
Supplementary Note S1

1.1 Introduction – Components of the contact force

The purpose of this note is to derive expressions used in the sea ice toolbox to calculate the
components of the total contact force between interacting grains (Fc,ij,n and Fc,ij,t in the main
text). In order to keep the notation concise and to limit the amount of indices used in the
symbols, the index ij will not be used in the following text unless it is absolutely necessary.
The amplitude of the two components can thus be written as:

Fc,n = knδn − γn
dδn
dt

, (1)

Fc,t = ktδt − γt
dδt
dt

, (2)

where, by definition, dδn/dt and dδt/dt denote the normal and tangential component, respec-
tively, of the relative velocity of the interacting particles. In a general case, the coefficients
kn, kt, γn, γt are functions of the displacement (δn and δt), as well as the shape, size and
material properties of interacting objects. Thus, the form of (1), (2) does not imply a linear
relationship between, e.g., the normal repulsive force and the overlap δn. The exact form of kn,
kt, γn, γt depends on the assumptions of a selected contact model and decides on the range of
applicability of the DEM configuration based on that model (monodisperse or polydisperse sys-
tems, perfectly elastic or viscoelastic particles, fast collisions or semi-permanent contact, etc.).
Among the models most frequently used in simulations of granular materials are the Hertzian
[3] and linear spring/dashpot models for elastic particles, and the Kuwabara and Kono model
for viscoelastic particles [5, 4, 2], which uses the Hertzian relation for the repulsive force (the
first term on the right-hand side of equation 1) complemented with a dissipative term describ-
ing the viscoelastic energy loss. Apart from the works cited above, valuable details concerning
(visco-)elastic contact models in a general context can be found, e.g., in [8, 9, 7, 10].
The models implemented in LIGGGHTS are described in the program documentation. They
are formulated for spherical particles, typically used in granular models. Thus, in order to
make the model suitable for sea ice simulations, analogous expressions for kn, kt, γn, γt had
to be implemented, taking into account cylindrical geometry of the particles. In the following,
the respective formulae – based on the Hertzian model – are derived and described; analogous
formulae for spherical particles are provided for the sake of completeness and comparison. (It
is worth noting that, apart from the force components discussed here, LIGGGHTS enables to
add two other types of forces, namely cohesion and rolling friction; they are not taken into
account in the sea ice toolbox and won’t be discussed here.)

1.2 Definitions

Let us consider two objects, i and j, made of materials characterized by elastic moduli and
Poisson ratios, Ei, νi and Ej , νj , respectively. In the following, we will consider two shapes of
objects: spheres and disks. In both cases, ri and rj denote the radius of the objects. In the
case of disks, additionally hi and hj denote their heights (thicknesses) and hm = min{hi, hj}.
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Let us define the effective radius rc and the effective mass mc of the objects as:

rc =
rirj

ri + rj
and mc =

mimj

mi +mj
, (3)

their effective contact modulus as:

Ec =

(
1− ν2i
Ei

+
1− ν2j
Ej

)−1

, (4)

and their shear modulus as:

Gc =
1

2

(
(2 + νi)(1− νi)

Ei
+

(2 + νj)(1− νj)

Ej

)−1

. (5)

For objects made of identical materials (Ei = Ej = E, νi = νj = ν):

Ec =
E

2(1− ν2)
and Gc =

E

4(2 + ν)(1− ν)
. (6)

The normal overlap (displacement) δn between the spheres/disks is measured along the line
connecting their centers and is defined as:

δn = ri + rj − |xi − xj |, (7)

where xi and xj denote the positions of the centers. For objects in contact with each other,
δn ≥ 0. The tangential displacement δt is measured in the direction perpendicular to that of
δn, i.e., within the plane of contact. It accounts for the “history” effects of the contact.
The essential difference between spherical and cylindrical objects in contact is the shape of the
contact surface. In the case of spheres, the contact area is circular, with a radius increasing
with increasing normal force; in the case of disks it is rectangular, with a constant height equal
to hm and width increasing with increasing normal force.
If one of the two objects (let’s say, j) is a wall, the equations derived further remain valid under
an assumption that rj denotes the local radius of curvature of the wall. For a flat wall, rj → ∞
(i.e., rc = ri and mc = mi), δn is calculated based on the normal distance of the object’s center
from the wall, and δt is calculated as a displacement of the object’s center in a direction parallel
to the wall.
Finally, a number of contact models make use of a relationship between the damping ratio β
and the restitution coefficient er. For underdamped systems:

β =
ln er(

ln2 er + π2
)1/2 . (8)

1.3 The Hertz contact mechanics

1.3.1 Two elastic spheres

Under the assumptions of the Hertz contact theory [3, 1, 10], under a normal force of the
magnitude Fc,n, the radius r0 of the contact circle between two elastic spheres is given by:

r0 =

(
3rcFc,n

4Ec

)1/3

, (9)
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and the normal displacement δn is given by:

δn =
r20
rc
. (10)

From (9) and (10), the force between two overlapping spheres equals:

Fc,n =
4

3
Ecδ

3/2
n r1/2c . (11)

Thus, kn in (1) is given as:

kn =
4

3
Ec(δnrc)

1/2. (12)

1.3.2 Two elastic cylinders

In this case, the normal displacement is given by [6] (see also [7] for the case of identical disks):

δn =
Fc,n

πhmEc

[
1 + ln

2πh3mEc

rcFc,n

]
. (13)

In DEM, Fc,n(δn) has to be calculated rather than δn(Fc,n). Unfortunately, whereas in the case
of spheres the exact form of Fc,n(δn) can be found easily – as given by (11) – expression (13)
cannot be inverted analytically and therefore an approximate solution has to be found. To this
end, we introduce the following non-dimensional variables:

δ∗n =
δnrc
2h2m

and F ∗
c,n =

rcFc,n

2πEch3m
, (14)

so that (13) can be written as:
δ∗n = F ∗

c,n(1− lnF ∗
c,n). (15)

In the present context, this equation is valid for F ∗
c,n ≪ 1, so that F ∗

c,n is an increasing function
of δ∗n, i.e., the overlap increases with the applied force. We search for an approximate solution
in the form:

F̃ ∗(δ∗n) = δ∗nf(δ
∗
n), (16)

where f denotes a function obtained by a least-square fit of a prescribed functional form
(see below) to numerically calculated set of pairs of values (δ∗n, F

∗
c,n/δ

∗
n). After returning to a

dimensional form, we obtain an approximate expression for the normal contact force between
two disks, Fc,n:

Fc,n = πEchmδnf

(
δnrc
2h2m

)
, (17)

so that kn in (1) is given by:

kn = πEchmf

(
δnrc
2h2m

)
, (18)

Generally, f(x) is a decreasing function, i.e., its values are larger for larger disk height hm
and smaller relative radius rc and normal displacement δn. In the sea ice toolbox, a rational
expression is used for f :

f(x) =
p1x

2 + p2x+ p3
x2 + q1x+ q2

. (19)
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Supplementary Figure 1: Exact (black crosses) and least-square-fit (red curve: rational fit, blue
curve: linear fit) solutions F ∗

c,n(δ
∗) of equation (15). The lower plot shows the relative error of

the rational fit.

The coefficients obtained for x ∈ [0, 0.2] are: p1 = 0.9117, p2 = 0.2722, p3 = 0.003324,
q1 = 1.524, and q2 = 0.03159. Figure 1 shows the approximate solution (red curve) and its
relative error – both in nondimensional form. Figure 2a–c illustrates how this approximation
performs for a number of (rc, hm) combinations. The contact force between spheres with the
same rc is shown for reference. Not surprisingly, for a given overlap δn, the difference between
the contact force for spheres and disks increases with increasing disk height – this difference
is a measure of the error that is made when the original LIGGGHTS model, suitable for
spherical geometry, is used for disk-shaped particles. Also, as can be seen in Fig. 2a–c, the
error of the approximate model (20),(19) remains small for a wide range of rc and hm values,
which is particularly important in view of the very strong polydispersity of sea ice. Noticeable
overestimation is present only for very small rc and large hm (blue curve in Fig. 2a); noticeable
underestimation – for large rc and small hm (green curve in Fig. 2c). Generally, equation (3)
implies that 0 < rc ≤ 1

2 max{ri, rj}, with small rc in situations when at least one of the disks
is very small, and with large rc in situations when both disks are large. Hence, the contact
force will tend to be slightly overestimated for thick and small disks and underestimated for
thin and large disks.
Finally, it is worth noting that instead of (13), a simple linear expression for Fc,n(δn) is some-
times used in DEMs in the form:

Fc,n =
π

4
hmEcδn, (20)

in which the repulsive force does not depend on rc. For the sake of comparison, this solution
is shown in Figs. 1 (blue curve) and 2d for the same set of hm as in Fig. 2a–c.
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Supplementary Figure 2: Normal contact force Fc,n between pairs of spheres (black) and disks
with various height hm (color). In panels (a–c), values obtained with the exact formula (13) are
shown with crosses, and values obtained with the rational approximation (20),(19) are shown
with continuous curves, for rc = 2 m (a), rc = 50 m (b), and rc = 200 m (c). Panel (d) shows
values obtained with the linear approximation (20), which does not depend on rc. Calculations
performed for Ec = 5.05 · 106 Pa.

1.4 The viscoelastic models in LIGGGHTS

As already mentioned, in a number of viscoelastic contact models the Hertzian theory is used to
calculate the normal repulsive force (i.e., the kn coefficient), as well as to estimate the shear and
damping terms in (1) and (2). In LIGGGHTS, two versions of the linear (Hookean) model and
two versions of the Kuwabara and Kono (Hertzian) model are available, each for objects with
spherical geometry. In a simple version of the Hertzian model, the coefficients in (1),(2) are
calculated based on user-specified constants k̄n, k̄t, γ̄n, γ̄t representing the analyzed material:

kn =
√
rcδnk̄n, (21)

kt =
√
rcδnk̄t, (22)

γn =
√
rcδnmcγ̄n, (23)
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γt =
√
rcδnmcγ̄t. (24)

In its full version, kn is calculated from (12) and the remaining coefficients are given by:

kt = 6
Gc

Ec
kn, (25)

γn = −β
√
5knmc, (26)

γt = −2β

√
5
Gc

Ec
knmc. (27)

Exactly this model is used in the sea ice toolbox, with the only difference being that kn is
calculated from (18),(19).
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Supplementary Figure 3: Amplitude of the maximum normal (a,c,e) and shear (b,d,f) stress
due to bonded interactions in simulations under uniaxial tensile strain, with variable model
parameters.
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Supplementary Figure 4: Example damage patterns obtained in simulations of an initially
compact sample under uniaxial compressive strain with ε0 = 0.5 · 10−4 s−1 (left) and ε0 =
0.35 · 10−4 s−1 (right). Thick gray lines show the bonds between grains. Model parameters as
in the reference run except ε = 0.40 · 10−4 s−1 (a) and ε = 0.35 · 10−4 s−1 (b).

Supplementary Figure 5: Rank-order statistics of floe sizes (a: number of grains in a floe; b: floe
surface area) obtained in simulations with different mean bond thickness hm. The dashed line
in (b) marks the area of the largest individual grain in the ensemble. Results of the reference
run are shown with crosses.
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Supplementary Figure 6: As in Fig. 5, but for simulations with different width of bond-thickness
distribution δh.

Supplementary Figure 7: As in Fig. 5, but for simulations with different bond elastic modulus
Eb.
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