Reply to Anonymous Referee #1

We thank the anonymous referee for her/his constructive comments and suggestions, which helped us to improve our manuscript. We have carefully considered each of the comments and have modified the text accordingly. Please find below our reply (blue text) to each comment (black).

Frequently through the paper the differences between the two simulations that are nudged towards the reanalysis are qualified by stating that the nudging is only weakly applied. The paper quotes e-folding times of 12 hours for temperature and surface pressure, 6 hours for vorticity and 48 hours for divergence. It is also pointed out in the paper that the full strength of the nudging is only applied between approximately 200 hPa and 700 hPa, but at these levels a 12-hour e-folding time for temperature nudging is quite strong. Widely used e-folding times for dynamical fields I have seen are somewhere around 24-hours, leading me to think that the nudging is actually quite strong – with the caveat that there is no nudging in the stratosphere. Is it possible to include a bit more background information, perhaps from the Jockel et al. (2006) paper, on why the two nudged simulations analysed here are only weakly nudged?

The term “weak” is indeed relative and only qualitative, therefore we removed it in the revised manuscript. The referee is right in stating that other models apply longer relaxation times. Those we use turned out to be well suited for our analyses so far, and we admit that we did not perform systematic studies on this. Note, however, that the relaxation time is only part of the story. The effect of the nudging also depends on how it is applied: we perform the relaxation in the spectral representation, i.e., well adapted to atmospheric wave phenomena and the spherical geometry. This is different from other models where the relaxation is performed in grid-point space. Moreover, in the analysed simulations we did not nudge the “wave zero”, i.e., the global mean temperature, thus essentially only nudging “wave patterns”. This can also be regarded as “weak” or “weaker” than others do it.

The concern about how strongly the nudging is applied leads directly to the second point, which is the existence of the significant lower-stratospheric temperature bias in the nudged runs. In Figure 1 the tropics at 200 hPa show a larger temperature bias in the nudged runs than in the freely running simulations, though this is compensated for by a larger cold bias in the free runs in the extra-tropics so that the global-average bias is very similar in both the freely-running and nudged simulations. If the temperatures are being nudged towards the operational ECMWF analysis with a time constant of 12 hours, how is a global-average 5 K temperature bias supported in the nudged runs? I'll note that the ECMWF operational re-analysis is being used for the nudging, while validation is against the ERA-Interim reanalysis but I am guessing there is not a 5K difference in these datasets at 200 hPa.

As mentioned above, we do not nudge the global average temperature, i.e. essentially no bias correction is applied. This has been clarified in the manuscript (Sec. 3.1) as follows: “The nudging is applied in the spectral representation, well adapted to atmospheric wave phenomena and the spherical geometry. It is important to note that we did not nudge the wave zero (i.e., the global mean), but only wave patterns.”

Concerning the difference between ERA-Interim and ECMWF operational analyses: The difference between the RMS forecast errors produced by ERA-Interim and the ECMWF forecasting system that was operational in 1989 is only about 0.2 K at 200 hPa (Dee et al., Q. J. R. Meteorol. Soc., 2011). Although this value refers to the year 1989, the reviewer is probably right guessing that there is no 5K difference in these datasets at 200 hPa.

The other significant point is about the effects of sea-surface temperatures and sea-ice on Antarctic ozone depletion, discussed in section 6.2.1. Here two freely-running simulations are compared, the TS2000 and ACCMIP runs, that used different SSTs and the conclusion is drawn that the particular set of SSTs used in the ACCMIP simulation has contributed to the deeper ozone depletion found in this simulation as compared with the TS2000 simulation. There have been some results reported in the literature that show connections between surface processes and the evolution of the Antarctic stratospheric vortex (e.g. Garfinkel et al., J. Atmos. Sci., 70, 2137-2151, 2013) so it seems reasonable to expect a connection. My concern is whether the differences between the TS2000 and ACCMIP simulations are statistically significant. I am also concerned about the extension of the findings from the two free-running simulations to the nudged simulations. In section 6.2.1 it is stated that the ECMWF data used to supply SSTs for the nudged simulations also seems to favour a deeper ozone depletion, yet these simulations used nudging of dynamical variables. The connection between
planetery waves and the polar vortex is well known and in the two nudged simulations the planetary waves will be significantly influenced by the nudging, so I think it is a point for further analysis whether the nudging or the SSTs can explain the greater ozone depletion in the two nudged simulations, EVAL2 and QCTM. There is also the added complexity that the QCTM simulation has specified ozone fields that interact with the model radiation and will then feed through to the evolution of the polar vortex. To sum it up, there is an interesting case to be made if the two freely-running simulations do demonstrate a statistically different amount of ozone depletion, but the argument about whether the ECMWF SSTs used for the nudged simulations also favour greater ozone depletion should be approached with a much greater degree of caution.

The referee is right. To be able to distinguish the wave forcing due to “nudging” from the SST effect, an additional, free running simulation with prescribed ECMWF SST would be required. This is beyond the scope of the current analysis. In the revised manuscript we remove the argumentation and reformulate it as outlook.

We have calculated the differences between the four simulations and applied the Welch's t-test (as described in Appendix A3) with a 95% confidence level. We have found that such differences are not statistically significant during the ozone hole season. Therefore we removed this argument from the paper (in Section 6.2.1, Abstract and Conclusions). Thanks for pointing this out.

Page 6551, Lines 9-10: The reference to the exact bias being referred to by ‘... significantly reduces this bias.’ is the overestimation of tropospheric ozone but it was a bit unclear on first reading since it is a long passage.

We rephrased this sentence more explicitly: “...significantly reduces the overestimation of tropospheric ozone”.

Page 6557, Lines 14-20: In the description of the QCTM experiment, is the nudging setup in an identical manner to that used for the EVAL2 experiment?

Yes. We added that to the text.

Page 6558, Lines 1-2: It it stated that the TS2000 experiment uses the same emissions setup as for the QCTM experiment, but looking into Table S1 it seems there are a few minor differences for emission categories such as biomass burning and land transport.

Thanks for spotting this. We corrected the corresponding part of the text as follows: “The emission setup is similar to the QCTM experiment, but it considers only the year 2000 and uses the CMIP5 dataset instead of GFED and QUANTIFY for the biomass burning and the land transport sector, respectively, and instead of EDGAR for the NH3 emissions.”

Page 6559, Lines 21-28: The discussion of lowermost stratospheric temperature bias in the extratropics is linked to a high bias in water vapour as compared to the HALOE observations, as
shown in Figure 3. While water vapour certainly does seem a bit high in the simulations, it is worthwhile noting that HALOE is believed to be biased low in this region. See the results of the SPARC water vapour assessment published in Hegglin et al., J. Geophys. Res., 118, 11,824–11,846, doi:10.1002/jgrd.50752, in particular their Figure 9 which compares HALOE with other satellites at 150 hPa, noting also that it is believed that the HALOE bias increases quite rapidly below this level.

Thanks for suggesting this reference. We added a note and the reference to the text.

Page 6567, Lines 11-14: Here it is stated that it is not surprising that the EVAL2 and QCTM nudged simulations reproduce the observed absolute values and annual cycle in 100 hPa zonal average tropical temperatures better than the free runs, but these two simulations had a considerably worse comparison with observations for 200 hPa tropical temperatures as shown in Figure 1. It would not seem to be a straight-forward result of nudging, particularly considering that the nudging is applied less strongly at 100 hPa.

We removed “not surprisingly” from this sentence, because the referee is right, given the less strong nudging at 100 hPa and the fact that we do not nudge the global mean temperature (see above).

Page 6568, Line 19: The figure showing the eastward wind (S3) is put into the supplementary material, but there is considerable discussion of this figure in the text of the article. Can I suggest moving S3 into the main article? Note also that the caption on Figure S4 references DJF mean, but I think it should be JJA mean.

We moved Fig. S3 back to the main article and fixed the caption of Fig. S4.

Page 6570, Lines 26 -28: Here the strong annual cycle in specific humidity is attributed to the annual cycle in incoming solar radiation that affects evaporation. There must also be a role for the annual cycle in air temperature, which controls how much water vapour the air can hold?

That is correct. We revised the sentence as follows: “…following the change in incoming solar radiation during the year which affects temperature (see Fig. 1) and consequently the amount of water vapour that the air can hold”.

Page 6571, Line 9 – Page 6572, Line 8: Here reference is made to figures S-11 through S-13. Is it possible, and not too much work, to annotate the figures with the global average values for these fields? These can quite helpful for the radiation budget terms.

We have added the global average values to these figures.

Page 6575, Line 2: The sensitivity of the tropospheric ozone column to the tropopause definition is always a problem. But I do want to point out that the reference to Table 3 in Stevenson et al., 2013 is not exactly correct in that Table 3 presents the sensitivity of the 1850 to 2000 change in tropospheric ozone column and not the sensitivity of the absolute ozone column. The 1850 to 2000 in EMAC does seem to be more sensitive than for other models, but it is not clear that this sensitivity also applies to the absolute amounts for a particular time period.

We have reworded the text to account for this comment.

Page 6575, Lines 16-21: The discussion of the lightning NOx emissions focuses on the differences between QCTM and EVAL2, but then this made me wonder about the lightning in the other two simulations that also had a high bias in tropospheric ozone. It is shown in Table S2, but probably worth mentioning here that TS2000 and ACCMIP use a similar 11 to 12 Tg-NO/year for lightning NOx.

Good point. We added the following at end of the paragraph: “TS2000 and ACCMIP use a different lightning parameterization (Grewe et al., 2001), resulting in about 10.7 and 12.4 Tg NO yr⁻¹, respectively”.

Page 6576, Lines 21-26: I find it noteworthy that the annual cycle in ozone is pretty well reproduced by the model for all the regions shown in Figure 15, except for the tropics at 500 and 250 hPa.

We added the suggested comment at the beginning of this paragraph.
The argument that CO could be used as a helpful, indirect indicator of global-average OH seems to be a bit weak. I certainly agree that CO is an important species for tropospheric chemistry and should be assessed, but global-average OH is much more tightly constrained by methylchloroform decay. Given uncertainties about CO emissions and CO sources from hydrocarbon oxidation, I cannot imagine any constraints on OH through CO being as stringent as that found from methylchloroform. Prather et al. (Geophys. Res. Lett., 39, doi:10.1029/2012GL051440, 2012) argue that global-average OH is constrained to about +/- 12% from methylchloroform.

This is a very good point. We revised this section and now provide the tropospheric methane (and methylchloroform) lifetimes w.r.t. OH (Table 4) as measures of the oxidation capacity, both calculated according to Lawrence et al. (2001). For completeness, we also note the corresponding reactions and used reaction rate coefficients.

I quite like the argument of how the addition of the HNO3-forming channel for NO + HO2 has impacted the distribution of CO. The increase in CO has come, I assume, from decreases in OH and so it seems the argument becomes a bit circular when it is said that the increased CO could lead to decreased OH. Can I suggest the slightly different viewpoint that the new steady-state for CO is the result of changes in OH induced by the addition of the NO+HO2 channel, along with the positive feedbacks of increased CO further reducing OH. In the end, perhaps it is nothing more than a change in wording, but it seems to me to be a bit clearer representation of how tightly coupled the system is.

Thanks for your suggestion. We changed the wording to remove the circular argument and we also added a statement about methane lifetime in this context, as follows: "The reaction with OH is a major sink of CO in the troposphere, which leads to higher CO mixing ratios in the less oxidizing atmosphere of ACCMIP-S2. There is also a secondary effect from reduced OH on CO, as mixing ratios of CO precursors depend on the oxidizing capacity too. One of these precursors is methane, which has a ~50% longer lifetime in ACCMIP-S2 than in ACCMIP-S1 (Table 4)."