I. Overarching issues

(1) EMPOWER is an ecosystem model testbed, not the NPZD model embedded within it (which is used for illustrative purposes).

Referee #1: I feel a comparative description of some ‘competing’ marine ecosystem models (e.g. Blackford et al., 2004; Le Quere et al., 2005) would strengthen the argument for using less-complicated models, such as the simple NPZD model implemented here.

Referee #1: The models mentioned above (Blackford et al., 2004; Le Quere et al., 2005) are cited in the discussion but are not compared to EMPOWER in terms of their research applications or skill in reproducing observed data, which would provide further justification for less complex models such as EMPOWER.

Referee #2: This manuscripts explains the technical details of a simple NPZD model that runs in a two-layer vertical setup. The authors claim that using simple ecosystem models such the one described in the manuscript …

Reply: The important point to note is that EMPOWER is not an ecosystem model in its own right but, rather, a modelling framework, using slab physics, for testing and evaluating ecosystem models and their associated formulation and parameterisation. The NPZD model we use is for illustrative purposes although, nevertheless by using this ecosystem model we do make the case that useful science can be done with simple models. Inevitably this means, to some extent, climbing into the ongoing debate about model complexity but this is secondary to the main focus of the ms which is that modellers need to comprehensively test their models, comparing different formulations and parameterisations, with EMPOWER being provided as an ideal tool for this purpose. The text has been improved to make this clear:

(i) When stating the objectives of our work at the end of the Introduction we have added the following text to clarify matters: “Here, we demonstrate the use of EMPOWER-1.0 in combination with a simple illustrative nutrient-phytoplankton-zooplankton-detritus (NPZD) model. It should be noted, however, that EMPOWER-1.0 can be used to test and examine the
performance of simple and complex models alike. Our choice of a simple ecosystem model is motivated by the fact that simple models are conceptually straightforward as well as being easy to set up and analyse.”.

(ii) We previously started the Discussion talking about simple vs complex models and this was inappropriate in that, as stated above, the complexity issue is not the primary focus. We have now moved an amended version of this paragraph towards the end of the Discussion (see below) and provided a new opening paragraph: “Marine ecosystem modelling is somewhat of a black art regarding decisions about what state variables to include and how to mathematically represent key processes such as photosynthesis, grazing and mortality, as well as allocating suitable parameter values. The proliferation of complexity in models has only served to increase the plethora of formulations and parameterisations available to choose from. Complex ecosystem models have come to the fore in recent years that, for example, include any number of plankton functional types, multiple nutrients, dissolved organic matter and bacteria, etc. (e.g., Blackford et al., 2004; Moore et al., 2004; Le Quéré et al., 2005). Simulations are often carried out within computationally demanding 3-D general circulation models (GCMs) and, of course, the realism in ocean physics thus gained is to be welcomed. The caveat is, however, that improvements in prediction can only be achieved if the biological processes of interest can be realistically characterised (Anderson, 2005). The key is, as described above, to undertake extensive analysis of ecosystem model performance and we propose that the use of a simple slab physical framework of the type used in EMPOWER is ideal in this regard …”.

The topic of model complexity remains relevant to the work and we have rewritten the opening paragraph of the Discussion and moved it to later on in the text: “EMPOWER-1.0 is provided as a testbed which is suitable for examining the performance of any chosen marine ecosystem model, simple or complex. We chose to demonstrate its use by incorporating a simple NPZD ecosystem model. Simple marine ecosystem models are, however, all too often brushed aside in marine science today. While our objective here is not to delve deeply into the ongoing debate about complexity in models (e.g., Fulton et al., 2004; Anderson, 2005; Friedrichs et al., 2007; Ward et al., 2010), we would nevertheless like to comment on the worth of simple ecosystem models. Complex ecosystem models are often favoured today (e.g., Blackford et al., 2004; Moore et al., 2004; Le Quere et al., 2005) with a similar trend in ocean physics toward large, computationally demanding models. Many publications in recent
years have involved the use of 3D models (e.g., Le Quéré et al., 2005; Wiggert et al., 2006; Follows et al., 2007; Hashioka et al., 2013; Yool et al., 2013b; Vallina et al., 2014), although 1D models are also well represented (e.g., Vallina et al., 2008; Kearney et al., 2012; Ward et al., 2013). The caveat is that improvements in prediction can only be achieved if the processes of interest can be adequately parameterised (Anderson, 2005). That is a big caveat and one made harder to achieve because it is often difficult and/or time consuming to thoroughly test the formulations and parameterisations involved. Simple NPZD-type models have a useful role in this regard. Albeit with tuning (but the complex models are tuned also), our NPZD model was successfully used to describe the seasonal cycles of phytoplankton and nutrients at four contrasting sites in the world ocean. It was readily applied to test different parameterisations for photosynthesis and mortality. At least in terms of basic bulk properties, simple models produce realistic predictions and are easy to thoroughly investigate and assess. The whole issue of model complexity ought in any case to be question dependent (Anderson, 2010), e.g. simple models may be useful to address questions on biogeochemical cycles whereas more complex models may be necessary to answer more ecologically relevant questions such as the effect of biodiversity on ecosystem function. The use of the EMPOWER testbed allows the user to investigate and determine whether a particular ecosystem model is sufficiently complex, or indeed too complex, to address the question of interest.”

(2) Year selection for model comparison

Referee #1 point 20: p. 81, line 3–4: The way in which 2006 is a characteristic year is not explained.

Referee #1 point 41: Figures 11, 12 and 13: Data shown are for 2008 or 2009 – the choice of these years (rather than 2006) is not explained in the text.

Referee #2 point 10: Page 80 - Line 29: "Averaging data across years ... to compare the model to data" – I do not agree with this. If the model is using climatological forcing, the data should be climatological as well. Just show average monthly outputs for the model to smooth out the bloom as well as it happens with the data. Or otherwise run the model using the MLD forcing from 1998 to 2013 and then average the model outputs to construct a climatology. The data are not measured daily anyways; usually sampling is once or twice per month.
Referee #2 point 11: Page 81 - Line 04: "in this case 2006" – Why 2006 and not any other year? This is an arbitrary choice. One can then select the year or years that best fit the model output. I don’t think this is a robust comparison.

Referee #2 point 14: Page 83 - Line 12: Figure 11 uses year "2008" – Why the authors now select 2008 and not 2006? These choices look too arbitrary to me.

Reply: We agree with the referees that our choice of years was arbitrary. This was done purely to select a representative year that characterised the location well, but without introducing problems caused by bloom timing that would affect a simple average across years. After taking statistical advice, we now select years objectively as follows (quoting from the revised text): “A characteristic year was therefore chosen for each station by firstly converting the data [all years] to log(chlorophyll), then calculating mean log(chlorophyll) for each year and finally selecting the median year (an odd number of years is required, so we used 1998 to 2012). The resulting year selections were 2002, 1998, 2007 and 2006 for stations BIOTRANS, India, Papa and KERFIX respectively.” A new Figure 9 is provided which shows data for the time series for each station overlaid (1998-2013), with the selected years highlighted.

As noted above, averaging data across years, as suggested by reviewer #2, might in some way be objective but would be wholly unconvincing as the characteristic features of the seasonal cycle, such as the spring phytoplankton bloom in the North Atlantic, would be “ironed out”. This is clarified in the text: “Regarding chlorophyll, data are SeaWiFS 8-day averages (O’Reilly et al., 1998), for which we had access to years 1998 to 2013. Averaging data across years to provide a climatological seasonal cycle of chlorophyll is not meaningful as key features, such as the spring phytoplankton bloom, are smoothed out because the bloom timing is variable between years.”

Looking at the selected years (Figure 9), it is clear that BIOTRANS shows a cleaner (less noisy) seasonal cycle compared to India and we therefore chose to switch to station BIOTRANS as the primary focus for our parameter tuning exercise. The sensitivity analyses (photosynthesis calculation; mortality terms) are pertinent to all stations and we have expanded the results for all four stations. The switch to BIOTRANS, as well as the focus on sensitivity for all stations, means that we have redone all the model results.
II. Referee #1

General Comments

Referee: Anderson et al. provide a detailed description of the two-layer slab model ‘EMPOWER’. They also describe their parameter fitting methodology at four stations, as well as a structural sensitivity analysis, which assessed the calculation of daily depth integrated photosynthesis and the mortality terms used. In addition to providing a methodological framework for model testing that can be recreated by the modelling community, it is interesting that they find their model has a greater degree of sensitivity to the attenuation of light in the water column than the choice of P-I curve used in terms of calculating daily depth integrated photosynthesis.

Reply: We wish to thank the referee for his/her positive comments about the ms. As noted in Overarching Issue (1), EMPOWER is not a model but rather a modelling framework, using slab physics, for testing and evaluating ecosystem models and their associated formulation and parameterisation.

Referee: The introduction is well written and well informed; however, I feel a comparative description of some ‘competing’ marine ecosystem models (e.g. Blackford et al., 2004; Le Quere et al., 2005) would strengthen the argument for using less-complicated models, such as the simple NPZD model implemented here. Elizabeth Fulton has published several papers regarding marine ecosystem model complexity (Fulton et al., 2003a; Fulton et al., 2003b; Fulton et al., 2004), which may contribute to the discussion about ecosystem model complexity here and in the final discussion.

Reply: Reiterating the points made in Overarching Issue (1), EMPOWER is not itself an ecosystem model and, as such, there are no competing ecosystem models and no comparison to be made in this regard. It is the physical setup which is necessarily simple in EMPOWER and we already justify this with “Despite the simplicity of the two-layer slab physics, these models are sufficiently well formulated to permit realistic and insightful simulations of marine ecosystems …”. This justification is then elaborated in the following section (2. Slab models), highlighting the utility of the slab approach from early pioneering studies until the modern day. We now cite Fulton et al. (2003a,b) and Fulton et al. (2004).
The issue of model complexity does crop up and, indeed, we believe that by using an NPZD model within the EMPOWER framework, we show that there remains a place for simple models in contemporary marine science. Nevertheless, model complexity is not the main focus of the ms (the need for modellers to thoroughly test formulations and parameterisations in their model, and the provision of EMPOWER for this) and have toned down our discussion of complexity issues, in particular removing this from the start of the Discussion (see reply to Overarching Issue (1)).

Model complexity has different aspects and one is that there is a distinction between model complexity in terms of structure and complexity in terms of functional forms. This issue is raised in the Fulton et al. papers indicated by the referee. The EMPOWER testbed is ideal for testing and evaluating the use of different functional forms for processes such as photosynthesis, grazing, mortality, etc. We better emphasise this point in the revised text, e.g. our new opening paragraph for the Discussion (see Overarching Issues (2), point (ii)).

Referee: The models mentioned above (Blackford et al., 2004; Le Quere et al., 2005) are cited in the discussion but are not compared to EMPOWER in terms of their research applications or skill in reproducing observed data, which would provide further justification for less complex models such as EMPOWER. Similarly, comparison to low complexity global models such as that of Tyrrell (1999) – which has been used for educational purposes and research (e.g. Chuck et al., 2005) – would add completeness to the discussion.

Reply: As noted previously, EMPOWER is a model testbed, not an ecosystem model and, as such, there is no comparison to be made between EMPOWER and models such as Blackford et al. (2004) and Le Quere et al. (2005). Our objective was most definitely not to compare simple and complex ecosystem models to say which fare better, nor to necessarily promote simple ecosystem models at the expense of simple ones. Rather, it was to promote and provide a testbed, based on simple physics, that allows testing of ecosystem models or, indeed, intercomparison of performance between different models. EMPOWER is well-suited for undertaking an intercomparison of, for example, our NPZD model and ERSEM (Blackford et al., 2004), but this would be a major exercise in itself and is well beyond the scope of our study.

We agree that it would be useful to mention box models and have added the following paragraph to the Discussion section: “Bearing in mind Steele’s two-layer sea, the first slab model of its kind (section 2), it is worth noting that simple ocean box models are akin to slab
models in terms of physical structure but, whereas slab models usually are usually set up for point locations in the ocean, box models represent spatial areas (e.g., ocean basins or the global ocean). A mixed layer or euphotic zone is positioned above a deep ocean layer, with mixing between the two but usually without a seasonally changing mixed layer depth. Tyrrell (1999), for example, used a global ocean box model to study the relative influences of nitrogen and phosphorus on oceanic primary production. Box models were likewise used by Chuck et al. (2005) to study the ocean response to atmospheric carbon emissions over the 21st century. Slab models, including EMPOWER, effectively convert to simple box models if the seasonality of mixed layer depth is switched off. Without a seasonally varying MLD, box models have limited capacity to capture seasonal plankton dynamics because of the role played by MLD in mediating the light and nutrient environment experienced by phytoplankton. Our results (Figs 18 to 20) demonstrate sensitivity to accurate representation of the submarine light field (i.e., equations describing light attenuation in the water column).

Referee: Model skill in reproducing observed chlorophyll and nitrate concentrations is not quantified and, although the description of ‘fit’ is detailed, it would certainly facilitate comparison of parameter sets and model setups. Lewis and Allen (2009) and Lewis et al. (2006) are examples of quantifying model skill that come to mind. Although the majority of the paper is well referenced, there are a number of points throughout that would benefit from additional citations (for details see my specific comments below). The results section also has numerous qualitative statements that require quantification (again see my specific comments below).

Reply: Quantitative skill assessment is an important part of ecosystem modelling, but is tangential to the central aim here, namely the provision of EMPOWER as an ecosystem model testbed. We undertake an illustrative use of an NPZD model in EMPOWER and compare it to data. Other models will involve other data sets, each with its own unique requirements in terms of assessing model-data misfit. In the case of our assessment, visual inspection is easily sufficient (e.g. one not need quantitative measures of skill to see that the fit in Figure 11 (new numbering; fitted BIOTRANS model) is better than that in Figure 10 (unfitted BIOTRANS model)). The manuscript is already lengthy and providing a quantitative skill assessment, such as the Nash Sutcliffe method and/or multivariate statistics (e.g., Lewis and Allen, 2009; Allen and Somerfield, 2009: J. Mar. Syst. 76, 83-94) would unnecessarily increase length and the description therein would not be necessarily applicable to other uses.
of EMPOWER. In response to the reviewer’s comment, we have updated the text to summarise our approach: “It is not our objective here to provide thorough quantitative assessment of different model simulations in terms of objective quantification of model-data misfit but, rather, to demonstrate the utility of EMPOWER as a testbed for model evaluation. Different ecosystem models and associated data sets will necessarily require different skill metrics and so a lengthy description and use of quantitative metrics is not appropriate here. Very often anyway, as is the case here, visual inspection of model-data misfit is sufficient to determine the best options for model formulation/parameterisation. If quantitative methods are required, these are readily accessed from the literature (e.g., Lewis and Allen; 2009; Lewis et al., 2006).”

Specific/Technical Comments

Referee: 1) p. 55, lines 1–9 and p. 56, lines 11–15: No example studies are cited to support the statements made and direct further reading for those interested.

Reply: We have added suitable references to back up three of the statements made in these lines:

(i) “Ecosystem models are ubiquitous in marine science today, used to study a range of compelling topics including ocean biogeochemistry and its response to changing climate, end-to-end links from physics to fish and associated trophic cascades, the impact of pollution on the formation of harmful algal blooms, etc”. References added: Steele (2012; Prog. Oceanogr. 102, 67), Gilbert et al. (2014; Global Change Biol. 20, 3845), Holt et al. (2014; Prog. Oceanogr. 129, 285), Kwiatkowski et al. (2014; Biogeosciences 11, 7291)

(ii) “Anderson et al. (2014), for example, commented on the “enormous” diversity seen in chosen formulations … and asked whether reliable simulations can be expected given this diversity. This question applies not just to modelling DOM, but also to most processes and components considered in modern marine ecosystem modelling.” References added: Fulton et al. (2003; Ecol. Modell. 169, 157), Anderson et al (2010, 2013; both already in list of references)

Referee: 2) p. 56, line 27: Are the models referred to reviewed by Gentleman (2002)?

Reply: Yes, Gentleman’s article is a review. The title of her paper is: “A chronology of plankton dynamics in silico: how computer models have been used to study marine
ecosystems”. To strengthen our sentence yet further, we have now also cited Anderson and Gentleman (2012).

Referee: 3) p. 59, line 1: It would be helpful to know the location of George Bank.

Reply: Sentence amended to “…who constructed a model of seasonal phytoplankton dynamics for Georges Bank, a raised plateau off the coast of New England, northeast U.S.A. (Riley, 1946), …”.

Referee: 4) p. 63, line 17: Pluralise station, i.e. “...(stations Papa in the north: : :”.

Reply: Amendment made, as indicated.

Referee: 5) p. 63, line 21 and forward: There are several versions of the World Ocean Atlas, it would be helpful to make the version used clearer (i.e. WOA 2009).

Reply: The version was clear from the citation in the reference list but, nevertheless, we have added the version (2009) to the main text, as requested.

Referee: 6) p. 64, lines 19–20: An explanation of why you focused on station India would be helpful.

Reply: In fact, we have now switched focus to station BIOTRANS: see Overarching Issues (2). We have added the following text to justify this focus: “This station is chosen as our primary focus, inspired by the North Atlantic Bloom Experiment in 1989 as part of JGOFS (the Joint Global Ocean Flux Study; e.g., Ducklow and Harris, 1993; Lochte et al., 1993). It exhibits the characteristic spring blooming of phytoplankton of temperate latitudes, followed by relatively oligotrophic conditions over summer, and has been the subject of previous work using slab models (Fasham and Evans, 1995).”

Referee: 7) p. 66, line 8: kPAR is not defined.

Reply: The text now reads: “Light is assumed to vary with depth according to Beer's law (I = I0 exp(-kPARz)), where kPAR is the attenuation coefficient, …”.

Referee: 8) p. 66, line 20: I would find an example plot illustrating changes in surface irradiance throughout the day (both sinusoidal and triangular patterns) helpful.

Reply: New Figure (Figure 6) produced, as requested.

Referee: 9) p. 67, line 17: Explicitly stating the coefficients in question would simplify reading, i.e. “: : :polynomial coefficients (b0,i – b5,i) are listed in Table 2.”
Reply: Text amended to: “The values of the polynomial coefficients \((b_{0,i} - b_{5,i})\) are listed in Table 2.”

Referee: 10) p. 68, lines 2–5: This sentence is repeated from p.66, lines 19–21.
Reply: We have removed the latter sentence from the text.

Referee: 11) p. 69, lines 21–24: Symbols \(\varphi\) and \(\phi\) seem to be used interchangeably.
Reply: Problem fixed, opting solely for \(\phi\). Part of this problem was due to editorial work and we will check the proofs carefully to ensure there are not further problems in this regard.

Referee: 12) p. 70, line 13: Word order should presumably be “Regarding phytoplankton non-grazing mortality: : :”.
Reply: Text amended to “Regarding phytoplankton non-grazing mortality …”.

Referee: 13) p. 71, line 8: It would be helpful to direct the reader to the equations in which each term is used, as you have done for GGE (Eq. 13).
Reply: The problem is that terms for faecal pellet production \((1-\beta)\) and excretion \((\beta(1-kNZ))\) appear not in the zooplankton equation, but in equations for detritus (Eq. 15) and DIN (Eq. 14) which have not been introduced yet. It would be awkward to refer to these equations ahead of their presentation in the text, so we have made no alterations here.

Referee: 14) p. 71, lines 1–8 and p. 72, lines 10–23: Perhaps referring to Table 3 somewhere here would help the reader follow the variables being defined.
Reply: Have amended the text to “Splitting into these various parameters (Table 3) …. for the first instance but made no alteration for the latter as there is little reference to parameter values there.

Referee: 15) p. 75, lines 1–2: This sentence is repeated from p. 73, lines 13–14.
Reply: The first instance of this repetition has been removed from the text.

Referee: 16) p. 75, line 5–15: Please state the equation numbers corresponding to the functions.
Reply: Text amended as requested: “The key function call is FNget_flux which contains the ecosystem model specification (section 3.2). The rate of change is calculated for each term in the differential equations and allocated to a 2-D array (flux no., state variable no.) which is then passed back to the core (permanent) code for processing. Other functions are:
FNdaycalc (calculates length of day; Eq. A7), FNnoonparcalc (noon irradiance, PAR; Eq. A5), FNLIcalcNum (undertakes numerical (over time) calculation of daily depth-integrated photosynthesis), FNLIcalcEP85 (calculates L_I using the equations of Evans and Parslow, 1985; Appendix C1), FNaphy (calculates chlorophyll absorption, effectively parameter α, in the water column after Anderson, 1993; Eq. C14) and FNLIcalcA93 (calculates L_I using the equations of Anderson, 1993; Appendix C2).”

Note that we had erroneously missed out the equation for day length and this has now been added to the text as a new equation in Appendix A, Eq. (A7).

Referee: 17) p. 75, line 18: I would find it helpful to have the state variables explicitly listed here.

Reply: The text has been amended to: “Initial values for state variables (N, P, Z, D).”

Referee: 18) p. 76, line 14–16: Perhaps the output files listed should be added to Figure 7.

Reply: The output files are already listed on this Figure: “Write to output files: out_statevars.txt, out_aux.txt, out_fluxes.txt”.

Referee: 19) p. 80, line 21: Possible typo of ‘that’ instead of ‘than’.

Reply: Typo amended.

Referee: 20) p. 81, line 3–4: The way in which 2006 is a characteristic year is not explained.

Reply: See response to Overarching Issue (2). Year selection is now done on an objective basis.

Referee: 21) p. 81, lines 6–10 and p. 82, line 23: Comparative statements are made in terms of model fit but these are not quantified. For example, how much ‘too high’ was predicted chlorophyll in spring and summer?

Reply: This referee comment is followed by a number of similar ones below, asking for better quantitative description. Given that we have redone the results with a focus on station BIOTRANS, it is not easy to respond on a point-by-point basis. Rather, here are a number of examples where we have updated the text in response to the referee’s criticism:

(i) Figure 10 (simulation of BIOTRANS with initial-guess parameters): “The peak of the spring bloom is more than double that observed and post-bloom chlorophyll is also consistently elevated (by approx 0.2 mg m-3) relative to observations (Fig. 10)”.
(ii) Figure 13 (simulation of station India using BIOTRANS parameters): “In fact, the predicted spring bloom is rather high, approximately double the maximum in the observations for year 1998 (Fig. 13), although not outwith what is seen in the multi-year data (Fig. 9).”

(iii) Figure 15 (simulation of station KERFIX using station BIOTRANS/Papa parameters): “A similar exercise was carried out for station KERFIX. Using the same parameter set as for station Papa, predicted chlorophyll was too high (by approximately 0.05 mg m\(^{-3}\)) during the austral summer (Fig. 15). ... Predicted nitrate is somewhat too low (by about 4 mmol m\(^{-3}\)) if the BIOTRANS parameters are used but is markedly improved with the adjusted values for parameters \(V_p^{\text{max}}(0)\) and \(I_{\text{max}}\).”

(iv) Figure 16 (comparison with results using exponential P-I curve, station BIOTRANS): “Results changed little with respect to the baseline simulation, the only noticeable difference being the magnitude of the spring bloom which was about 0.2 mg m\(^{-3}\) greater when using the exponential P-I curve.”

(v) Figure 17 (comparison with results using triangular irradiance assumption): “A larger spring bloom (approx. 0.5 mg m\(^{-3}\)) is seen when using the triangular assumption. Irradiance is underestimated relative to the sinusoidal pattern ...”.

(vi) Figure 21 (model simulations with phytoplankton mortality terms removed): “In contrast to the representation of linear mortality, many models do not include a non-linear phytoplankton mortality term but it seemed to perform well here. When it was removed, the predicted phytoplankton spring bloom was rather too high (more than double that observed).”

(vii) Figure 22 (model simulations with zooplankton mortality terms removed): “Removal of quadratic mortality resulted in significantly lower phytoplankton levels decreasing by as much as 50\% which is unsurprising since more zooplankton means more grazing. Perhaps less obvious is the result that removal of quadratic closure resulted in similarly large changes in predicted post-bloom nitrate levels ...”.

Referee: 22) p. 82, lines 24–25: Why is low overwinter chlorophyll a common feature in slab models?

Reply: This is an interesting question and a detailed analysis is beyond the scope of our article. The answer probably lies in the phytoplankton mortality terms and we already address this issue in section 4.4: “The model is relatively insensitive to the phytoplankton mortality terms although setting \(m_P=0\) (i.e., removal of the linear term) promoted net phytoplankton...”
growth over winter, increasing coupling to zooplankton grazers and giving rise to smaller phytoplankton blooms in spring (Fig. 21). Predicted seasonality in NO$_3$ drawdown was barely affected by phytoplankton mortality parameters. Removal of the linear term improved the model fit for chlorophyll over winter for stations Biotrans and India. It seems hard to justify that loss rates should go to near zero at low population densities (the consequence of using a quadratic term only) because all organisms have metabolic requirements. Nearly all marine ecosystem models do, therefore, include a linear term for density-independent phytoplankton mortality and, for our baseline simulation (section 4.2), we chose to keep this term on a purely conceptual basis.”

Referee: 23) p. 83, lines 23–27 and p. 84, line 2 and 18: Again comparative statements are made but not quantified.

Reply: See reply to Referee point 21) above.

Referee: 24) p. 86, line 12: ‘A93’ does not seem to have been defined in the text.

Reply: Amended to: “…when using the method of Anderson (1993), …”.

Referee: 25) p. 87, line 8–14: Please cite examples models and studies supporting the statements.

Reply: It is difficult to find references that categorically say that 1-D and 3-D models have difficulty dealing with this issue (overwintering phytoplankton) and so we have removed the reference to 1-D and 3-D models: “The slab model has difficulty dealing with this issue …”.

Referee: 26) p. 87, line 14: Please quantify “too high”.

Reply: reply to Referee point 21) above.

Referee: 27) p. 89, lines 11–13: Please cite example of some of the pioneering work by Riley, Steele and Fasham.

Reply: We now cite Anderson and Gentleman (2012) in this regard, which is a detailed analysis of Riley’s methods, set in context of contemporary oceanography.

Referee: 28) p. 91, lines 12 and 14: It would be helpful to include the equation number for Beer’s Law and the piecewise Beer’s Law.

Reply: The text in question now refers to Eqs. 9 and 10, as requested.
Referee: 29) p.92, line 21: Please clarify the magnitude of nitrate drawdown that the following is being compared to: “nitrate drawdown was slightly greater (0.5 mmol Nm⁻³) with the MEDUSA parameterisation.”

Reply: The results have changes with our new focus on station BIOTRANS rather than station India. The new associated text is: “Results (not shown) were almost identical to the baseline simulation for station BIOTRANS (Fig. 11), with the exception that the peak of the spring phytoplankton bloom using the MEDUSA light parameterisation was only 0.7 mg chl m⁻³, 0.2 mg m⁻³ less than that in the standard run.”

Referee: 30) p. 93, lines 7–8: Please cite examples.

Reply: References added to this text: Anderson and Williams (1998), Oschlies and Schartau (2005), Salihoglu et al. (2008), Llebot et al. (2010).

Referee: 31) p. 94, lines 6–8: Please provide supporting citation(s).

Reply: Text altered to: “There is no consensus on best practice, despite the fact that different approaches to partitioning of zooplankton losses between detritus, nutrient and DOM differs markedly between models and can have a significant effect on modelled ecosystem function (Anderson et al., 2013).” Note that this citation compares different models in this regard and so there is no need to additionally cite the examples of individual models.

Referee: 32) p. 95, line 17: On what basis do you recommend the equation for shortwave irradiance?

Reply: We recommend it because it is state-of-the-art. Given that we might be asked to explain that also, we have replaced the word “recommend” with “use” in this sentence.

Referee: 33) p. 103, line 10 and p. 104, line 7: Should it be ‘ASCII’ rather than ‘ASC II’?

Reply: Alterations made, as indicated.

Referee: 34) Table 1: Should the legend read: “Characteristics of published slab models?”

Reply: We believe the previous text was sufficient, but have nevertheless altered it to the above.

Referee: 35) Table 2: Referring the reader to Eq. 10 would be helpful.

Reply: The caption to this table now reads: “Table 2. Coefficients for use in Anderson (1993) calculation of light attenuation (Eq. 10)”
Referee: 36) Figures 2 and 4: Would it be possible to combine these figures and give a more detailed description in the legend?

Reply: We suggest that it is inadvisable to combine these Figures. Figure 2 is specifically about the layer structure of slab models and is based on Steele (1974). It sits in the section on the introduction to slab models (section 2). The focus is not on specifics of the ecosystem but, rather, the physics. In contrast, Fig. 4 is specific to the description of our NPZD ecosystem model and so is presented in section 3.2 (Ecosystem model description).

Referee: 37) Figure 3: Use of ‘BIOTRANS’ and ‘NABE’ is inconsistent.

Reply: Figure corrected.

Referee: 38) Figure 6: Units are not given on the colour bars.

Reply: The contoured properties are I_F, I_D and I_{tot}, as identified above each panel, and with units identified (d$^{-1}$). There is no need to repeat the units on the colour bars.

Referee: 39) Figure 7: Is there an overarching ‘main’ module or subroutine that contains the sections of code shown in this flow diagram? There is also repetition in the ‘Functions’ section – is this intended?

Reply: We are not sure what the reviewer is asking here. There is a section of core code, identified as such (‘permanent code’). A peculiar aspect of R is that the functions are listed in the code prior to the core code. We see no need to alter Figure 7.

Referee: 40) Figures 8 and 9: Could these be combined in the same way as for stations Papa and KERFIX (Figures 12 and 13)?

Reply: In principle, Figures 8 and 9 (now renumbered as Figs 10 and 11) could be combined but we believe their impact is more effective if they are left separate. Fig. 8 is first introduced on p. 81 line 6 and there is then a large amount of description of the model calibration until Fig. 9 is introduced (p. 82, line 22). Amalgamating the two Figures would potentially confuse the reader by presenting the reader with the fitted model prior to the description of the calibration process.

Referee: 41) Figures 11, 12 and 13: Data shown are for 2008 or 2009 – the choice of these years (rather than 2006) is not explained in the text.

Reply: See reply to overarching Issues (2). We now use an objective means of selecting years.
Referee: 42) All figures displaying observational data do not cite its source.

Reply: The source of the observational data is stated in the text: “The model is compared to seasonal data for chlorophyll and nitrate within the mixed layer, for each station. Nitrate data are climatological, from World Ocean Atlas 2009 (Garcia et al., 2010), as is the model forcing in terms of mixed layer depths and irradiance. Regarding chlorophyll, data are SeaWiFS 8-day averages (O’Reilly et al., 1998), for which we had access to years 1998 to 2013.”

Referee: 43) Figure 17: ‘A93’ and ‘EP85’ are not defined.

Reply: A93 has now been expanded to Anderson (1993). EP85 is no longer relevant to this Figure.

III. Referee #2

General comments:

Referee: This manuscript explains the technical details of a simple NPZD model that runs in a two-layer vertical setup. The authors claim that using simple ecosystem models such as the one described in the manuscript are still useful because one can run them very fast and then be able of evaluating how changes in equation formulation or parametrization affect the ecosystem dynamics. I can see the point of this argument and I somehow agree with it, although with some reservations. Personally I think that the dichotomy over "simple vs. complex" models is overstated and should not be a matter of too much debate: in my view models are (or should be) "question-dependent" – simple models are okay to answer some questions such as biogeochemical cycles while more complex models are required to answer more ecologically relevant questions such as the effect of biodiversity on ecosystem functioning.

Reply: See Overarching Issues (1). This ms is not about model complexity or arguing in favour of simple NPZD-type models. It is about providing a plankton modelling testbed with simple physics, which can be used to test ecosystem models, simple and complex alike. We chose to use a simple NPZD model because of ease of presentation and transparency of results.
We wholeheartedly agree with the referee’s comment that the dichotomy over simple vs complex models is overstated and should be question-dependent. The following text has been added to the end of the paragraph in the Discussion about model complexity: “...The whole issue of model complexity ought in any case to be question dependent, e.g. simple models may be useful to address questions on biogeochemical cycles whereas more complex models may be necessary to answer more ecologically relevant questions such as the effect of biodiversity on ecosystem function. The use of the EMPOWER testbed allows the user to investigate and determine whether a particular ecosystem model is sufficiently complex, or indeed too complex, to address the question of interest.”

Referee: For those interested on community- or ecosystem-level properties (total phytoplankton or zooplankton dynamics, carbon or nitrogen cycle, etc.) using NPZD is good enough and probably better than using models that resolve phytoplankton or zooplankton diversity. NPZD have been around at least 25 years (Fasham 1990) and have proven useful to understand many aspects of ecosystem dynamics. Having said that I am not sure that simply coding another NPZD model deserves a publication in a journal such as GMD because I can’t really see how this is going to move the field forward. Besides that, I find the article quite technical and therefore slightly boring. I did not find any relevant error or mistake in this work, but neither any major advance or originality. The manuscript can be seen as a very well written technical report. I leave the editor with the decision about if this work is within the scope of the GMD journal.

Reply: To reiterate, EMPOWER is an ecosystem model testbed, not an NPZD model: see Overarching Issue (1). The rationale of GMD is that it provides for complete and comprehensive model description (quoting from the journal website): “Model description papers are comprehensive descriptions of numerical models … should be detailed, complete, rigorous, and accessible to a wide community of geoscientists. In addition to complete models, this type of paper may also describe model components and modules, as well as frameworks and utility tools used to build practical modelling systems, such as coupling frameworks or other software toolboxes with a geoscientific application” (our emphasis).

As noted previously, our ms is not particularly concerned with the specific NPZD model used, but instead uses this as a straightforward “default” with which to illustrate its actual focus: the EMPOWER testbed. That said, through investigating the sensitivity of the modelled plankton system to key processes and parameterisations, such as light attenuation and mortality, the ms
does add significant scientific content. For instance, the finding that model results are very
similar whether using simple (MEDUSA’s two waveband submodel) or complex (Anderson,
1993; based on the full spectral model of Morel) light schemes is of wider value to plankton
modelling. Furthermore, a key point of the ms is the demonstration the utility of EMPOWER
in making these kind of comparisons and to thereby encourage, and provide a tool, for
modellers to do so.

Minor comments:

Referee: 1) Page 54: The abstract should say at some point that the model is a simple NPZD
configuration. It’s not clear now until one starts reading the main text.

Reply: We agree and the relevant sentence in the abstract has been amended to: “In order to
demonstrate the utility of EMPOWER-1.0, we implemented a simple nutrient-phytoplankton-
zooplankton-detritus (NPZD) ecosystem model and carried out …”.

Referee: 2) Page 55 - Line 11: The code is "transparent" – What the authors mean by this?
The simplicity of the code? No code is transparent and its simplicity is subjective anyways.

Reply: (note that the text in question is page 54, line 11) Our use of transparent is consistent
with the definition in the Concise Oxford Dictionary: “evident, obvious, easily understood”.
Our code is neat and tidy and well structured in terms of layout and readability. We disagree
with the reviewer that no code is transparent (i.e. “easily understood”). For sure, there are
many opaque codes out there, but not ours. We see no reason to alter the manuscript text with
respect to use of the word “transparent”.

Referee: 3) Page 56 - Line 05: "They require expertise and time to set up". I don’t find much
difference between 0D and 1D models in terms of difficulty (3D are another story).

Reply: Simple slab ecosystem models can be set up and run with minimum expertise in a
matter of hours. I (TRA) use them for teaching (my course is “Ecological Modelling”) and
students, with no experience at all, get to grips with them quickly. With due respect to the
referee, the same cannot be said for 1-D models which require much greater expertise to set
up, run and analyse. Of course, 3-D models are another big step, as indicated by the referee.
Maybe in future someone can present a 1-D modelling testbed for publication and (crucially)
for download in in GMD, and we encourage this. 1-D testbeds have, for example, been used
successfully by Marjorie Friedrichs (e.g. Friedrichs et al., 2006: Deep-Sea Res. II 53, 576-
600; J. Geophys. Res. 112, C08001) but these have not been presented in GMD nor made available for generic use by the scientific community via free download.

Referee: 4) Page 56 - Line 28: "Of course" – I think this statement is unnecessary.

Reply: “Of course” removed from the text.

Referee: 5) Page 57 - Line 03: "we submit" – I think this statement is unnecessary.

Reply: We think it is appropriate to keep “we submit” in the text. The fact that the great pioneers experimented extensively with their models is not an obvious point of fact and by using the words “we submit” we are making a case with the reader that s/he should be made aware of this rather important, yet rarely acknowledged, aspect of scientific progress.

Referee: 6) Page 66 - Line 05: "density" – Do you mean plankton concentration? The density of water?

Reply: (note that the text in question is page 65, line 5) We meant phytoplankton concentration and have inserted “phytoplankton” before the word “density” in the sentence in question to avoid ambiguity.

Referee: 7) Page 68 - Line 15: "kpar = f(bj,Cj)" – is not this parametrization too complex for such a simple model?

Reply: (note that the text in question is page 67, line 15) No, this parameterisation is not too simple. All models, be they simple NPZD or complex, benefit from accurate parameterisation of the submarine light field. Use of the Anderson (1993) piecewise Beer’s law (Eq. 10) gives rise to major improvement in the predicted light field with depth and concomitant predictions for photosynthesis and ecosystem dynamics (Fig. 16). For scientific use, we therefore strongly recommend the use of Eq. 10 (the piecewise Beer’s law) rather than Eq. 9 (simple Beer’s Law).

Referee: 8) Page 70 - Line 10: "Eqs(11) (12)" – I might be missing something but these equations appear to me as exactly the original Fasham parametrization.

Reply: Eqs. 11 and 12 are not the same as those used by Fasham because the prey preferences are treated differently. FDM used a relative scaling for prey preferences (FDM’s eqns A1 and A2), such that preference for a particular prey item is equal to the relative proportion that prey type contributes to the overall perceived food. This is in contrast to our preference for a particular prey item, which is equal to a scaling of the density of that prey. This seemingly
subtle difference is what causes our grazing to be classified as passive switching vs. FDM’s active switching. Clarification is provided in Gentleman et al. (2003), as cited in the text. Additionally, we specifically relate our equations to Holling Type 3, which is familiar to most people.

Referee: 9) Page 78 - Line 09: "The NPZD model we have presented is a new one" – I honestly do not think that this NPZD can be called "new" at all. The code is new, the model is not.

Reply: The equations used for processes such as light attenuation in the water column, photosynthesis, grazing and mortality have, on a case by case basis, been used in previously published models and in this sense there is nothing new. As a unified whole, however, the model is most certainly new, incorporating what we consider to be the latest state-of-the-art representations of the processes in question. If the model were already “on the shelf”, as implied by the reviewer, we would be able to cite it and give minimal description. But this is not the case. Given the apparent antagonism to the word “new”, we have amended the sentence in question to: “The ecosystem model we have presented uses the NPZD structure in combination with up-to-date formulations for key processes such as photosynthesis, grazing and mortality. As such, it has not been previously published and so there is no readily available complete set of parameter values to draw upon.”

Referee: 10) Page 80 - Line 29: "Averaging data across years ... to compare the model to data" – I do not agree with this. If the model is using climatological forcing, the data should be climatological as well. Just show average monthly outputs for the model to smooth out the bloom as well as it happens with the data. Or otherwise run the model using the MLD forcing from 1998 to 2013 and then average the model outputs to construct a climatology. The data are not measured daily anyways; usually sampling is once or twice per month.

Reply: See reply to Overarching Comment (2).

Referee: 11) Page 81 - Line 04: "in this case 2006" – Why 2006 and not any other year? This is an arbitrary choice. One can then select the year or years that best fit the model output. I don’t think this is a robust comparison

Reply: See reply to Overarching Comment (2).

Referee: 12) Page 81 - Line 24: "varied +/- 10%" – Why such a small change? Sensitivity analysis usually perform +/- 30% or 50% change in parameter values.
Reply: The use of normalised sensitivity analysis (Eq. 16) means that sensitivity is quantified as the change in a chosen variable relative to the change in the parameter. E.g., if changing a parameter by 10% causes a 10% change in the variable of interest, the S(p) score is 1.0. So the absolute change in the parameter is not so important and, indeed, this metric is usually best applied using relatively small changes in the parameter (minimising non-linear effects). For another example of the use of the S(p) metric see Anderson (1994: J. Exp. Mar. Biol. Ecol. 184, 183-199) and in that instance parameters were also varied +/- 10%.

Referee: 13) Page 83 - Line 02: "There is also a hint that ... 2006, this not particularly surprising" – This is not a valid argument (see my previous comments about climatologies)

Reply: This text has been removed.

Referee: 14) Page 83 - Line 12: Figure 11 uses year "2008" – Why the authors now select 2008 and not 2006? These choices look too arbitrary to me.

Reply: See reply to Overarching Comment (2). We now select years on an objective basis.

Referee: 15) Page 83 - Line 18: "grazer controlled phytoplankton in iron limited ecosystems" – The current consensus is that phytoplankton in HNLC is more controlled by iron limitation than by grazers and I personally agree with it.

Reply: There is certainly general agreement that iron limits phytoplankton growth rate but that does not mean the system (e.g. phytoplankton biomass) is controlled by iron to the exclusion of other factors. We are of the belief that the statement in quotes above remains entirely valid as a hypothesis today, as stated by Price et al. (1994). The situation is summarised well by Mongin et al. (2006: Deep Sea Res II 53, 601-619): “Results suggest that primary production in HNLC systems is controlled by some combination of the light/mixing regime, grazing pressure and Fe limitation, as evidenced most clearly in the equatorial Pacific (e.g., Coale et al., 1996; Landry et al., 1997) and Southern Ocean (e.g., Boyd et al., 2000; Price et al., 1994).” More recently, Kidston et al. (2013; as cited in ms) wrote: “Although results [of iron enrichment studies] support the importance of iron in regulating primary productivity, they do not imply that iron is the ultimate control (Fennel et al., 2003). Recent studies show that the factors controlling phytoplankton biomass in the Southern Ocean are still open to debate. … Banse (1996) studied the effects of underwater irradiance, iron and grazing on SAZ chlorophyll and found that zooplankton grazing was controlling the phytoplankton populations.”
Referee: 16) Page 83 - Line 25: "Vmax acting as a proxy for iron limitation" – This is way to crude. If the model does not resolve iron cycle it should not be compared against HNLC regions.

Reply: The art of modelling does not necessarily require the explicit representation of every aspect of the real system and it is entirely reasonable to vary appropriate parameters in the model to act as proxy for iron limitation. In similar fashion to our study, previous NPZD models of HNLC systems have not explicitly modelled iron as a separate state variable, e.g. the pioneering work of Frost (1987) through to recent work by Kidston et al. (2013).

We accept, however, that our previous justification of the parameters we changes was inadequate. We now cite a key reference (Alderkamp et al., 2012: J. Phycol. 8, 45-59), decreasing both $V_p^{\text{max}}(0)$ and α at the two HNLC stations: “Low growth rate of phytoplankton may be expected relative to the North Atlantic because of iron limitation. Parameters $V_p^{\text{max}}(0)$ and α may typically decrease by 50% relative to iron-replete conditions (Alderkamp et al., 2012). For stations Papa and KERFIX, we therefore assigned $V_p^{\text{max}}(0) = 1.25 \text{ g C (g Chl)}^{-1} \text{ h}^{-1}$ and $\alpha = 0.075 \text{ g C (g Chl)}^{-1} \text{ h}^{-1} (\text{W m}^{-2})^{-1}$ [half the iron-replete values used for the North Atlantic stations].”

Referee: 17) Page 84 - Line 20: "It is perhaps unsurprising ... curves are similar" – Why then bother doing a sensitivity analysis?

Reply: The operative word is “perhaps” because models often do produce surprises. It is only by doing sensitivity analysis that one finds out, for sure, what models are sensitive to and what they are not, and where therefore to focus effort in parameterisation.

Referee: 18) Page 86 - Line 09: "The sensitivity shown here is at least as great as that for the choice of P - I curve" – Which you say was quite low right?

Reply: (note that the text in question is page 85, line 9) Correct, but that is not the point. The point is that there has been lots of work on P-I curves and the selection thereof for models. Yet other aspects of the photosynthesis calculation, such as whether to assume a triangular or sinusoidal pattern of irradiance over the day, have received little attention despite the fact that model results are at least as sensitive.

Referee: 19) Page 87 - Line 12: "Many models do not include a non-linear phytoplankton mortality" – Using a squared mortality term amounts to imposing a carrying capacity.
Reply: We are not sure what the referee is asking here. Yes, using a quadratic mortality term effectively imposes carrying capacity. But this does not alter the fact that many marine ecosystem models do not include a non-linear phytoplankton mortality term.
EMPOWER-1.0: an Efficient Model of Planktonic ecOsystems WrittEn in R

T.R. Anderson¹, W.C. Gentleman² and A. Yool¹

[1]{National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK}
[2]{Department of Engineering Mathematics, Dalhousie University, 5269 Morris St., Halifax, Nova Scotia, B3H 4R2, Canada}

Correspondence to: T.R. Anderson (tra@noc.ac.uk)

Abstract

Modelling marine ecosystems requires insight and judgement when it comes to deciding upon appropriate model structure, equations and parameterisation. Many processes are relatively poorly understood and tough decisions must be made as to how to mathematically simplify the real world. Here, we present an efficient plankton modelling testbed, EMPOWER-1.0, coded in the freely available language R. The testbed uses simple two-layer “slab” physics whereby a seasonally varying mixed layer which contains the planktonic marine ecosystem is positioned above a deep layer that contains only nutrient. As such, EMPOWER-1.0 provides a readily available and easy to use tool for evaluating model structure, formulations and parameterisation. The code is transparent and modular such that modifications and changes to model formulation are easily implemented allowing users to investigate and familiarise themselves with the inner workings of their models. It can be used either for preliminary model testing to set the stage for further work, e.g., coupling the ecosystem model to 1-D or 3-D physics, or for undertaking front line research in its own right. EMPOWER-1.0 also serves as an ideal teaching tool. In order to demonstrate the utility of EMPOWER-1.0, we implemented a simple nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model and carried out both a parameter tuning exercise and structural sensitivity analysis. Parameter tuning was demonstrated for four contrasting ocean sites, focusing on Station India BIOTRANS in the North Atlantic (60°N–47°N, 20°W), highlighting both the utility of
undertaking a planned sensitivity analysis for this purpose, yet also the subjectivity which
nevertheless surrounds the choice of which parameters to tune. Structural sensitivity tests
were then performed comparing different equations for calculating daily depth-integrated
photosynthesis, as well as mortality terms for both phytoplankton and zooplankton. Regarding
the calculation of daily photosynthesis, for example, results indicated that the model was
relatively insensitive to the choice of photosynthesis-irradiance curve, but markedly sensitive
to the method of calculating light attenuation in the water column. The work highlights the
utility of EMPOWER1.0, and simple models in general, as a means of comprehending,
diagnosing and formulating equations for the dynamics of marine ecosystems.

1 Introduction

Ecosystem models are ubiquitous in marine science today, used to study a range of
compelling topics including ocean biogeochemistry and its response to changing climate, end-
to-end links from physics to fish and associated trophic cascades, the impact of pollution on
the formation of harmful algal blooms, etc. (e.g., Steele, 2012; Gilbert et al., 2014; Holt et al.,
2014; Kwiatkowski et al., 2014). Models have become progressively elaborated in recent
years, a consequence of both superior computing power and an expanding knowledge base
from field studies and laboratory experiments. All manner of models have appeared in the
published literature varying in terms of structure, equations and parameterisation. Anderson et
al. (2014), for example, commented on the “enormous” diversity seen in chosen formulations
for dissolved organic matter (DOM) in the current generation of marine ecosystem models
and asked whether reliable simulations can be expected given this diversity. This question
applies not just to modelling DOM, but also to most processes and components considered in
modern marine ecosystem modelling (Fulton et al., 2003a; Anderson et al., 2010, 2013).
A certain amount of variability among models is to be expected because of differing
objectives among modelling studies. A distinction can, for example, be made between models
designed primarily for improving understanding of system dynamics, as opposed to those for
out-and-out prediction (Anderson, 2010). Ultimately, however, much of the variability seen in
model structure and equations is an outcome of personal choice on the part of the practitioner.
Indeed, the art of modelling is in making decisions regarding model structure, parameters,
design of simulations, types of output analysis, etc. The underlying root of this diversity and
seeming subjectivity is that, despite a wealth of available data, many processes in marine
Ecosystems are not easy to characterise mathematically. Modellers therefore need to consider how this uncertainty affects their results and use it to inform how best to construct and parameterise their models for chosen applications. Sensitivity analysis and model validation are the obvious means to address model uncertainty, as well as model intercomparison studies. There is however an additional problem, namely that ocean biology is inextricably linked to physics and both incur modelling error. An appropriate physical framework must be selected that adequately represents mixing, advection and the seasonal changes in the depth of the upper mixed layer. Understandably, 1- or 3-dimensional physical frameworks are the usual choice, given the realism thus provided. But this increased dimensionality (or spatial resolution) comes at a price. They require expertise and time to set up, sufficient computational resources for running and storage of output and, last but not least, analysis of the frequently copious output into coherent results, which can be a major undertaking. These constraints serve to limit the extent to which modellers can and do carry out extensive diagnosis and testing of their models including sensitivity analysis and validation.

In the early days of marine ecosystem modelling, it was necessary to resort to simple empirical approaches to deal with physics given the limited power of computers at the time. The so-called zero-dimensional “slab” models that came to the fore were the cornerstone of their discipline in the mid 20th century. Slab models have a simple physical structure consisting of two vertical layers. The depth of the upper (mixed) layer, which can vary seasonally, was determined empirically from observations of vertical profiles of temperature or density. Containing the pelagic marine ecosystem, the upper layer was positioned above an essentially implicit (in that it is unchanging) bottom layer that contains a (typically fixed) nutrient concentration. Such slab models can be run quickly and straightforwardly, enabling both a multitude of runs and ease of analysing results.

Despite the simplicity of the two-layer slab physics, these models are sufficiently well formulated to permit realistic and insightful simulations of marine ecosystems (e.g., Evans and Parslow, 1985; Fasham et al., 1990). Indeed, looking back at the history of marine ecosystem modelling, it is remarkable how simple models allowed so much progress to be made, notably by pioneers such as Gordon Riley, John Steele and Mike Fasham (Gentleman, 2002; Anderson and Gentleman, 2012). Of course, we admire these individuals when it came to encapsulating the complexity of the real world with mathematical equations. They necessarily had to think deeply about their models because they had to build them from
scratch as, in most instances, established relationships for processes such as photosynthesis, grazing and mortality could not be borrowed from elsewhere. A key aspect of their success, we submit, is that they experimented extensively with their models, trying out different formulations and parameterisations in order to see the effect on model predictions (e.g., Anderson and Gentleman, 2012). It is this preparation that served them so well, allowing them to set up meaningful simulations from which they could so effectively draw conclusions and make progress in their field of study.

The need for preparation in terms of exploring sensitivity to ecosystem model formulations and parameterisation is no less in the modern era, indeed it is arguably greater given our deeper knowledge of the marine biota and a correspondingly larger multitude of mathematical formulations to choose from. We propose that modellers can benefit from extensively “playing with” and testing their models and that the use of simple slab physics is an obvious choice in this regard, at least for ocean locations where the bulk of the biological activity occurs in the surface mixed layer. Experimentation of this kind may then be used to set the stage for the “serious” model runs that may follow, e.g. in 1-D or 3-D, although it is also entirely possible to undertake successful studies using only slab physics models. In addition, because they are straightforward to understand and do not require powerful computing resources to run, such simple models that incorporate simple slab physics are ideal for use in teaching future generations of marine scientists about ecological structure and function.

Here, we present a slab a.k.a. zero-dimensional, and hence computationally efficient, plankton ecosystem testbed, coded in the freely available R environment, EMPOWER-1.0 : Efficient Model of Planktonic ecOsystems WrittEn in R. Our aim is to provide EMPOWER-1.0 for general use and to demonstrate how it can readily and easily be used both to study ecosystem dynamics at a range of ocean sites and to assess the pros and cons of different model choices for best representing and analysing the ecosystems in question. EMPOWER's code is structured in a modular way to ensure maximum ease of adjusting parameters and formulations and, indeed, the inclusion of entirely new marine ecosystem compartments, processes and associated outputs as required. Here, we demonstrate the use of EMPOWER-1.0 in combination with a simple illustrative nutrient-phytoplankton-zooplankton-detritus (NPZD) model. It should be noted, however, that EMPOWER-1.0 can be used to test and examine the performance of simple and complex models alike. Our choice of a simple ecosystem model is motivated by the fact that simple models are conceptually straightforward.
as well as being easy to set up and analyse. This study is structured as follows. First, a brief history of slab models in marine science is presented to illustrate the origin and utility of these models as research tools in marine science. The simple representative nutrient-phytoplankton-zooplankton-detritus (NPZD) model is then described and implemented within EMPOWER. The utility of EMPOWER as a testbed for undertaking model parameterisation is then next demonstrated by a parameter adjustment exercise, specifically the fitting of the NPZD model to observed seasonal cycles of chlorophyll and nutrients at each of four stations in diverse regions of the world ocean. The sensitivity analysis is then extended to model equations with a comparison of the performance of different equations for calculating, first, daily depth-integrated photosynthesis and, second, phytoplankton and zooplankton mortality. Finally, the utility of slab models is discussed in context of ongoing contemporary marine ecosystem modelling research.

2 Slab models: from pioneering studies to the present day

In this section, we provide a history of slab modelling which serves as an introduction to how these models are constructed, as well as to demonstrate that, despite their simplicity, the simulations these models generate can be meaningful and realistic. Models provide the theoretical basis for our understanding of the dynamics of marine ecosystems. One of the first applications of theory in biological oceanography occurred around 80 years ago when scientists were interested in the mechanisms driving the spring phytoplankton bloom that is characteristic of many marine systems. The basic theory as we know it today, whereby bloom initiation occurs as the water column stratifies, was proposed in the early 1930s by Haaken H. Gran, a Norwegian botanist (Gran 1932; Gran and Braarud, 1935). Mathematical testing of this proposal was essential in order to establish quantitative merit, given the dynamic interplay between bottom-up controls on phytoplankton via light and nutrients versus top-down control by grazing. Following on from initial work by Fleming (1939), it was Gordon Riley, a biological oceanographer based at the Bingham Oceanographic Laboratory in the northeastern USA, who constructed a model of seasonal phytoplankton dynamics for Georges Bank, a raised plateau off the coast of New England, northeast U.S.A. (Riley, 1946), a remarkable achievement at the time (Anderson and Gentleman, 2012). The model had a single differential equation for the rate of change of phytoplankton biomass, expressed with terms for photosynthesis, respiration and grazing. Using a photosynthesis-irradiance (P-I) curve
based on his own ship-board experiments, Riley developed a formula for daily depth-averaged photosynthesis in the mixed-layer that was derived from observed seasonal irradiance at the ocean surface as calculated by atmospheric transmission by Kimball (1928), measured light attenuation coefficients and a nutrient limitation term. The seasonal cycle of mixed layer depth was imposed empirically, with calculated photosynthesis in the euphotic zone being diminished accordingly when mixed layer depth (MLD) exceeded that of the euphotic zone (Figure 1). Temperature was considered to affect net primary production via regulation of respiration. Despite its simplicity, in both biology and physics, Riley's model successfully reproduced the spring plankton bloom at Georges Bank, highlighting the subtle interplay between growth and grazing in controlling plankton stocks.

Although Riley’s model considered depth-averaged photosynthesis over the mixed layer, it could not be described as a slab model per se because it did not account for fluxes of material across the pycnocline. It was John Steele, a mathematical marine biologist from Scotland, who took the next step by experimenting with a dynamic ecosystem embedded within multi-layer models (e.g., Steele, 1956), arguably a coarser version of what is done today in the more complex 1D models. Steele's experience with this model led him to realise that much of the net effect of vertical gradients could be captured with just a few layers, and he further simplified the physics to a two-layer sea in his study of the plankton in the North Sea (Steele, 1958). The resulting NPZ ecosystem was confined to the upper layer with a lower layer that contained only nutrient, in fixed concentration. Inputs of nutrients to the surface layer occurred due to mixing, balanced by export via phytoplankton sinking and mixing (Figure 2). Steele had thus constructed the first slab model of its kind although with this, as well as his later models including those in his seminal work The Structure of Marine Ecosystems (Steele, 1974), he used a fixed, rather than seasonally-varying, mixed layer depth. Applying the model to study the plankton of Fladen Ground and other regions in the northern North Sea, Steele demonstrated good agreement between the model and estimates of production from observations. Through work such as this, Steele emphasised that it is simplification that allows us to most easily address the controlling factors in marine ecosystems. One of Steele’s best-remembered findings, demonstrated again using simple models, is that the form of the zooplankton closure term has important consequences for ecosystem dynamics and export flux (Steele and Henderson, 1992). This finding remains relevant to modellers today and, indeed, we will examine model sensitivity to zooplankton mortality in section 4.4.
It was Geoff Evans and John Parslow who would make the next major advance in the development of slab models with their “model of annual plankton cycles” (Evans and Parslow, 1985). Following Steele, they opted for an NPZ ecosystem embedded within the same two-layer framework with the marine ecosystem restricted to the upper layer and a fixed nutrient concentration in the lower. Evans and Parslow provided a more complete representation of the interaction of the marine ecosystem with its physical environment by allowing the depth of the mixed layer to vary seasonally with direct impacts on the model state variables. As the mixed layer deepens, nutrients are entrained from below while phytoplankton density is diluted because their surface layer biomass is spread over a greater depth. Conversely, as the mixed layer shallows, the concentrations of nutrients and phytoplankton are unchanged although losses occur on a per unit area (m$^{-2}$) basis. As many zooplankton can swim, Evans and Parslow assumed that they are able to avoid detrainment in a similar manner to the assumptions of prior models (e.g. Steele, 1958; Riley et al., 1949), as well as mixing, in which case their concentration increases as MLD decreases.

Evans and Parslow (1985) also took seasonal and daily irradiance forcing into consideration, in combination with depth integration of a non-linear P-I curve. As opposed to previous studies that had used observations, variation in light at the ocean surface was calculated from standard trigonometric/astronomical formulae (Brock, 1981), with transmission losses in the atmosphere as 70% of cloud cover and photosynthetically active radiation (PAR) as 3/8 of total irradiance. Variation in light with time of day was assumed to be triangular (Steele, 1962), permitting analytic integration in time. A notable contribution of Evans and Parslow’s (1985) paper is the appendix which provides the equations required to construct a model subroutine to calculate daily depth-integrated photosynthesis in a model layer as a function of noon irradiance (PAR entering the layer from above), day length, phytoplankton concentration, rate of light extinction (Beer’s law) and parameters for maximum photosynthesis and initial slope that define the P-I curve.

In common with their predecessors, Evans and Parslow were interested in the factors controlling the initiation of the spring phytoplankton bloom, focusing on the role of vertical mixing. Bloom initiation, they concluded, required a low rate of primary production over winter, which is to be expected in the North Atlantic due to deep mixed layers at that time, and is also linked to coupling between phytoplankton and grazers. The simplicity of the slab model was key to their conclusions as articulated in their own words: “It is worth emphasising
the advantages of analysing simple models, and simplifying models until they can be
analysed”. The controls on phytoplankton dynamics in high-nutrient low-chlorophyll (HNLC)
areas such as the Subarctic Pacific has remained a topical issue ever since, in large part
because limitation by iron is also indicated (Martin et al., 1994; Coale et al., 1996), but the
role of grazing and the link between phytoplankton-zooplankton coupling and mixed layer
depth remains firmly established as a key mechanism in these systems (Frost, 1987; Fasham,
1995; Chai et al., 2000; Smith and Lancelot, 2004).

Perhaps the most famous slab modelling paper, published five years after Evans and Parslow
(1985), is the study of nitrogen cycling in the Sargasso Sea by Fasham et al. (1990; henceforth
FDM90). It is by far the most highly cited marine ecosystem model (Arhonditsis et al. (2006)
noted that it had accumulated 405 ISI cites by November 2005; this number has increased to
737-757 as of November 2014/April 2015). In terms of physical structure, Fasham’s model
used the same basic slab construct as in Evans and Parslow (1985), with seasonally varying
mixed layer depth and irradiance forcing. The novel aspects of FDM90 were instead related to
additional complexity of the ecosystem, expanding from a simple NPZ to explicitly separate
new and regenerated production by including state variables for nitrate and ammonium
(critical for calculating the f-ratio; Eppley and Peterson, 1979), as well as having a simple
microbial loop of dissolved organic nitrogen and bacteria. Sinking detritus was also added as
a state variable, facilitating the prediction of export flux. The success of this model was due to
it being the first attempt to fully elucidate the processes involved in the recycling of nitrogen
in the euphotic zone, as well as the complimentary roles of zooplankton and bacteria. The
simplified physics of the model allowed it to be run on PCs of that era and Fasham
purportedly distributed the code on floppy disks, allowing other researchers to run the model
on their PCs.

The description of the marine ecosystem provided by FDM90 has largely served as the
foundation for marine ecosystem modelling ever since. With the advent of increasing
computer power, as well as increasing interest in the spatio-temporal behaviour of plankton
systems, most modelling studies are now undertaken in 1-D or 3-D physical frameworks.
Nevertheless, many slab modelling studies have been published since FDM90 which follow
the basic design described above, or slight modifications thereof (Table 1). A range of
ecosystem models of varying complexity have been incorporated within slab physics and
applied to contrasting sites throughout the world ocean. The basic physical construction is
similar in most cases consisting of a classic slab structure with a seasonal cycle of mixed layer
depth specified from data and seasonal irradiance from standard trigonometric equations.
Remarkably, Evans and Parslow’s (1985) equations for calculating daily depth-integrated
photosynthesis have prevailed and been used in most studies. A more sophisticated
calculation method was developed by Morel (1988, 1991) and a simplified form of this
(Anderson, 1993) is examined in section 4.3. The models in Table 1 have been used for a
diverse range of applications including studies of parameter optimisation (Spitz et al., 1998;
Fennel et al., 2001; Schartau et al., 2001; Hemmings et al., 2004), parameter sensitivity
analysis (Mitra, 2009; Mitra et al., 2007, 2014), phytoplankton bloom dynamics (Findlay et
al., 2006), nutrient cycling via organic and inorganic pathways (Llebot et al., 2010), primary
production in HNLC systems (Kidston et al., 2013) and primary production and export flux in
contrasting regions (Fasham, 1995; Onitsuka and Yanagi, 2005).

3 Model description

We demonstrate the use of EMPOWER-1.0 using a simple NPZD ecosystem model and
forcing for four time series stations in the ocean. The code is readily adapted to incorporate
other ecosystem models, including the relatively complex models of the modern era, and/or
forcing for other ocean sites.

3.1 Slab setup and forcing

The model uses slab physics as per Evans and Parslow (1985), namely a seasonally varying
surface mixed layer that contains the ecosystem positioned above a deep homogeneous layer
containing unchanging nutrient and no plankton (Fig 2). We have also included temperature
dependencies for the physiological rates in the ecosystem model (see below). Our model was
set up for four stations, two in the North Atlantic (stations Biotrans, 47°N 20°W and
India, 60°N 20°W) and two HNLC systems (stations Papa in the
north Pacific, 50°N 145°W and Kerfix, 50° 40'S 68° 25'E). These stations were chosen because of their contrasting environments, as illustrated by the
differences in forcing variables: seasonally varying mixed layer depth (MLD), irradiance (I)
and sea surface temperature (T) (Figure 3), as well as deep nitrate (N0; see below). Mixed
layer depths were taken from World Ocean Atlas 2009 (Antonov et al., 2010; Locarnini et al.,
In common with most previous slab modelling studies, noon (peak daily) irradiance at the ocean surface for a given latitude as a function of time of year is calculated using standard trigonometric/astronomical equations. The effect of clouds on atmospheric transmission was calculated using the model of Reed (1977). The equations for irradiance forcing are not usually provided as part of published model descriptions but, for completeness, they are listed here in Appendix A.

The bottom layer in most slab models is assumed to have a fixed concentration of nutrient, N_0. There is in reality a gradient of nutrient with depth and this can be represented empirically in slab models using simple functions of nutrients versus depth (Frost, 1987; Steele and Henderson, 1993; Fasham, 1995). We adopted this approach here for stations BIOTRANSIndia and BiotransIndia, using simple linear relationships with depth:

$$N_0(z) = a_N MLD + b_N$$

(1)

The regression coefficients were fitted from World Ocean Atlas 2009 (WOA) data (Garcia et al., 2010) for subthermocline NO$_3$ (restricting $z > 100$ m). Resulting values for a_N and b_N were 0.0174 and 3.91 for station BIOTRANSBiotrans and 0.0074 and 10.85 for station India, and 0.018 and 3.91 for Biotrans. There were no obvious relationships between N_0 and depth for the two HNLC stations and so mean (fixed) values of 26.1 and 14.8 mmol N m$^{-3}$ were used for N_0 for KERFIXKerfix and Papa respectively.

3.2 Ecosystem model description

The NPZD ecosystem model we have implemented in EMPOWER is presented in Figure 4 with dissolved inorganic nitrogen (N; the sum of nitrate and ammonium), phytoplankton (P), zooplankton (Z) and detritus (D) as state variables. It is a simplification of the marine ecosystem inspired by that of FDM90 with improved (note that, because we focus here on Station India, the version of the FDM90 model applied to Station India, Fasham, (1993) provides the more pertinent foundation). Improved formulations are implemented for multiple-prey grazing, plankton mortality, regeneration and other detrital loss terms, as well as alterations to the parameterisation. The equations are described below; model parameterisation is described in section 4.1). The phytoplankton equation is:
\[\frac{dP}{dt} = \mu_p P - G_p - m_p P - m_{p2} P^2 - \left(\frac{w_{\text{mix}} + H'(t))P}{H(t)} \right) \]

where the terms are growth, grazing and non-grazing mortality (linear and quadratic), physical losses due to mixing across the bottom of the mixed layer, and dilution effects of entrainment. \(H(t) \) is mixed layer depth (m) at time \(t \) and \(H'(t) \) denotes the rate of change of \(H \) when \(dH/dt \) is positive (dilution). As explained above, when \(dH/dt \) is negative the change in phytoplankton density due to detrainment of mass from the mixed layer is exactly balanced by the increasing phytoplankton density due to decreases in volume, and therefore detrainment does not alter the concentration of remaining biomass. Variable \(\mu_p \) is the vertically-averaged temperature-dependent daily growth rate, defined as the product of a temperature-dependent maximum growth rate, \(\mu_{p\text{max}}(T) \), and non-dimensional limitation terms for nutrients and light, \(L_N(N) \) and \(L_I(I(t,z)) \):

\[\mu_p = \mu_{p\text{max}}(T)L_N(N)L_I(I(t,z)) \]

Note that \(\mu_p \) is calculated on a daily basis averaging over the time of day (t) and depth (z). Temperature and nutrients are assumed to be uniformly distributed throughout the mixed layer, in which case \(\mu_p \) is:

\[\mu_p = \frac{\mu_{p\text{max}}(T)L_N(N)}{24H} \int_0^H \int_0^{24h} L_I(I(t,z))dzdt \]

With the assumption of balanced growth, \(\mu_{p\text{max}}(T) \) is equal to the equivalent maximum photosynthetic rate, \(V_{p\text{max}}(T) \). The temperature dependence of photosynthesis is from Eppley (1972):

\[V_{p\text{max}}(T) = V_{p\text{max}}(0)1.066^T \]

where \(V_{p\text{max}}(0) \) is photosynthesis at 0ºC. Note that this exponential relationship is equivalent to a \(Q_{10} \) of 1.895.

The traditional way NPZD-type models characterise nutrient limitation of phytoplankton growth rate by nutrients, \(L_N(N) \), is calculated as a Michaelis-Menten (or Monod) relationship:

\[L_N(N) = \frac{N}{k_N + N} \]
where \(k_N \) is the half saturation constant.

The calculation of \(L_I \) is the most mathematically complicated aspect of characterising phytoplankton growth in this model as it takes into consideration both seasonal and diurnal patterns of irradiance arriving at the ocean surface \((I_0) \), attenuation of irradiance with depth and photosynthesis as a function of light intensity. Light is assumed to vary with depth according to Beer's law \((I = I_0 \exp(-k_{PAR}z)) \), where \(k_{PAR} \) is the attenuation coefficient, and photosynthesis calculated using a photosynthesis-irradiance (P-I) curve. The daily depth-average photosynthetic rate is calculated over the course of the day using an assumed daily variation of light, from which the daily average is derived. The user of EMPOWER is provided with a choice between two photosynthesis-irradiance (P-I) curves, a Smith function (Eq. 7) and an exponential function (Eq. 8) (Fig. 5):

\[
V_p = \frac{a I_p^{\max}}{\sqrt{(I_p^{\max})^2 + \alpha^2 I^2}} \tag{7}
\]

\[
V_p = V_p^{\max} (1 - \exp(-a I / V_p^{\max})) \tag{8}
\]

Integration with depth (inner integral of Eq. 4) can be calculated analytically for either of the two P-I curves; equations are provided in Appendix B. The default method of handling the diurnal variation in irradiance at the ocean surface (outer integral of Eq. 4) is to do a numeric integration. The user may choose between assuming either a sinusoidal (Platt et al., 1990) or triangular (Steele, 1962; Evans and Parsons, 1985) pattern of irradiance throughout each day, from sunrise to sunset and peaking at noon (Figure 6).

Analytic depth integrals require a Beer’s law attenuation of light within the water column characterised by a single attenuation coefficient, \(k_{PAR} \). The simplest assumption, provided as the first of two options in EMPOWER, is that \(k_{PAR} \) is the sum of attenuation due to water and phytoplankton, parameters \(k_w \) and \(k_C \) respectively:

\[
k_{PAR} = k_w + k_c P \tag{9}
\]

Parameters \(k_w \) and \(k_c \) are often assigned values of 0.04 m\(^{-1}\) and 0.03 m\(^2\) (mmol N\(^{-1}\)) respectively (e.g., FDM90); these values are used in EMPOWER here.

The assumption of a single mixed layer value of \(k_{PAR} \) is questionable because in reality the value of \(k_{PAR} \) varies with depth as a result of the changing spectral properties of the irradiance field. Red light is mostly absorbed by water in the upper few meters while blue penetrates
deepest, with relatively efficient absorption by chlorophyll at both wavelengths. Based on a complex treatment of submarine light (Morel, 1988), a piecewise approach to light attenuation was developed by Anderson (1993) with different values, $k_{\text{PAR,}i}$, with $i = 1$ for depth range 0-5 m, $i = 2$ for depth range 5-23 m and $i = 3$ for depths >23 m ($i = 1, 2, 3$), in each case $k_{\text{PAR}}(i)$ is related to pigment (chlorophyll) concentration, C:

$$k_{\text{PAR,}i} = b_{0,i} + b_{1,i}C^{1/2} + b_{2,i}C + b_{3,i}C^{3/2} + b_{4,i}C^2 + b_{5,i}C^{5/2}$$ (10)

This approach to light attenuation is provided as the default option for use in EMPOWER. The values of the polynomial coefficients ($b_{0,i} - b_{5,i}$) are listed in Table 2.

The diurnal variation in light at the ocean surface over the course of a day may be reasonably approximated by a sinusoidal function that is symmetric about noon irradiance (Platt, 1980). Further simplification is possible by use of a linear model, i.e., triangular centred at noon (e.g. Steele, 1962; Evans and Parslow, 1985) because this simplifies the time integration. It should be noted here that despite Evans and Parslow’s (1985) claim that differences between the triangular and sinusoidal approximations are minimal if the area under the curve is the same, they did not make the "equivalent area" adjustment to their formula, nor is their statement generically true (i.e. it depends on the peak light intensity, the attenuation of light with depth and the nonlinear P-I relationship).

In EMPOWER, the default method of handling the diurnal variation in irradiance at the ocean surface is to do a numeric integration. The user may choose between assuming either a sinusoidal (Platt et al., 1990) or triangular (Steele, 1962; Evans and Parslow, 1985) pattern of irradiance throughout each day, from sunrise to sunset and peaking at noon. Undertaking a numerical time integral involves computational cost and two empirical methods (Evans and Parslow, 1985; Anderson, 1993) have been published that provide analytic calculations (i.e pre-determined formulae) for daily depth-integrated photosynthesis in a water column. Both are provided as options for use in EMPOWER and have the advantage of faster run time. The first of the two EMPOWER options is the depth-averaged light-dependent calculation of growth of Evans and Parslow (1985) which assumes a triangular pattern of daily irradiance, Beer’s law for light attenuation (Eq. 9) and a Smith function as the P-I curve (Eq. 7). It has been a popular choice in previous slab modelling studies (Table 1). The second option is from Anderson (1993), which was developed as an empirical approximation to the spectrally resolved model of light attenuation and photosynthesis of Morel (1988) used in combination with the polynomial method of integrating daily photosynthesis of Platt et al. (1990). It
assumes a sinusoidal pattern of irradiance through the day, a piecewise Beer’s law light
attenuation (Eq. 10) and an exponential function as the P-I curve (Eq. 8). Parameter α, the
initial slope of the P-I curve, is also spectrally dependent. The method of Anderson (1993)
calculates the variation of α with depth as a function of chlorophyll in the water column.
Daily photosynthesis is then calculated using a polynomial approximation. The methods for
calculating daily depth-integrated photosynthesis of Evans and Parslow (1985) and Anderson
(1993) are non-trivial and, for completeness, the equations are supplied in Appendix C.

Grazing by zooplankton is assumed to be on both phytoplankton and detritus. This choice was
made in part to illustrate how to implement ingestion on multiple prey types, as such
functions are used for more complex models (e.g. when there are multiple phytoplankton size
classes or functional types and/or omnivory by zooplankton). Many multiple-grazing
formulations, however, comprise questionable assumptions about zooplankton feeding
behavior (Gentleman et al., 2003). For example, the multiple-prey grazing formula used in
FDM90 and Fasham (1993) is classified as an active switching response (Gentleman et al.,
2003) which can display anomalous behaviour such as sub-optimal feeding (i.e. ingestion
rates decreasing when prey availability increases). We have therefore opted to improve upon
Fasham’s choice by using a different multiple-prey response, but one that is nevertheless
commonplace in the literature. Specifically, we have adopted a passive switching response
where density dependence of the prey preferences arises due to inherent differences in the
single-prey responses (see Gentleman et al., 2003). This Sigmoidal–Sigmoidal (or Holling
Type 3) response is characterised as (Figure 67):

$$G_P = \left(\frac{l_{\text{max}} \hat{\phi}_P}{k_p^2 + \hat{\phi}_P P + \hat{\phi}_D D} \right) Z, \quad \hat{\phi}_P = \phi_P P, \quad \hat{\phi}_D = \phi_D D \tag{11}$$

$$G_D = \left(\frac{l_{\text{max}} \hat{\phi}_D}{k_p^2 + \hat{\phi}_P P + \hat{\phi}_D D} \right) Z \tag{12}$$

where the terms in parentheses are the zooplankton specific ingestion rates I_P and I_D
respectively. This Sigmoidal–Sigmoidal formulation implies that the single-prey response for both
phytoplankton and detritus are each sigmoidal (Type 3). Parameter l_{max} is the maximum
specific grazing rate, which is the same for both phytoplankton and detritus and equates to
their single prey maximum ingestion rates. Although parameters ϕ_P and ϕ_D are often called
preferences in the literature, the actual prey preferences associated with this response (i.e.
relative amount in the diet as compared to the environment) are density-dependent, with the relative preference for phytoplankton to detritus determined by
\[\text{pref}_{P,D} = \frac{\phi_P P}{\phi_D D} = \frac{\hat{\phi}_P}{\hat{\phi}_D} \]
The \(\phi \) parameters actually relate to the half-saturation constants associated with the single prey functional responses. Specifically, \(\phi_P = \frac{k_P^2}{k_P^2 + \phi_P} \) where \(k_P \) is the half saturation value for the Type 3 single-prey response for ingestion of phytoplankton, and \(\phi_D \) is defined similarly. Parameter \(k_Z \), which is often referred to as the half-saturation value in the literature, is actually an arbitrary parameter (i.e. this formulation is over-parameterized, see Gentleman et al., 2003) whose value determines the assumed single-prey half saturation constants based on choices for the \(\phi \) parameters.

The Sigmoidal response assumes an interference effect of alternative prey in that as detritus increases, ingestion of phytoplankton decreases (with the same interaction for phytoplankton and ingestion of detritus). This interference effect is not so great as losing the benefit of generalism, i.e. total ingestion always increases for an increase in total prey density. The non-equal preferences reduce the interference effect for phytoplankton, i.e. the contours in the first panel of Fig. 6-7 are more vertical than for equal preferences. The corollary effect is that the increased ingestion by consuming both phytoplankton and detritus versus just phytoplankton is reduced as compared to when prey have equal preferences.

Regarding non-phytoplankton non-grazing mortality, FDM90 has the usual choice of a linear term although non-linear approaches are also possible, e.g. the use of a Fasham (1993) used a non-linear—Michaelis-Menten saturating function by Fasham (1993), although a linear mortality term is the usual choice (e.g., FDM90). We opted for the more flexible approach of using both linear and nonlinear terms (Yool et al., 2011; 2013a). The former may account for metabolic losses or natural mortality. The use of an additional nonlinear term represents density-dependent loss processes, notably mortality due to infection by viruses. The abundance of viruses is highly dependent on the density of potential host cells (e.g., Weinbauer, 2004) and, as reviewed by Danovaro et al. (2011), there is “compelling” evidence that, at least in some instances, viruses are responsible for the demise of phytoplankton blooms based on observations of high proportions (10-50%) of infected cells (e.g., Bratbak et al., 1993; 1996). A quadratic form was used for the nonlinear mortality term (e.g., Kawamiya
et al., 1995; Oschlies and Schartau, 2005) and all phytoplankton non-grazing mortality losses were allocated to detritus.

The equation for rate of change of zooplankton density is:

\[
\frac{dZ}{dt} = (\beta k_N (G_p + G_D)) - (m_2 Z + m_2 Z^2) - \frac{(w_{\text{mix}} + H'(t))Z}{H(t)}
\]

where the terms are growth, mortality (linear and quadratic) and losses due to mixing and changing MLD. Zooplankton growth can be described as the product of gross growth efficiency (GGE) and intake, where GGEs are typically between 0.2 and 0.3 (Straile, 1997). Gross growth efficiency is itself the product of absorption efficiency, \(\beta\) (more commonly, but incorrectly, known as assimilation efficiency; e.g. see Mayor et al., 2011) and net production efficiency, \(k_{NZ}\). Splitting into these separate parameters (Table 3) permits three-way fractionation of intake between egestion (i.e. faecal pellet production, 1-\(\beta\)), growth (\(\beta k_{NZ} = \) GGE; first term in Eq. 13) and excretion (\(\beta(1-k_{NZ})\)).

A variety of formulations exist in ecosystem models to describe zooplankton mortality and the appropriate functional form has been and continues to be a hotly debated topic (Steele and Henderson, 1992; Edwards and Yool, 2000; Mitra et al, 2014). Most common are the linear and quadratic terms, although some authors have chosen to employ other non-linear functions (e.g. Fasham, 1993 used a Michaelis-Menten relationship). As with phytoplankton, we used both linear and quadratic non-linear terms (Yool et al., 2011). The linear term represents density-independent natural mortality, whereas the quadratic term is considered to be due to predation by carnivores (whose population tracks that of the zooplankton). The different sources of mortality result in different fates for these terms. Loss from natural mortality is allocated to modelled detritus, which implies a broader size-class of modeled particulates (and therefore higher sinking rates) than when just phytoplankton death contributes to this variable.

The fate of the predation-related mortality is less obvious because the metabolic activity of higher predators would result in ingested material being converted into dissolved nutrients as well as larger particulates (e.g. fecal pellets and death). Moreover, the higher predators may export material from the local region with migration. FDM90, along with a suite of follow-on models, therefore chose to allocate predation-related zooplankton mortality between nutrients (ammonium and DON, attributed to excretion by higher predators) and material that is immediately exported from the system (e.g. attributed to fast-sinking detritus generated by
higher predators). Similarly, Steele and Henderson (1992) also allocated zooplankton
mortality to export. Nevertheless, many past and recent published marine ecosystem
modelling studies allocate all of zooplankton mortality to detritus (Oschlies and Schartau,
2005; Salihoglu et al., 2008; Hinckley et al., 2009; Ye et al., 2012). We argue, however, that
this is not necessarily realistic given that detrital particles related to higher-predators are
larger and therefore even faster-sinking than that produced by the modelled plankton. We
have therefore here adopted to follow the sage approach of the model pioneers and assume
that the predation-related mortality represented by our quadratic term is instantly exported and
thereby entirely lost from the surface mixed layer of the model. As with phytoplankton,
zooplankton are subject to changes in concentration via mixing and changes in MLD.

The equation for the rate of change of dissolved inorganic nitrogen (DIN) density is:

\[
\frac{dN}{dt} = -\mu_P P + \beta (1-k_{XZ})(G_P + G_D) + m_D D + \frac{(w_{mix} + H'(t))(N_0 - N)}{H}
\]

(14)

DIN is taken up by phytoplankton (first term) and, via the food web, regenerated with terms 2
and 3 in Eq. 14 representing excretion by zooplankton and remineralisation of detritus
respectively. The fourth term represents the net transport due to mixing (i.e. supply by the
deep water and loss from the surface layer). The last term represents the net effect of volume
changes, i.e. increases in DIN density due to supply of deep water nutrients through
entrainment and decreases in DIN density due to volume increases associated with
entrainment.

Finally, the detritus equation is:

\[
\frac{dD}{dt} = m_P P + m_{pZ} P^2 + m_Z Z + (1-\beta)(G_P + G_D) - G_D - m_D D - \frac{(w_{mix} + H'(t) + v_D)D}{H}
\]

(15)

Detritus is produced by phytoplankton mortality, zooplankton natural mortality (linear term)
and as zooplankton egestion (faecal pellet production). It is lost by zooplankton grazing and is
also remineralised at a constant rate, m_D. Detritus is mixed and subject to changes via the
seasonal cycle of MLD in the same manner as phytoplankton and zooplankton (terms 6 & 7),
and also experiences losses due to gravitational sinking (last term). This occurs at rate v_D (m
d^{-1}) and provides direct export of particulate organic matter to the layer below (where it is
implicitly remineralised back to DIN).
The first results sections (4.1, 4.2) are devoted to parameterising the model for station India BiotransBIOTRANS and a detailed description of values assigned to model parameters is provided therein.

3.3 Setup in R

We have chosen to code our model in the R programming language which can be readily downloaded for free over the internet. Input and output files are in ASCII text (.txt) format, avoiding the use of proprietary software. The structure of the code is designed to be transparent, where possible using conventional syntax common to different programming languages such as the use of loops, block IF statements, etc. As such, it can be relatively easily altered or translated into another programming language, if need be. Where possible, we have followed what we consider to be best practice in developing the code which includes:

(i) Creation of a fixed segment of core code that handles the numerical integration, as well as writing to output files. Being fixed, this segment does not require alteration in the event of changes to the ecosystem model formulation, nor indeed if an entirely new ecosystem model is implemented.

(ii) The ecosystem model formulation, i.e., the specification of the terms in the differential equations and calculation of their rates of change, is handled by a function (FNget_flux) that is external to the core code.

(iii) The specification of parameter values and run characteristics (e.g., time step, run duration, as well as flags for choices between different formats for export to output files, choice of ocean location and for different parameterisations of key processes) is via text files that are read in at the onset of each simulation. Thus, there is no need to enter or alter the model code when changing parameter values or other model settings.

(iv) When a model run finishes, the summed annual fluxes associated with each term in the differential equations is displayed on the computer screen along with a report as to whether mass balance is achieved for each state variable (over the last year of simulation). Basic checking of mass balance is useful for ensuring that the model equations are error-free.

(v) Regimented layout for clarity with extensive commenting throughout.
The R programming language is supported by various libraries that can be accessed via the internet. One such library is for solving ordinary differential equations (Soetaert et al., 2010). Using this library has the advantage of minimising the length of the code and offers flexibility in terms of a range of numerical methods. On the other hand, its implementation requires that various conventions are adhered to and these can be restrictive when it comes to producing ancillary code, e.g., the formatting and export of output files. As such, we opted to code the numerical solution of the ODEs manually within the core code of the model for several reasons:

(i) It offers full transparency for the interested user who wishes to see the method of integration.

(ii) The use of manual code makes it considerably easier to export chosen variables and fluxes to output files in desired formats and frequencies.

(iii) In our case, the user is given the choice between two integration methods, Euler and fourth order Runge Kutta (RK4). These methods, particularly the latter, are entirely sufficient for the numerical task at hand and the coding of them is straightforward.

(iv) By using elementary syntax, the code can be easily altered or converted to other programming languages.

(v) The code is stand alone and not subject to reformulation in the event of future changes in subroutine libraries.

The structure of the code is shown in Figure 78. The functions come first, appearing prior to the core code in R. The key function call is FNget_flux which contains the ecosystem model specification (section 3.2). The rate of change is calculated for each term in the differential equations and allocated to a 2-D array (flux no., state variable no.) which is then passed back to the core (permanent) code for processing. Other functions are: FNdaylcalc (calculates length of day; Eq. A7), FNnoonparcalc (noon irradiance, PAR; Eq. A5), FNLIcalcNum (undertakes numerical (over time) calculation of daily depth-integrated photosynthesis), FNLIcalcEP85 (calculates L\textsubscript{1} using the equations of Evans and Parslow, 1985; Appendix C1), FNaphy (calculates chlorophyll absorption, effectively parameter α, in the water column after Anderson, 1993; Eq. C14) and FNLIcalcA93 (calculates L\textsubscript{1} using the equations of Anderson, 1993; Appendix C2).

Model setup comes next. Parameter values are read in from file NPZD_parms.txt. Simulation characteristics are then read in from file NPZDextra.txt. These include:
(i) Initial values for state variables \((N, P, Z, D)\).
(ii) Run duration (years) and time step.
(iii) Choice of station: **BIOTRANSBiotrans**, India, **Biotrans** Papa, **KERFIXKerfix**
(v) Choice of integration method: Euler or RK4.
(vi) Choice of output characteristics: none, last year only or whole simulation, and a frequency of once per day or every time step.

Model forcing for the chosen station of interest is then assigned. Monthly values of MLD and SST are read in and subject to linear interpolation in order to derive daily forcing. Other forcing variables are also set: latitude, deep nitrate \((N_0; \text{Eq. 1})\) and cloud fraction. At the end of the setup section there are a few lines of code that need to be altered if the ecosystem model is changed. These lines tell the computer how many state variables the model has, the maximum number of flux terms associated with any one state variable and the maximum number of auxiliary variables to be stored for writing to output files.

An advantage of this structure is that an initial section of customisable code is followed by a section of permanent code that does not require adjustment in the event of changes to the equations that describe the ecosystem model, or indeed if a completely new ecosystem model is to be used. This code sets up a series of matrices to store fluxes and outputs and then integrates the model equations over time. State variables are updated and results exported to three output files: out_statevars.txt (state variables), out_aux.txt (chosen auxiliary variables) and out_fluxes.txt (all the terms in the differential equations). These text files are readily imported to, for example, Microsoft Excel.

Results are plotted graphically on the computer screen at the completion of each simulation run. The graph plotting code is necessarily model specific and needs to be updated by the user as required. R is a user friendly programming language in this regard and the code provided should be sufficient for the user to incorporate extra variables with ease.

Finally, a user guide is provided in Appendix D, outlining how to set up R, run the code, a summary of input and output files, and guidance on considerations when altering the ecosystem code and/or forcing.
4 Results

Model results are presented in four sections. First, a simulation is shown for station India BIOTRANS using parameters taken from the literature (section 4.1). This station is chosen as our primary focus, inspired by the North Atlantic Bloom Experiment in 1989 as part of JGOFS (the Joint Global Ocean Flux Study; e.g., Ducklow and Harris, 1993; Lochte et al., 1993). It exhibits the characteristic spring blooming of phytoplankton of temperate northern latitudes, followed by relatively oligotrophic conditions over summer, and has been the subject of previous work using slab models (Fasham and Evans, 1995).

Parameter tuning is then undertaken to fit all four ocean time series stations, BIOTRANS, India, Biotrans, Papa and KERFIX, to data for chlorophyll and nitrate at each site (section 4.2). Moving on from the calibration of parameters, structural sensitivity analysis is then carried out by examining model sensitivity to equations for the calculation of daily depth-integrated photosynthesis (section 4.3) and mortality terms for of phytoplankton and zooplankton (section 4.4).

The model is compared to seasonal data for chlorophyll and nitrate within the mixed layer, for each station. Nitrate data are climatological, from World Ocean Atlas 2009 (Garcia et al., 2010), as is the model forcing in terms of mixed layer depths and irradiance. Regarding chlorophyll, data are SeaWiFS 8-day averages (O’Reilly et al., 1998), for which we had access to years 1998 to 2013. Averaging data across years to provide a climatological seasonal cycle of chlorophyll is not meaningful as key features, such as the spring phytoplankton bloom, are smoothed out because the bloom timing is variable between years.

A characteristic year was therefore chosen for each station by calculating first converting the data to log(chlorophyll), then calculating mean log(chlorophyll) for each year and finally selecting the median year (an odd number of years is required, so we used 1998 to 2012). The resulting year selections were 2002, 1998, 2007 and 2006 for stations BIOTRANS, India, Papa and KERFIX, respectively. The entire data sets are shown with the multiple years overlaid in Figure 9, with data for the selected median year highlighted.

It is not our objective here to provide thorough quantitative assessment of different model simulations in terms of objective quantification of model-data misfit but, rather, to demonstrate the utility of EMPOWER as a testbed for model evaluation. Different ecosystem models and associated data sets will necessarily require different skill metrics and so a lengthy description and use of quantitative metrics is not appropriate here. Very often
anyway, as is the case here, visual inspection of model-data misfit is sufficient to determine the best options for model formulation/parameterisation. If quantitative methods are required, these are readily accessed from the literature (e.g., Lewis and Allen; 2009; Lewis et al., 2006).

4.1 Parameter initialisation: station IndiaBIOTRANSBiotrans

Adjustment of parameters is a perennial problem for modellers. Parameters can be set from the literature, sometimes directly on the basis of observation and experiment, but the usual starting point is to take values from previously published modelling studies. Almost inevitably, however, the resulting simulations will show mismatch with data and parameters are usually selected for adjustment (tuning) to improve the agreement with data. One option is to use objective tuning methods, such as the genetic algorithm or adjoint method in which many or all of the model parameters are varied simultaneously in order to try and find a best fit solution to data (e.g., Friedrichs et al., 2007; Record et al., 2010; Ward et al., 2010; Xiao and Friedrichs, 2014). The advantage is objectivity, but difficulties include sloppy parameter sensitivities (parameters compensate for each other), different values of model parameters may be similarly consistent with the data (the problem of identifiability), exploration of a huge parameter space may be required and local minima in misfit parameter space can make it difficult to find the true global minimum (Slezak et al., 2010). It is usually the case that models are underdetermined by data anyway (Ward et al., 2010), i.e., there are insufficient data (in terms of absolute amount and/or different types of data) to adequately constrain parameter values. And of course, objective methods require expertise, time and computing resources.

Modellers more often than not carry out parameter adjustment by varying values of chosen parameters one at a time until satisfactory convergence with data is achieved. The skill is in deciding which parameters to vary. In principle, sensitivity analysis can be of help in this regard in that sensitive parameters can be identified and selected for adjustment if they can be justifiably altered (i.e., there is uncertainty regarding their value). Here, we will demonstrate the use of EMPOWER for model calibration. Parameter sets will be derived for the four stations, BIOTRANSBiotrans and India and Biotrans in the North Atlantic and the HNLC stations Papa (subarctic North Pacific) and KERFIXKerfix (Southern Ocean). The NPZDecosystem model we have presented uses the NPZD structure in combination with up-
to-date formulations for key processes such as photosynthesis, grazing and mortality. As such, it is a new one has not been previously published and, as such, there is so there is no readily available complete set of parameter values to draw upon. Using our experience, we chose appropriate parameter values from the literature and adjusted others to give a good fit with the data for station IndiaBIOTRANSBiotrans. This result is presented below along with a discussion of how we went about achieving this parameter set. Working from this parameter set, tuning of parameters is then undertaken to fit the other stations to the data.

Station India—BIOTRANSBiotrans was previously modelled by Fasham and Evans (19931995) and we used this publication as a starting point for the assignment of some of the parameter values (note that we opted for the second of two optimisation solutions in this reference). Other parameters Those parameters that differed from Fasham (1993) were otherwise parameterised assigned values from the literature where possible and/or selected as a best guess. The resulting parameter set, along with adjusted (tuned) values (see below), is shown in Table 3.

Photosynthetic parameters, \(V_p^{\text{max}} \) (maximum rate) and \(\alpha \) (initial slope of the P-I curve) are geographically variable, in part due to temperature (Harrison and Platt, 1986; Cullen, 1990; Platt et al., 1990; Rey, 1991; Marañón and Holligan, 1999; Bouman et al., 2000; Huot et al., 2013). We based parameters \(V_p^{\text{max}}(0) \) (the maximum rate of photosynthesis at 0°C) and \(\alpha \) (initial slope of the P-I curve) on the mean of values for polar waters provided in Table 2 of Rey (1991), giving \(V_p^{\text{max}}(0) = 2.5 \text{ g C (g chl)}^{-1} \text{ h}^{-1} \) and \(\alpha = 0.034 \text{ g C (g chl)}^{-1} \text{ h}^{-1} (\mu \text{E m}^{-2} \text{ s}^{-1})^{-1} \). Similar values were recorded more recently in the Beaufort Sea by Huot et al. (2013).

Converting units, parameter \(\alpha \) is 0.15 \text{ g C (g chl)}^{-1} \text{ h}^{-1} (\text{W m}^{-2})^{-1} (1 \text{ W m}^{-2} = 4.55 \mu \text{E m}^{-2} \text{ s}^{-1})^{-1}

, based on the spectral distribution of white light given in Anderson, 1993). Note that photosynthetic parameters are specified per unit phytoplankton biomass expressed as chlorophyll, requiring unit conversion. The maximum phytoplankton growth rate used by Fasham (1993) for station India was 1.25 d\(^{-1}\). The equivalent parameter in our model is the maximum rate of photosynthesis, \(V_p^{\text{max}} \), which is usually expressed in units of \text{g C (g Chl)}^{+} \text{ h}^{-1}, requiring unit conversion. The Redfield C:N molar ratio of 6.625 is the obvious choice to convert between C and N. Carbon to chlorophyll ratios are more variable and a value of 50 g C (g chl)\(^{-1}\) has previously been used in modelling studies (e.g., Fasham et al., 1990). However, C:Chl ratios are known to vary widely in response to ambient conditions. The
recent study of Sathyendranath et al. (2009) found the North Atlantic ratio to typically vary between 50 and 100 g C (g Chl)$^{-1}$, so here we use an intermediate value of 75 g C (g Chl)$^{-1}$ (parameter θ_{chl}). Converting units, V_{P}^{max} of 1.25 d$^{-1}$ is equivalent to 3.9 g C (g Chl)$^{-1}$ h$^{-1}$ which is within a range of typical values for V_{P} at ambient temperatures ranging between 1 and 5 g C (g Chl)$^{-1}$ h$^{-1}$ (e.g., Harrison and Platt, 1986; Cullen, 1990; Platt et al., 1990; Rey, 1991). We include temperature dependence of this parameter and so, assuming that the rate of 3.9 d$^{-1}$ occurs at a typical sea surface temperature during the bloom for station India of 10ºC, $V_{P}^{\text{max}}(0)$ is then 2.0 d$^{-1}$ (Eq. 4). Using the same conversion of units, Fasham’s (1993) value for parameter α of 0.025 (W m$^{-2}$)$^{-1}$ d$^{-1}$ converts to 0.08 g C (g Chl)$^{-1}$ h$^{-1}$ (W m$^{-2}$)$^{-1}$. Remaining phytoplankton parameters are k_{N}, 0.50.85 mmol N m$^{-3}$ (Fasham and Evans, 19931995), m_{P}, 0.02 d$^{-1}$ (Yool et al., 2011; 2013a), and m_{P2}, 0.025 (mmol N m$^{-3}$)$^{-1}$ d$^{-1}$ (Oschlies and Garçon, 2005).

Zooplankton parameters I_{max} and k_{Z} were assigned directly from Fasham and Evans (19931995) with values of 1.0 d$^{-1}$ and 40.086 mmol N m$^{-3}$, respectively. When it comes to calculating growth, the Note that assimilation efficiency as used by Fasham and Evans (19931995) is in fact a growth efficiency whereas our use of absorption efficiency (parameter β) is more in keeping with contemporary zooplankton modelling (e.g., see Anderson et al., 2013) and refers to the fraction of material absorbed across the gut and is multiplied by a net production efficiency (parameter k_{NZ}) to give growth efficiency. Values of 0.69 and 0.75 were assigned to parameters β and k_{NZ} respectively (Anderson, 1994; Anderson and Hessen, 1995). Zooplankton ought to have a strong grazing preference for phytoplankton and so the preference value (parameter ϕ_{P}) of 0.12 used by Fasham and Evans (1995) seems unreasonably low. We instead assigned values of 0.67 and 0.33 for parameters In the model of Fasham (1993), zooplankton grazed on phytoplankton, bacteria and detritus. The model here has no bacteria and the relative ratio of grazing preferences for phytoplankton and detritus was maintained by assigning values for ϕ_{P} and ϕ_{D}, the same ratio of the equivalent preferences used in Fasham (1993) of 0.67 and 0.33 respectively, i.e. a 2-fold difference. Thus when we set $k_{Z} = 1$ mmol N m$^{-3}$, this implies that the phytoplankton single-prey half-saturation is 1.22 mmol N m$^{-3}$ and the detritus single-prey half-saturation constant is 1.75 mmol N m$^{-3}$. The implied single-prey half-saturation constants change to 0.641.05 and 0.941.50 mmol N m$^{-3}$ respectively when $k_{Z} = 0.520.86$ mmol N m$^{-3}$. Mortality parameters m_{Z} and m_{Z2} were assigned.
A detritus sinking rate of 1.0 m d\(^{-1}\) was used by Fasham (1993), a value at the low end of that typically used in models. Detritus is in reality composed of a range of sinking material including faecal pellets and marine snow with sinking speeds of between 5 and 100 s m\(^{-1}\) (Wilson et al., 2008), as well as slow-sinking material that is likely to be remineralised in the upper water column (Riley et al., 2012). A typical sinking rate used in ecosystem models is between 5 and 10 m d\(^{-1}\) (e.g., Fasham et al., 1990; Oschlies et al., 1999; Anderson and Pondaven, 2003; Llebot et al., 2010; Kidson et al., 2013). We used a value for \(V_D\) of 5.06.43 m d\(^{-1}\), noting that results differed only slightly compared to using a sinking rate of 1.0 m d\(^{-1}\) (Fasham and Evans, 1995). Note also that the detritus produced by quadratic zooplankton mortality is assumed to be very fast sinking and is instantly exported from the upper mixed layer. The remineralisation rate of detritus (parameter \(m_D\)) was set to 0.050.06 d\(^{-1}\) (Fasham, 1993 and Evans, 1995). Finally, parameter \(w_{mix}\) was set to 0.40.13 m d\(^{-1}\) (Fasham et al., 1990 and Evans, 1995).

Choices have to be made regarding the settings for calculating daily depth-integrated photosynthesis. A sinusoidal pattern of daily irradiance was set as default for this purpose, with a numeric integration over time of day. A Smith function was chosen as the P-I curve (Eq. 7) permitting as this permits a straightforward analytic depth integral for photosynthesis (Appendix B). Photosynthesis at depth can be vertically integrated analytically, when light extinction in the water column is described by Beer's law with a constant coefficient. As default, we use the piecewise Beer’s law treatment of Anderson (1993) in which the water column is divided into three depth zones (0-5, 5-23 and >23 m) and a separate extinction coefficient calculated for each as a function of chlorophyll (Eq. 10). Although this approach is more complicated than using a single extinction coefficient, it is easily justified a priori given the improved representation of light attenuation and its impact on predicted primary production (Anderson, 1993). Model sensitivity to these various assumptions regarding the calculation of light attenuation and photosynthesis will be examined in section 4.3, including an assessment of the performance of the algorithms of Evans and Parslow (1985) and Anderson (1993).

The model was run for three-five years, by which time it generates a repeating annual cycle of plankton dynamics. The chlorophyll data are SeaWiFS 8-day averages (O’Reilly et al., 1998).
We had access to data from 1998 to 2013. Averaging data across years to provide a climatological seasonal cycle of chlorophyll is not useful because key features, such as the spring phytoplankton bloom, are smoothed out because the bloom timing is variable between years. A characteristic year was therefore chosen, in this case 2006, with which to compare the model to data. Nitrate data are from World Ocean Atlas (Garcia et al., 2010). The last year of simulation for station BIOTRANS Biotrans, with initial parameter settings as described above, is compared to data for chlorophyll and nitrate in Fig. 810. Nitrate (model DIN) is predicted remarkably well using these default parameter settings whereas the model—predicted seasonal cycle of chlorophyll shows a less good match with data. The timing of the spring bloom is too late although this could, at least in part, be due to the MLD forcing which was climatological, rather than for year 2006 (the chlorophyll data). Predicted chlorophyll also appears to be too high. The peak of the spring bloom is more than double that observed and post-bloom chlorophyll is also consistently elevated (by approx 0.2 mg m$^{-3}$) relative to observations (Fig. 10) during the spring and summer period. Parameter adjustment is therefore desirable in order to improve the fit with data.

4.2 Model calibration

Many modelers go about parameter adjustment on a trial-and-error basis, making ad hoc changes to parameters and observing the outcome. A more structured way of going about this is to undertake a systematic sensitivity analysis of parameters and then, informed by this analysis, choose which parameters to vary. We use EMPOWER to demonstrate this practice here. Three variables were selected as simple measures of model mismatch with data: minimum DIN encountered during the seasonal cycle, N_{min}, which is a logical choice because it is desirable to correctly predict DIN drawdown during the spring period, maximum chlorophyll at the peak of the spring bloom, chl_{max} and the average summer chlorophyll between days 200 and 300, chl_{av}. Values of these three quantities, as outputs from the run shown in Fig. 810, were 1.490.093 mmol N m$^{-3}$ for N_{min} and 3.342.30 and 0.590.58 mg chl m$^{-3}$ for chl_{max} and chl_{av}, respectively. Model parameters were varied ±10% and the change in these variables quantified in terms of normalised sensitivity:

$$S(p) = \frac{(W(p) - W_s)/W_s}{(p - p_s)/p_s}$$ \hspace{1cm} (16)
where W_S is the value of a given variable (in this case N_{min}, chl_{max} or chl_{av}) for the standard parameter set with parameter value p_S, and $W(p)$ is the value when the parameter is given value p. Results are shown in Table 4, ordered high to low for sensitivity of chl_{max}.

The requirement for improving the model fit is to decrease chl_{max} and, to a lesser extent, decrease chl_{av} also. Looking at Table 4, chl_{max} and chl_{av} are together sensitive to zooplankton parameters, notably k_Z, I_{max} and β_Z. In contrast, chl_{max} is sensitive to phytoplankton mortality, m_P, whereas chl_{av} is not. The chlorophyll data are too few in number to reliably infer the magnitude of the spring bloom whereas there are many data points providing an average chlorophyll between days 200 and 300 of 0.29 mg m$^{-2}$. Looking at Table 4, chl_{av} is sensitive to grazing parameters, notably k_Z. As the first step to improving the model fit to data, k_Z was decreased until predicted chl_{av} was equal to 0.29 mg m$^{-2}$, resulting in a decrease in the value of this parameter from 1.0 to 0.52 mmol N m$^{-3}$. The initial guess for k_Z of 1.0 mmol N m$^{-3}$ may be somewhat high, e.g., separate values for parameter k_Z of 0.8 and 0.3 mmol N m$^{-3}$ were used for micro and mesozooplankton in the model of Yool et al. (2011, 2013a). Values for k_Z lower than 1.0 mmol N m$^{-3}$ have also been used in other models, e.g., values of 0.75 and 0.8 mmol N m$^{-3}$ were used by Anderson and Pondaven (2003) and Llebot et al. (2010) respectively. Mortality parameters such as m_P are poorly known and an easy choice for modelers when it comes to parameter adjustment. We varied parameters k_Z and m_P and were able to achieve a good fit to the data with $k_Z = 0.6$ mmol N m$^{-3}$ and $m_P = 0.015$ d$^{-1}$ (Figure 11). Decreasing k_Z to 0.52 mmol N m$^{-3}$ led to a change in predicted N_{min} from 1.49 to 4.92 mmol N m$^{-3}$. The required N_{min} is about 3.0 mmol N m$^{-3}$ and in order to redress this mismatch with data parameter α was chosen for adjustment. This parameter shows high sensitivity for N_{min} and relatively low sensitivity for chl_{av} and chl_{max}. Intuitively, α is a logical parameter to choose because nitrate drawdown occurs during rapid growth of phytoplankton at the onset of the spring bloom and increasing this parameter will therefore enhance drawdown. An increase in α is also easily justified based on observational data (e.g., Rey et al., 1991). Increasing the value of α from 0.08 to 0.12 g C (g Chl)$^{-1}$ h$^{-1}$ (W m$^{-2}$)$^{-1}$ gave a predicted N_{min} of 2.82 mmol N m$^{-3}$ and an overall good fit to the data (Fig. 9). The only obvious mismatch is in the predicted overwinter chlorophyll being somewhat too low but extremely low values are this is a common feature of slab-type models. The mismatch can be improved by removing the linear phytoplankton mortality term (i.e., setting $m_P=0$; see section 4.4, and discussion therein). A further consideration is that phytoplankton may adjust their C:chl ratio in winter to mitigate
the effect of the low light intensities that they experience. We consider removing this mortality term unrealistic. It is no good getting the right result for the wrong reasons and so chose to keep phytoplankton mortality as it is unchanged. There is also a hint that the timing of the bloom is a little late but, bearing in mind we used climatological cycle of annual mixed layer depth and light, whereas the data are for a single year, 2006, this is not particularly surprising.

The associated seasonal cycles of P, Z and D, along with primary production, phytoplankton grazing and mortality are shown in Fig. 10. Phytoplankton escape grazing in control in April and early May with the peak of the bloom occurring on day 137. Zooplankton catch up a week later. The peak of Z lags seven days behind that of P, illustrating the decoupling of phytoplankton and zooplankton during the spring bloom period. Primary production remains relatively high over summer, but tightly coupled to grazing, which is sufficient to keep phytoplankton biomass in check. Nutrient drawdown continues after the peak of the bloom with maximum depletion occurring in July.

It might be expected that Station Biotrans India is simulated accurately with the same parameter values as those of Station India Biotrans because of their relatively close proximity in the northern North Atlantic Ocean and this is indeed the case (Figure 11). In fact, the predicted spring bloom is rather high, approximately double the maximum in the observations for year 1998 (Fig. 13a), although not outwith what is seen in the multi-year data (Fig. 9). An improved fit is easily achieved by setting $m_{\text{PZ}} = 0$, i.e. removing the linear phytoplanktonzooplankton mortality term (Fig. 13b). Other models, e.g. Fasham (1993), have similarly not included a linear zooplankton loss term.

The two HNLC stations can be expected to require alternative parameterisations to the two North Atlantic stations because the food web structure differs between the two types of system. In contrast to the diatom spring bloom in the northern North Atlantic, iron-limited HNLC systems favour small phytoplankton which are tightly coupled to microzooplankton grazers (Landry et al., 1997, 2011), “grazer controlled phytoplankton populations in an iron-limited ecosystem” (Price et al., 1994). Low growth rate of phytoplankton may be expected relative to the North Atlantic because of iron limitation. Parameters $V^\text{max}_P(0)$ and α may typically decrease by 50% relative to iron-replete conditions (Alderkamp et al., 2012). For stations Papa and KERFIXKerifix, we therefore assigned $V^\text{max}_P(0) = 1.25 \text{ g C (g Chl)}^{-1} \text{ h}^{-1}$ and...
\[\alpha = 0.075 \text{ g C (g Chl)}^{-1} \text{ h}^{-1} (\text{W m}^{-2})^{-1}. \] In addition, high maximum grazing rates may be expected because of the small size structure of the plankton assemblage. If grazing is dominated by microzooplankton, maximum grazing rate (parameter \(I_{\text{max}} \)) may be as high as 2.0 \(\text{d}^{-1} \) (Mongin et al., 2006). We achieved a good fit to data with \(I_{\text{max}} = 1.25 \text{d}^{-1} \) (Fig. 14). Simulations for stations Papa, showing both the unfitted and fitted model, are shown below in Fig. 12. The unfitted model solution corresponds to parameters as for the best-fit solution to Station India (Table 3). In common with the data, there is no predicted chlorophyll bloom. Predicted chlorophyll is however on the upper bound of the data and predicted drawdown of nitrate is too severe, suggesting that the modelled phytoplankton growth rate is too high. Low growth rate of phytoplankton may be expected relative to the North Atlantic because of iron limitation and so parameter \(V_{\text{max}}(\theta) \), acting as a proxy for iron limitation, was halved in value to 1.008 \(\text{g C (g Chl)}^{-1} \text{ h}^{-1} \). With this parameter setting, the model does a remarkably good job at reproducing the data, without need for further parameter adjustment. A similar exercise was carried out for station KERFIXKerfix. Using the same parameter set as for station Papa, predicted chlorophyll was too high (by approximately 0.05 mg m\(^{-3}\)) during the austral summer (Fig. 13–15). If grazing is dominated by microzooplankton, maximum grazing rate (parameter \(I_{\text{max}} \)) is further increased to may be as high as 2.0 \(\text{d}^{-1} \) (Mongin et al., 2006). On this basis, \(I_{\text{max}} \) was increased until predicted \(\text{chl}_{\text{max}} \) (the maximum chlorophyll) equalled 0.35. A reasonable fit to the chlorophyll data was achieved (Fig. 15) with \(I_{\text{max}} \) equal to 1.4 \(\text{d}^{-1} \). The predicted end of year increase in chlorophyll arrives a month or two too early, but this may be a consequence of the imposed climatological cycle of mixed layer depth. Predicted nitrate is somewhat too low (by about 4 mmol m\(^{-3}\)) if the BIOTRANSBiotrans parameters are used but is markedly improved with the adjusted parameters.

4.3 Sensitivity to photosynthesis algorithm

Structural sensitivity analysis is performed to assess model sensitivity to the different assumptions for calculating daily depth-integrated photosynthesis. The best-fit simulation for Station India–BIOTRANSBiotrans presented above (Fig. 911) is used as the baseline for comparison, although we will comment on sensitivity for other stations also. Default settings in the baseline simulation were a numerical time integration (over the day), a Smith function
for the P-I curve, and a sinusoidal pattern of daily irradiance and the piecewise application of Beer’s law (Eq. 10; Anderson, 1993) for light attenuation in the water column.

The first sensitivity test involved changing the P-I curve from a Smith function (Eq. 7) to an exponential function (Eq. 8). Predicted seasonal cycles for chlorophyll and nitrate at station India BIOTRANS are shown in Fig. 14. Results changed little with respect to the baseline simulation, the only noticeable difference being the magnitude of the spring bloom which was about 0.2 mg m\(^{-3}\) greater when using the exponential P-I curve, with nitrate drawdown being slightly less when using the exponential P-I curve. Predicted chlorophyll was barely distinguishable between the two simulations. Similar insensitivity was seen when using the exponential P-I curve for simulating stations India, Papa and KERFIX (results not shown). It is perhaps unsurprising that the model shows minimal sensitivity to choice of P-I curve as the shapes of the two curves are similar. Slightly higher photosynthesis is predicted using the Smith function for mid-range irradiance (Fig. 5), consistent with higher drawdown of NO\(_3\). In a similar study by Anderson et al. (2010), however, remarkable sensitivity was seen to choice of the exact form of the zooplankton functional response. Other studies have also shown “alarming” sensitivity to apparently small changes in the specification of biological models (e.g. Wood and Thomas, 1999; Fussmann and Blasius, 2005).

Reverting to the Smith function as the chosen P-I curve, model predictions were next compared for simulations using sinusoidal versus triangular irradiance (Fig. 15). Once again, the difference between the two simulations is relatively minor. A larger spring bloom (approx. 0.5 mg m\(^{-3}\)) is seen when using the triangular assumption. Irradiance is underestimated relative to the sinusoidal pattern (Fig. 6) leading to lower primary production over winter, decoupling from zooplankton and a larger spring bloom, although predicted drawdown of nutrient was about 2 mmol m\(^{-3}\) less when using the triangular assumption. The triangular approximation underestimates the period of high light relative to sinusoidal, for equivalent noon irradiance, with lower growth rate and associated drawdown of nutrient. It is worth noting, however, that the sensitivity shown to choice of irradiance pattern is at least as great as that for the choice of P-I curve, but has generally received much less attention in the literature.

Model sensitivity of predicted primary production to the equations describing light attenuation in the water column was previously highlighted by Anderson (1993), although
without extending to analysis using full ecosystem models. Model predictions for the two choices for light attenuation (simple Beer’s law, Eq. 9, versus piecewise Beer’s, Eq. 10) are shown in Figure 18, for all four stations. Whereas chlorophyll shows little change when switching between the two routines, predicted NO$_3$ exhibits markedly greater drawdown when using the simple Beer’s law, especially for station India where concentrations reached near zero by the end of June. A marked difference was seen here when the piecewise Beer’s law for calculating light attenuation (Eq. 10) was replaced with a simple Beer’s law (Eq. 9) (Fig. 16). The difference between the simulations can be understood by comparing k$_{\text{PAR}}$ as a function of phytoplankton concentration for the two algorithms (Fig. 1719). The single Beer’s law of Eq. 9 predicts a modest increase in k$_{\text{PAR}}$ from 0.04 m$^{-1}$ at zero phytoplankton to 0.1 m$^{-1}$ at P = 1 mmol N m$^{-3}$. The main difference with the piecewise Beer’s law is the much greater light extinction in the upper 5 m of the water column, with k$_{\text{PAR}}$ of 0.13 m$^{-1}$ at P = 0 mmol N m$^{-3}$, increasing to 0.23 m$^{-1}$ at P = 1 mmol N m$^{-3}$. A lesser rate of light attenuation using the simple Beer’s law leads to greater penetration of light into the water column, over winter produced a larger spring bloom of phytoplankton and greater predicted drawdown of NO$_3$. It is worth noting that the model sensitivity to this choice of light attenuation algorithm (both in terms of overestimating the spring bloom and the nutrient drawdown) is greater than that associated with the original parameter adjustment exercise for station India, highlighting the importance of carefully selecting formulations for key processes prior to parameter tuning.

Finally, there is the option to use the routines of Evans and Parslow (1985) and Anderson (1993) to calculate daily-depth integrated photosynthesis, without recourse to using numerical integration over time. Evans and Parslow used a Smith function for photosynthesis in combination with a triangular pattern of daily irradiance. This corresponds exactly to the simulation in Fig. 1517 above for triangular irradiance. Thus, running the model using the Evans and Parslow equations (Appendix C) produces a result indistinguishable from the numerical simulation. Matters are not so simple when using the Anderson (1993) equations to calculate daily depth-integrated photosynthesis. The assumptions here are an exponential P-I curve and sinusoidal light, corresponding to the exponential P-I curve simulation in Fig. 1416. But there is the additional assumption that parameter α, in addition to k$_{\text{PAR}}$, is spectrally dependent and varies in the water column. Thus, running the model with both light attenuation and photosynthesis calculated as in Anderson (1993) gives rise to a different simulation for the four stations, especially India where there is no bloom (Fig. 1820). It is
noticeable that, when using the A93-method of Anderson (1993), primary production is higher over winter, a result of elevated α, giving rise to an earlier spring chlorophyll bloom and greater drawdown of nitrate. Nevertheless, the simulation is entirely credible and we can recommend the use of the Anderson (1993) for use in marine ecosystem models.

4.4 Mortality terms

The model includes two mortality terms, linear and quadratic, for each of phytoplankton and zooplankton. This approach has previously been used in other models (e.g., Yool et al., 2011; 2013a), giving maximum flexibility. The obvious question is whether all four terms are actually needed. As a simple structural sensitivity analysis, we removed each of the four mortality terms in turn and show the impact on the predicted seasonal cycles of chlorophyll and nitrate, for Station India, showing results for all four stations. The model is relatively insensitive to the phytoplankton mortality terms although setting $m_P=0$ (i.e., removal of the linear term) promoted net phytoplankton growth over winter, increasing coupling to zooplankton grazers and giving rise to smaller phytoplankton blooms at BIOTRANS and India in spring (Fig. 21). Predicted seasonality in NO$_3$ drawdown was barely affected by phytoplankton mortality parameters. Starting with the phytoplankton terms, setting m_P or m_{P2} to zero affected both the predicted timing and magnitude of the spring bloom (Fig. 19). One can argue that, although the predicted magnitude of the spring bloom looks a little low, removal of the linear term (setting $m_P=0$) improved the model fit for chlorophyll, notably over winter BIOTRANS. It seems hard to justify that loss rates should go to near zero at low population densities (the consequence of using a quadratic term only) because all organisms have metabolic requirements. Nearly all marine ecosystem models do, therefore, include a linear term for density-independent phytoplankton mortality and, for our baseline simulation (section 4.2), we chose to keep this term on a purely conceptual basis. Given deep mixing, it is surprising that phytoplankton biomass, as seen in the data, is maintained over winter in high latitude waters. The reasons why this is so remain a matter of conjecture with candidate theories including cyclic motion associated with convective mixing (Huismann et al., 2002; Backhaus et al., 2003), and phytoplankton motility or buoyancy to remain near the ocean surface (see Ward and Wanier, 2007, and references therein). The slab model, and indeed 1-D and 3-D models, have has difficulty dealing with this issue but there is no evidence that this
seriously compromises results when it comes to the predicted timing and magnitude of the
spring bloom and associated ecosystem dynamics later in the year. In contrast to the
representation of linear mortality, many models do not include a non-linear phytoplankton
mortality term. Removing it only caused minor changes to model predictions (Fig. 21) and so
it may not be necessary, but it seemed to perform well here. When it was removed, the
predicted phytoplankton spring bloom was rather too high.

Results show that non-grazing phytoplankton mortality had a pronounced influence on
simulated phytoplankton biomass both prior to and during the initiation of spring bloom (Fig
19). It is at this time of year correspond when grazing losses are minimal (Fig 10) such that
phytoplankton dynamics are driven by the balance of growth and non-grazing mortality.
Phytoplankton levels are low at the end of winter and hence removal of the quadratic
mortality term had virtually no effect on pre-bloom phytoplankton levels whereas removal of
the linear term had a marked impact leading to a reduction in the peak of the bloom of about a
third. This reduction can be explained by the fact that the higher phytoplankton density pre-
bloom associated with removal of linear phytoplankton mortality enabled higher pre-bloom
zooplankton grazing. In contrast, removal of the quadratic mortality term nearly doubled size
of the bloom, as might be expected based on the sensitivity analysis (Table 4). This strong
effect on biomass indicates that it was the density-dependent (quadratic) mortality term that
caused phytoplankton mortality to initially rival grazing (Fig 10).

In contrast to the phytoplankton results, removing the linear zooplankton mortality terms in
turn also significantly impacted model predictions, whereas removal of the quadratic term did, for all four stations (Fig. 22). While changes in the linear
mortality term had a noteworthy effect on both the bloom peak and minimum drawdown (as
also shown in the sensitivity analysis Table 4), it was the quadratic zooplankton mortality
term that had the most influence. Removal of quadratic mortality resulted in significantly
lower phytoplankton levels decreasing by as much as 50% post-bloom (Fig 20, Table 4)
which is unsurprising since more zooplankton means more grazing. Perhaps less obvious is
the result that removal of quadratic closure resulted in similarly large changes in predicted
post-bloom nitrate levels, even exceeding those arising from consideration of piecewise vs.
simple light attenuation (Fig 16). Predation-related losses, the quadratic term, were assumed
to be instantly exported and thereby lost from the surface mixed layer of the model. Thus,
when these losses are set to zero (parameter $m_{z2}=0$), nitrate drawdown is significantly
diminished because, instead of being instantly exported, zooplankton quadratic mortality is allocated to sinking detritus, part of which is remineralised in the mixed layer. As was noted by Fulton et al. (2003b), quadratic closure of the upper trophic level in the trophic web tends to be a successful way of closing the web. Overall, the work highlights the need for careful consideration of the parameterisation of closure in models, including the fate of material thereof.

5 Discussion

Simple models are all too often brushed aside in marine science today. When it comes to the representation of the marine ecosystem, complex models have come to the fore that have, for example, any number of plankton functional types, multiple nutrients, dissolved organic matter and bacteria, etc. (e.g., Blackford et al., 2004; Moore et al., 2004; Le Quéré et al., 2005). There is a similar trend with ocean physics toward large, computationally demanding models. Many publications in recent years have involved the use of 3D models (e.g., Le Quéré et al., 2005; Wiggert et al., 2006; Follows et al., 2007; Hashioka et al., 2013; Yool et al., 2013b; Vallina et al., 2014), although 1D models are also well represented (e.g., Vallina et al., 2008; Kearney et al., 2012; Ward et al., 2013). Of course, the improved realism that is gained by using complex models is in general to be welcomed, with the caveat that improvements in prediction can only be achieved if the processes of interest can be adequately parameterised (Anderson, 2005).

Despite the trend to complex ecosystem models embedded in advanced physical frameworks, there nevertheless remains a place today, we argue, for simple models. Simple models are fast to run, transparent and easy to analyse. Marine ecosystem modelling can be somewhat of a black art regarding decisions about what state variables in deciding what to include in terms of state variables, which formulations to apply for and how to mathematically represent key processes such as photosynthesis, grazing and mortality, and in finding as well as allocating suitable parameter values. The proliferation of complexity in models has only served to increase the plethora of formulations and parameterisations available to choose from. Complex ecosystem models have come to the fore in recent years that, for example, include any number of plankton functional types, multiple nutrients, dissolved organic matter and bacteria, etc. (e.g., Blackford et al., 2004; Moore et al., 2004; Le Quéré et al., 2005). Simulations are often carried out within computationally demanding 3-D general circulation models.
models (GCMs) and, of course, the realism in ocean physics thus gained is in general to be welcomed. The caveat is, however, that improvements in prediction can only be achieved if the biological processes of interest can be realistically characterised (Anderson, 2005). The key is, as described above, to undertake extensive analysis of ecosystem model performance and we propose that the use of a simple slab physical framework of the type used in EMPOWER is ideal in this regard. Simple models allow us to fully examine the subtle inner workings of models, assessing the merits of different choices for model specification. The pioneers of the field such as Riley, Steele and Fasham played extensively with employed slab physics to test their (simple) models, trying out different formulations and parameterisations, just to see what would happen (Anderson and Gentleman, 2012). The simplicity afforded by using a zero-dimensional slab physics framework provides an ideal playground for familiarisation with ecosystem models, allowing for a multiplicity of runs and ease of analysis. Using EMPOWER, the user is given the capability of rapidly running many different scenarios on a laptop in a matter of minutes thereby providing direction into what areas warrant structural and functional complexity and in 3D studies. It is by following this approach that the user develops an intuitive understanding of the complex nonlinear interdependencies of the model equations, a precursor to making predictions with confidence. Here, we have presented an efficient plankton modelling testbed, EMPOWER, coded in the freely available language R. It provides a readily available and easy to use tool for thoroughly evaluating ecosystem model structure, formulations and parameterisations by coupling the ecosystem dynamics to a simplified representation of the physical environment. EMPOWER has several advantages in that it is fast, easy to run, results are straightforward to analyse and, last but by no means least, the code is transparent and easily adapted to incorporate new formulations and parameterisations. As such, the main purpose of EMPOWER is to provide an ecosystem model testbed that allows users to fully familiarise themselves with their models, allowing them to subsequently be incorporated with greater confidence into 1-D or 3-D models, as required. It may be that some amount of reparameterisation is required when transferring the model ecosystem between physical codes (from slab to 1-D or 3-D), but this ought usually to be minimal in extent and will itself be greatly informed by the previous slab modelling work. Much better this approach, than starting out from scratch using computationally expensive and time-consuming 1-D or 3-D codes to undertake ecosystem model parameterisation.
Bearing in mind Steele’s two-layer sea, the first slab model of its kind (section 2), it is worth noting that simple ocean box models are akin to slab models in terms of physical structure but, whereas slab models usually are usually set up for point locations in the ocean, box models represent spatial areas (e.g., ocean basins or the global ocean). A mixed layer or euphotic zone is positioned above a deep ocean layer, with mixing between the two but usually without a seasonally changing mixed layer depth. Tyrrell (1999), for example, used a global ocean box model to study the relative influences of nitrogen and phosphorus on oceanic primary production. Box models were likewise used by Chuck et al. (2005) to study the ocean response to atmospheric carbon emissions over the 21st century. Slab models, including EMPOWER, effectively convert to simple box models if the seasonality of mixed layer depth is switched off. Without a seasonally varying MLD, box models have limited capacity to capture seasonal plankton dynamics because of the role played by MLD in mediating the light and nutrient environment experienced by phytoplankton. Our results (Figs 18 to 20) demonstrate sensitivity to accurate representation of the submarine light field (i.e., equations describing light attenuation in the water column).

In order to demonstrate the utility of EMPOWER, we carried out both a parameter tuning exercise and a structural sensitivity analysis, the latter examining the equations for calculating daily depth-integrated photosynthesis, and mortality terms for both phytoplankton and zooplankton. In the parameter tuning exercise, a simple NPZD model, broadly based on the ecosystem model of Fasham and Evans (19931995), was fitted to data (seasonal cycles) for chlorophyll and nitrate at four stations: BIOTRANS (47ºN 20ºW), India (60ºN 20ºW), Biotrans (47ºN 20ºW), Papa (50ºN 145ºW) and Kerfix (50º 40’S 68º 25’E). Formal parameter sensitivity analysis was carried out, highlighting which parameters phytoplankton stocks and nitrate drawdown are sensitive to. The model was successfully tuned to all four stations, the two HNLC stations (Papa and Kerfix) requiring different parameterisations, notably a halving of maximum photosynthetic rate-parameters (acting as a proxy for iron limitation) relative to the North Atlantic sites.

The parameterisation of the different stations highlighted the somewhat ad hoc process that most modellers go through when assigning parameter values. Some parameters may be error set directly from the results of observation and experiment. More often than not, however, we followed the “path of least resistance” when assigning parameters, namely to simply select values from previously published modelling studies. Equations for processes
such as photosynthesis, grazing and mortality can likewise be selected “on-the-shelf”
from the published literature. Previous publication does not, of course, guarantee that
equations or parameter values are necessarily best suited for a particular modelling
application. Moreover, it is all too easy for less than ideal, even dysfunctional, formulations to
become entrenched within the discipline and used in common practice (Anderson and Mitra,
2010). As a result, parameter tuning is almost inevitable in ecosystem modelling and we have
shown how rigorous sensitivity analysis can help in this regard. Of course, even with a table
of parameter sensitivities, there is still a considerable subjective element to choosing which
parameters to adjust. The most sensitive parameters should be selected, but the degree of
uncertainty in parameter values is an additional consideration. It is no good tuning a sensitive
parameter if its value is already well known from observation and experiment.

A necessary complement when ensuring that models show acceptable agreement with data is
to remember that it is important that the theories and assumptions underlying the conceptual
description of models are correct, or at least not incorrect (Rykiel, 1996). Indeed, it is the
conceptual realisation of models that in many ways poses the greatest challenge, requiring
expertise and practice to overcome observational or experimental lacunae (Tsang, 1991).

Subsequent to the parameter tuning exercise, we studied the sensitivity of the Station
Indiasimulation results simulation to chosen formulations for depth-integrated photosynthesis
and both phytoplankton and zooplankton mortality. In the case of the photosynthesis
calculation, some aspects showed relatively low sensitivity, namely the choice of P-I curve
and whether to assume a triangular or sinusoidal pattern of irradiance throughout the day. In
contrast, the way in which light attenuation in the water column is calculated showed marked
sensitivity. Using a simple Beer’s Law (Eq. 9) attenuation coefficient throughout the water
column is clearly oversimplified because the spectral properties of irradiance vary with depth.

Moving to a piecewise Beer’s Law (Eq. 10) with separate attenuation coefficients for depth
ranges 0-5, 5-23 and >23 m (Anderson, 1993) led to more rapid light attenuation near the
ocean surface. Depth-integrated photosynthesis declined accordingly, delaying the onset of
the spring bloom and reducing its magnitude, along with drawdown of nutrient. The
difference is of course in part due to parameter values, rather than the inherent difference in
the equations. Additional sensitivity analysis and parameter tuning could be used to
investigate this further but in fact such an analysis was undertaken by Anderson (1993) who
showed that no amount of parameter tuning can adequately account for the fact that
attenuation will vary with depth, and cannot be assumed to be constant, because of the
spectral properties of the irradiance field. In contrast to the sensitivity seen to equations for light attenuation, choice of P-I curve made only a negligible difference to model predictions. Given the above, we conclude that the use of Evans and Parslow’s (1985) algorithm to calculate daily depth-integrated photosynthesis, as has been the choice of many previous studies (Table 1), is easily justified, at least for the stations we examined, given the relative insensitivity to choice of P-I curve and choice of triangular versus sinusoidal irradiance. Superior predictions are likely, however, if this algorithm is used in conjunction with the piecewise parameterisation of light attenuation (Anderson, 1993; Eq. 10), rather than a simple Beer’s law with fixed attenuation throughout the mixed layer (Eq. 9).

When it comes to biogeochemical modelling studies in GCMs, it is possible that all manner of different methods are used to calculate light attenuation in the water column and resulting photosynthesis. Methodologies are often not reported in full within published texts, the assumption being that they are in some way routine and straightforward and that, perhaps, the models are insensitive to this choice. Consider, for example, the MEDUSA-2.0 model (Yool et al., 2013a), published within Geoscientific Model Development and afforded a detailed description of equations and chosen parameter values. Despite this level of detail, the model’s calculation of light attenuation is largely overlooked and the reader is instead summarily directed to the LOBSTER model (Levy et al., 2001). This divides light into two wavebands, “red” and “green-blue” that are attenuated separately by seawater, and a Smith function (Eq. 7) is used to calculate photosynthesis. But the published description omits a number of key details (although the model code was supplied), for instance that there is a 50:50 division of light between the two wavebands at the ocean surface, that the photosynthetically active fraction is 0.43 of total irradiance, that extinction coefficients for the two wavebands are a function of chlorophyll and that photosynthesis is calculated within each model layer (the model uses fixed layer depths, with 13 layers in the upper 100 m) as a function of average light within the layer.

As a point of interest, we ran our model for all four stations India BIOTRANS again, this time using the MEDUSA-2.0 method of light attenuation and a Smith function for the P-I curve (see Appendix E for details of the parameterisation of light attenuation). The calculation included replication the layer structure within the GCM in order to achieve a full comparison. Results (not shown) were almost identical to the baseline fitted simulations for each station. In the case of station India BIOTRANS, (Fig. 911), with the exception that...
the peak of the spring phytoplankton bloom using the MEDUSA light parameterisation was only 0.7 mg chl m$^{-3}$, 0.2 mg m$^{-3}$ less than that in the standard run, but otherwise predicted seasonal cycles of chlorophyll and nitrate were almost identical for the two simulations. Likewise predicted chlorophyll and nitrate were little changed at stations India and Papa, whereas at KERFIX nitrate drawdown was slightly greater, approximately 0.5 mmol N m$^{-3}$, when using the MEDUSA light parameterisation for all four state variables, with the minor exception that nitrate drawdown was slightly greater (0.5 mmol N m$^{-3}$) with the MEDUSA parameterisation. The similarity between the two simulations using the two different approaches to light attenuation is because, remarkably, calculated light attenuation using the two red and green wavebands (MEDUSA) differs little from that using the Anderson (1993) piecewise Beer’s law. Here, in a nutshell, is a classic example of the utility of EMPOWER. This result should alert GCM modellers to the fact that near identical results can be generated for light attenuation in the water column using these two contrasting sets of equations and a choice can be made as to which is most suitable for implementation based on computational efficiency. From a theoretical point of view, the result is also interesting. The equations of Anderson (1993) are an empirical approximation of the full spectral model of Morel (1988) which divided PAR into 61 wavebands. It would appear that this model can be stripped down to just two wavebands, red and green, without serious degradation in accuracy when it comes to predicting light attenuation.

We also used EMPOWER to undertake an analysis of model sensitivity to the presence/absence of linear and nonlinear mortality terms for phytoplankton and zooplankton. Whereas the use of linear phytoplankton mortality terms is commonplace in models (e.g., Anderson and Williams, 1998; Oschlies and Schartau, 2005; Salihoglu et al., 2008; Llebot et al., 2010), we investigated the performance of an additional quadratic phytoplankton mortality term. This term is intended to represent loss processes that scale with phytoplankton biomass that are not already accounted for in the model. Given that both self-shading and grazing are explicitly modelled, we considered the quadratic term to represent mortality due to viruses. Model results were however relatively insensitive sensitive to this parameterisation, highlighting although the potential importance of viruses in marine systems, which is consistent with field evidence should not be underestimated (Bratbak, 1993, 1996; Danovaro et al., 2011).
It has long been recognized that the parameterisation and functional form of zooplankton mortality, the model closure term, can have a pronounced effect on modeled ecosystem dynamics (e.g. Steele & Henderson, 1981, 1992, 1995; Murray and Parslow, 1999; Edwards and Yool, 2000; Fulton et al., 2003a,b; Neubert et al., 2004). Quadratic closure is a common choice, although other non-linear functional forms are also in use. While it is commonly stated that quadratic closure is dynamically stabilising, i.e., it prevents both blooms and extinction of prey, there is a limit to this influence (Edwards and Yool, 2000) since other processes can come into play. In our case, it is obvious that quadratic closure had a stabilising effect on the model. Its removal caused the bloom peak to be higher and also post-bloom phytoplankton levels to decline to near-zero.

In contrast to the community's broad recognition of the potential sensitivity to choice of closure scheme, far less attention has been paid to model sensitivity regarding the fate of zooplankton mortality. There are likely various sources types of zooplankton mortality in reality including grazing by higher predators, starvation or disease. As a mathematical closure term, one can consider the grazing loss to be partitioned between an infinite series of higher predators (e.g., Fasham et al., 1990), with partitioning between detritus and dissolved nutrients in both organic and inorganic form. These losses will occur with time delays and potentially also with spatial separation due to migration of predators. Moreover, any detrital production by higher predators would comprise significantly larger "particles" than those due to plankton death, and would therefore be associated with much higher sinking rates. Non-grazing mortality might lead to production of detritus in situ. There is no consensus on best practice, despite the fact that different approaches to partitioning of zooplankton losses between detritus, nutrient and DOM differs markedly between models and can have a significant effect on modelled ecosystem function (Anderson et al., 2013). Future structural sensitivity studies should be conducted to explore how the f-ratio (the fraction of primary production fuelled by external nutrient) and e-ratio (i.e. relative export to total primary production) are affected by the various assumptions relating to zooplankton mortality and model closure.

Model sensitivity to choice of functional forms and parameterisation, often manifested as surprising and unforeseen emergent predictions, is classic complexity science (Bar-Yam, 1997). Understanding emergence and the consequences for accuracy of prediction is a key component of modelling complex systems (Anderson, 2005). Results here, as discussed
above, showed varying sensitivities to different formulations and assumptions and
demonstrated the utility of EMPOWER in tackling this important topic. High sensitivities
have previously been documented in marine ecosystem models, e.g. to the exact form of the
zooplankton functional response (Anderson, 2010; Wollrab and Diehl, 2015) and choice of
zooplankton trophic transfer formulation (Anderson et al., 2013). Other studies have also
shown “alarming” sensitivity to apparently small changes in the specification of biological
models (e.g. Wood and Thomas, 1999; Fussmann and Blasius, 2005). Anderson (2005)
described this insidious problem, namely sensitivity of emergent outcomes to interacting
nonlinear differential equations, as “all in the interactions”. Dealing with it poses an ongoing
challenge for the modelling community.

EMPOWER-1.0 is provided as a testbed which is suitable for examining the performance of
any chosen marine ecosystem model, simple or complex. We chose to demonstrate its use by
incorporating a simple NPZD ecosystem model. Simple marine ecosystem models are,
however, all too often brushed aside in marine science today. While our objective here is not
to delve deeply into ongoing debate about complexity in models (e.g., Fulton et al., 2004;
Anderson, 2005; Friedrichs et al., 2007; Ward et al., 2010), we would nevertheless like to
comment on the worth of simple ecosystem models. When it comes to the representation of
the marine ecosystem, complex models have come to the fore that have, for example, any
number of plankton functional types, multiple nutrients, dissolved organic matter and
bacteria, etc. (e.g., Blackford et al., 2004; Moore et al., 2004; Le Quéré et al., 2005). There is a
similar trend with ocean physics toward large, computationally demanding models. Many
publications in recent years have involved the use of 3D models (e.g., Le Quéré et al., 2005;
Wiggert et al., 2006; Follows et al., 2007; Hashioka et al., 2013; Yool et al., 2013b; Vallina et
al., 2014), although 1D models are also well represented (e.g., Vallina et al., 2008; Kearney et
al., 2012; Ward et al., 2013). Of course, the improved realism that is gained by using complex
models is in general to be welcomed, with the caveat that improvements in prediction can
only be achieved if the processes of interest can be adequately parameterised (Anderson,
2005). That is a big caveat and one made harder to achieve because it is often difficult and/or
time consuming to thoroughly test the formulations and parameterisations involved. Simple
NPZD-type models have a useful role in this regard. Albeit with tuning (but the complex
models are tuned also), our NPZD model was successfully used to describe the seasonal
cycles of phytoplankton and nutrients at four contrasting sites in the world ocean. It was
readily used to test different parameterisations for photosynthesis and mortality. At least in
terms of basic bulk properties, simple models produce realistic predictions and are easily to
thoroughly investigate and assess. The lessons thus learned can be taken forward toward more
complex models. The whole issue of model complexity ought in any case to be question
dependent (Anderson, 2010), e.g. simple models may be useful to address questions on
biogeochemical cycles whereas more complex models may be necessary to answer more
ecologically relevant questions such as the effect of biodiversity on ecosystem function. The
use of the EMPOWER testbed allows the user to investigate and determine whether a
particular ecosystem model is sufficiently complex, or indeed too complex, to address the
question of interest.

We have described the utility of slab models as a testbed underpinning marine ecosystem
modelling research. This is however by no means their only use. Slab models are ideal for
teaching ecological modelling. They embrace the complex interplay between primary
production and the physical-chemical environment, combined with top-down control by
zooplankton. Students often have difficulty grasping the relative significance of causal effects
in ecosystems (Grotzer and Basca, 2003), e.g. the relative roles of bottom-up versus top-down
processes in structuring food webs. A certain amount of lecture material is of course needed,
but there is no substitute for hands-on modelling, providing an interactive approach whereby
students can actively investigate ideas and interact between themselves and a teacher (Knapp
and D’Avanzo, 2010). Insight can be gained by getting students to try simple things like
switching grazing off, doubling phytoplankton growth rates, etc. The slab modelling
framework provided herein is ideal for this purpose. The code is transparent, modular and
readily adjusted to include alternate parameterisations, it is easily set up for alternate ocean
sites, the model runs fast with graphs of results appearing on the screen on completion, results
are readily written to output files for more in depth analysis and, by coding in R, the models
can be accessed and run without need for purchasing proprietary software.

Finally, the great advances in marine ecology that the pioneers of plankton modelling
achieved using slab models should not be forgotten. Riley, Steele and Fasham laid the
foundations of today’s marine ecosystem modelling using plankton models embedded within
simple physics. Even in the modern arena, this use of simple physics cannot be dismissed as
being too simple for practical application and there is no reason why further scientific
advances cannot be made on this basis using slab models. Models are, fundamentally, all about
simplifying reality.
Appendix A: Irradiance calculations

Both the Evans and Parslow (1985) and Anderson (1993) subroutines for calculating daily photosynthesis require noon irradiance and daylength as inputs. When there are data available, these data can be used as forcing for a model, akin to what is done for temperature. However, most typically light data is not available and so a light submodel must be used to prescribe the light forcing. A climatological approach is often used whereby these inputs are specified using trigonometric/astronomical equations. This task is not as straightforward as it might first appear. The basic equations are presented in texts such as Brock (1981) and Iqbal (1983). Some adjustments were provided by Shine (1984) and we recommend use the equation for short-wave irradiance at the ocean surface on a clear day published therein:

\[
I_{\text{clear}} = \frac{I_{\text{sc}} \cos^2(z)/R_v^2}{1.2 \cos(z) + e_0(1.0 + \cos(z))/1000 + 0.0455}
\]

(A1)

\(I_{\text{sc}}\) is the solar constant (e.g., 1368 W m\(^{-2}\); Thekaekara and Drummond, 1971), i.e., the incoming solar radiation that would be incident on a perpendicular plane, immediately outside the atmosphere. \(I_{\text{clear}}\) also depends on solar zenith angle (\(z\)), the Earth’s radius vector (\(R_v\): accounts for the eccentricity of the earth's orbit) and water vapour pressure (\(e_0\); the partial pressure of water vapour in the atmosphere). A typical value for \(e_0\) is 12 mb (e.g., Josey et al., 2003); the calculation of \(I_{\text{clear}}\) is not sensitive to this parameter. The equation for \(R_v\) is:

\[R_v = 1/(1 + 0.033 \cos(2\pi J/365))^{1/2}\]

(A2)

where \(J\) is day of year (Julian day; i.e. \(J = 1\) = 1st January). Solar zenith angle depends on latitude (\(\phi\)), solar declination angle (\(\delta\)) and on time of day (\(\gamma\), where the Earth moves 15° per hour and \(\gamma\) is difference from noon):

\[\cos(z) = \sin(\phi) \sin(\delta) + \cos(\phi) \cos(\delta) \cos(\gamma)\]

(A3)

The \(\cos(\gamma)\) term becomes irrelevant when considering noon irradiance. Solar declination angle is given by:

\[\delta = 23.45 \sin(2\pi(284 + J)/365)\]

(A4)

where \(h\) is hour angle which is the difference between the given time and noon (where 1 hour is 15°). Note that \(\delta\) is expressed in degrees in the above equation (1 radian = 180/\(\pi\) degrees).
The flux of photosynthetically active solar radiation just below the ocean surface at noon, I_{noon}, can now be calculated:

$$I_{noon} = C_{FAC} f_{PAR} (1 - \varphi) I_{clear}$$ \hspace{2cm} (A5)

where f_{PAR} is the fraction of solar radiation that is PAR (λ between 400 and 700 nm), φ is ocean albedo and C_{FAC} is the effect of clouds on atmospheric transmission. Parameters f_{PAR} and φ are relatively invariant with typical values of 0.43 for f_{PAR} and 0.04 for φ (e.g., Fasham et al., 1990). Dealing with the effects of clouds is a thorny issue for modellers. Simple empirical approaches have been developed, two of the most popular being those of Reed (1977) and Smith and Dobson (1984). We have opted for the former in which C_{FAC} is a function of zenith angles (specified in degrees):

$$C_{FAC} = 1 - 0.62W^2 / 8 + 0.0019(90 - z)$$ \hspace{2cm} (A6)

where W is cloud fraction in oktas. A value of $W=6$ was used for all four stations.

The equation for calculating day length (D_L, h) is (Brock, 1981):

$$D_L = \frac{2}{15} \arccos(-\tan(\phi) \tan(\delta))$$

Appendix B: Analytic integrals for photosynthesis with depth

The average photosynthesis within a layer of depth H is:

$$\bar{V}_P(H) = \frac{1}{H} \int_{-H/2}^{H/2} V(z) d\ell$$ \hspace{2cm} (B1)

where V_P is photosynthesis as a function of light intensity (specified as the P-I curve). Two P-I curves are provided with EMPOWER, a Smith function (Eq. 7) and exponential function (Eq. 8). Analytic solutions to Eq. (B1) are provided here for each of these two P-I curves. In both cases a Beer’s law attenuation with depth is assumed (parameter k_{PAR}), i.e., $I(z) = I(0)e^{-k_{PAR}z}$ where $I(0)$ is the irradiance entering the layer from above.

B1 Smith P-I curve

By performing a change of variables such that $x = \alpha I(z)$, the integral above becomes:
This integral is solved analytically using a trigonometric transformation and then integration by parts, giving:

\[\bar{V}_{P(H)} = \frac{V_p^{\text{max}}}{k_{P,A}H} \ln \left(\frac{x_0 + (V_p^{\text{max}})^2 + x_0^2)^{1/2}}{x_H + (V_p^{\text{max}})^2 + x_H^2)^{1/2}} \right) \]

(B3)

where \(x_0 \) is \(x(z=0) \) and \(x_H \) is \(x(z=H) \).

7 B2 Exponential P-I curve

In order to integrate Equation B1 using an exponential P-I curve it is first useful to define (Platt et al., 1980):

\[I^* = \frac{I_z \alpha}{V_p^{\text{max}}} \]

(B4)

The integration over depth is then (see Platt et al., 1990):

\[\bar{V}_{P(H)} = \frac{V_p^{\text{max}}}{k_{P,A}H} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n.n!} ((I^*_0)^n - (I^*_H)^n) \]

(B5)

For practical purposes, we used a maximum value of \(n \) of 16.

15 Appendix C: Special formulations for calculating daily photosynthesis

16 C1 Evans and Parslow (1985) photosynthesis calculation

Evans and Parslow (1985) provide an algorithm for calculating daily depth-integrated photosynthesis with the assumptions of a Smith P-I curve (Eq. 3), a triangular pattern of irradiance from sunrise to sunset and light extinction calculated with a single Beer’s law coefficient. The average daily rate of photosynthesis within the mixed layer is calculated as:

\[\bar{V}_{P(H,z)} = 2 \int_0^\frac{z}{H} \int_0^H V_p(I, z) dz dt \]

(C1)
where \(t \), measured in days, is 0 at sunrise and \(\tau \) at noon and \(H \) is layer depth. Assuming a triangular pattern of irradiance about noon, equation A3.1 can be recast as (Evans and Parslow, 1985):

\[
\overline{\nu}_{P(H,\tau)} = \frac{2V_p^{\max}}{k_{\text{PAR}} H} \left(\int_0^{\beta_1 \tau} t \, dy \, dt \right)^{1/2}
\]

(C2)

\[
\beta_1 = \frac{V_p^{\max} \tau}{\alpha I_{noon}}, \quad \beta_2 = \beta_1 \exp(k_{\text{PAR}} H)
\]

(C3)

\(I_{noon} \) is the photosynthetically active radiation (PAR) just below the ocean surface at noon. This integral solves as (Evans and Parslow, 1985):

\[
\overline{\nu}_{P(H,\tau)} = \frac{2V_p^{\max}}{k_{\text{PAR}} H} \left[f(\beta_2, \tau) - f(\beta_1, \tau) - f(\beta_2, 0) + f(\beta_1, 0) \right]
\]

(C4)

\[
f(y, t) = (y^2 + t^2)^{1/2} - t \ln \left(\frac{t + (y^2 + t^2)^{1/2}}{y} \right)
\]

(C5)

C2 Anderson (1993) photosynthesis calculation

The subroutine of Anderson (1993) was developed as an empirical approximation to the spectrally resolved model of light attenuation and photosynthesis of Morel (1988) used in combination with the polynomial method of integrating daily photosynthesis of Platt et al. (1990). It is based on an exponential P-I curve (Eq. 8), assumes a sinusoidal pattern of irradiance throughout the day and calculated light attenuation using a piecewise Beer’s law (Eq. 10). The irradiance leaving the base of each layer is:

\[
I_{\text{base},i} = I_{\text{base},i-1} \exp[-k_{\text{PAR},i}(z_{\text{base},i} - z_{\text{base},i-1})]
\]

(C6)

where \(I_{\text{base},0} \) is the irradiance immediately below the ocean surface and \(z_{\text{base},i} \) is the depth of the base of the layer \(i \) (where \(z_{\text{base},0} = 0 \)).

The subroutine of Anderson (1993) also takes account of the fact that, in reality, \(\alpha \) depends on the spectral properties of light and therefore varies with depth in the water column. This parameter is the product of photosynthetic absorption cross section \(a_c(\lambda) \), which is spectrally dependent (\(\lambda \) denotes wavelength), and quantum yield \(\phi_\lambda \) (Platt and Jassby, 1976; Platt, 1986):
\[\alpha(\lambda) = a_c(\lambda)\phi_A \]

Ordinarily (e.g., Table 2), \(\alpha \) is the initial slope of the P-I curve for white light (i.e., spectral distribution as for irradiance at the ocean surface). The corresponding value of \(\alpha \) for the wavelength at which absorption is maximum, \(\alpha_{\text{max}} \), is (Anderson, 1993):

\[\alpha_{\text{max}} = 2.602\alpha \]

The value of \(\alpha \) for any given wavelength of PAR, \(\alpha(\lambda) \), is then:

\[\alpha(\lambda) = \alpha_{\text{max}}a^*(\lambda) \]

where \(a^*(\lambda) \) is the dimensionless chlorophyll absorption cross section for wavelength \(\lambda \). An additional complication, however, is that \(a^*(\lambda) \) only applies when irradiance is specified as a scalar flux (Morel, 1991). Irradiance in the model is a downwelling flux and so Anderson (1993) converted between the two by defining a new version of the chlorophyll absorption cross section (which can be used in equation (C9) in place of \(a^*(\lambda) \), in combination with downwelling irradiance):

\[\alpha^\#(\lambda) = a^*(\lambda)k_{\text{PAR}}(\lambda)/a_c(\lambda) \]

Again using the piecewise three-layer scheme described above for \(k_{\text{PAR}} \), an average value of \(a^\# \) can be calculated for each layer by deriving an empirical approximation of Morel’s (1988) full spectral model. As a first step, \(a^\# \) at the ocean surface is calculated as:

\[a^\#_{\text{base},0} = h_0 + h_1C^{1/2} + h_2C + h_3C^{3/2} + h_4C^2 \]

where the polynomial coefficients are given in Table C1. The \(a^\# \) at the base of each layer and the average \(a^\# \) in each layer are then calculated as:

\[a^\#_{\text{base},j} = a^\#_{\text{base},j-1} + a^\#_{\text{calc},j} \]

\[a^\#_{\text{av},j} = a^\#_{\text{base},j-1} + 0.5a^\#_{\text{calc},j} \]

where \(a^\#_{\text{calc},j} \) is a lengthy empirical calculation:

\[a^\#_{\text{calc},j} = f\{z_{\text{base},j}\} - f\{z_{\text{base},j-1}\} \]

\[f\{z\} = (z + 1)(g_1 + g_2C^{1/2} + g_3C + g_4C^{3/2}) + f_1(z + 1)(g_3 + g_4C^{1/2} + g_6C) \]
\[+ f_2(z + 1)(g_6 + g_{10}C) + f_3(z + 1)g_8 \]
(C15)

\[f_1(z + 1) = (z + 1)\ln(z + 1) - (z + 1) \]
(C16)

\[f_2(z + 1) = (z + 1)\ln^2(z + 1) - 2f_1(z + 1) \]
(C17)

\[f_3(z + 1) = (z + 1)\ln^3(z + 1) - 3f_2(z + 1) \]
(C18)

The coefficients, \(g_x \), are provided in Table C1. With irradiance assumed to vary sinusoidally through the day, the average rate of photosynthesis within a layer \(i \) is:

\[\bar{V}_{p(i,t)} = \frac{D V_p^{max}}{24 h \pi k_{PAR}} \sum_{j=1}^{5} \Omega_j (V_1 - V_2) \]
(C19)

\[V_1 = \alpha_{max} a_{av,1} I_{base,1}\]
(C20)

\[V_2 = \alpha_{max} a_{av,2} I_{base,2}\]
(C21)

where \(D \) is daylength (hours) and \(\Omega_j \) are the polynomial coefficients (Platt et al., 1990; Table C1).

Appendix D: EMPOWER1.0 User guide

1. Installation and setup. The R programming language is freeware and is readily downloaded from the web for use on personal computers. For example, visit page: http://www.r-project.org/. After installation, set up a directory to hold the model code and associated input and output files. We recommend also downloading an R editor, e.g, Tinn-R (also freeware).

2. Running R. Open the R console. From the toolbar, select “File” and “Change dir ...” and select the directory in which the model code and input files have been placed. To run the model, type: source(“EMPOWER1.R”)

3. Preparation of input files. The model reads in three input files, each as ASCII text files:

 (i) File NPZD_parms.txt. This file includes a single line header and then lists the value of each model parameter in turn, followed by a text string for the purpose of annotation. When changing the parameter list in the model, the corresponding section in the R code must be altered accordingly.
(ii) File NPZD_extra.txt. This file holds initial values for state variables, additional parameters, and various flags: choice of station, choices for photosynthesis calculations (P-I curve, light attenuation, etc.) and grazing formulation. The user is at liberty to add to or remove from this list of flags as is desired. This file also contains flags for core model functions: run duration, time step, output type (none, last year, whole simulation), output frequency and integration method (Euler or Runge Kutta). These latter functions are required by the core code and should not be removed from this file.

(iii) File stations_forcing.txt. This file has a header line for information, and then holds monthly values for forcing, in our case mixed layer depth and temperature, for each station. There are thirteen entries in each case, the first and last being the same and corresponding to the beginning and end of the year. A 366 unit array is set up in the model code for each forcing variable, with unit 1 corresponding to t=0, and linear interpolation carried out on the monthly values to fill each array.

4. Output files. These are generated automatically by the model, on completion of each model simulation. The type of output generated is controlled by flags (above). The output files are ASCII, comma separated and do not have headers. They are readily imported into various software packages, e.g. R or Microsoft Excel, for further analysis. The files are:

(i) File out_statevars.txt. Outputs the state variables, ordered as they are in array X in the code.

(ii) File out_fluxes.txt. Outputs the model fluxes, ordered as they are in matrix flux(i,j) in function FNget_flux. Thus each line (corresponding to a point in time for output) has Nsvar*nfluxmax entries where Nsvar is the number of state variables in the model and nfluxmax is the maximum number of fluxes per state variable.

(iii) File out_aux.txt. This file stores the values of auxiliary variables, as defined by the user in array Y (final section of function FNget_flux). The maximum size of this array is set by variable nDvar.

5. Altering the model structure. If the user wants to change the number of state variables, or nDvar or nfluxmax (above), adjustments should first be made to the short section of code “Variables specific to model: adjust accordingly”. Alter nSvar, the initialisation of array X (which holds the state variables) and the text arrays svarname and svarnames (which are used for output). Then go to function FNget_flux and rewrite the line of code unpacking the state
variables. Finally, specify the terms associated with the new state variable(s) in matrix flux(i,j).

6. Altering model equations. The model equations are handled in function FNget_flux and can be adjusted as desired by the user, calling additional functions as necessary.

7. Graphical output. The model automatically generates graphical output on the computer screen on completion of each simulation. An advantage of R is that the syntax for generating plots is straightforward and the user should have no problem, working from the plots provided, in generating extra graphs, as desired.

Appendix E: Light attenuation in MEDUSA

Light attenuation in the water column in the MEDUSA model (Yool et al., 2011,2013) is calculated assuming that PAR at the ocean surface can be divided equally into two wavebands, nominally red and green. The attenuation of each is calculated through the water column using Beer’s law. The average light in a model layer can then be calculated on the basis of summing the two wavebands, and this average then used in combination with a P-I curve to calculate photosynthesis. The extinction coefficients for red and green light, xkr and xkg, are:

\[
xkr = xkr0 + xkrp \cdot \exp(xlr \cdot \ln(C)) \tag{E1}
\]

\[
xkg = xkg0 + xkgp \cdot \exp(xlg \cdot \ln(C)) \tag{E2}
\]

where C is chlorophyll (mg m\(^{-3}\)). Values for the coefficients are: xkr0 = 0.225, xkrp = 0.037, xlr = 0.674, xkg0 = 0.0232, xkgp = 0.074, xlg = 0.629.

Acknowledgements

TRA and AY acknowledge support from the Natural Environment Research Council, UK, as part of the Integrated Marine Biogeochemical Modelling Network to Support UK Earth System Research (i-MarNet) project (grant ref. NE/K001345/1). WCG acknowledges support from the Natural Sciences and Engineering Council of Canada. We wish to thank two anonymous referees for their critique of the manuscript.
References

Fussmann, G.F. and Blasius, B.: Community response to enrichment is highly sensitive to model structure. Biol. Lett. 1, 9-12, 2005.

Gentleman, W.: A chronology of plankton dynamics in silico: how computer models have been used to study marine ecosystems. Hydrobiologia, 480, 69-85, 2002.

<table>
<thead>
<tr>
<th>reference</th>
<th>location</th>
<th>structure</th>
<th>MLD</th>
<th>irradiance</th>
<th>photosyn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evans & Parslow 1985</td>
<td>Flemish Cap, subarctic Pacific</td>
<td>NPZ</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Frost 1987</td>
<td>subarctic Pacific</td>
<td>NP(Z)</td>
<td>clim.</td>
<td>data</td>
<td>numeric</td>
</tr>
<tr>
<td>Fasham et al. 1990</td>
<td>Sargasso Sea</td>
<td>2NPZDB{DOM}</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Robinson et al. 1993</td>
<td>Pacific upwelling</td>
<td>P2Z</td>
<td>f(winds)</td>
<td>astronomical</td>
<td>numeric?</td>
</tr>
<tr>
<td>Fasham 1995</td>
<td>Subartic Pacific, North Atlantic</td>
<td>2NPZDB{DOM}</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Matear 1995</td>
<td>subarctic Pacific</td>
<td>2NP2ZDB{DOM}</td>
<td>clim.</td>
<td>data</td>
<td>E&P85</td>
</tr>
<tr>
<td>Hurtt & Armstrong 1996</td>
<td>Sargasso Sea</td>
<td>2NPR</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Popova et al. 1997</td>
<td>none (theoretical)</td>
<td>NPZD</td>
<td>hypoth</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Anderson & Williams '98</td>
<td>English Channel</td>
<td>2NPZ[DOM]</td>
<td>clim.</td>
<td>astronomical</td>
<td>A93</td>
</tr>
<tr>
<td>Spitz et al. 1998</td>
<td>Sargasso Channel</td>
<td>2NPZ[DOM]</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Fennel et al. 2001</td>
<td>Sargasso Sea</td>
<td>NPZD</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Natvik et al. 2001</td>
<td>Flemish Cap</td>
<td>NPZ</td>
<td>model</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Schartau et al. 2001</td>
<td>Sargasso Sea</td>
<td>NPZ</td>
<td>1989-93</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Hemmings et al. 2004</td>
<td>North Atlantic</td>
<td>NPZ</td>
<td>clim.</td>
<td>data</td>
<td>E&P85</td>
</tr>
<tr>
<td>Onitsuka & Yanagi 2005</td>
<td>Japan Sea</td>
<td>NPZD,</td>
<td>clim.</td>
<td>data</td>
<td>numeric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2N2P3Z{DOM}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Findlay et al. 2006</td>
<td>None (theoretical)</td>
<td>NP</td>
<td>hypoth</td>
<td>none</td>
<td>B&P05</td>
</tr>
<tr>
<td>Mitra et al. 2007</td>
<td>North Atlantic</td>
<td>2NPZDB{DOM}</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Mitra 2009</td>
<td>North Atlantic</td>
<td>2NPZDB{DOM}</td>
<td>clim.</td>
<td>astronomical</td>
<td>E&P85</td>
</tr>
<tr>
<td>Llebot et al. 2010</td>
<td>Mediterranean Bay</td>
<td>2N2P{DOM}</td>
<td>f(R no.)</td>
<td>astronomical</td>
<td>numeric</td>
</tr>
<tr>
<td>Kidston et al. 2013</td>
<td>Southern Ocean</td>
<td>NPZD</td>
<td>model</td>
<td>model</td>
<td>E&P85</td>
</tr>
</tbody>
</table>

2 MLD: clim. (climatological from data); hypoth. (hypothetical); f(R no.) (function of Richardson number)

3 Photosynthesis calculation (photosyn.): E&P85 (Evans and Parslow, 1985); A93 (Anderson, 1993); B&P05 (Baoushada and Pascual, 2005)
Table 2. Coefficients for use in Anderson (1993) calculation of light attenuation (Eq. 10)

<table>
<thead>
<tr>
<th></th>
<th>first layer (0-5 m)</th>
<th>second layer (5-23 m)</th>
<th>third layer (>23 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,1}$</td>
<td>0.13096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,1}$</td>
<td>0.030969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,1}$</td>
<td>0.042644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,1}$</td>
<td>-0.013738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{4,1}$</td>
<td>0.0024617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{5,1}$</td>
<td>-0.00018059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{0,2}$</td>
<td>0.041025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,2}$</td>
<td>0.036211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,2}$</td>
<td>0.062297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,2}$</td>
<td>-0.030098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{4,2}$</td>
<td>0.0062597</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{5,2}$</td>
<td>-0.00051944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{0,3}$</td>
<td>0.021517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,3}$</td>
<td>0.050150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,3}$</td>
<td>0.058900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,3}$</td>
<td>-0.040539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{4,3}$</td>
<td>0.0087586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{5,3}$</td>
<td>-0.00049476</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Model parameters. Initial settings and fitted (fitted) model solutions for stations BIOTRANS and Kerfix (parameters for Biotrans were the same as for India). The initial (unfitted) parameter guesses for BIOTRANS were as for the fitted solution, except that parameters m_p and k_Z were tuned from initial settings of 0.02 d$^{-1}$ and 0.86 mmol N m$^{-3}$ respectively (see text and footnotes).

<table>
<thead>
<tr>
<th>param</th>
<th>meaning</th>
<th>unit</th>
<th>BIOTRANS</th>
<th>India</th>
<th>Papa</th>
<th>Kerfix</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p^{max} (0)</td>
<td>max. rate photosynthesis 0°C</td>
<td>g C (g Chl)$^{-1}$ h$^{-1}$</td>
<td>2.5e</td>
<td>2.5</td>
<td>1.25e</td>
<td>1.25e</td>
</tr>
<tr>
<td>α</td>
<td>initial slope of P-I curve</td>
<td>g C (g Chl)$^{-1}$ h$^{-1}$ (W m$^{-2}$)$^{-1}$</td>
<td>0.15a</td>
<td>0.15</td>
<td>0.075b</td>
<td>0.075b</td>
</tr>
<tr>
<td>k_N</td>
<td>half sat. constant: N uptake</td>
<td>mmol N m$^{-3}$</td>
<td>0.85c</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>m_p</td>
<td>phyto. mortality (linear)</td>
<td>d$^{-1}$</td>
<td>0.015d</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>m_{p2}</td>
<td>phyto. mortality (quadratic)</td>
<td>(mmol N m$^{-3}$)$^{-1}$ d$^{-1}$</td>
<td>0.025e</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>I_{max}</td>
<td>zoo. max ingestion rate</td>
<td>d$^{-1}$</td>
<td>1.0f</td>
<td>1.0</td>
<td>1.25f</td>
<td>2.0f</td>
</tr>
<tr>
<td>k_Z</td>
<td>zoo. half saturation for intake</td>
<td>mmol N m$^{-3}$</td>
<td>0.6g</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>ϕ_P</td>
<td>grazing preference: P</td>
<td>dimensionless</td>
<td>0.67h</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>ϕ_D</td>
<td>grazing preference: D</td>
<td>dimensionless</td>
<td>0.33h</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>β_Z</td>
<td>zoo. absorption efficiency</td>
<td>dimensionless</td>
<td>0.69i</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>k_{NZ}</td>
<td>zoo. net production efficiency</td>
<td>dimensionless</td>
<td>0.75j</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>m_Z</td>
<td>zoo. mortality (linear)</td>
<td>d$^{-1}$</td>
<td>0.02k</td>
<td>0.0</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>m_{Z2}</td>
<td>zoo. mortality (quadratic)</td>
<td>(mmol N m$^{-3}$)$^{-1}$ d$^{-1}$</td>
<td>0.34m</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>v_D</td>
<td>detritus sinking rate</td>
<td>m d$^{-1}$</td>
<td>6.43e</td>
<td>6.43</td>
<td>6.43</td>
<td>6.43</td>
</tr>
<tr>
<td>m_O</td>
<td>detritus remineralisation rate</td>
<td>d$^{-1}$</td>
<td>0.06e</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>w_{mix}</td>
<td>cross-thermocline mixing</td>
<td>m d$^{-1}$</td>
<td>0.13e</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>θ_{chl}</td>
<td>C to chlorophyll ratio</td>
<td>g g$^{-1}$</td>
<td>75n</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Source: amean of values for polar waters provided in Table 2 of Rey (1991); bphotosynthetic parameters of HNLC stations halved with respect to Biotrans because of iron limitation (see text); cFasham and Evans (1995); dtuned for Biotrans; initial guess was 0.02 d$^{-1}$ (Yool et al. (2011, 2013a)); eOschlies and Schartau (2005); ftuned for HNLC stations (see text); gtuned for Biotrans: initial guess was 0.86 mmol N m$^{-3}$ (Fasham and Evans, 1995); has for Fasham (1993) but adjusted for different model structure; iAnderson (1994); jAnderson and Hessen (1995); kYool et al. (2011, 2013a); ltuned for station India; mOschlies and Schartau (2005); nSathyendranath et al. (2009).
Table 4. Model sensitivity analysis: **BIOTRANS**. Variables are: chl\(_{av}\) (average chlorophyll day 200-300), chl\(_{max}\) (peak bloom chlorophyll) and N\(_{min}\) (minimum nitrate during seasonal drawdown). **Parameters ranked according to sensitivity to chl\(_{max}\).**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>chl(_{av})</th>
<th>chl(_{av})</th>
<th>chl(_{max})</th>
<th>chl(_{max})</th>
<th>N(_{min})</th>
<th>N(_{min})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S(p) +10%</td>
<td>S(p) -10%</td>
<td>S(p) +10%</td>
<td>S(p) -10%</td>
<td>S(p) +10%</td>
<td>S(p) -10%</td>
</tr>
<tr>
<td>(I_{max})</td>
<td>-0.55</td>
<td>-0.83</td>
<td>-1.10</td>
<td>-1.27</td>
<td>0.60</td>
<td>0.58</td>
</tr>
<tr>
<td>(k_Z)</td>
<td>0.92</td>
<td>0.90</td>
<td>1.04</td>
<td>1.20</td>
<td>-0.81</td>
<td>-1.09</td>
</tr>
<tr>
<td>(\beta_Z)</td>
<td>-0.29</td>
<td>-0.50</td>
<td>-1.02</td>
<td>-1.18</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>(k_{NZ})</td>
<td>-0.53</td>
<td>-0.75</td>
<td>-1.02</td>
<td>-1.17</td>
<td>-0.11</td>
<td>-0.10</td>
</tr>
<tr>
<td>(m_P)</td>
<td>0.01</td>
<td>-0.03</td>
<td>0.62</td>
<td>0.72</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>-0.05</td>
<td>-0.16</td>
<td>-0.70</td>
<td>-0.60</td>
<td>-0.53</td>
<td>-0.68</td>
</tr>
<tr>
<td>(\phi_P)</td>
<td>-0.40</td>
<td>-0.47</td>
<td>-0.51</td>
<td>-0.55</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>(m_Z)</td>
<td>0.07</td>
<td>0.06</td>
<td>0.49</td>
<td>0.49</td>
<td>-0.07</td>
<td>-0.06</td>
</tr>
<tr>
<td>(V_{P}^{max}(0))</td>
<td>-0.08</td>
<td>-0.12</td>
<td>-0.20</td>
<td>-0.16</td>
<td>-0.63</td>
<td>-0.81</td>
</tr>
<tr>
<td>(k_N)</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.09</td>
<td>0.10</td>
<td>1.06</td>
<td>1.05</td>
</tr>
<tr>
<td>(m_{Z2})</td>
<td>0.27</td>
<td>0.28</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.27</td>
<td>-0.32</td>
</tr>
<tr>
<td>(m_{P2})</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(m_D)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>(w_{mix})</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.67</td>
</tr>
<tr>
<td>(v_D)</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.13</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>h₀ = 0.36796</td>
<td>h₁ = 0.17537</td>
<td>h₂ = -0.065276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h₃</td>
<td>0.013528</td>
<td>h₄ = 0.0011108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₁</td>
<td>0.048014</td>
<td>g₂ = 0.00023779</td>
<td>g₃ = -0.023074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₄</td>
<td>0.0031095</td>
<td>g₅ = -0.0090545</td>
<td>g₆ = 0.0027974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₇</td>
<td>0.00085217</td>
<td>g₈ = -3.9804E-06</td>
<td>g₉ = 0.0012398</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g₁₀</td>
<td>-0.00061991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ω₁</td>
<td>1.9004</td>
<td>Ω₂ = -0.28333</td>
<td>Ω₃ = 0.028050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ω₄</td>
<td>-0.0014729</td>
<td>Ω₅ = 0.000030841</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Forcing used by Riley (1946) in his model of George’s Bank: a) Depths of euphotic zone and mixed layer; b) Diminution in photosynthesis due to light limitation (L_L).

Figure 2. Two layer slab physics framework (adapted from Steele, 1974).

Figure 3. Model forcing for stations India (60°N 20°W), BIOTRANSBiotrans (47°N 20°W), Papa (50°N 145°W) and KERFIXKerfix (50° 40’S 68° 25’E): a) mixed layer depth (m), b) noon irradiance (W m$^{-2}$), c) sea surface temperature (°C).

Figure 4. Structure of the NPZD model.

Figure 5. Photosynthesis-irradiance curves with parameter settings: $V_p^{\text{max}} = 2.02.5$ g C (g chl)$^{-1}$ h$^{-1}$ and $\alpha = 0.080.15$ g C (g chl)$^{-1}$ h$^{-1}$ (W m$^{-2}$)$^{-1}$.

Figure 6. Triangular versus sinusoidal patterns of diel irradiance illustrated for a 12 hour day and noon irradiance of 200 W m$^{-2}$.

Figure 7. Contours of the zooplankton specific ingestion rates (I_P, I_D) versus densities of the two prey types (P = phytoplankton and D = detritus) as characterised by the sigmoidal grazing response (Eqs. 11, 12) using parameters $I_{\text{max}} = 1$ d$^{-1}$, $k_Z = 0.52$ mmol N m$^{-3}$, $\phi_P = 0.67$ and $\phi_D = 0.33$. Upper two panels illustrate assumed interference effect of one prey type over another, e.g. for a given P, increasing D reduces I_P. The lower panel illustrates assumed optimal feeding (i.e. total ingestion, I_{tot}, always increases with increase in P or D) and the benefit of generalism (i.e. increase in I_{tot} due to consumption of P and D vs. just P).

Figure 8. Structure of the model code.

Figure 9. SeaWiFS chlorophyll data (mg m$^{-3}$) for each of the four stations, years 1998 to 2013 overlaid, with selected median year (see text) highlighted.

Figure 10. Simulation for station India–BIOTRANSBiotrans using first-guess parameters compared to data (year 20062002) for a) chlorophyll and b) nitrate.

Figure 11. Simulation for station India–BIOTRANSBiotrans after parameter tuning (see text): a) chlorophyll, b) nitrate.

Figure 12. Predicted state variables and fluxes for the station India–BIOTRANSBiotrans simulation: a) P, Z and D and b) phytoplankton growth, grazing and non-grazing mortality.
Figure 113. Simulations for station BiotransIndia: a) chlorophyll, b) nitrate. Data are for year 20082009.

Figure 1214. Simulations for station Papa before and after parameter tuning: a) chlorophyll, b) nitrate. Data are for year 20092007.

Figure 1315. Simulations for station KERFIXKerfix before and after parameter tuning (see text for details): a) chlorophyll, b) nitrate. Data are for year 20082006.

Figure 1416. Simulations for station IndiaBIOTRANSBiotrans showing sensitivity to choice of P-I curve: a) Smith function (standard run) and b) exponential function.

Figure 1517. Simulations for station IndiaBIOTRANSBiotrans showing sensitivity to choice of diel variation in irradiance: a) sinusoidal (standard run) and b) triangular.

Figure 1618. Model simulations for station Indiaall four stations showing sensitivity to choice of method for calculating light attenuation in the water column: a) piecewise Beer’s Law (Eq. 10) and b) simple Beer’s law (Eq. 9).

Figure 1719. Figure 19. Light attenuation as predicted by Evans and Parslow (1985; EP85) and for the three layers (0-5, 5-23, >23m; 1,2,3 respectively) in Anderson (1993; A93), as a function of phytoplankton concentration.

Figure 1820. Simulations for all four stations station India comparing methods for calculating daily depth-integrated photosynthesis, standard run (numeric integration) and the algorithm of Anderson (1993) which is an empirical approximation of a full spectral model: a) chlorophyll and b) nitrate.

Figure 1921. Simulations for station Indiaall four stations showing model sensitivity to phytoplankton mortality. Parameters m_P (linear mortality) and m_P^2 (quadratic mortality) were set to zero in turn. a) chlorophyll, b) nitrate.

Figure 2022. Simulations for station Indiaall four stations showing model sensitivity for zooplankton mortality. Parameters m_Z (linear mortality) and m_Z^2 (quadratic mortality) were set to zero in turn. a) chlorophyll, b) nitrate.
Figure 1 Forcing used by Riley (1946) in his model of George’s Bank: a) Depths of euphotic zone and mixed layer; b) Diminution in photosynthesis due to light limitation (L_v).
Figure 2. Two layer slab physics framework (adapted from Steele, 1974).
Figure 3. Model forcing for stations India (60°N 20°W), BIOTRANS (47°N 20°W), Papa (50°N 145°W) and KERFIX (50° 40'S 68° 25'E): a) mixed layer depth (m), b) noon irradiance (W m⁻²), c) sea surface temperature (°C).
Figure 4. Structure of the NPZD model.
Figure 5. Photosynthesis-irradiance curves with parameter settings $V_p^{\text{max}} = 2.5 \text{ g C (g chl)}^{-1} \text{ h}^{-1}$ and $\alpha = 0.15 \text{ g C (g chl)}^{-1} \text{ h}^{-1} (\text{W m}^{-2})^{-1}$. Smith function (Eq. 7) and exponential function (Eq. 8).
Figure 6. Triangular versus sinusoidal patterns of diel irradiance illustrated for a 12 hour day and noon irradiance of 200 W m$^{-2}$.

![Graph showing triangular and sinusoidal irradiance patterns over the day.](image-url)
Figure 7. Contours of the zooplankton specific ingestion rates (I_P, I_D) versus densities of the two prey types ($P =$ phytoplankton and $D =$ detritus) as characterised by the sigmoidal grazing response (Eqs. 11, 12) using parameters $I_{\text{max}} = 1 \text{ d}^{-1}$, $k_Z = 0.52 \text{ mmol N m}^{-3}$, $\phi_P = 0.67$ and $\phi_D = 0.33$. Upper two panels illustrate assumed interference effect of one prey type over another, e.g. for a given P, increasing D reduces I_P. The lower panel illustrates assumed optimal feeding (i.e. total ingestion, I_{tot}, always increases with increase in P or D) and the benefit of generalism (i.e. increase in I_{tot} due to consumption of P and D vs. just P).
Figure 8. Structure of the model code.

<table>
<thead>
<tr>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNget_flux: calculates rates of change of terms in the differential equations, calling other functions to calculate irradiance, photosynthesis, etc.</td>
</tr>
<tr>
<td>Other functions to calculate irradiance, photosynthesis, etc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read in from files:</td>
</tr>
<tr>
<td>1. NPZD_parms.txt: parameter values</td>
</tr>
<tr>
<td>2. NPZD_extra.txt: initial conditions, location, run characteristics</td>
</tr>
<tr>
<td>Set up forcing: MLD, deep nitrate, cloud fraction, etc.</td>
</tr>
<tr>
<td>Set variables specific to model: no. of state variables, auxiliary variables, Etc. Set initial conditions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permanent code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic settings: set up matrices to store fluxes and outputs, etc.</td>
</tr>
<tr>
<td>Write initial values of state variables to file out_statevars.txt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time loop: years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time loop: days of year</td>
</tr>
<tr>
<td>Time loop: time steps over day</td>
</tr>
<tr>
<td>Calculate flux terms in differential equations: FNget_flux</td>
</tr>
<tr>
<td>Update state variables</td>
</tr>
<tr>
<td>Write to output files: out_statevars.txt, out_aux.txt, out_fluxes.txt</td>
</tr>
<tr>
<td>End time loops</td>
</tr>
</tbody>
</table>

Print summed annual fluxes to screen

Plot graphs on screen
Figure 9. SeaWiFS chlorophyll data for each of the four stations, years 1998 to 2013 overlaid, with selected median year (see text) highlighted.
Figure 10. Simulation for station BIOTRANS using first-guess parameters compared to data (year 2002) for a) chlorophyll and b) nitrate.
Figure 11. Simulation for station BIOTRANS after parameter tuning (see text): a) chlorophyll, b) nitrate.
Figure 12. Predicted state variables and fluxes for the station BIOTRANS simulation: a) P, Z and D and b) phytoplankton growth, grazing and non-grazing mortality.
Figure 13. Simulations for station India: a) chlorophyll, b) nitrate. Data are for year 1998.
Figure 14. Simulations for station Papa before and after parameter tuning: a) chlorophyll, b) nitrate. Data are for year 2007.
Figure 15. Simulations for station KERFIX before and after parameter tuning (see text for details): a) chlorophyll, b) nitrate. Data are for year 2006.
Figure 16. Simulations for station BIOTRANS showing sensitivity to choice of P-I curve: a) Smith function (standard run) and b) exponential function.
Figure 17. Simulations for station BIOTRANS showing sensitivity to choice of diel variation in irradiance: a) sinusoidal (standard run) and b) triangular.
Fig. 18

a) chlorophyll

- **BIOTRANS**
- chlorophyll, mg m$^{-3}$
 - 0.0
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0

b) nitrate

- **BIOTRANS**
- nitrate, mmol m$^{-3}$
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10

- **India**
- chlorophyll, mg m$^{-3}$
 - 0.0
 - 0.1
 - 0.2
 - 0.3
 - 0.4
 - 0.5

- **Papa**
- chlorophyll, mg m$^{-3}$
 - 0.0
 - 0.1
 - 0.2
 - 0.3
 - 0.4

- **KERFIX**
- chlorophyll, mg m$^{-3}$
 - 0.0
 - 0.1
 - 0.2
 - 0.3

- **India**
- nitrate, mmol m$^{-3}$
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10

- **Papa**
- nitrate, mmol m$^{-3}$
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25

- **KERFIX**
- nitrate, mmol m$^{-3}$
 - 0
 - 5
 - 10
 - 15
 - 20

Note: The graphs illustrate the concentrations of chlorophyll and nitrate over time, with data points showing the variability. Piecewise Beer's law and simple Beer's law are compared. The graphs are labeled with specific regions and months, indicating the data collection period.
Figure 18. Model simulations for all four stations showing sensitivity to choice of method for calculating light attenuation in the water column: a) piecewise Beer’s Law (Eq. 10) and b) simple Beer’s law (Eq. 9).
Figure 19. Light attenuation as predicted by Evans and Parslow (1985; EP85) and for the three layers (0-5, 5-23, >23m; 1,2,3 respectively) in Anderson (1993; A93), as a function of phytoplankton concentration.
Fig. 20

a) chlorophyll

b) nitrate

India

Papa

KERFIX

Anderson (1993)
Figure 20. Simulations for all four stations comparing methods for calculating daily depth-integrated photosynthesis, standard run (numeric integration) and the algorithm of Anderson (1993) which is an empirical approximation of a full spectral model: a) chlorophyll and b) nitrate.
Fig. 21

a) chlorophyll

b) nitrate

BIOTRANS

India

Papa

KERFIX

chlorophyll, mg m$^{-3}$

nitrate, mmol m$^{-3}$

month
Figure 21. Simulations all four stations showing model sensitivity to phytoplankton mortality. Parameters m_P (linear mortality) and m_{P2} (quadratic mortality) were set to zero in turn. a) chlorophyll, b) nitrate.
Fig. 22

a) chlorophyll

b) nitrate

India

Papa

KERFIX
Figure 22. Simulations for all four stations showing model sensitivity for zooplankton mortality. Parameters m_Z (linear mortality) and m_{Z^2} (quadratic mortality) were set to zero in turn. a) chlorophyll, b) nitrate.