Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

R. G. Anderson¹,*, M.-H. Lo²,*, S. Swenson³, J. S. Famiglietti⁴, Q. Tang⁵, T. H. Skaggs¹, Y.-H. Lin², and R.-J. Wu²

¹USDA, Agricultural Research Service, US Salinity Laboratory, Contaminant Fate and Transport Unit, Riverside, California, USA
²National Taiwan University, Department of Atmospheric Sciences, Taipei, Taiwan
³National Center for Atmospheric Research, Advanced Study Program, Boulder, Colorado, USA
⁴Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
⁵Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

*These authors contributed equally to this work.
Satellite hydrologic parameterization of Land Surface Models

R. G. Anderson et al.

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Irrigation is a widely used water management practice that is often poorly parameterized in land surface and climate models. Previous studies have addressed this issue via use of irrigation area, applied water inventory data, or soil moisture content. These approaches have a variety of drawbacks including data latency, accurately prescribing irrigation intensity, and conservation of water volume for soil moisture approach. In this study, we parameterize irrigation fluxes using satellite observations of evapotranspiration (ET) against ET from a suite of land surface models without irrigation. We then apply this water flux into the Community Land Model (CLM) and use an iterative approach to estimate groundwater recharge and partition the water flux between groundwater and surface water. The ET simulated by CLM with irrigation matches the magnitude and seasonality of observed satellite ET well, with a mean difference of 6.3 mm month$^{-1}$ and a correlation of 0.95. Differences between the new CLM ET values and observed ET values are always less than 30 mm month$^{-1}$ and the differences show no pattern with respect to seasonality. The results reinforce the importance of accurately parameterizing anthropogenic hydrologic fluxes into land surface and climate models to assess environmental change under current and future climates and land management regimes.

1 Introduction

Agricultural irrigation is the dominant anthropogenic use of surface and groundwater globally (Postel et al., 1996; Siebert et al., 2010; Wisser et al., 2008). Irrigation, and its associated movement, storage, and depletion of surface and ground waters, can induce major changes in regional hydrology (Ferguson and Maxwell, 2012; Haddeland et al., 2006; Tang et al., 2008) and climatology (Kueppers et al., 2007; Lo and Famiglietti, 2013). Irrigation demand has resulted in groundwater depletion across multiple regions of the world (Famiglietti, 2014), including the Western United States (Famiglietti et al., 2008).
2011; Scanlon et al., 2012), the Middle East (Voss et al., 2013), and India (Rodell et al., 2009). Globally, this depletion has a net effect on continental runoff and sea level rise (Wada et al., 2010). Given the impact of irrigation on hydrology, climate, and food production, it is crucial to be able to accurately model irrigation in current land surface models (e.g. Rodell et al., 2004; Xia et al., 2012a) in order to assess potential land–atmosphere feedback mechanisms that may impact future water availability for irrigation, municipal, and environmental uses.

Current land surface models (LSMs), such as the Community Land Model (CLM – Oleson et al., 2008), that are run without an irrigation parameterization usually have unrealistically low evapotranspiration in agricultural regions (Lo et al., 2013; Lobell et al., 2009; Sorooshian et al., 2011; Ozdogan, 2010). Some LSMs and their associated regional climate models (RCMs) or global climate models (GCMs) prescribe enhanced water availability in agricultural regions due to irrigation. Representations vary considerably depending on the simulation; they include (1) prescribing a static soil moisture at field capacity for all irrigated crops (Kueppers et al., 2007), (2) prescribing a total flux based on a prescribed estimate across the entire agricultural domain (Lo and Famiglietti, 2013), (3) assigning a fraction of land surface to be irrigated (Leng et al., 2013 and 2014; Lobell et al., 2009; Tang et al., 2007), and (4) assigning a seasonally-based soil moisture curve to represent irrigation only during the active irrigation season (Sorooshian et al., 2011). Each of these approaches has significant disadvantages. The approaches that assign irrigation based on soil moisture do not consider basin scale limitations on available irrigation water (particularly during drought years) and may overestimate the total amount of irrigation water as well as the differential impacts between drought and pluvial years. The prescribed/inventory based flux has the advantage of a mostly conserved water budget, but there are latency issues for much of the data which are based on potentially outdated or incomplete national and regional statistics. Finally some prescribed flux approaches work primarily where groundwater is the sole source for applied irrigation and others based on irrigated area may not account for irrigation intensity. Although process differences in RCMs/GCMs and LSMs
can account for variations in the sensitivity of irrigation–climate feedbacks and tele-
connections, it should be noted that studies with different irrigation parameterizations
over the same region have had significantly different climatic feedbacks and downwind
impacts (Kueppers et al., 2007; Lo and Famiglietti, 2013; Sooroshian et al., 2011).

Satellite remote sensing can be used to provide robust, regional observations of irri-
gation water consumption. Evapotranspiration (ET) is routinely monitored over irrigated
agriculture using observations of surface temperature and vegetation greenness (Allen
et al., 2007; Anderson et al., 2007; Tang et al., 2009). When combined with satellite
gravimetry (Swenson and Wahr, 2003) and large scale meteorological products (Hart
et al., 2009) the amount of irrigation water coming from surface water supplies (An-
derson et al., 2012) and net groundwater depletion (Famiglietti et al., 2011) can be
assessed. Together, these satellite algorithms can provide a much more detailed and
current input dataset for LSMs and RCMs/GCMs to assess irrigation–climate feed-
backs.

In this study, we follow on the work of Lo and Famiglietti (2013) by using remote sens-
ing observations of ET, surface water consumption, and total water storage anomalies
to infer surface and ground water fluxes. We use these fluxes to improve and test an
irrigation parameterization in the Community Land Model in a well instrumented basin
with a large amount of irrigated agriculture, the Central Valley of California. We use
ET from an ensemble of three satellite products, combined with gridded precipitation,
to determine the seasonality and interannual variability of additional ET from irrigation.
We then use an iterative recharge parameterization, combined with satellite gravime-
try, to determine relative amounts of irrigation applied from groundwater and surface
water. The results show the ability and importance of using diagnostic remote sensing
observations and models for improving prognostic algorithms necessary to increase
LSM skill in predicting hydrologic, biogeochemical, and climatic impacts and feedbacks
under future greenhouse gas emission and land used change scenarios.
2 Method

2.1 Study region

We evaluate our approach in the Central Valley of California. The Central Valley is a large (∼54,000 km²), low elevation (<200 m a.s.l.) valley (Fig. 1). The Central Valley is a highly-productive agricultural region, with over 200 cultivated crops and an annual crop value of more than $35 billion US Dollars in 2012 (California Department of Food and Agriculture, 2014). Agriculture in the Central Valley is heavily dependent upon irrigation from both surface and ground waters, with a large variation in the relative consumption of surface and ground water due to high inter-annual variation in precipitation (Anderson et al., 2012). In addition to its agricultural importance, the Central Valley has multiple attributes that are useful for developing and validating new model processes to better represent anthropogenic impacts on regional hydrology and climatology. These include (a) well constrained groundwater systems with little to no subsurface outflow to the ocean (Faunt et al., 2009), (b) well gauged and modeled surface water flows into and out of the Valley (Anderson et al., 2012), and (c) anthropogenic hydrologic processes (irrigation, crop evapotranspiration, and drainage) that have a very distinct seasonality from the winter precipitation and spring runoff dominated natural processes that occurred prior to irrigation and agricultural development (Lo and Famiglietti, 2013).

Previous remote-sensing based and mechanistic modeling studies have shown sustained and substantial depletion of groundwater in the Central Valley (Famiglietti et al., 2011; Faunt et al., 2009), which has accelerated in the most recent drought from 2012 to present (Borsa et al., 2014; Famiglietti, 2014). Recent groundwater regulation legislation will likely restrict future groundwater pumping differentially across groundwater basins (Harter and Dahlke, 2014), making alternative irrigation methods and strategies, such as drip and deficit irrigation, more common.
2.2 Evapotranspiration, precipitation and total water observations

We calculated the monthly mean and uncertainty of evapotranspiration (ET) using an ensemble of three products. One is a surface energy balance product (Anderson et al., 2012) based on the SEBAL algorithm (Bastiaanssen et al., 1998) that is applied to the Central Valley using a 250 m vegetation index and 1 km thermal data from the MODerate resolution Imaging Spectroradiometer (MODIS) in conjunction with gridded meteorology. The second product (Tang et al., 2009) uses the scatter plot relationship between the vegetation index and surface temperature (VI–Ts) to estimate the Evaporative Fraction (EF) and ET using MODIS vegetation and thermal data in conjunction with Geostationary Operational Environmental Satellite (GOES) surface radiation products. The third product (Jin et al., 2011), uses the Priestley–Taylor equation (Priestley and Taylor, 1972) with the coefficient term (α) optimized using Ameriflux data and net radiation and ground heat flux parameterized from the MODIS and Clouds and the Earth’s Radiant Energy System (CERES) instruments.

Monthly precipitation (approximately 4 km spatial resolution) was obtained using the Parameter-elevation Regressions on Independent Slopes Model (PRISM), which interpolates station precipitation data, accounting for orography (Daly, 1994; Daly et al., 2008). Observations of total water changes were obtained from Gravity Recovery And Climate Experiment (GRACE) mission (Tapley et al., 2004) for the entire Sacramento and San Joaquin River Basins (including the usually endorheic Tulare Lake Bain). Using the methodology of Famiglietti et al. (2011), groundwater changes were obtained by removing snow, soil moisture, and surface reservoir storage variations from the total water storage anomalies from GRACE. Groundwater changes in the combined basins were assumed to have occurred entirely within the Central Valley where major agricultural and municipal wells exist rather than in the non-irrigated, sparsely-populated, mountainous regions surrounding the Valley.
2.3 Land surface models

For intercomparison with observed fluxes and determination of additional water application in CLM, we use an ensemble (9 members) of three North American Land Data Assimilation System (NLDAS-2 – Mitchell et al., 2004; Xia et al., 2012b), four Global Land Data Assimilation System (GLDAS-1 – Rodell et al., 2004) outputs, and two CLM simulations. For NLDAS-2 and GLDAS-1, we used the Noah, Mosaic, VIC, or CLM models from each system with the primary NLDAS-2 and GLDAS-1 forcings. Along with the NLDAS/GLDAS outputs, we also include outputs from different versions of the CLM (including CLM3.5 and CLM4) with the GLDAS-1 atmospheric forcings. In addition, we evaluated the CMIP5 control outputs (Taylor et al., 2012) to assess the larger performance of climate models in assessing latent heat fluxes across agricultural regions. Details about the CMIP5 models and simulations are provided in Supplement Sect. S1.

The water budget for the soil layer and groundwater in CLM can be written as:

\[\Delta SM = P - ET - Q_S - q_{recharge} \]
\[\Delta GW = q_{recharge} - Q_d \]

where \(\Delta SM \) is soil moisture change, \(P \) is precipitation, \(ET \) is evapotranspiration, \(Q_S \) is surface runoff, \(q_{recharge} \) is groundwater recharge, \(\Delta GW \) is groundwater storage changes, and \(Q_d \) is groundwater runoff (base flow). However, Eqs. (1) and (2) only reflect the natural hydrology and neglect the substantial contribution of irrigation in major agricultural regions as previously discussed. A more reasonable equation should include the aforementioned irrigation water from surface (river) water (\(SW_{WD} \)) and from groundwater withdrawal (\(GW_{WD} \)) as shown in Fig. 2 and Eqs. (3) and (4). We will incorporate the estimated irrigation water use into the CLM version 4 and the withdrawn water in the irrigation process will be treated as an extra water input (effective precipitation).
\[\Delta SM = P - ET - Q_S - q_{\text{recharge}} + GW_{\text{WD}} + SW_{\text{WD}} \]
\[\Delta GW = q_{\text{recharge}} - Q_d - GW_{\text{WD}} \]

2.4 CLM groundwater and surface water application parameterization

We use the difference (\(\Delta ET\)) between remote sensing observed ET (ET\(_{\text{obs}}\)) and the original model parameterized ET (ET\(_{\text{om}}\)) to constrain total applied surface and groundwater as shown in Eq. (5).

\[\Delta ET = ET_{\text{obs}} - ET_{\text{om}} = SW_{\text{WD}} + GW_{\text{WD}} \]

\(\Delta ET\) in Eq. (5) is determined as an interannual (2004–2009) mean difference between observed and modeled ET. Water is applied evenly in CLM4 throughout the primary growing and irrigation season (May–October). We can constrain the partitioning of the total withdrawn irrigation water into SW\(_{\text{WD}}\) and GW\(_{\text{WD}}\) by requiring that Eqs. (3) and (4) are both satisfied by the CLM4 simulation. A systematic, trial-and-error procedure (grid search) is used to determine the necessary partitioning using groundwater recharge since it is a common variable to both equations. For each trial, a value of \(q_{\text{recharge}}\) is guessed. GW\(_{\text{WD}}\) is then determined from re-arranging Eq. (4), with \(\Delta GW\) and \(Q_d\) being set to average values derived from GRACE observations and the baseline simulations for the study period (2004–2009), respectively. SW\(_{\text{WD}}\) is then found as a residual from Eq. (5), and CLM4 is run. The model run generates a simulated recharge (Eq. 3). If the trial (or “parameterized”) recharge value and the simulated recharge value agree, then Eqs. (3) and (4) are satisfied and the partitioning is accepted.

To locate the correct recharge and withdrawal partitioning, we ran a series of trials in which the parameterized recharge was increased in 5 mm year\(^{-1}\) increments, from 20 mm year\(^{-1}\) (the first point in the left in Fig. 5 and the minimum value of recharge necessary to generate the baseline \(Q_d\) of 20) to 115 mm year\(^{-1}\). With the average \(\Delta GW\) and \(Q_d\) (Sect. 3.1), this corresponds to a GW\(_{\text{WD}}\) range of 60 to 155 mm year\(^{-1}\).
procedure assumes only minimal differences exist in Q_d computed for the baseline and trial simulations, an assumption that we verified by inspecting irrigation simulation outputs. For all simulations, we assumed that pumping removed groundwater equally from the confined and unconfined aquifer layers (Fig. 2).

3 Results and discussion

3.1 Existing model parameterizations and observed hydrologic fluxes

Monthly observed and simulated evapotranspiration (ET) for the Central Valley showed strong and differing seasonality (Fig. 3a). Observed monthly ET ranged from 13 mm (December 2009) to 106 mm (July 2005). Seasonal maxima and minima of observed ET coincided with seasonal maxima and minima of regional solar radiation and temperatures that control potential ET (solar radiation and temperature data not shown). Over the entire 2004–2009 study period, mean (\pm one standard deviation) observed ET was $54.6 \pm 12.8 \text{ mm month}^{-1}$ (655 mm year^{-1}). GLDAS-1, NLDAS-2, and CLM simulated ET was substantially lower than observed ET (Fig. 3a), with mean simulated ET of $23.3 \pm 5.0 \text{ mm month}^{-1}$ (280 mm year^{-1}). Simulated ET ranged from 19 mm month^{-1} (September 2008) to 69 mm month^{-1} (April 2006). GLDAS-1/NLDAS-2/CLM simulated seasonal maxima and minima of ET coincided with maximal and minimal natural soil moisture availability following the end of the winter rainy season and at the end of the dry summer season (Fig. 3c). On an average seasonal basis, observed ET showed the greatest difference from simulated ET in July, when observed ET was 79 mm month^{-1} larger. In winter (November–February), observed ET exceeded simulated ET by less than 10 mm month^{-1} (Fig. 3c).

While the seasonality of observed and simulated ET was different, the annual patterns of observed and simulated ET matched annual precipitation well, although observed ET had considerably lower interannual variation than simulated ET (Fig. 3). Annual precipitation ranged from 202 mm year^{-1} (2007 calendar year) to 416 mm year^{-1}.
(2005 calendar year). Mean (±1 standard deviation) calendar year precipitation for 2004–2009 was 315.8 ± 84.8 mm year⁻¹. Annual changes in groundwater vary considerably from year to year, with a maximum increase of 120 mm year⁻¹ in 2006 and a maximum decrease of 220 mm year⁻¹ in 2007 (Fig. 4). Mean groundwater decrease across the entire study period is approximately 60 mm year⁻¹. Annual precipitation and groundwater change are well correlated ($r = 0.78$), with the largest groundwater decrease coming in one of the driest years in California history (2007) and the largest increase in 2006 following a succession of wet years. Mean annual observed ET showed less variation than precipitation, ranging from 624 mm year⁻¹ in 2009 to 690 mm year⁻¹ in 2005. Since precipitation in the surface water source regions for the Central Valley (Sierra Nevada Mountains) is very well correlated with precipitation in the Valley (Daly, 1994; Daly et al., 2008), variations in precipitation are also assumed to be variations in surface water availability. Together, this lower variation in ET in spite of higher variation in precipitation and surface water availability and the inverse relationship between groundwater level change and precipitation is consistent with the relatively steady water demand from Californian agricultural crops, many of which are perennial crops with large, multi-year investments (Ayars, 2013; Blank, 2000), and the long-standing practice of increasing groundwater use to compensate for deficits in surface supplies and precipitation (Howitt, 1991).

3.2 Application of groundwater and surface water in CLM and impact on CLM-simulated ET

The mean amount of additional water that is consumed or transpired under irrigation in the Central Valley is 376 mm year⁻¹ (observed ET minus mean GLDAS-1/NLDAS-2/CLM ensemble simulated ET). The parameterized recharge estimates plotted against CLM simulated recharge are shown in Fig. 5. Simulated recharge (q_{recharge}) showed a more dampened response to a wide range of parameterized recharges, with simulated recharge ranging from 47 to 66 mm year⁻¹ across the parameterized recharge space (20–115 mm year⁻¹). The parameterized and simulated recharge comes to con-
vergence at approximately 55 mm year\(^{-1}\) (Fig. 4), which is the value we used to partition applied surface water and groundwater. Using Eq. (4), we calculated mean applied groundwater (GW\(_{WD}\)) as 95 mm year\(^{-1}\) over the 2004–2009 study period. Mean applied surface water (SW\(_{WD}\)) was 281 mm year\(^{-1}\).

The model optimized SW\(_{WD}\) compares well with previous remote sensing and high resolution inventory estimates of surface water consumption in the Central Valley. For the 2004–2008 water years, Anderson et al. (2012) found a mean (± uncertainty) surface water consumption of 291 ± 32 mm year\(^{-1}\) using remote sensing and 308 ± 7 mm year\(^{-1}\) using an inventory approach calculated from dam releases into the Central Valley, canal exports to coastal basins to the south, and outflow through the California Delta. The close comparison of these values to SW\(_{WD}\) gives us further confidence in our optimization method and its underlying assumptions.

Figure 6 shows the impact of the irrigation water parameterization on CLM simulated ET compared to observational data. With the new parameterization, monthly CLM simulated ET ranged from a minimum of 10 mm (December 2008) to a maximum of 96 mm (June 2006), with a mean of 48.3 mm. The differences between CLM simulated ET and observed ET (CLM minus observed) ranged from −30 to 11 mm month\(^{-1}\) with a mean difference of −6.3 mm month\(^{-1}\). There was low correlation between seasonality (month) and the discrepancy between observed and non-irrigated simulated ET (\(r < 0.5\)) as assessed with a geometric mean regression. Conversely, the relationship between observed monthly ET and CLM simulated ET was excellent (\(r = 0.95\), slope = 0.94, intercept = −3.1 mm month\(^{-1}\)).

With respect to other hydrologic fluxes, simulated groundwater base flow (Q\(_d\)) changed little with irrigation over the 2004–2009 study period (27 mm year\(^{-1}\) in experimental run vs. 18 mm year\(^{-1}\) in control – data not shown). Surface runoff (Q\(_S\)) changed more considerably (68 mm year\(^{-1}\) in experimental run vs. 38 mm year\(^{-1}\) in control). The small change in Q\(_d\) despite additional irrigation concurs with GRACE-derived groundwater changes, simulated reductions in groundwater in CLM, and previous hydrogeologic observations that many rivers and streams in the Central Valley are now losing
streams due to long-term groundwater depletion (Planert and Williams, 1995). The larger increase in Q_S may reflect on the ground spatial differences in cropping patterns and water management within the Central Valley. For example, the northern part of the Central Valley (Sacramento Valley) has extensive rice production that results in multiple flooding and drainage events in the course of a production season (Hill et al., 2006). Much of this water is reused further downstream (south). Other cropping systems, particularly those in parts of the southern Central Valley (San Joaquin Valley) affected by drainage issues, use tail water recovery systems as required by state and local regulations which minimize surface runoff from irrigation (Schwankl et al., 2007).

3.3 Impact of parameterizations of irrigated agriculture in land surface modeling

The significant underestimation of peak growing season ET in irrigated agricultural regions is not confined to the NLDAS/GLDAS and default CLM models. Figure 7 shows the mean climatology of ET for the control runs of the CMIP5 models over the Central Valley compared to observed ET. The mean (\pm1 standard deviation) ET is 45.9 ± 15.8 mm month$^{-1}$. While the peak ET of the mean of the CMIP5 ensemble is higher (68 vs. 48 mm month$^{-1}$) and later (May vs. April) than the NLDAS/GLDAS/CLM ensemble, the CMIP5 ET still is more than 100 mm year$^{-1}$ lower than observed ET (550 vs. 655 mm year$^{-1}$) and exhibits minima and maxima characteristic of the natural hydrologic cycle. Furthermore, some of the improved closure between CMIP5 and observed ET compared to NLDAS/GLDAS/CLM could be due to substantially higher CMIP5 modeled ET during the winter. Despite the relatively large uncertainty of the CMIP5 models over the Central Valley, the observed ET for over half of the year is significantly outside of the CMIP5 envelope.

Compared with previous parameterizations of irrigation water in the Central Valley our remote-sensing based approach resulted in a lower consumed amount of water than the soil moisture-based parameterizations (Kueppers et al., 2007; Sorooshian et al., 2011) and a slightly higher amount of consumed water than a global inventory-
based approach (Lo and Famiglietti, 2013). For the summer months of May–August, a high soil moisture parameterization at field capacity (Kueppers et al., 2007) resulted in an annual summer irrigation water consumption of 612 mmsummer$^{-1}$, whereas a variable soil moisture parameterization (Sorooshian et al., 2011) resulted in a summer irrigation water consumption of 430 mmsummer$^{-1}$. These values do not include potential water consumption from the shoulder irrigation months of April, September, and October. The inventory data of Siebert et al. (2010) used in the Lo and Famiglietti (2013) parameterization was only about 25 mm lower (350 vs. 376 mmyear$^{-1}$) than our remote sensing parameterization, but the amount of consumed water from groundwater (140 mmyear$^{-1}$) was substantially higher than our applied groundwater (95 mmyear$^{-1}$). Furthermore, our satellite-ET derived estimate is also likely to be a lower envelope estimate of applied water due to the slight increase in surface runoff observed in CLM. The overestimation of ET and latent heat fluxes with the soil moisture parameterization suggests challenges in using this type of parameterization; however, soil moisture parameterization may become significantly more feasible and precise with regional and global soil moisture observations from upcoming missions such as the Soil Moisture Active Passive (Entekhabi et al., 2010).

Currently, both inventory and remote sensing based approaches have sufficiently coarse spatial and temporal resolution so that irrigation water parameterization is typically done on inter-annual time scales for large basins. This temporal resolution for water parameterization works well for accurately modeling the hydrology of the Central Valley, likely due to the lower amount of inter-annual variation in ET and the use of groundwater to compensate for surface water deficits. However, it is unclear how well this approach will work in irrigated regions where ET may be more variable due to a lack of supplemental reservoirs and thus a necessary fallowing of land during drought periods. Current and future missions have the potential to sufficiently improve the resolution of satellite hydrologic products to enable annual quantification of surface and ground water application at higher spatial scales (Biancamaria et al., 2010; Entekhabi et al., 2010; Smith et al., 2007; Zheng et al., 2015). These higher resolution
Parameterizations may enable better quantification of hydrologic impacts of changing management and cropping patterns, including shifts in irrigation regimes and changes between annual and perennial crops. Parameterizations from inventory methods may improve if public monitoring and reports requirements become more widespread (similar to those for Arizona’s Active Management Areas – see Jacobs and Holway, 2004).

4 Summary and conclusion

We used satellite-based estimates of evapotranspiration (ET) and groundwater change combined with precipitation data to constrain and parameterize the additional water applied to a major irrigated agricultural region (Central Valley, California, USA) for simulation of land surface fluxes using the Community Land Model (CLM) version 4. We evaluated the baseline amount of consumed water using a suite of nine land surface models/forcing data sets and estimating the additional water consumed as a residual of current satellite observations. We used an iterative solution of parameterizing and then simulating groundwater recharge to partition the total water withdrawals among ground and surface water. The additional water parameterization resulted in CLM tracking the total amount and seasonality of ET closely. The remote sensing parameterization of irrigation water consumption results in a smaller total amount of water being consumed than in previous soil moisture-based parameterizations.

The results emphasize the need for irrigation parameterization in land and climate models to accurately assess land–atmosphere energy and mass fluxes in regions with major anthropogenic modifications. Given the potential for intense irrigation to modify regional climate (Kueppers et al., 2007) and to enhance convection precipitation in downwind regions (Lo and Famiglietti, 2013), it is important that the additional water consumption from irrigation is properly represented to better model the local and more distant impacts of anthropogenic land surface modification. An improved parameterization will also be useful for assessing regional climatic impacts of possible future
changes in irrigated agricultural regions due to increased logistical, political, and/or economic restrictions on groundwater pumping or changes in surface water use.

The Supplement related to this article is available online at doi:10.5194/gmdd-8-3565-2015-supplement.

Acknowledgements. The GLDAS and NLDAS data used in this study were acquired as part of the mission of NASA’s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). This study was supported by the Ministry of Science and Technology, Taiwan, (grants MOST 103-2111-M-002-006 and MOST 100-2119-M-001-029-MY5), by the United States Department of Agriculture—Agricultural Research Service, National Program 211: Water Availability and Watershed Management (project number 2036-61000-015-00), and by the University of California Multicampus Research Programs and Initiatives (MRPI).

Note: the US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
References

Satellite hydrologic parameterization of Land Surface Models

R. G. Anderson et al.

Voss, K. A., Famiglietti, J. S., Lo, M., de Linage, C., Rodell, M., and Swenson, S. C.: Groundwater depletion in the Middle East from GRACE with implications for transboundary water

Figure 1. Map of Central Valley, California. (a) Underlying Normalized Differential Vegetation Index (NDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS) 250 m, 16 day product (July 2006) illustrating irrigated regions of the Central Valley (black outline). Darker green indicates higher NDVI and vegetation cover. (b) Map of the United States with the inset area of (a) outlined in red.
Figure 2. Schematic of land hydrological processes, modified from Oleson et al. (2008). Blue dash and green lines indicate the irrigation water fluxes applied in the CLM.
Figure 3. (a) The comparison between the remote sensing estimated ET, and 9 GLDAS, NL-DAS, and CLM models, (b) annual precipitation for the Central Valley, and (c) monthly climatology for observed and modeled ET.
Figure 4. Annual groundwater change for the Central Valley derived from GRACE.
Figure 5. Parameterized (guessed) groundwater recharge vs. recharge simulated in CLM 4 (see Sect. 2.3). The intersection of the parameterized values with simulated values (55 mm year$^{-1}$) represents where recharge comes to convergence, and is the value of recharge used to separate total water use into ground and surface water pumping components.
Figure 6. Monthly ET from CLM 4 with the improved irrigation parameterization when compared to observations.
Figure 7. Mean seasonal cycle from the CMIP5 suite of models compared against observed ET. Solid line shows mean value of CMIP5 model members and shaded region shows uncertainty (two standard deviations around mean).