Abstract

Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., $V_{c,max25}$) and the maximum electron transport rate (i.e., J_{max25}) at a reference temperature (generally 25°C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably capture the observed patterns of photosynthetic capacity as it explained approximately 55% of the variation in observed $V_{c,max25}$ and 65% of the variation in observed J_{max25} across the globe. Our model simulations under current and future climate conditions indicated that simulations of $V_{c,max25}$ based on this new optimization strategy were most affected in high-latitude regions under a warming climate and that ESMs using a fixed $V_{c,max25}$ or J_{max25} by plant functional types were likely to substantially overestimate future global photosynthesis.

Keywords: carbon cycle, climate variables, leaf nitrogen optimization and model-data synthesis
1. Introduction

Photosynthesis is one of the major components of the ecosystem carbon cycle (Canadell et al., 2007; Sellers et al., 1997) and is thus central to Earth system models (ESMs) (Block and Mauritsen, 2013; Hurrell et al., 2013). Most of the ESMs are based on photosynthesis models developed by Farquhar et al. (1980), which are particularly sensitive to photosynthetic capacity. The maximum carboxylation rate scaled to 25°C [i.e., $V_{c,max25}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$)] and the maximum electron transport rate scaled to 25°C [i.e., J_{max25} (μmol electron m$^{-2}$ s$^{-1}$)] have been generally accepted as the measure of photosynthetic capacity. $V_{c,max25}$ and J_{max25} are the key biochemical parameters in the photosynthesis models as they control the carbon fixation process (Farquhar et al., 1980). There exist large variations in estimates of gross primary productivity in space and time across ESMs (Schaefer et al., 2012), which have been partly attributed to uncertainties in $V_{c,max25}$ (Bonan et al., 2011). Accurate estimations of $V_{c,max25}$ and J_{max25} are needed to simulate gross primary productivity because errors of $V_{c,max25}$ and J_{max25} may be exacerbated when upscaling from leaf to ecosystem level (Hanson et al., 2004).

Our ability to make reliable predictions of $V_{c,max25}$ and J_{max25} at a global scale is limited. One of the reasons is that we do not have a complete understanding of the processes influencing $V_{c,max25}$ and J_{max25} (Maire et al., 2012; Xu et al., 2012) despite the fact that $V_{c,max25}$ has been measured and studied more extensively than many other photosynthetic parameters (Kattge and Knorr, 2007; Leuning, 1997; Wullschleger, 1993). Many empirical studies have shown that $V_{c,max25}$ and J_{max25} (or field-based surrogates) correlate with leaf nitrogen content (Medlyn et al., 1999; Prentice et al., 2014; Reich et al., 1998; Ryan, 1995; Walker et al., 2014). Therefore, a constant relationship between the leaf nitrogen content and $V_{c,max25}$ or J_{max25} is commonly utilized by many ecosystem models (Bonan et al., 2003; Haxeltine and Prentice, 1996; Kattge et al.,...
2009). The relationship between leaf nitrogen content, $V_{c,max25}$ and J_{max25} varies with different light, temperature, nitrogen availability and CO$_2$ conditions (Friend, 1991; Reich et al., 1995; Ripullone et al., 2003), and therefore, the prescribed relationship of $V_{c,max25}$, J_{max25} and leaf nitrogen content might introduce significant biases into predictions of future photosynthetic rates, and also the downstream carbon cycle and climate processes that are dependent on these predictions (Bonan et al., 2011; Knorr and Kattge, 2005; Rogers, 2014).

To better account for the relationships between photosynthetic capacities and their environmental determinants, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) at the global scale that accounts for the key drivers (temperature, radiation, humidity, CO$_2$ and day length) contributing to the variability in the relationship between leaf nitrogen, $V_{c,max25}$ and J_{max25}. Based on the theoretically optimal amount of leaf nitrogen allocated to different processes, the LUNA model predicts $V_{c,max25}$ and J_{max25} under different environmental conditions. We estimate the LUNA model parameters by fitting the model predictions to observations of $V_{c,max25}$ and J_{max25}. In order to assess the impacts of future climate change on photosynthesis, we used the calibrated LUNA model to estimate the summer season net photosynthetic rate using predicted $V_{c,max25}$ and J_{max25} under historical and future climate conditions. We conclude that ESMs using a fixed $V_{c,max25}$ or J_{max25} by plant functional types (PFTs) are likely to substantially overestimate future global photosynthesis.

2. Methodology

2.1. Overview

Our LUNA model (version 1.0) is based on the nitrogen allocation model developed by Xu et al. (2012), which optimizes nitrogen allocated to light capture, electron transport, carboxylation, and
respiration. Xu et al. (2012) considered a series of assumptions on the model to generate optimized nitrogen distributions, these were (i) that storage nitrogen is allocated to meet requirements to support new tissue production; (ii) respiratory nitrogen is equal to the demand implied by the sum of maintenance respiration and growth respiration; (iii) light capture, electron transport and carboxylation are co-limiting to maximize photosynthesis. Xu et al.’s model needs to be calibrated, and has thus far been tested for three sites. Here, we expand on the work of Xu et al. (2012) to allow global predictions of nitrogen allocation, by fitting the model parameters to an expanded photosynthetic capacity data set. To make global predictions feasible, we also made important refinements to the model by considering the impacts of both day length and humidity, and the variations in the balance between light-limited electron transport rate and the Rubisco-limited carboxylation rate in accordance with recent theory. We used an efficient Markov Chain Monte Carlo simulation approach, the Differential Evolution Adaptive Metropolis Snooker Updater (DREAM-ZS) algorithm (Laloy and Vrugt, 2012), to fit the nitrogen allocation model to a large dataset of observed \(V_{c,max} \) and \(J_{max} \) collected across a wide range of environmental gradients (Ali et al., 2015). After model fitting, a sensitivity analysis was performed to gauge the response of the model to parametric variation and to environmental drivers (temperature, photosynthetic active radiation, day length, relative humidity and atmospheric \(\text{CO}_2 \) concentration). Finally, using climate projections from the Community Climate System Model (CCSM), mean summer-season \(V_{cmax25} \) and \(J_{max25} \) and their impacts on net photosynthesis were estimated for the globe.

2.2. Model description

The structure of \textit{LUNA} model is based on Xu et al. (2012), where plant leaf nitrogen is divided into four pools: structural nitrogen, photosynthetic nitrogen, storage nitrogen and respiratory
nitrogen. We assume that plants optimize their nitrogen allocation to maximize the net photosynthetic carbon gain, defined as the gross photosynthesis (A) minus the maintenance respiration for photosynthetic enzymes (R_{psn}), under specific environmental conditions and given the leaf nitrogen use strategy determined by four parameters in the LUNA model. These four parameters in the model include 1) J_{maxb0} (unitless) specifies baseline proportion of nitrogen allocated for electron transport rate; 2) J_{maxb1} (unitless) determines electron transport rate response to light; 3) $t_{c,j0}$ (unitless) specifies the baseline ratio of Rubisco-limited rate to light-limited rate; and 4) H (unitless) determines electron transport rate response to relative humidity.

The model uses area-based leaf nitrogen content and different environmental conditions (temperature, CO$_2$, radiation, relative humidity and day length) as model inputs and predicts $V_{c,\text{max}25}$ and $J_{\text{max}25}$ based on the optimal amount of nitrogen allocated to different processes.

It is important to point out that the optimization in LUNA model is a conditional optimization given the plant’s nitrogen use strategies built into the model. Thus, it is possible that “optimal” values of $V_{c,\text{max}25}$ and $J_{\text{max}25}$ predicted by the LUNA model for future climate conditions could have a lower net photosynthetic gain compared to fixed values of $V_{c,\text{max}25}$ and $J_{\text{max}25}$, where the plant does not follow the nitrogen use strategies built into the LUNA model. An example is shown in Fig. S1 where the “optimal” net photosynthetic carbon gain using the nitrogen allocation predicted by LUNA model for the elevated temperature is lower than that using fixed nitrogen allocation predicted for the ambient temperature. A complete description of the LUNA model and the detailed associated optimization algorithms are provided in Appendix A. This optimality approach was introduced and tested by Xu et al. (2012) for only three test cases, and here we assess its fidelity at large spatial scale with improvement to account for large scale variability. Optimality approaches are important tools for land surface models, in that they...
provide a specific testable hypothesis for plant function (Dewar, 2010; Franklin et al., 2012; Schymanski et al., 2009; Thomas and Williams, 2014).

2.3. Data and temperature response functions

Details of data collection are stated in Ali et al. (2015). Specifically, we conducted a literature search on Google Scholar to locate publications that included words “$V_{c,\text{max}}$” or “J_{max}” and also contained “leaf nitrogen content”, “maximum carboxylation rate”, “maximum electron transport rate”, “leaf mass per area”, or “specific leaf area”. Individual values of $V_{c,\text{max}}$, J_{max}, area-based leaf nitrogen content (LNC_a, g N/m² leaf) and leaf mass per unit leaf area (LMA, g dry mass/ m² leaf) were then obtained by digitizing data from the literature. We used all of the data from Ali et al. (2015) with the exception of one study that collected seasonal data on $V_{c,\text{max}}$ and J_{max} during prolonged drought (Xu and Baldocchi, 2003), in view that our model only consider the optimal nitrogen allocation based on the monthly climate conditions but did not consider the potential enzyme deterioration due to long-term droughts. In summary, we used 766 data points for $V_{c,\text{max}}$ and 643 data points for J_{max} ranging from tropics to the arctic with a total of 125 species. The data include evergreen and deciduous species from arctic, boreal, temperate and tropical areas from different times of the season and different canopy locations (Fig. S2).

To allow comparisons of $V_{c,\text{max}}$ and J_{max} data collected at different temperatures, we first standardized data to a common reference temperature (25°C). To do this, we employed temperature response functions (TRFs). Because of issues related to the possibility of acclimation to temperature, the appropriate TRF to use is not yet a matter of scientific agreement (Yamori et al., 2006). To test the potential impact of our decision on the outcome of the study,
we used two alternative temperature response functions in this study. The first temperature
response function (TRF1) used Kattge & Knorr’s (2007)’s algorithm, which empirically accounts
for the potential for acclimation to growth temperature. Following the Community Land Model
version 4.5, the growth temperature is constrained between 11°C and 35°C (Oleson et al., 2013)
to limit the extent of acclimation to growth temperatures found in the calibration data set. The
second temperature response function (TRF2) did not consider change in temperature response
coefficients to growth temperature (Kattge and Knorr, 2007). See Appendix B for details of
TRF1 and TRF2.

Because the LUNA model is based on the C3 photosynthetic pathway, in this study, we
only consider C3 species. Typically, plant species are grouped into several simple PFTs in ESMs
because of computational limitations and gaps in the ecological knowledge. In view that the
processes considered in LUNA model are universal across all C3 species and limited coverage of
environmental conditions for individual plant functional types, our LUNA model does not
differentiate among PFTs for C3 species. Namely, we have a single model for all C3 PFTs.

2.4. Parameter estimation

The four parameters in the LUNA model are difficult to measure in the field. In this study, we
estimate these parameters by fitting out model against observations of $V_{c,\text{max}25}$ and $J_{\text{max}25}$ data
using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) method (Vrugt et al., 2008,
2009; Laloy and Vrugt, 2012). We used the DREAM(ZS) algorithm (Vrugt et al., 2008, 2009;
Laloy and Vrugt, 2012) to calibrate our model because this method uses differential evolution as
a genetic algorithm for population evolution with a Metropolis selection rule to decide whether
candidate points should replace their parents or not. This simple Markov Chain Monte Carlo
(MCMC) method exhibits excellent sampling efficiencies on a wide range of model calibration
problems, including multimodal and high-dimensional search problems. A detailed description of DREAM(ZS) appears in Vrugt et al., (2008, 2009) and Laloy and Vrugt (2012) and interested readers are referred to these publications. A simple Gaussian likelihood function (No.4 in DREAM(ZS)) was used to compare our model simulations of $V_{c,max25}$ and J_{max25} with their observed counterparts. Examples of convergence of the parameters are presented in Fig. S3 and S4.

2.5. Model evaluations

In this study, we considered two statistical metrics to analyze the performance of the LUNA model against the $V_{c,max}$ and J_{max} data. They are the coefficient of determination (r^2) (Whitley et al., 2011) and the model efficiency (ME) (Whitley et al., 2011). The r^2 is estimated using the linear regression model for observed values versus the predicted values. It measures the proportion of variance in $V_{c,max}$ or J_{max} data explained by the model. The model efficiency is given as

$$ME = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2},$$

where y_i are the observations, \hat{y}_i are the model estimates and \bar{y} is the mean of observations. It measures the proportion of variance in the $V_{c,max}$ or J_{max} data explained by the 1:1 line between model predictions and observations (Mayer and Butler, 1993; Medlyn et al., 2005). The ME can range between 0 and 1, where a ME=1 corresponds to a ‘perfect’ match between modelled and measured data and a ME=0 indicates that the model predictions are only as accurate as the mean of the measured data.

2.6. Model sensitivity analysis

We conducted two sensitivity analyses of our model to identify the importance of the model parameters and the environmental variables. In the first sensitivity analysis, each value of
the model parameter (J_{maxb0}, J_{maxb1}, $t_{c,j0}$, and H) was perturbed, one at a time, by +/-15% of their fitted values, to measure the importance of model parameters to modeled $V_{c,max25}$ and J_{max25}. In the second sensitivity analysis, the environmental variables (day length (hours), daytime radiation (W m$^{-2}$), temperature (°C), relative humidity (unitless), and carbon dioxide (ppm)) were perturbed, one at a time, by +/-15% of their mean values to identify which environmental variable was most likely to drive modeled $V_{c,max25}$ and J_{max25}.

2.7. Changes in $V_{c,max25}$ and J_{max25} under future climate projections

Global surface temperature by year 2100 (relative to present day) could increases by 3.9°C (Friedlingstein et al., 2014), with large variations across different regions of the globe (Raddatz et al., 2007). Given the dependence of photosynthesis on temperature, it is critical to examine how much future photosynthesis is likely to change in different regions. In this study, we aim to investigate the importance of changes in $V_{c,max25}$ and J_{max25} as predicted by the LUNA model to the net photosynthesis rate (A_{net}) estimation in future. The importance is measured by the percentage difference in the estimation of future mean A_{net} for the top canopy leaf layer during the summer season by using $V_{c,max25}$ and J_{max25} estimated for historical climate conditions or the $V_{c,max25}$ and J_{max25} estimated for future climate conditions (See Appendix C for details of A_{net} calculation).

We used Coupled Climate Carbon Cycle Model Intercomparison Project Phase 5 (CMIP5) (Meehl et al., 2000) model outputs to obtain projections of the future climate. Climate modelers have developed four representative concentration pathways (RCPs) for the 21st century that correspond to different amounts of greenhouse gas emissions (Taylor et al., 2013). In this study, we used the historical and future climate conditions simulated by the CCSM 4.0 model
under the emission scenario of RCP8.5, which considers the largest greenhouse gas emissions. We did not consider other models and emission scenarios because our main purpose is to estimate the potential impact of our nitrogen allocation model on photosynthesis estimation but not to do a complete analysis under all CMIP5 output. Specifically, we used ten-year climate conditions between 1995 and 2004 for historical and the ten-year climate conditions between 2090 and 2099 for future. We present optimal $V_{c,\text{max}25}$ and $J_{\text{max}25}$ predictions for the peak growing season months. Data from the NOAA Earth System Research Laboratory over the years 1950 to 2010 (Riebeek, 2011) showed that the maximum amount of carbon dioxide drawn out of the atmosphere occurs in August and February by the large land masses of Northern and Southern hemisphere, respectively. As a result, June, July and August months were used in this study as the summer season for Northern hemisphere and December, January and February months were considered as the summer season for the Southern Hemisphere. $V_{c,\text{max}25}$ and $J_{\text{max}25}$ were predicted using the average values of the climate variables for June, July, August and November, December, January for Northern, Southern hemispheres, respectively.

In order to identify the importance of changes in different climate variables (temperature, CO$_2$, radiation and relative humidity) to modeled changes in $V_{c,\text{max}25}$ and $J_{\text{max}25}$ in the future, we conducted a third sensitivity analysis to investigate the impact of changes in climate variables on model results. In contrast to the previous two sensitivity analyses that focus on the mean current climate conditions, the purpose of the third sensitivity analysis was to explore the global pattern in sensitivity of $V_{c,\text{max}25}$ and $J_{\text{max}25}$ to changes in climate variables across different biomes of the globe in the future. Specifically, we measured the importance of changes in a specific climate variable by the difference in $V_{c,\text{max}25}$ and $J_{\text{max}25}$ predicted by the LUNA model driven by historical
values or future values of the specific climate variable of interest with all other climate variables
set as their historical values.

3. Results

3.1. Model-data comparison of $V_{c,max25}$ and J_{max25}

The DREAM inversion approach allowed us to estimate the four parameters in our LUNA model
(Table 1). Using the fitted model parameters, the LUNA model explained 54% of the variance
of observed $V_{c,max25}$ across all of the species (Fig. 1a) and 65% of the variance in observed J_{max25}
(Fig. 1b) using temperature response function TRF1 (a temperature response function that
considered the potential of acclimation to growth temperature). When temperature response
function TRF2 (a temperature response function that did not consider change in temperature
response coefficients to growth temperature) was used, the LUNA model explained 57% of
variance in observed $V_{c,max25}$ (Fig. 1c) and 66% of the variance in observed J_{max25} (Fig. 1d) across
all of the species. By comparing the model predictions with only the studies that reported
seasonal cycles of $V_{c,max25}$ and J_{max25}, we found the model explained 67 and 53% of the variance
in observed $V_{c,max25}$ and J_{max25}, respectively, when TRF1 was used (see Fig. S5 a, b in the
supplementary file). The model explained 67 and 54% of the variance in observed $V_{c,max25}$ and
J_{max25}, respectively, when TRF2 was used (Fig. S5 c, d).

Our model also performed well for different PFTs. When using TRF1, for herbaceous plants,
the LUNA model explained about 57% of the variance in observed $V_{c,max25}$ (Fig. S6a). The
model explained about 58 and 47% of the variance in observed $V_{c,max25}$ for shrubs (Fig. S6b) and
for trees (Fig. S6c), respectively. For the electron transport, the LUNA model explained about
49, 85 and 46% of the variances in observed J_{max25} for herbaceous plants (Fig. S6d), shrubs (Fig. S6e) and trees (Fig. S6f), respectively.

When we used a fixed temperature response curve under different growth temperatures (TRF2), for shrubs, the LUNA model has a slightly higher predictive power. It explained about 63% of the variances in observed $V_{c,max25}$ (Fig. S7 b). Across TRF1 and TRF2, the LUNA model explained similar amount of variance in observed $V_{c,max25}$ for herbaceous and trees (Fig. S7 a, c).

For J_{max25}, the LUNA model explained a similar amount of variability for herbaceous, shrubs and trees for TRF1 (Fig. S6 d-f) and TRF2 (Fig. S7 d-f).

3.2. Model sensitivity analysis

Sensitivity analysis of the four model parameters (Table 1) showed that all the four parameters had positive effects on $V_{c,max25}$ (Fig. 2 a, c) and J_{max25} (Fig. 2 b, d) regardless of the temperature response function used. $t_{c,J0}$ had the strongest effect on $V_{c,max25}$ (Fig. 2 a, c) while J_{maxb0} had the strongest effect on J_{max25} (Fig. 2 b, d). H had little impact on either $V_{c,max25}$ and J_{max25} (Fig. 2 a-d).

Sensitivity analysis of the climate variables showed that, under both temperature response functions (TRF1 and TRF2), the key drivers of change in $V_{c,max25}$ were radiation, day length, temperature, CO$_2$ and relative humidity in order of decreasing importance (Fig. 3 a, c). For J_{max25}, the main drivers of change in J_{max25} were day length, temperature, radiation, relative humidity and CO$_2$ in order of decreasing importance (Fig. 3 b, d), irrespective of which temperature response functions were used.

3.3. Impacts of climate change on $V_{c,max25}$ and J_{max25}
Across the globe, the gradient of $V_{c,max25}$ and J_{max25} is similar irrespective of whether TRF1 or TRF2 was used (Fig. 4 and Fig. S8). Under historical conditions, regions from higher latitudes are predicted to have relatively high $V_{c,max25}$ and J_{max25} while lower latitudes are predicted to have relatively low $V_{c,max25}$ and J_{max25} (Fig. 4a,c for TRF1; Fig. S8a, c for TRF2). Future climatic conditions are likely to decrease $V_{c,max25}$ in many continents mainly due to the predicted increase in temperature and CO$_2$ concentration (Fig. 4b for TRF1; Fig. S8b for TRF2). J_{max25} is predicted to decrease at higher latitudes but slightly increasing at lower latitudes (Fig. 4d for TRF1 and Fig. S8b for TRF2).

Our results showed that $V_{c,max25}$ was most sensitive to CO$_2$, temperature, radiation and relative humidity in order of decreasing importance (Fig. 5 a-d for TRF1 and Fig. S9a-d for TRF2). J_{max25} was most sensitive to temperature, radiation, relative humidity and CO$_2$ in order of decreasing importance (Fig. 6 a-d for TRF1 and Fig. S10a-d for TRF2). Across the globe, temperature had negative impacts on $V_{c,max25}$ when using TRF1 (Fig. 5a); however, $V_{c,max25}$ was found to be increasing at the lower latitudes when using TRF2 (Fig. S9a).

Our model showed that the future summer-season mean photosynthetic rate at the top leaf layer could be substantially overestimated if we does not consider the acclimation of $V_{c,max25}$ and J_{max25} for the future (i.e., using the $V_{c,max25}$ and J_{max25} estimated for historical climate conditions) (Fig. 7a, b), especially for regions with high temperatures (Fig. S11). Compared to the model using TRF1, the overestimation of future summer-season mean photosynthesis rates is much higher than the model using TRF2 (Fig. 7b). The overestimation of total global net photosynthetic rate is 10.1 and ~16.3% for TRF1 and TRF2, respectively.

4. Discussion
4.1. Model limitations

The assumption that nitrogen is allocated according to optimality principles explained a large part of variability in $V_{c,max}$ (~55%) and in J_{max} (~65%) at the global scale, regardless of the temperature response functions used. It also captured well the seasonal cycles and the PFT-specific values of $V_{c,max}$ and J_{max} (Fig. S5-7). It has a much improved fitting to the data compared to a multi-linear regression model using LNC_a and LMA as predictors, which only explained ~22% of the variance in observed $V_{c,max}$ (Fig. S12 a, d) and ~13% of the variance in observed J_{max} (Fig. S12 b, d) for both temperature response functions. These results suggest that our model is able to capture many of the key components of the drivers for $V_{c,max}$ and J_{max} across the globe both in space as well as in time. The remaining portion of uncertainty that cannot be explained by our LUNA model could be related to variability within the 125 species considered in this study. There are inherent intraspecific variations in leaf traits (Valladares et al., 2000) and in photosynthetic capacity (Moran et al., 2015). Data availability limited the number of species that can be considered and favored a universal LUNA model as separate species normally did not cover a sufficiently large range of environmental conditions. Yet, we should be able to fit our model to specific PFTs when additional data become available with a large enough coverage of environmental conditions. We expect that such a model would be able to describe and capture adequately a larger portion of the variability observed in $V_{c,max}$ and J_{max}.

Unexplored nutrient limitations and other plant physiological properties could also play a factor in the limitation of our model. For example, the nitrogen use efficiency of tropical plants (typically modest to low nitrogen) can be diminished by low phosphorus (Cernusak et al., 2010; Reich and Oleksyn, 2004), suggesting that our model could be improved by considering multiple
nutrient limitations (Goll et al., 2012; Walker et al., 2014; Wang et al., 2010). Our treatment of photosynthetic capacity could also be improved by incorporating species-specific mesophyll and stomatal conductance (Medlyn et al., 2011), by analyzing leaf properties such as leaf life span (Wright et al., 2004), or by considering soil nutrient, soil water availability, and soil pH (Maire et al., 2015).

Another potential reason why the model is unable to explain a significant part of uncertainty in the observation is due to that fact that the measurement error on $V_{c,\text{max}25}$ and $J_{\text{max}25}$ is rarely reported in the literature. Measurement errors on $V_{c,\text{max}25}$ and $J_{\text{max}25}$ could result from many sources. Firstly, through different statistical fitting approaches used to fit the Farquhar et al. model (Dubois et al., 2007; Manter and Kerrigan, 2004) to determine the transition C_i value (the value of C_i used to differentiate between Rubisco and RUBP limitations), which are not yet consistent in the literature (Miao et al., 2009). Secondly, obtaining accurate or biologically realistic estimates of dark respiration is often challenging (but see Dubois et al., 2007), and as such, dark respiration is sometimes not reported (Medlyn et al., 2002b).

4.2. Importance of environmental control on $V_{c,\text{max}25}$ and $J_{\text{max}25}$

Our model predicts that higher temperatures generally lead to lower values of $V_{c,\text{max}25}$ and $J_{\text{max}25}$ (Fig. 3a, c). As temperature increases, the nitrogen use efficiencies of $V_{c,\text{max}}$ and J_{max} also increase and thus plants need a lower amount of nitrogen allocated for carboxylation and electron transport. This is true for all the sites except for $V_{c,\text{max}25}$ in the hotter regions when TRF2 was used (Fig. S9a). The reason is because LUNA model will use a higher increase in night-time temperature (e.g., 22 to 30°C) than daytime temperature (e.g., from 31 to 33°C), because the daytime temperature is constrained by the maximum temperature for optimization in TRF2 (i.e.,
33°C). To maximize the net photosynthetic carbon gain, the model predicts a higher proportion of nitrogen allocated to carboxylation to compensate for a higher nighttime respiration rate. Therefore, the LUNA model predicts a higher value of $V_{c,max25}$. Yet, this may result from the deficiency of TRF2 by not considering thermal acclimation under future global warming (Lombardozzi et al., 2015).

Our model predicts that CO$_2$ has negligible effects on J_{max25}, which is supported by reports from other studies (e.g. Maroco et al., 2002). A meta-analysis of 12 FACE experiments indicated reductions of J_{max} of approximately 5% but a 10% reduction in $V_{c,max25}$ under elevated CO$_2$ (Long et al., 2004). Our model also predicts that relative humidity has little effect on $V_{c,max25}$. This may be due to the fact that most of the values of $V_{c,max25}$ and J_{max25} used in our dataset were reported with relatively high humidity values; however, our model may have underestimated the effects of prolonged drought on $V_{c,max25}$ under low humidity conditions (Xu and Baldocchi, 2003), which we did not consider. Under prolonged drought, plants close their stomata and photosynthesis is greatly reduced (Breshears et al., 2008; McDowell, 2011). Without carbon input and high temperatures during drought, photosynthetic enzymes may degenerate, which could decrease $V_{c,max25}$ substantially (Limousin et al., 2010; Xu and Baldocchi, 2003).

There are many different ways to incorporate environmental controls on $V_{c,max25}$ and J_{max25}. One simple approach is to use empirical statistical models between environmental variables and $V_{c,max25}$ and J_{max25} (e.g. Ali et al., 2015; Verheijen et al., 2013), which has been shown to improve the model simulations (Verheijen et al., 2015). One key limitation of such models is that they may have risk of inaccurate extrapolation under novel future climate conditions. The optimization model such as LUNA could be more reliable in their predictions under novel future climate conditions as they account for the key assumptions that could be robust under different
environmental conditions. By far, optimality approaches have been used to predict many different plant structures and functions under different environmental conditions such as carbon allocations (Franklin et al., 2012), leaf C:N (Thomas and Williams, 2014), root distribution (McMurtrie et al., 2012), and stomata conductance (Cowan and Farquhar, 1977). For the photosynthetic capacity optimization, Haxeltine and Prentice (1996) has used an optimization approach to predict $V_{c,max}$ based on the trade-off between photosynthesis and respiration, which has been incorporated into land surface models including LPJ-GUESS (Smith et al., 2001) and LPJmL (Sitch et al., 2003). Both LUNA model and the model of Haxeltine and Prentice (1996) considered the $V_{c,max}$ component and respiration; however, LUNA model is currently only designed for the leaf level while model of Haxeltine and Prentice (1996) is applicable for both the leaf and canopy level. The key improvements of LUNA model include the explicit considerations of other important processes such as light capture and electron transport and 2) the evaluations against global datasets under different environmental conditions.

4.3. Importance of changes in $V_{c,max}$ and J_{max} to future photosynthesis estimation

Our model suggests that most regions of the world will likely have reductions in $V_{c,max}$ (Fig. 4b and Fig. S8b), because increased temperature (Fig. S13) coupled with elevated CO$_2$ will increase nitrogen use efficiency of Rubisco and thus plants are able to reduce the amount of nitrogen allocated for Rubisco to reduce the carbon cost required for enzyme maintenance. Similarly, J_{max} will also decrease globally, except in regions where the present growing temperatures are high (Fig. S12b). The increase of J_{max} can be attributed to leaf temperature limitation and increased shortwave radiation (Fig. S14 and S15). Temperature will have a small impact on nitrogen allocation in regions with historically high growing season temperatures because leaf
temperature in already close to or high than the upper limit of optimal nitrogen allocation (42°C for TRF1 and 33°C for TRF2). Based on eq. (A11), higher levels of shortwave solar radiation will increase nitrogen allocation to electron transport (Evans and Poorter, 2001).

If we do not account for the potential acclimation of $V_{c,max25}$ and $V_{c,max25}$ under future climate conditions as predicted by the LUNA model, our analysis indicates that ESM predictions of future global photosynthesis at the uppermost leaf layer will likely be overestimated by as much as 10-16% if $V_{c,max25}$ and J_{max25} are held fixed (Fig. 7). The higher overestimation for TRF2 (16.3%) than TRF1 (10.1%) could result from the fact that TFR2 does not account for future thermal acclimation and thus the LUNA model predicts a large nitrogen allocation acclimation for future climate change. In both cases, our results suggest that, to reliably predict global plant responses to future climate change, ESMs should incorporate models that use environmental control on $V_{c,max25}$ and J_{max25}. It has been recently suggested that nitrogen-related factors are not well represented in ESMs (Houlton et al., 2015; Wieder et al., 2015). Our nitrogen partitioning scheme would help alleviate biases into the predictions of future photosynthetic rates, and also climate processes that are dependent on these predictions (Bonan et al., 2011; Knorr and Kattge, 2005; Rogers, 2014).

5. Code availability

This LUNA model has been implemented into CLM5.0 which will be openly available after its release in early 2016. Meanwhile, we have codes available in the form of MATLAB, FORTRAN and C#. They can be obtained upon request by sending an email to cxu@lanl.gov.
6. Appendices

Appendix A: Leaf Utilization of Nitrogen for Assimilation (LUNA) Model

The LUNA model (Xu et al., 2012) considers nitrogen allocation within a given leaf layer in the canopy that has a predefined leaf-area-based plant leaf nitrogen availability (LNCₐ; gN/m² leaf) to support its growth and maintenance. The structure of the LUNA model is adapted from Xu et al. (2012), where the plant nitrogen at the leaf level is divided into four pools: structural nitrogen (Nstr; g N/m² leaf), photosynthetic nitrogen (Npsn; g N/m² leaf), storage nitrogen (Nstore; g N/m² leaf), and respiratory nitrogen (Nresp; g N/m² leaf). Namely,

\[LNC_a = N_{psn} + N_{str} + N_{store} + N_{resp}. \]

(A1)

The photosynthetic nitrogen, Npsn, is further divided into nitrogen for light capture (Nlc; g N/m² leaf), nitrogen for electron transport (Net; g N/m² leaf), and nitrogen for carboxylation (Ncb; g N/m² leaf). Namely,

\[N_{psn} = N_{et} + N_{cb} + N_{lc}. \]

(A2)

The structural nitrogen, Nstr, is calculated as the multiplication of leaf mass per unit area (LMA: g biomass/m² leaf), and the structural nitrogen content (SNC: g N/g biomass). Namely,

\[N_{str} = SNC \cdot LMA, \]

(A3)

where SNC is set to be fixed at 0.002 (gN/g biomass), based on data on C:N ratio from dead wood (White et al., 2000). The functional leaf nitrogen content (FNCa; gN/m² leaf) is defined by subtracting structural nitrogen content, Nstr, from the total leaf nitrogen content (LNCₐ; gN/m² leaf),

\[FNC_a = LNC_a - N_{str}. \]

(A4)

We assume that plants optimize their nitrogen allocations (i.e., Nstore, Nresp, Nlc, Net, Ncb) to maximize the net photosynthetic carbon gain, defined as the gross photosynthesis (A) minus the
maintenance respiration for photosynthetic enzymes \((R_{psn}) \), under specific environmental conditions and given plant’s strategy of leaf nitrogen use. Namely, the solutions of nitrogen allocations \(\{ N_{store}, N_{resp}, N_{lc}, N_{et}, N_{cb} \} \) can be estimated as follows,

\[
\{ \hat{N}_{store}, \hat{N}_{resp}, \hat{N}_{lc}, \hat{N}_{et}, \hat{N}_{cb} \} = \arg \max_{N_{store} + N_{resp} + N_{lc} + N_{et} + N_{cb}, FNC} (A - R_{psn}).
\]

(A5)

The gross photosynthesis, \(A \), was calculated with a coupled leaf gas exchange model based on the Farquhar et al. (1980) model of photosynthesis and Ball-Berry-type stomatal conductance model (Ball et al., 1987) (See Appendix C for details). The maintenance respiration for photosynthetic enzymes, \(R_{psn} \), is calculated by the multiplication of total photosynthetic nitrogen \((N_{psn}) \) and the maintenance respiration cost for photosynthetic enzyme \((N_{UE_{rp}} \), see Appendix D). Namely,

\[
R_{psn} = N_{UE_{rp}} N_{psn}.
\]

(A6)

In the LUNA model, the maximum electron transport rate \((J_{max}; \mu\text{mol electron m}^{-2} \text{s}^{-1}) \) is simulated to have a baseline allocation of nitrogen and additional nitrogen allocation to change depending on the average daytime photosynthetic active radiation (PAR; \(\mu\text{mol electron m}^{-2} \text{s}^{-1} \)), day length (hours) and air humidity. Specifically, we have

\[
J_{max} = J_{max0} + J_{maxb1} f(day length) f(humidity) \alpha PAR.
\]

(A7)

The baseline electron transport rate, \(J_{max0} \), is calculated as follows,

\[
J_{max0} = J_{maxb0} FNC \alpha N_{UE_{J_{max}}}
\]

(A8)

where \(J_{maxb0} \) (unitless) is the baseline proportion of nitrogen allocated for electron transport rate. \(N_{UE_{J_{max}} \text{ (µmol electron s}^{-1} \text{ g}^{-1} \text{N})} \) is the nitrogen use efficiency of \(J_{max} \) (see eq. (D2) for details). \(J_{maxb1} \) (unitless) is a coefficient determining the response of the electron transport rate to amount of absorbed light \((i.e., \alpha PAR) \). \(f(day length) \) is a function specifies the impact of day length
hours) on \(J_{\text{max}} \) in view that longer day length has been demonstrated by previous studies to alter \(V_{c,\text{max25}} \) and \(J_{\text{max25}} \) (Bauerle et al., 2012; Comstock and Ehleringer, 1986) through photoperiod sensing and regulation (e.g. Song et al., 2013). Following Bauerle et al. (2012), \(f(\text{day length}) \) is simulated as follows,

\[
f(\text{day length}) = \left(\frac{\text{day length}}{12} \right)^2. \tag{A9}
\]

\(f(\text{humidity}) \) represents the impact of air humidity on \(J_{\text{max}} \). We assume that higher humidity leads to higher \(J_{\text{max}} \) with less water limitation on stomata opening and that low relative humidity has a stronger impact on nitrogen allocation due to greater water limitation. When relative humidity (RH; unitless) is too low, we assume that plants are physiologically unable to reallocate nitrogen. We therefore assume that there exists a critical value of relative humidity (\(RH_0 = 0.25; \) unitless), below which there is no optimal nitrogen allocation. Based on the above assumptions, we have

\[
f(\text{humidity}) = \left(1 - e^{-H \frac{\text{max} (RH - RH_0)}{1 - RH_0}} \right), \tag{A10}
\]

where \(H \) (unitless) specifies the impact of relative humidity on electron transport rate. Replacing eq. (A7) with eqs. (A8), (A9) and (A10), we have

\[
J_{\text{max}} = J_{\text{maxb0}} FNC_a NUE J_{\text{max}} + J_{\text{maxb1}} \left(\frac{\text{day length}}{12} \right)^2 \left(1 - e^{-H \frac{\text{max} (RH - RH_0)}{1 - RH_0}} \right) \alpha \text{PAR}. \tag{A11}
\]

The efficiency of light energy absorption (unitless), \(\alpha \), is calculated depending on the amount of nitrogen allocated for light capture, \(N_{lc} \). Following Niinemets and Tenhunen (1997), we have,

\[
\alpha = \frac{0.292}{1 + \frac{0.076}{N_{lc} c_b}} \tag{A12}
\]
where 0.292 is the conversion factor from photon to electron. \(C_h \) is the conversion factor (1.78) from nitrogen to chlorophyll. After we estimate \(J_{\text{max}} \), the actual electron transport rate with the daily maximum radiation (\(J_x \)) can be calculated using the empirical expression of Smith (1937),

\[
J_x = \frac{a \text{PAR}_{\text{max}}}{\left(1 + a^2 \text{PAR}_{\text{max}}^2 / J_{\text{max}}^2 \right)^{0.5}},
\]

(A13)

where \(\text{PAR}_{\text{max}} \) (\(\mu \text{mol m}^{-2} \text{ s}^{-1} \)) is the maximum photosynthetically active radiation during the day.

Based on Farquhar et al. (1980) and Wullschleger (1993), we can calculate the electron-limited photosynthetic rate under daily maximum radiation (\(W_{jx} \)) and the Rubisco-limited photosynthetic rate (\(W_c \)) as follows,

\[
W_{jx} = K_j J_x,
\]

(A14)

\[
W_c = K_c V_{c,\text{max}},
\]

(A15)

where \(K_j \) and \(K_c \) as the conversion factors for \(J_x \), \(V_{c,\text{max}} \) (\(V_{c,\text{max}} \) to \(W_c \) and \(J_x \) to \(W_{jx} \)), respectively [see eqs. (C4) and (C6) in Appendix C for details of calculation]. Based on Xu et al. (2012), Maire et al. (2012) and Walker et al. (2014), we assume that \(W_c \) is proportional to \(W_{jx} \).

Specifically, we have

\[
W_c = t_{c,j} W_{jx},
\]

(A16)

where \(t_{c,j} \) is the ratio of \(W_c \) to \(W_{jx} \). We recognize that this ratio may change depending on the nitrogen use efficiency of carboxylation and electron transport (Ainsworth and Rogers, 2007) and therefore introduce the modification as follows,

\[
t_{c,j} = t_{c,\text{lo}} \left(\frac{\text{NUE}_c / \text{NUE}_j}{\text{NUE}_{c0} / \text{NUE}_{j0}} \right)^{0.5},
\]

(A17)

where \(t_{c,\text{lo}} \) (unitless) is the ratio of Rubisco limited rate to light limited rate, \(\text{NUE}_{c0} \) (\(\mu \text{mol CO}_2 \text{ s}^{-1} \text{ g}^{-1} \text{N} \)), \(\text{NUE}_{j0} \) (\(\mu \text{mol CO}_2 \text{ s}^{-1} \text{ g}^{-1} \text{N} \)) are the daily nitrogen use efficiency of \(W_c \) and \(W_j \) under reference climate conditions defined as the 25°C leaf temperature and atmospheric CO\(_2\).
concentration of 380 ppm, with leaf internal CO₂ concentration set as 70% of the atmospheric CO₂ concentration. NUE_c (μmol CO₂ s⁻¹ g⁻¹ N), NUE_j (μmol CO₂ s⁻¹ g⁻¹ N) are the nitrogen use efficiency of W_c and W_j at the current climate conditions. See eqs (D6) and (D7) for details of calculation. The term \(\frac{NUE_c / NUE_j}{NUE_c0 / NUE_{j0}} \) determines that the higher nitrogen use efficiency of W_c compared to that of W_j will lead to a higher value of \(t_{c,j} \) (or a higher value of W_c given the same value of W_j). The exponent 0.5 was used to ensure that the response of \(V_{c,max} \) to elevated CO₂ is down-regulated by approximately 10% when CO₂ increased from 365 ppm to 567 ppm as reported by Ainsworth & Rogers (2007).

Replacing eq. (A16) with eqs. (A14), (A15) and (A17), we are able to estimate the maximum carboxylation rate \((V_{c,max}; \mu mol CO₂ m⁻² s⁻¹) \) as follows,

\[
V_{c,max} = t_{c,lo} \left(\frac{NUE_c / NUE_j}{NUE_c0 / NUE_{j0}} \right)^{0.5} \left(\frac{K_i}{K_c} \right) J_x. \tag{A18}
\]

Following Collatz et al. (1991a), the total respiration (R_t) is calculated in proportion to \(V_{c,max} \),

\[
R_t = 0.015 V_{c,max}. \tag{A19}
\]

Accounting for the daytime and nighttime temperature, we are able to estimate the daily respirations as follows,

\[
R_{td} = R_t [D_{day} + D_{night} f_r(T_{night}) / f_r(T_{day})], \tag{A20}
\]

where \(D_{day} \) and \(D_{night} \) are daytime and nighttime durations in seconds. \(f_r(T_{night}) \) and \(f_r(T_{day}) \) are the temperature response functions for respiration (see eq. (B1) for details).

In summary, given an initial estimation of \(N_{lc} \), we are able to first estimate the efficiency of light energy absorption \(\alpha \) using eq. (A12). With that, we are able to estimate the maximum electron transport rate, \(J_{max} \), using eq. (A11). The nitrogen allocated for electron transport can thus be calculated as follows,
Then, based on eq. (A18), we are able to estimate the corresponding the maximum carboxylation rate $V_{c,\text{max}}$ and the nitrogen allocated for carboxylation as follows,

$$N_{cb} = \frac{V_{c,\text{max}}}{NUE_{V_{c,\text{max}}}}$$ \hspace{1cm} (A22)

where $NUE_{V_{c,\text{max}}}$ is the nitrogen use efficiency for $V_{c,\text{max}}$. See eq. (D1) for details of calculation.

Using eq. (A 20), we are able to estimate R_{td} and thus the nitrogen allocated for respiration as follows,

$$N_{\text{resp}} = \frac{R_{td}}{NUE_{r}}$$ \hspace{1cm} (A23)

where NUE_{r} is nitrogen use efficiency of enzymes for respiration. See eq. (D3) for details of calculation. Finally, the “storage” nitrogen is calculated as follows,

$$N_{\text{store}} = FNC_{a} - N_{\text{resp}} - N_{cb} - N_{lc} - N_{et}.$$ \hspace{1cm} (A24)

Note that this “storage” nitrogen is mainly a remaining component of FNC_{a}. Its formulation is different from the formulation of Xu et al (2012) where N_{store} is set as a linear function of net photosynthetic rate. This modification is based on the observations that the preliminary fitting to data using the linear function shows no dependence of N_{store} on net photosynthetic rate. To make the solutions realistic, we set minimum of N_{store} as 5% of NC_{a} in view of potential nitrogen for plant functionality that is not accounted for by photosynthesis and respiration. By exploring different values of nitrogen allocated for light capture N_{lc} and using the eqs. (A21-23), we will find the “optimal” nitrogen allocations ($\hat{N}_{\text{store}}, \hat{N}_{\text{resp}}, \hat{N}_{lc}, \hat{N}_{et}, \hat{N}_{cb}$) until the net photosynthetic rate is maximized (see eq. (A5)) given a specific set of nitrogen allocation coefficients (i.e., $J_{\text{maxb}0}$, $J_{\text{maxb}1}$, H, and $t_{c,f\alpha}$). The detailed optimization algorithms are implemented as follows:
1) Increase the nitrogen allocated (N_{lc}) for light capture (from a small initial value of 0.05) and calculate the corresponding light absorption rate α with eq. (A12);

2) Calculate J_{max} from eq. (A11) and derive the nitrogen allocated to electron transport, N_{et}, using eq. (A21);

3) Calculate $V_{c,\text{max}}$ from eq. (A18) and derive the nitrogen allocated to Rubisco, N_{cb}, using eq. (A22);

4) Calculate the total respiration R_{td} from eq. (A20) and derive the nitrogen allocated to respiration, N_{resp}, using eq. (A23);

5) Calculate the total nitrogen invest in photosynthetic enzymes including nitrogen for electron transport, carboxylation and light capture using eq. (A2);

6) Calculate the gross photosynthetic rate, A, and the maintenance respiration for photosynthetic enzymes, R_{psm}, by eq. (A6);

7) Repeat steps 1) to 6) until the increase from previous time step in A is smaller than or equal to the increase in R_{psm}.

Since the response of $V_{c,\text{max}}$ and J_{max} to increasing temperature shows a steady rise to an optimum followed by a relatively rapid decline (Bernacchi et al., 2003; Kattge and Knorr, 2007; Leuning, 2002; Medlyn et al., 2002a), we postulate that the detrimental heat stress on leaf enzymatic activity beyond this optimum (Crafts-Brandner and Law, 2000; Crafts-Brandner and Salvucci, 2000; Law and Crafts-Brandner, 1999; Spreitzer and Salvucci, 2002) will cause the leaf to fail to optimize its nitrogen allocation. Consequently, we hypothesized that plants only optimize nitrogen allocation up to their optimum enzymatic activity, which is 42°C for TRF1 and 33°C for TRF2. Regardless of whether plants acclimate to temperature or not, we assume that they do not optimally allocate nitrogen when leaf temperature is below 5°C because low
temperatures could substantially limit plant enzymes (Martin et al., 1978; Öquist et al., 1980; Strand and Öquist, 1988).

After we get the optimal nitrogen allocations \((\hat{N}_{\text{store}}, \hat{N}_{\text{resp}}, \hat{N}_{\text{et}}, \hat{N}_{\text{cb}})\), we are able to estimate the \(V_{c,\text{max}\,25}\) and \(J_{\text{max}\,25}\) by rearranging eqs. (A21) and (A22) as follows,

\[
V_{c,\text{max}\,25} = \hat{N}_{\text{cb}} NUE_{V_{c,\text{max}\,25}} \quad \text{(A25)}
\]

\[
J_{\text{max}\,25} = \hat{N}_{\text{cb}} NUE_{J_{\text{max}\,25}} \quad \text{(A26)}
\]

where \(NUE_{V_{c,\text{max}\,25}}\) and \(NUE_{J_{\text{max}\,25}}\) are the nitrogen use efficiency for \(V_{c,\text{max}\,25}\) and \(J_{\text{max}\,25}\). See eqs. (D1) and (D2) in Appendix D for details of calculations.
Appendix B: Temperature response functions

Temperature dependence of Rubisco & respiration

The temperature dependence of Rubisco kinetic parameters \(K_c, K_o, \tau \) and mitochondrial respiration in light \(R_d \) (Farquhar et al., 1980) was an Arrhenius function taken from Bernacchi et al. (2001). The temperature response functions of Rubisco kinetic parameters used are outlined below, which were the same irrespective of whether plants were assumed to acclimate to growth temperatures (Temperature response function one; TRF1) or not (Temperature response function two; TRF2).

Community land model version 4.5 (CLM4.5) (Oleson et al., 2013) uses the partial pressures of oxygen, \(O \) as 20900Pa. The kinetic properties of Rubisco which depend on temperature are Rubisco specific factor, \(\tau \) (Jordan and Ogren, 1984), \(K_{cc} \) and \(K_o \), which are the Michaelis-Menten constants for \(CO_2 \) and \(O_2 \), respectively. The temperature response function of \(R_d \) and kinetic properties of Rubisco \((K_{cc}, K_o, \tau) \) are described below, where the fixed coefficients of the equations are values at 25°C.

\[
f_r(T_1) = e^{[(46390/RT_0)(1-T_0/T_1)]} \tag{B1}
\]
\[
K_0(T_1) = 27840e^{[(36380/RT_0)(1-T_0/T_1)]} \tag{B2}
\]
\[
K_c(T_1) = 40.49e^{[(79430/RT_0)(1-T_0/T_1)]} \tag{B3}
\]
\[
\tau(T_1) = 2407.834e^{[(37830/RT_0)(1-T_0/T_1)]} \tag{B4}
\]

In the above equations, \(R \) is the universal gas constant (8.314 J mol\(^{-1}\) K\(^{-1}\)), \(T_1 \) is the leaf temperature (K) and the reference temperature, \(T_0 = 298.15K \).

Temperature dependence of \(V_{c,\text{max}} \) and \(J_{\text{max}} \)

Temperature sensitivities of \(V_{c,\text{max}} \) and \(J_{\text{max}} \) were simulated using a modified Arrhenius function (e.g. Kattge and Knorr, 2007; Medlyn et al., 2002a; Walker et al., 2014). Because the
temperature relationship could acclimate, we examined Kattge & Knorr (2007)’s formulation of
with and without temperature acclimation to plant growth temperature. We used two temperature
dependence functions of $V_{c,\text{max}}$ and J_{max}, which are described below.

Temperature response function one (TRF1)

Fundamentally, TRF1 is a temperature dependence of $V_{c,\text{max}}$ and J_{max}, which is based on
the formulation and parameterization as in Medlyn et al. (2002a) but further modified by Kattge
& Knorr (2007) to make the temperature optima a function of growth temperature (T_g, °C).

\[
V_{c,\text{max}}(T_1, T_g) = V_{c,\text{max}25}f_{V_{c,\text{max}}}(T_1, T_g) \tag{B5}
\]

with

\[
f_{V_{c,\text{max}}}(T_1, T_g) = \frac{1 + e^{[S_v T_o - H_a]/(R T_0)]} {1 + e^{[S_v T_1 - H_a]/(R T_1)]} \tag{B6}
\]

where $V_{c,\text{max}25}$ is the value of $V_{c,\text{max}}$ at the reference temperature ($T_0 = 298.15 K$). H_a (J mol$^{-1}$) is
energy of activation and H_d (J mol$^{-1}$) is the energy of deactivation. The entropy term, S_v (J mol$^{-1}$
K$^{-1}$), is now a function of temperature (Kattge and Knorr, 2007): $S_v = a + b T_g$, where a and b
are acclimation parameters for S_v, R is the universal gas constant (8.314 J mol$^{-1}$ K$^{-1}$) and the leaf
temperature is $T_1 (K)$.

TRF1 is implemented in CLM4.5 by Oleson et al. (2013), who uses the form of
temperature dependence of $V_{c,\text{max}}$ and J_{max} as shown in Eq. B5, but with limited temperature
acclimation, where $S_v = 668.39 - 1.07 \times \min (\max (t_{\text{growth}}, 11), 35)$. Other parameters that
are present in CLM4.5 model include, $H_a = 72000$ J mol$^{-1}$ and $H_d = 200000$ J mol$^{-1}$. The values
of the acclimation parameters ($a = 668.39$ and $b = -1.07$) were taken from Table 3 of Kattge &
Knorr (2007), which were fixed across our data set. The same values of a and b are used by
CLM4.5.
A equation similar to eq. (B6), $f_{J_{\text{max}}}(T_1, T_g)$, is used to describe the temperature dependence of J_{max} with the corresponding S_v equation (that considers limited temperature acclimation). The corresponding values of the acclimation parameters (a and b), were again taken from Table 3 of Kattge & Knorr (2007) and were fixed across our data set. The same values of a and b are used by CLM4.5. We used the remaining parameter values as in CLM4.5 that included, $H_a = 50000$ J mol$^{-1}$ and $H_d = 200000$ J mol$^{-1}$.

Temperature response function two (TRF2)

TRF2 does not consider temperature acclimation. The formulation of TRF2 is same as TRF1 except that in TRF2, the entropy term; S_v (J mol$^{-1}$ K$^{-1}$) is fixed across our data set. The values of S_v were taken from Table 3 of Kattge & Knorr (2007), which were fixed across our data set. For $V_{c,\text{max}25}$, S_v was 649.12 J mol$^{-1}$ K$^{-1}$, and for $J_{\text{max}25}$, S_v was 646.22 J mol$^{-1}$ K$^{-1}$.

30
Appendix C: The Farquhar Photosynthesis & Ball-Berry model

Overview

Photosynthesis is described using a system of three equations and three unknown variables. The three unknown variables include 1) the net rate of leaf photosynthesis \(A \); 2) the stomatal conductance \(g_s \); and 3) the intercellular partial pressure of CO\(_2\) \(C_i \). All of the unknown variables influence one another. The three equations include 1) the Farquhar’s non-linear equation \(A \) vs \(C_i \); 2) the Ball–Berry equation \(g_s \) vs \(A \); and 3) the diffusion equation \(A = g_s (C_a - C_i) \). We solved all of these equations simultaneously by taking an iterative approach (Collatz et al., 1991a; Harley et al., 1992; Leuning, 1990). The detailed algorithm for modeling photosynthesis is described below.

Modelling Photosynthesis

The photosynthetic rate \(A \) depends upon \(i \) the amount, activity, and kinetic properties of Rubisco, and \(ii \) the rate of ribulose-1,5 bisphosphate (RuBP) regeneration via electron transport (Farquhar et al., 1980). The 'minimum' of these two limiting conditions yields the following expression,

\[
A = \min(W_c, W_j)
\]
(C2)

where \(W_c \) is the Rubisco limited rate and \(W_j \) is the electron transport limited rate. The Rubisco-limited carboxylation can be described by,

\[
W_c = K_c V_{c,\text{max}} ,
\]
(C3)

with

\[
K_c = \max(0, \frac{c_i^{0.5}O_i^{0.5}}{c_i+K_{cc}(1+O/K_o)}) ,
\]
(C4)

where \(V_{c,\text{max}} \) is the maximum rate of carboxylation, competitive with respect to both CO\(_2\) and oxygen, and \(K_{cc} \) and \(K_o \) are Michaelis constants for carboxylation and oxygenation, respectively.
τ is the specificity factor for Rubisco (Jordan and Ogren, 1984), while C_i and O are the partial pressures of CO$_2$ and O$_2$ in the intercellular air space, respectively. Likewise, the electron-limited rate of carboxylation can be expressed by,

$$W_j = K_j J,$$

where J is the potential rate of electron transport, and the factor 4 indicates that the transport of four electrons will generate sufficient ATP and NADPH for the regeneration of RuBP in the Calvin cycle (Farquhar and von Caemmerer, 1982). The potential rate of electron transport is dependent upon irradiance, I, according to the empirical expression of Smith (1937),

$$J = \frac{aI}{(1 + a^2 I^2)^{1/2}}$$

where a, the efficiency of light energy conversion is considered as 0.292 (unitless) (Niinemets and Tenhunen, 1997) and J_{max} is the maximum rate of electron transport.

Ball-Berry Model

The stomatal conductance (g, m/s) was evaluated by the Ball-Berry empirical stomatal conductance model (Ball et al., 1987):

$$g = g_0 + m \frac{A_{RH}}{C_a}$$

where RH is the relative humidity (unitless) at the leaf surface, C_a is the CO$_2$ concentration at the leaf surface, and g_0 (0.0005 s/m) and m are the maximum stomatal conductance and slope (9, constant across all C$_3$ species), respectively.
The estimation of A could be sensitive to the choice of maximum stomatal conductance slope, which we set the same for all species, despite the evidence that this parameter varies both within and across species (Harley and Baldocchi, 1995; Wilson et al., 2001). A recent synthesis provides the first analysis of the global variation in stomatal slope based on an alternative algorithm that considers representation of optimal stomatal behavior (Lin et al., 2015). However, following CLM4.5, which uses the Ball-Berry empirical stomatal conductance model (Ball et al., 1987), we fixed the value of stomatal slope (m) as 9 for all PFTs in our study.

Calculation of photosynthesis and stomata conductance

We solved Farquhar’s non-linear equation (A vs C_i), the Ball-Berry equation (g_s vs A) and the diffusion equation ($A = g_s (C_a - C_i)$) simultaneously by taking an iterative approach (Collatz et al., 1991a; Harley et al., 1992; Leuning, 1990) until values of A, g_s, and C_i were obtained. The three equations were solved in two phases; the first phase included solving the equations for which Rubisco was limiting while the second phase considered light limitation. The following steps were followed:

1) Given the initial values of C_i (where initial value of C_i was assumed 0.7 x ambient CO₂ concentration), the temperature dependence functions of $V_{c,max}$ and J_{max} (see Appendix B), and the temperature dependence of Rubisco kinetics (O, τ, K_c and K_o, Appendix B), A was calculated from equation (C2).

2) CO₂ concentration at the leaf surface (C_a) was determined by calculating the difference between C_i and the partial pressure due to A, wind speed and the dimension of the leaf.

3) Given A and C_a, and using equation C8, stomatal conductance (g) was determined.
4) C_i was determined by calculating the difference between C_a and partial pressure due to A and boundary conditions of the stomata.

5) Using the leaf energy balance based on absorbed short-wave radiation, molar latent heat content of water vapor, air temperature, and a parameter that governs the rate of convective cooling ($38.4 \text{ J m}^{-2} \text{ s}^{-1} \text{ K}^{-1}$) (Jarvis, 1986; Moorcroft et al., 2001), leaf temperature was calculated.

The above five steps were repeated in a systematic way until g was equilibrated. The final value of A was then recorded.
Appendix D: Nitrogen use efficiencies

The nitrogen use efficiency for $V_{c,\text{max}}$ ($NUE_{V_{c,\text{max}}}$, μmol CO$_2$ g$^{-1}$ N s$^{-1}$) is estimated from a baseline nitrogen use efficiency 25°C ($NUE_{V_{c,\text{max}25}}$) and a corresponding temperature response function, as follows,

$$NUE_{V_{c,\text{max}}} = NUE_{V_{c,\text{max}25}} \times f_{V_{c,\text{max}}} (T, T_g),$$

(D1)

with

$$NUE_{V_{c,\text{max}25}} = 47.3 \times 6.25,$$

where the constant 47.3 is the specific Rubisco activity (μmol CO$_2$ g$^{-1}$ Rubisco s$^{-1}$) measured at 25°C and the constant 6.25 is the nitrogen binding factor for Rubisco (g Rubisco g$^{-1}$ N) (Rogers, 2014). $f_{V_{c,\text{max}}} (T, T_g)$ is the function specifying the temperature dependence of $V_{c,\text{max}}$ with T as the leaf temperature and T_g as the growth air temperature (See Appendix B for details of the temperature dependence of $V_{c,\text{max}}$).

The nitrogen use efficiency for J_{max} ($NUE_{J_{\text{max}}}$, μmol electron g$^{-1}$ N s$^{-1}$) is estimated based on a characteristic protein cytochrome f (Evans and Poorter, 2001),

$$NUE_{J_{\text{max}}} = NUE_{J_{\text{max}25}} \times f_{\text{Jmax}} (T, T_g),$$

(D2)

with

$$NUE_{J_{\text{max}25}} = 8.06 \times 156,$$
where the coefficient 156 is the maximum electron transport rate for cytochrome \(f \) at 25°C (\(\mu \text{mol} \) electron/\(\mu \text{mol} \) cytochrome \(f \)); 8.06 is the nitrogen binding coefficient for cytochrome \(f \) (\(\mu \text{mol} \) cytochrome \(f \) g\(^{-1}\) N in bioenergetics). \(f_{\text{max}}(T, T_g) \) is a function specifies the dependence of \(J_{\text{max}} \) on temperature (See Appendix B for details of the temperature dependence of \(J_{\text{max}} \)).

The nitrogen use efficiency of enzymes for respiration (\(\mu \text{mol} \) CO\(_2\) g\(^{-1}\) N day\(^{-1}\)), \(NUE_r \), is assumed to be temperature-dependent. Specifically, it is calculated as follows,

\[
NUE_r = 33.69 \left[D_{\text{day}, r}(T_{\text{day}}) + D_{\text{night}, r}(T_{\text{night}}) \right] \tag{D3}
\]

where 33.69 is the specific nitrogen use efficiency for respiration at 25°C (\(\mu \text{mol} \) CO\(_2\) g\(^{-1}\) N s\(^{-1}\)) (Makino and Osmond, 1991) and \(f_r(T) \) specifies the dependence of respiration on temperature. \(D_{\text{day}} \) and \(D_{\text{night}} \) is the daytime and nighttime length in seconds.

The maintenance respiration cost for all photosynthetic enzymes (\(NUE_{rp} \), \(\mu \text{mol} \) CO\(_2\) g\(^{-1}\) N s\(^{-1}\)) is calculated as follows:

\[
NUE_{rp} = NUE_{rp25} f_r(T, T_g), \tag{D4}
\]

where \(NUE_{rp25} \) is the nitrogen use efficiency at 25 °C. \(NUE_{rp25} \) is estimated from the observation of \(J_{\text{max}25} \) and \(V_{c,\text{max}25} \) as follows,

\[
NUE_{rp25} = \frac{0.8 \times 0.5 \times 0.015 \times V_{c,\text{max}25}}{J_{\text{max}25} + \frac{V_{c,\text{max}25}}{NUE_{J_{\text{max}25}}} + 0.2}, \tag{D5}
\]

where the total respiration is set as 1.5% of \(V_{c,\text{max}} \) (Collatz et al., 1991b). We assume that 50% of the total respiration is used for maintenance respiration (Van Oijen et al., 2010) and 80% of the
maintenance respiration is used for photosynthetic enzyme. In view that the light absorption rate is generally around 80% (Evans and Poorter, 2001), we set the nitrogen for light capture as 0.2 based on eq. (A12) in Appendix A. $NUE_{J_{\text{max}25}}$ and $NUE_{V_{c_{\text{max}25}}}$ are the nitrogen use efficiency for J_{max25} and $V_{c_{\text{max}25}}$ estimated from eqs. (D1) and (D2). In this study, we used the estimated mean value of 0.715 for NUE_{rp25} based on the data of Ali et al. (2015).

The nitrogen use efficiency for carboxylation (NUE_c) is calculated as the multiplication of conversion factor K_c and the nitrogen use efficiency for $V_{c_{\text{max}}}$ follows:

$$NUE_c = K_c \cdot NUE_{V_{c_{\text{max}}}},$$ \hspace{1cm} (D6)

where K_c is calculated based on the actual internal CO2 concentrations and leaf temperature (see eq. (C4) for details). Correspondingly, the reference nitrogen use efficiency for carboxylation (NUE_{c0}) is calculated using the eq. (D5) except that K_c is calculated based on the reference internal CO2 concentration of 26.95 Pa and the reference leaf temperature of 25°C. The reference internal CO2 concentration is estimated by assuming 70% of the atmospheric CO2 concentration of 380 ppm and an air pressure of 101,325 Pa.

The nitrogen use efficiency for electron transport (NUE_j) is calculated as the multiplication of conversion factor K_j and the nitrogen use efficiency for J_{max} follows:

$$NUE_j = K_j \cdot NUE_{J_{\text{max}}},$$ \hspace{1cm} (D7)

where K_j is calculated based on the actual internal CO2 concentrations and leaf temperature (see eq. (C6) in Appendix C for details). Correspondingly, the reference nitrogen use efficiency for electron transport (NUE_{j0}) is calculated using the eq. (D6) except that K_j is calculated based on the reference internal CO2 concentration of 26.95 Pa and the reference leaf temperature of 25°C.
The reference internal CO₂ concentration is estimated by assuming 70% of the atmospheric CO₂ concentration of 380 ppm and an air pressure of 101, 325 Pa.

7. Acknowledgements

This work is funded by UC Lab Research Program (ID: 2012UCLRP0IT00000068990) and by the DOE Office of Science, Next Generation Ecosystem Experiment (NGEE) programs in the arctic and in the tropics. This submission is under public release with the approved LA-UR-14-23309.
8. References

9. Tables

Table 1 Mean values of parameters obtained by using the Differential Evolution Adaptive Metropolis Snooker updater (DREAM-ZS) sampling technique when TRF1 and TRF2 were used. TRF1 was a temperature response function that considered the potential for acclimation to growth temperature while TRF2 was a temperature response function that did not consider change in temperature response coefficients to growth temperature. The parameters include:

- $J_{\text{maxb}0}$ (unitless) - baseline proportion of nitrogen allocated for electron transport rate,
- $J_{\text{maxb}1}$ (unitless) - electron transport rate response to light availability,
- $t_{c,j0}$ (unitless) – baseline ratio of Rubisco limited rate to light limited rate, and
- H (unitless) - electron transport rate response to relative humidity. The standard deviations are shown in the parentheses.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>$J_{\text{maxb}0}$</th>
<th>$J_{\text{maxb}1}$</th>
<th>$t_{c,j0}$</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRF1</td>
<td>0.0311 (0.0004)</td>
<td>0.1745 (0.0002)</td>
<td>0.8054 (0.0015)</td>
<td>6.0999 (0.2416)</td>
</tr>
<tr>
<td>TRF2</td>
<td>0.0322 (0.0002)</td>
<td>0.1695 (0.0006)</td>
<td>0.7760 (0.0031)</td>
<td>5.7139 (0.0354)</td>
</tr>
</tbody>
</table>
10. Figures

Figure captions

Figure 1 Percentage of variations (r^2, ME; model efficiency) in observed $V_{c,\text{max25}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) explained by modeled $V_{c,\text{max25}}$ (a, c) and in observed J_{max25} (μmol electron m$^{-2}$ s$^{-1}$) explained by modeled J_{max25} (b, d) across all of the species, using TRF1 (a, b) and TRF2 (c, d), where the nitrogen allocation model, the environmental variables, leaf mass per leaf area, and the leaf nitrogen contents were used. TRF1 was a temperature response function that considered the potential for acclimation to growth temperature while TRF2 was a temperature response function that did not consider change in temperature response coefficients to growth temperature. The r^2 is derived by a linear regression between observed and modeled values. The dashed line is the 1:1 line.

Figure 2 Effects of changes in nitrogen allocation parameters on the predicted $V_{c,\text{max25}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) (a, c) and J_{max25} (μmol electron m$^{-2}$ s$^{-1}$) (b, d). Each parameter ($J_{\text{max0}}, J_{\text{max}1}, t_{\text{c}}, J_{0}$, and H) was varied one at a time by +/-15% of its value by using either TRF1 (a, b) or TRF2 (c, d). TRF1 was a temperature response function that considered the potential for acclimation to growth temperature while TRF2 was a temperature response function that did not consider change in temperature response coefficients to growth temperature. The environmental variables (day length; 14 hours, daytime radiation; 182 W m$^{-2}$, temperature; 14°C, relative humidity; 0.6 (unitless), and carbon dioxide; 393 ppm) were held fixed. Firstly, $V_{c,\text{max25}}$ and J_{max25} values were obtained at changed parameter value. Next, percentage changes in $V_{c,\text{max25}}$ and J_{max25} were calculated relative to the baseline values of $V_{c,\text{max25}}$ and J_{max25}.
Figure 3 Effects of environmental variables (day length, daytime radiation, temperature, relative humidity, and carbon dioxide) on predicted $V_{c,max25}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) (a, c) and J_{max25} (μmol electron m$^{-2}$ s$^{-1}$) (b, d). Each environmental variable (day length; 14 hours, daytime radiation; 182 W m$^{-2}$, temperature; 14°C, relative humidity; 0.6 (unitless), and carbon dioxide; 393 ppm) was varied one at a time by +/-15%. TRF1 (a, b) and TRF2 (c, d) were used, with the parameters (J_{maxb0}, J_{maxb1}, $t_{c,j0}$, and H) being held fixed. TRF1 was a temperature response function that considered the potential for acclimation to growth temperature while TRF2 was a temperature response function that did not consider change in temperature response coefficients to growth temperature. Firstly, $V_{c,max25}$ and J_{max25} values were obtained at changed environmental condition. Next, percentage changes in $V_{c,max25}$ and J_{max25} were calculated relative to the baseline values of $V_{c,max25}$ and J_{max25}.

Figure 4 Summer season photosynthetic capacity for the top leaf layer in the canopy ($V_{c,max25}$; μmol CO$_2$ m$^{-2}$ s$^{-1}$ (a), J_{max25}; μmol electron m$^{-2}$ s$^{-1}$ (c)) under historical climatic conditions and the difference in either $V_{c,max25}$ (b) or J_{max25} (d) due to changed climatic conditions. Difference in the photosynthetic capacity was calculated as that under future climate minus that under historical climate. Ten-year monthly averages of climatic conditions for the past (1995 – 2004) and the future (2090-2099) were used to drive the model. The model was run by using TRF1, which was a temperature response function that considered the potential for acclimation to growth temperature.

Figure 5 Sensitivity of $V_{c,max25}$ (\mu mol CO$_2$ m$^{-2}$ s$^{-1}$) to changes in environmental variables (a; Temperature, b; Radiation, c; Humidity, and d; CO$_2$) at the global scale by using TRF1. TRF1
was a temperature response function that considered the potential for acclimation to growth temperature. The sensitivity analysis is conducted by changing the value of individual environmental variable using 10-year monthly averages of climatic conditions for the past (1995-2004) versus the future (2090-2099) for each individual grid across the globe.

Figure 6 Sensitivity of $J_{\text{max}25}$ (μmol electron m$^{-2}$ s$^{-1}$) to changes in environmental variables (a; Temperature, b; Radiation, c; Humidity, and d; CO$_2$) at the global scale using TRF1. TRF1 was a temperature response function that considered the potential for acclimation to growth temperature. The sensitivity analysis is conducted by changing the value of individual environmental variable using 10-year monthly averages of climatic conditions for the past (1995-2004) versus the future (2090-2099) for each individual grid across the globe.

Figure 7 Percentage differences in A_{net} (μmol CO$_2$ m$^{-2}$ s$^{-1}$) for using $V_{c,\text{max}25}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) and $J_{\text{max}25}$ (μmol electron m$^{-2}$ s$^{-1}$) based on historical climate and that using $V_{c,\text{max}25}$ and $J_{\text{max}25}$ based on future climate conditions. TRF1 (a) and TRF2 (b) were used in the model simulations. TRF1 was a temperature response function that considered the potential for acclimation to growth temperature while TRF2 was a temperature response function that did not consider change in temperature response coefficients to growth temperature. 10-year monthly averages of climatic conditions for the past (1995 – 2004) and the future (2090-2099) were used to drive the model.
Figures

Fig. 1

(a) $r^2 = 0.54$
ME = 0.51

(b) $r^2 = 0.65$
ME = 0.64

(c) $r^2 = 0.57$
ME = 0.55

(d) $r^2 = 0.66$
ME = 0.65
Fig. 3

(a) % change in $V_{c,\text{max}25}$

(b) % change in $J_{\text{max}25}$

(c) % change in $V_{c,\text{max}25}$

(d) % change in $J_{\text{max}25}$
Fig. 6

1189

1190

1191

1192
Fig. 7

(a) Percentage change in A_{net}

(b) Percentage change in A_{net}