Interactive comment on “CellLab-CTS 2015: a Python library for continuous-time stochastic cellular automaton modeling using Landlab” by G. E. Tucker et al.

T. Coulthard (Referee)
t.coulthard@hull.ac.uk

Received and published: 27 November 2015

This is an interesting description of a set of Python libraries/routines for implementing a different way of treating CA. It is well written, easy to follow and very well described. I have but a few minor comments below - and would also draw to the authors attention that if there are any movies/video’s of the model operation (there are graphics/screen grabs) then these can now be DOI’d and citable via GMD... http://www.copernicus.org/news_and_press/2015-10-29_cooperation-tib-av.html

9509: 15: "These models are especially attractive for geoscience applications because their parameters represent rates that can be directly related to field and laboratory
measurements, and because they avoid the need for a discrete-time approximation (Narteau et al., 2001, 2009; Rozier and Narteau, 2014)." - can this statement be expanded/fleshed out a little? I think its critical to the readers understanding of why this method may be better than traditional CA.

9510 - only Wolfram referenced in the first paragraph (1-17). - maybe a reference or two to back up these statements?

section 3 9511-9522. A good clear description and example - but what is the advantage - or clear reason for using this method over other ways? Possibly compare to how this might be carried out with a regular CA (or could not if that is the case..)? There is some discussion of this in the - discussion - but I wonder if some arguments might be better explained with the example here?

_________________________

Interactive comment on Geosci. Model Dev. Discuss., 8, 9507, 2015.