour transfer coefficient \(f_T \) [-] and the humidity based value \(\alpha_T \).
Table 3. Average equally weighted irrigation water requirement (\overline{IRR}) [mm] during the growing season of wheat in all cells [n=3,969] of the MDB grouped by ET_o methods and K_c sets over the period 1986-2006 (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc).

<table>
<thead>
<tr>
<th>ET_o method</th>
<th>Kirby</th>
<th>Hughes</th>
<th>Meyer</th>
<th>FAO56</th>
<th>Harris</th>
<th>\overline{IRR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>381</td>
<td>381</td>
<td>372</td>
<td>349</td>
<td>336</td>
<td>364</td>
</tr>
<tr>
<td>PT</td>
<td>661</td>
<td>671</td>
<td>654</td>
<td>618</td>
<td>580</td>
<td>637</td>
</tr>
<tr>
<td>PPET</td>
<td>577</td>
<td>577</td>
<td>565</td>
<td>534</td>
<td>514</td>
<td>551</td>
</tr>
<tr>
<td>PM56</td>
<td>365</td>
<td>362</td>
<td>355</td>
<td>344</td>
<td>324</td>
<td>350</td>
</tr>
<tr>
<td>APET</td>
<td>357</td>
<td>354</td>
<td>347</td>
<td>329</td>
<td>315</td>
<td>340</td>
</tr>
<tr>
<td>TURC</td>
<td>315</td>
<td>316</td>
<td>308</td>
<td>289</td>
<td>279</td>
<td>301</td>
</tr>
<tr>
<td>\overline{IRR}</td>
<td>443</td>
<td>443</td>
<td>433</td>
<td>410</td>
<td>391</td>
<td>424</td>
</tr>
</tbody>
</table>
Table 4. Performance (R_B) and convergence (R_D) and reliability (R) coefficient of the ensemble members.

<table>
<thead>
<tr>
<th></th>
<th>FAO56</th>
<th>Harris</th>
<th>Hughes</th>
<th>Kirby</th>
<th>Meyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>APET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_B</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>PPET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>R_D</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PM56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_B</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_B</td>
<td>0.98</td>
<td>1.00</td>
<td>0.85</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>R_D</td>
<td>0.59</td>
<td>0.60</td>
<td>0.51</td>
<td>0.53</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Figure 1. The Murray-Darling basin (MDB) is located in south-east Australia. Irrigated wheat areas (2005/06) across the MDB are indicated as black dots, n=3,969; cell size=1 x 1 km.
Figure 2. Comparison of daily measured class-A pan evaporation with simulated potential evapotranspiration at 34 sites in the MDB during the time period from 1986 to 2006. The class-A pan measurements have been adjusted with site-specific pan coefficients. The coefficient of determination (r^2) and the root mean square error (RMSE) are depicted for each ET$_o$ method (APET: Areal potential evapotranspiration; PM56: FAO56 Penman-Monteith; HS: Hargreaves-Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc).
Figure 3 Exceedance probability of equally weighted average irrigation water requirement (\overline{IRR}) for wheat during the growing season. Averages have been calculated for each cropping area [$n = 3969 = 100\%$] for the period 1986-2006. Colours indicate different ET_o methods (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc) and symbols differentiate K_c sets.
Figure 4 Cumulative density function of equally weighted (IRR) and REA weighted (IRR_{REA}) average irrigation water requirement for wheat during the growing season. Averages have been calculated for each cropping area [n = 3969 = 100%] for the period 1986-2006. Colours indicate the predicted root mean square difference (RMSE) of the ensemble of ET_{o} methods and Kc sets (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc).
Figure 5. Average equally weighted (a) and REA weighted (b) irrigation water requirement during the growing season of wheat (1986-2006). Dots indicate irrigated cropping areas [n=3,969; cell size=1 x 1 km] (note: a buffer has been used to increase the visibility of the single grid cells). (c) illustrates the difference between both IRR calculations (b-a). (d) and (e) show the root mean square error between the 30 realizations and the equally weighted (d) and REA weighted (e) averages as well as the difference (f) between both calculations, respectively.