
IMPORT User Manual

Astrid Kerkweg1,

& Patrick Jöckel2

1 Institut für Physik der Atmosphäre
Johannes Gutenberg Universität Mainz

55099 Mainz, Germany
kerkweg@uni-mainz.de

2 Deutsches Zentrum für Luft-und Raumfahrt (DLR),
Institut für Physik der Atmosphäre,

Oberpfaffenhofen, D-82234 Weßling, Germany
patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “The generic MESSy submodels
GRID (v1.0) and IMPORT (v1.0) ” in Geosci. Model Dev. (2015), available at: http://www.
geosci-model-dev.net

Date: July 17, 2015

kerkweg@uni-mainz.de
patrick.joeckel@dlr.de
http://www.geosci-model-dev.net
http://www.geosci-model-dev.net

Contents

1 Introduction 4

1.0.1 IMPORT and NREGRID license . 4

1.0.2 SCRIP license . 5

2 IMPORT GRID 6

2.1 Prerequisites . 6

2.2 Installation of the stand-alone tool IMPORT GRID 6

2.3 Usage . 7

2.4 Regridding Types . 8

2.5 Namelist control . 8

2.5.1 Grid specification . 9

2.5.2 Syntax of the namelist variable var . 10

2.5.3 Time control . 11

2.5.4 Vertical axis specifications . 11

2.5.4.1 Surface and reference pressure . 12

2.5.4.2 Vertical regridding coordinates . 12

2.5.5 Namelist examples . 12

2.6 Interface Mode . 12

2.6.1 Destination grid specification . 12

2.6.2 IMPORT GRID namelist control in interface mode 13

2.6.3 The IMPORT GRID BMIL, Tools and SMCL 14

2.6.3.1 RGTEVENT handling . 16

2.6.3.2 Counter handling . 20

2.6.3.3 Interfaces for file reading and regridding 25

2.6.3.4 Parallelisation of GRID TRAFO . 30

2

Kerkweg and Jöckel: IMPORT User Manual 3

3 IMPORT TS 33

3.1 Namelist Control∗ . 33

3.2 Detailed code information . 34

3.2.1 The SMCL . 37

3.2.1.1 import ts read nml ctrl . 37

3.2.1.2 its read ts . 37

3.2.1.3 its copy io . 42

3.2.1.4 its set value ts . 42

3.2.1.5 its delete ts . 44

3.2.2 The Basemodel Interface Layer . 44

3.2.2.1 import ts initialise . 44

3.2.2.2 import ts init memory . 45

3.2.2.3 import ts global start . 46

3.2.2.4 import ts free memory . 46

3.3 The stand-alone tool IMPORT TS . 46

3.3.1 Installing stand-alone tool IMPORT TS . 46

3.3.2 Running the stand-alone tool IMPORT TS . 47

Chapter 1

Introduction

This is the User Manual for the generic MESSy submodel IMPORT. IMPORT currently consists of
two submodels: IMPORT GRID and IMPORT TS. Both are implemented as part of the MESSy
infrastructure and thus available in all MESSy 3D models (esp. in EMAC and the COSMO model).
This application is called the interface mode in the following. In addition, both are available as stand-
alone tools. In the interface mode the IMPORT namelist file import.nml controls IMPORT GRID
(Sect. 2) and IMPORT TS (Sect. 3). Each submodel uses its own namelist, which are described in the
respective sections (Sects. 2.5 or 3.1). Only these namelists need to be modified if a new simulation is
set up based on already existing import data.

To implement a new import field in IMPORT GRID requires, in addition to the modification of the
import.nml namelist file, the provision of a so-called ®rid namelist. Their definition is explained
in Sect. 2.5. The second and the third part of the User Manual are dedicated to the submodels
IMPORT GRID (Sect. 2) and IMPORT TS (Sect. 3), respectively.

The code of the stand-alone tools is available under the GPL license (Sect. 1.0.1). For the SCRIP
software (Jones, 1999) implemented into IMPORT GRID the license terms of SCRIP apply to this
part of the code (Sect. 1.0.2).

1.0.1 IMPORT and NREGRID license

IMPORT is free software; it can be redistributed and / or modified under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version, and under additional agreements for scientific software as described in the file
LICENSE.txt delivered with this distribution. This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. A copy of the GNU General Public License (GPL.txt) should have been shipped along with
this distribution; if not, it can be received from the Free Software Foundation, Inc., 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

4

Kerkweg and Jöckel: IMPORT User Manual 5

1.0.2 SCRIP license

For SCRIP the regulations of SCRIP apply (cited from SCRIPusers.pdf distributed with SCRIP
v1.4):
Copyright c 1997, 1998 the Regents of the University of California.
This software and ancillary information (herein called SOFTWARE) called SCRIP is made available
under the terms described here. The SOFTWARE has been approved for release with associated LA-
CC Number 98-45. Unless otherwise indicated, this SOFTWARE has been authored by an employee or
employees of the University of California, operator of Los Alamos National Laboratory under Contract
No. W-7405-ENG-36 with the United States Department of Energy. The United States Government
has rights to use, reproduce, and distribute this SOFTWARE. The public may copy, distribute, prepare
derivative works and publicly display this SOFTWARE without charge, provided that this Notice and
any statement of authorship are reproduced on all copies. Neither the Government nor the University
makes any warranty, express or implied, or assumes any liability or respon- sibility for the use of this
SOFTWARE. If SOFTWARE is modified to produce derivative works, such modified SOFTWARE
should be clearly marked, so as not to confuse it with the version available from Los Alamos National
Laboratory.

Chapter 2

IMPORT GRID

2.1 Prerequisites

IMPORT is written in Fortran95, thus a Fortran95 compiler is required for installation of the software.
(A Fortran90 compiler which is capable to handle initialisation statements in declaration lines should
do as well.) Furthermore, (g)make is used for building the software. Since the input and output
format is netCDF (http://www.unidata.ucar.edu/ packages/netcdf/), Fortran90 bindings (i.e., at least
netCDF - Version 3.6.0) of the netCDF library are required. IMPORT comprises the f2kcli command
line interface (http://www.winteracter.com/f2kcli/index.htm) for the stand-alone tools.

2.2 Installation of the stand-alone tool IMPORT GRID

The installation is straight forward.

1. unzip the zip-file:
unzip import_grid.zip

2. change into the subdirectory ./import_grid:
cd import_grid

3. configure IMPORT GRID according to your system:
./configure VAR1=VAL1 VAR2=VAL2 ... :

where possible VAR(IABLE)s are
F90 Fortran90/95 compiler (optional)
F90FLAGS Fortran90/95 compiler options (e.g., options for invoking the cpp preprocessor (optional)
NC_INC (absolute) path where ’netcdf.mod’ is located (required)
NC_LIB (absolute) path where ’libnetcdf.a’ is located (required)

Platform and compiler specific notes can be found in the README file of the distribution.

4. build the executables and modules:
gmake

5. move the executable and the modules to the ./bin and ./include subdirectories, respectively:
gmake install

6

Kerkweg and Jöckel: IMPORT User Manual 7

6. the directory can be cleaned by
gmake clean

The executable import_grid.exe should now be available in the ./bin subdirectory and the mod-
ules are in the ./include subdirectory. The status after unpacking the zip-file can be reset with
gmake distclean.

2.3 Usage

IMPORT GRID can be applied in two different modes:

• The stand-alone mode for the rediscretisation of data files in netCDF.

• The interface mode (coupled to a model) for automatic rediscretisation during data import from
netCDF files.

In both modes, IMPORT GRID is basically applied in 4 steps:

1. Analysis of the netCDF file containing the data which should be regridded (infile). This can for
instance be done with:
ncdump -h infile
Required are the names of the netCDF variables spanning the grid (such as latitude, longitude,
surface pressure, reference pressure, hybrid-coefficients, time), and the names of the variables
which should be regridded. Note that this step is left to the user, in order to be independent of
specific netCDF conventions. Note further, that netCDF and IMPORT GRID are case-sensitive.

2. For the analysis of the output grid structure three ways exist, depending on the application
mode:

• The output grid structure is available in a netCDF file (called grdfile):
The information can be extracted from the grdfile in analogy to step 1. above.

• IMPORT GRID is used in interface mode:
The output grid information is provided by the grid-specification interface routine (see
Sect. 2.5.1).

• The output grid structure is not available:
The output grid information can be written with an appropriate text editor in the CDL-
syntax (see netCDF manual). From this, a netCDF file can be generated by
ncgen -b -o grdfile cdl-file
and used as grdfile, as above.

3. Summary of all required information in a namelist:
The IMPORT GRID namelist structure is described in detail in Sect. 2.5.

4. Start IMPORT GRID:

• start IMPORT GRID in stand-alone mode:
import_grid.exe namelist-file
• start IMPORT GRID in interface mode:

start the executable with IMPORT GRID linked

Detailed information about the usage of IMPORT GRID from Fortran90 / Fortran95 code is provided
in Sect. 2.6.

8 Kerkweg and Jöckel: IMPORT User Manual

2.4 Regridding Types

IMPORT GRID contains two different software packages for grid transformation, NREGRID (Jöckel,
2006) and SCRIP (Jones, 1999). NREGRID is designed to rediscretise arbitrary distributions from
one grid to another, without adding information (e.g., if regridding from a coarser to a finer grid),
or reducing more information than is lost anyway (e.g., if regridding from a finer to a coarser grid).
Thus, no inter- / extrapolation methods are applied! The data fields are purely redistributed, assuming
constant values within the grid box, represented by the grid box mid-point. For this, intensive and
extensive variables are distinguished. Accordingly, the following regridding types (RG TYPE) are
supported by NREGRID at present for the regridding of variables (scalar fields!) between geo-hybrid
grids:

• INT is suitable for intensive quantities, such as tracer mass mixing ratios, or temperature fields.
This option conserves the global area/volume weighted average of a scalar field during the
regridding procedure.

• EXT is suitable for extensive quantities, such as tracer masses, or tracer emission maps (2D) in
units “per box”. This option conserves the global unweighted sum over all grid boxes of a scalar
field.

• IDX is suitable for regridding index distributions, i.e., scalar fields with discrete values, where
averaging is not defined. The index-regridding returns for a given destination grid-box the index,
which has in all overlapping source grid-boxes the largest relative contribution.

• IXF is similar to IDX, however it returns a variable extended by one dimension, whereby the
additional dimension is along the index range. A given slice along the new index-dimension
contains the fraction of that index in the respective grid-box.

Apart from the EXT type, these types are also available for transformations by SCRIP.

2.5 Namelist control

The regridding procedure of IMPORT GRID is controlled by a namelist. In interface mode additional
control is provided by optional parameters specified at the subroutine calls of REGRID_CONTROL or
SCRIP_CONTROL, respectively. The syntax of an IMPORT GRID namelist is:

!=========================
®RID
variable = value,
...
/
!=========================

variable is the name of the namelist variable and value its assigned value. The dots indicate a list
of further namelist entries. Several namelists can be concatenated into one namelist file. Those are
sequentially processed by IMPORT GRID. Table 2.1 gives an overview of the possible namelist entries
with their meanings.

Kerkweg and Jöckel: IMPORT User Manual 9

INPUT OUTPUT TYPE Description
infile outfile CHAR input/ output netCDF file
grdfile CHAR netCDF file with output grid
i_lat(m/i) g_lat(m/i) CHAR name of latitude axis
i_latr g_latr REAL, DIM(2) range of latitude axis
i_lon(m/i) g_lon(m/i) CHAR name of longitude axis
i_lonr g_lonr REAL, DIM(2) range of longitude axis
i_lonc g_lonc LOGICAL longitude axis is modulo axis
i_hya(m/i) g_hya(m/i) CHAR name of hybrid-A-coefficient (ha)
i_hyar g_hyar REAL, DIM(2) range of hybrid-A-coefficient
i_hyb(m/i) g_hyb(m/i) CHAR name of hybrid-B-coefficient (hb)
i_hybr g_hybr REAL, DIM(2) range of hybrid-B-coefficient
i_time(m/i) g_time(m/i) CHAR name of time axis
i_ps g_ps CHAR name / value of surface pressure
i_p0 g_p0 CHAR name / value of reference pressure
i_t o_t INTEGER, DIM(X) input (X=3)/output(X=4) time step control
g_t INTEGER, DIM(3) grid time step control
i_clat(m/i) g_clat(m/i) CHAR name of geographical latitude coordinate of

curvi-linear grids
i_clon(m/i) g_clon(m/i) CHAR name of geographical longitude coordinate of

curvi-linear grids
i_clonc g_clonc LOGICAL longitude axis of curvi-linear grid is modulo

axis
i_rlat(m/i) g_rlat(m/i) CHAR name of rotated latitude axis for rotated grids
i_rlon(m/i) g_rlon(m/i) CHAR name of rotated longitude axis for rotated

grids
i_rlonc g_rlonc LOGICAL longitude axis of rotated grid is modulo axis
i_pollon g_pollon REAL longitude of rotated North Pole of rotated

grid
i_pollat g_pollat REAL latitude of rotated North Pole of rotated grid
i_polgam g_polgam REAL angle between the north poles of the rotated

and the geographical grids
var CHAR variable list
pressure LOGICAL vertical regridding in pressure coordinates
input_time LOGICAL output file gets input time axis

Table 2.1: List of namelist variables of &RGTEVENT namelists. (...m/...i) denote the box
mid-point (...m) and interface (...i) coordinates, respectively.

2.5.1 Grid specification

In order to allow netCDF files to be as generic as possible, and not to be restricted to specific netCDF
conventions, the input grid (read from the netCDF file infile) has to be specified by the user via the
namelist. With the namelist variables i_lat(i/m), i_lon(i/m), i_hya(i/m), i_hyb(i/m), i_ps, and
i_p0 a geographically-rectangular, 3D input grid (spatial) is fully described. More complex horizontal
grids can be described by i_clat(i/m) and i_clon(i/m). These strings provide the names of the
variables defining the geographical longitude and latiude for a curvi-linear grid. In the specific case

10 Kerkweg and Jöckel: IMPORT User Manual

of rotated rectangular grids, additionally, i_rlat(i/m) and i_rlon(i/m) can be defined. These
variables name the longitude and latitude axis in the rotated system. For transformation between
rotated and geographical coordinates, the definition of the rotated pole is required. This is defined
by i_pollon, i_pollat and i_polgam. For the special case, that the longitude axis is a modulo axis
specific assumptions can be made in the algorithm. Therefore this information needs to be provided
by the logical variables i_lonc, i_clonc and i_rlonc, respectively.

The output grid (g ...) is specified in analogy, and read from the grdfile in the stand-alone mode,
while it is provided by the basemodel in interface mode. The output is written to the netCDF file
outfile. For the regridding procedure, the interfaces (i...) of the grid boxes are required (except
for i/g_timei). If the respective data are not available in the infile / grdfile, or the entries are
not present in the namelist, the interface values are (for geographically-rectangular grids) internally
calculated from the corresponding mid-box values, assuming that the interfaces are half-way between
the mid-points. The outer interfaces are calculated using the same distance between outermost mid-
point and corresponding inner interface. If this calculation of the outer interfaces is not applicable,
the user can specify them with the namelist variables i_latr, i_lonr, i_hyar, i_hybr for the input
grid, and with g_latr, g_lonr, g_hyar, g_hybr for the output grid, respectively. For example,

...
i_latm = latitude,
i_latr = -90.0, 90.0,
...

in the namelist ensures that the outer input grid latitude interfaces (calculated from the mid-box
latitudes with name latitude) are at -90.0◦ and 90.0◦. Note that in case of i/g_hyar the order of
parameters is relevant, since the hybrid-A-coefficients (see Eq. 2.1 below) are not monotone. Therefore,
in
i_hyar = a1, a2,
a1 refers to the highest grid level (corresponding to the smallest hybrid-B-coefficient (!)), and a2 to
the lowest grid level (corresponding to the largest hybrid-B-coefficient (!)), respectively.

If the interface variables are specified in the namelist, but not the corresponding mid-points, the latter
are internally calculated, assuming that the mid-points are half-way between the interfaces. The mid-
points, however, are not used by the regridding procedure. Dimensions defined for the input grid
(infile), but omitted for the output grid (grdfile) are treated as invariant (see GRID-User-Manual).

2.5.2 Syntax of the namelist variable var

With the namelist variable var the user specifies the scalar field contained in infile (which have to
be on the specified input grid) that should be regridded. For output to the outfile (in stand-alone
mode) or to the interface, the variables can be renamed and scaled. Moreover, the regridding type
(see Sect. 2.4) can be assigned. The syntax is
var = ’[new_name=]name[:RG_TYPE][,scale]; ...’,
whereby the dots indicate a list of further variables. name is the variable name in infile, new_name is
the variable name in outfile, RG_TYPE is the regridding type (see Sect. 2.4), and scale is the scaling
factor. The order of :RG TYPE and ,scale is arbitrary. If new_name is omitted, the variable is not
renamed. If scale is omitted, the variable is not scaled. If RG_TYPE is omitted, IMPORT GRID checks
the infile for the variable attribute RG_TYPE. If this attribute is not set, or the value is not recognised,
IMPORT GRID takes INT as default (see Sect. 2.4). If the namelist variable var is not specified at

Kerkweg and Jöckel: IMPORT User Manual 11

all, IMPORT GRID scans the infile for all variables on the specified input grid. Renaming and scaling
are not performed. The regridding type is set to INT, unless the variable attribute RG_TYPE in infile
is specified.

2.5.3 Time control

With the time control namelist variables i_t, g_t and o_t the user specifies the time steps of netCDF
variables for regridding. The syntax is

i_t = itmin,itstep,itmax,itret, ! default: 1, 1, 0, 0
g_t = gtmin,gtstep,gtreset, ! default: 1, 1, 0
o_t = otstart,otstep,otdummy ! default: 1, 1, 0

where itmin, itstep, itmax, itret, gtmin, gtstep, gtreset, otstart, and otstep are integers. The default
settings are listed above. The third entry of o_t (otdummy) is currently not used. IMPORT GRID
resets automatically itstep, gtstep, and/or otstep to 1, if 0 is specified in the namelist; itmax and
itret are set to itmin, if not specified in the namelist. The overall consistency of all time step control
parameters is checked by IMPORT GRID, and documented by the output of error / warning messages,
if required. The input variables are regridded between itmin and itmax with a step size of itstep. The
regridded data of time step itret are returned to the READ_CONTROL subroutine call (see Sect. 2.6.3).
Thus, itret has no meaning in the stand-alone mode of IMPORT GRID. For the destination grid of
the variables at the input time steps (itmin, itmin+itstep, itmin+2itstep , ... , itmax) the grid from
grdfile is used at time step gtmin, gtmin+gtstep, gtmin+2gtstep, ... , respectively. If gtreset is reached,
the grdfile time step is reset to gtstart again, etc. (This allows for instance the regridding of 60 time
steps of monthly averaged data (in infile), to a grid (in grdfile) which is only known climatologically,
i.e., containing 12 monthly averages.) And finally, the regridded data is written to the output file with
time steps otstart, otstart+otstep, otstart+2otstep, This is needed, e.g., if itstep is not 1, but the
outfile should contain a continuous time series. With the namelist variable input_time the time axis
specification in the output file (outfile) is set. Per default (input_time = .TRUE.) the outfile time
axis is the same as in infile. Otherwise, (input_time = .FALSE.) the grdfile time axis (or interface
time axis in interface mode) is taken for outfile. Additionally, in interface mode the output time
stepping (o_t) is set to the infile time stepping (in case of input_time= .TRUE.), or to the interface
time stepping (in case of input_time = F), respectively.

2.5.4 Vertical axis specifications

As described earlier, SCRIP is a purely horizontal grid transformation algorithm. Therefore the
vertical regridding is always performed using NREGRID. NREGRID is capable to handle all cases of
vertical pressure axes of the form:

p(x, y, z, t) = ha(z) · p0 + hb(z) · ps(x, y, t), (2.1)

such as

• hybrid pressure axes (ha 6= 0, hb 6= 0);

• constant pressure axes (hb = 0); i/g_hybi/m omitted in namelist

• sigma levels (ha = 0); i/g_hyai/m omitted in namelist

12 Kerkweg and Jöckel: IMPORT User Manual

2.5.4.1 Surface and reference pressure

If the surface pressure and/or reference pressure is / are not contained in infile and / or grdfile,
respectively, or they should not be used, it is possible to specify a constant value, for example:

i_p0 = ’101325.0 Pa’

The syntax is the same for g_p0, i_ps, and g_ps. Note that in these cases the unit must be chosen such
that surface pressure (pS), reference pressure (p0) and the hybrid-coefficients (ha, hb) are consistent
because of the given relationship for the vertical pressure (p), dependent on longitude (x), latitude (y)
and time (t) at a hybrid level (index i):

p(i, x, y, t) = ha(i) · p0 + hb(i) · ps(x, y, t). (2.2)

The unit (Pa in the specification above) is only converted to the netCDF variable attribute units in
the output file, but not used internally for automatic unit conversions!

2.5.4.2 Vertical regridding coordinates

Calculation of the vertical overlap of grid-boxes between infile and grdfile is internally performed in
sigma-coordinates per default

σ(i) = p(i, x, y, t)/ps(x, y, t), (2.3)

in order to avoid conservation problems in case the source and destination surface pressure fields
are different. However, a vertical regridding in pressure coordinates can be enforced, if the variable
pressure = T is specified in the namelist. Note, however, that in such cases input and output pressure
levels must have the same units!

2.5.5 Namelist examples

Examples of IMPORT GRID namelists can be found in the ./import_grid/nml subdirectory of this
distribution.

2.6 Interface Mode

The usage of IMPORT GRID in interface mode, i.e., linked to another program, requires two steps:

• Specification of the destination grid in the Fortran95 code, and

• calling the regridding procedure from the Fortran95 code. This can be achieved by using the
interface routines described below.

2.6.1 Destination grid specification

For IMPORT GRID in interface mode (i.e., as part of a model) a specification of the destination grid
in the Fortran95 code is required, which provides the information as alternative to the specification
via the grdfile entry in the namelist (see Sect. 2.5). The definition of the basemodel grid is provided
by the MESSy submodel GRID (see the GRID-User-Manual available in the same supplement as this
manual). The IMPORT GRID interface locates this grid information by the BASEGRID_ID provided
by GRID. Alternatively, a destination grid defined by any other MESSy submodel can be chosen by
namelist entry (see Sect. 2.6.2)

Kerkweg and Jöckel: IMPORT User Manual 13

2.6.2 IMPORT GRID namelist control in interface mode

In Sect. 2.5 the namelist required for one specific mapping process is explained. However, IM-
PORT GRID in interface mode can deal with an arbitrary number of different grid transformations at
different time steps during one simulation. Each of those is called a regrid event in the following. The
individual regrid events are defined in a namelist called &RGTEVENTS. The specific entries are labeled
with RG_TRIG (for regridding trigger) followed by a unique number.

&RGTEVENTS

! ### SYNTAX:

! ### NML= ’’ (DEFAULT) : this namelist-file (import.nml)

! <namelist file>: other namelist file

!

! ### FILE= ’’ (DEFAULT) : - ONLY first netCDF file in NML

! <netCDF-file> : - this file in NML

!

! ### VAR= ’’ (DEFAULT) : - all variables from FILE

! - all variables in first namelist in NML

! <tracer name> : - this variable from namelist in NML

! (FILE specifier ignored !!!)

! ### Z= <z1,z2,...> : - list of emission heights [m]

! (above GND) for multi level emissions

! (Nx2D)

!

! {--------EVENT---------} {--------------------STEPPER ----------------------}

! {------counter-------}{----------action string-----}

!

! GHG: N2O, CH4, CO2 JAN-1950: 1 DEC-2011: 744

RG_TRIG(1) = 1,’months’, ’first’,0, ’GHG’, 733,1,744,733, ’NML=./import/GHG.nml;’,

! --------------------

! CCMI biomass burning

! --------------------

!

! JAN-1950: 1 DEC-2010: 732

!

RG_TRIG(2)=1,’months’,’first’,0,’NMHC’,721,1,732,709,’NML=./import/NMHC_BB.nml; Z=50,300; GRID=TEST2’,

!

! VOLCANIC SO2

!

RG_TRIG(10)=1,’months’,’first’,0,’VOL_SO2’,1,1,12,1, ’NML=./import/volc_SO2.nml; VAR=SO2;IPOL=SCRP’,

/

Each RG_TRIG entry consists of an event and a stepper. The event defines a periodically occuring
event1, e.g., for the regridding of an emission field every month. The stepper consists of a counter
and an action string. The counter is defined as:

counter = name, min, step, max, start

It defines the cyclic stepping through the time steps of the netCDF input file. name is a string defining
a name by which the counter can be identified. start is the initial value of the counter at the very
first model time step. During the simulation the counter is increased by step until max is reached.
Afterwards the counter is reset to min. In the example namelist, the counter with the name NMHC

1For the exact definition of an event see the User Manual of the generic MESSy submodel TIMER, which is part of
the electronic supplement of Jöckel et al., 2010; http://www.geosci-model-dev.net/3/717/2010/

14 Kerkweg and Jöckel: IMPORT User Manual

starts with 709, is incremented by 1 at the beginning of each month until 732 is reached, then the
counter is reset to 721.

Finally, the action string controls remapping specific features. In the IMPORT GRID stepper action
string the following keywords, separated by semicolons, are recognized:

keyword meaning
NML= followed by the name (including the path) of the file containing the ®RID namelist

for grid import. If this keyword is omitted (or empty), the IMPORT namelist file itself
(import.nml) is used.

FILE= followed by the name (including the path) of the input file. IMPORT GRID loops over
all ®RID namelists in the specific namelist file (NML=...), until the first namelist with
matching netCDF filename is found. If this keyword is omitted (or empty), the first
namelist in the specified namelist file (NML=...) is used.

VAR= followed by the name of the variable that is imported by IMPORT GRID. IMPORT GRID
loops over all IMPORT GRID namelists in a specific namelist file (the result of NML=),
until the first namelist with matching variable name is found (in this case, the FILE
specifier is ignored). If this keyword is omitted, IMPORT GRID imports all variables
from FILE, if specified, or all variables from the first ®RID namelist in NML.

Z= followed by a comma separated list of geometric heights (in meter above ground). This
is only applicable to multilevel (Nx2D) data. The number of heights must match the
number of levels (N) in the input file.

IPOL= identifies the interpolation method. It can be one of SCRP for SCRIP or NRGT for NRE-
GRID remapping or NONE for raw data import.

GRID= is a string identifier for the output grid. The grid of the given name needs to be defined
somewhere in the 3D model, otherwise IMPORT GRID terminates the simulation.

2.6.3 The IMPORT GRID BMIL, Tools and SMCL

IMPORT GRID consists of four Fortran90 modules / files2:

1. The BMIL3 module MESSY_MAIN_IMPORT_GRID_BI

2. The BMIL module MESSY_MAIN_IMPORT_GRID_TOOLS_BI

3. The SMCL4 module MESSY_MAIN_IMPORT_GRID

4. The SMCL module MESSY_MAIN_IMPORT_GRID_PAR

Figure 2.1 illustrates the dependencies of IMPORT GRID and GRID submodels.

1. The module MESSY_MAIN_IMPORT_GRID_BI provides the interface. The subroutines are called
from the MESSy entry points in CONTROL via MESSY_MAIN_IMPORT_BI. The following MESSy
entry points are used by MESSY_MAIN_IMPORT_GRID_BI:

• IMPORT_GRID_INITIALIZE: Here the &RGTEVENTS namelist is read and the action string of
each regrid event is analysed calling the subroutine PARSE_STR5.

2according to the MESSy conventions filenames and module names are identical.
3BaseModel Interface Layer
4SubModel Core Layer
5In subroutine PARSE STR the action string is cracked into its components. This subroutine is located in

messy main import grid.f90

Kerkweg and Jöckel: IMPORT User Manual 15

Figure 2.1: Use structure of the generic MESSy submodels GRID (bluish colours) and IMPORT
(yellow colours). The Basemodel Interface layer (BMIL) is indicated by grey background colour. Each
box equals one module. Arrows point in the direction of the uses, e.g. the submodel core layer (SMCL)
modules are used in the BMIL.

16 Kerkweg and Jöckel: IMPORT User Manual

• IMPORT_GRID_INIT_MEMORY: The dimensions of the regridded data are calculated. For each
variable imported to the model a channel object is defined. If attributes are associated with
the imported data, these attributes are transformed to the corresponding channel object
attributes with the subroutine ADD_VAR_ATTRIBUTE.

• IMPORT_GRID_GLOBAL_START: During the time loop the time events of all regrid events
are evaluated and, if required, new input data is processed.

• IMPORT_GRID_FREE_MEMORY: At the end of the model simulation internal memory, i.e. mem-
ory allocated in addition to the channel objects, is released.

2. The module MESSY_MAIN_IMPORT_GRID_TOOLS_BI contains the variable declarations and rou-
tines for the time event handling. Additionally, it manages the writing / reading of the ASCII
restart file6 required to store the current status of the counters. Furthermore, it contains the
interface routines which control the import and regrid process on the basemodel interface level.
Two subroutines exist, one for the import of one specific variable (RGTOOL_BI_READ_NCVAR) and
one for the import of all variables hosted in one file (RGTOOL_BI_READ_NCFILE).

3. The SMCL module MESSY_MAIN_IMPORT_GRID comprises the routines for the handling of
the counters and the routines, which control the import and regrid process on the SMCL
(RGTOOL_READ_NCVAR and RGTOOL_READ_NCFILE, respectively). These routines provide the
interfaces to GRID TRAFO and call the respective regridding subroutines. Furthermore,
MESSY_MAIN_IMPORT_GRID contains the subroutine for managing the data import of the re-
grid events (READ_CONTROL), which itself requires the subroutines for reading the namelist
(READ_NAMELIST), and for parsing the information about the variables (PARSE_VARSTR).

4. The SMCL module MESSY_MAIN_IMPORT_GRID_PAR contains those routines required for the par-
allelisation of the regridding process. For SCRIP a domain decomposition parallelisation is
possible, i.e., each PE regrids only its subdomain. In contrast to this, NREGRID traditionally
(mainly because of the grid domain decomposition applied in ECHAM5) is parallelised over the
different variables (see Sect. 2.6.3.4).

Table 2.2 lists the routines of IMPORT GRID along with a short description. Additionally, it states
the module hosting the routine and the section in this manual providing more detailed information
on the respective routine or type.

2.6.3.1 RGTEVENT handling

In applications of IMPORT GRID in interface mode, it is useful to trigger data processing (i.e., reading
/ regridding of an input field) at specific time steps (time_events). For each of these time steps, a
specific time slice of the imported variable is used (counter). For example, an input file contains
monthly emission data, for the years 1995 to 2003 and is used for a simulation of the year 2000. The
monthly update of the channel object is triggered by a time_event, while the access to the correct data
for the year 2000 is managed by the counter. Both information are part of the structure T_RGTEVENT,
which additionally includes the action string, thus describing a regrid event. The routines required
for the time_event handling and the overall administration of the RGTEVENTs are described in the
following, while the counter handling is described below (Sect. 2.6.3.2).

6“restart” is here used for a user defined checkpointing.

Kerkweg and Jöckel: IMPORT User Manual 17

Table 2.2: List of routines and type declarations in IMPORT GRID. Routines are colored blue and
structures red. The file numbers indicate in which module the routines are located:
1: MESSY MAIN IMPORT GRID BI; 2: MESSY MAIN IMPORT GRID TOOLS BI; 3:
MESSY MAIN IMPORT GRID; 4: MESSY MAIN IMPORT GRID PAR.

Routine name Short description file Sect.

Interface utility routines 2.6.3
PARSE STR parsing the action string of RG_TRIG 3 2.6.3
ADD VAR ATTRIBUTES adding the attributes defined during the import to

the resulting channel objects
1 2.6.3

RGTEVENT handling 2.6.3.1
TYPE t rgtevent structure for the namelist variable RG TRIG 2 2.6.3.1.1
RGTEVENT INIT NML namelist reading and event initialisation 2 2.6.3.1.2
RGTEVENT STATUS inquiring status of time event and updating

counter
2 2.6.3.1.3

RGTEVENT INIT initialisation of the time events required for each
regrid event

2 2.6.3.1.4

RGTEVENT STAT evaluation of the status of time event, called from
RGTEVENT_STATUS

2 2.6.3.1.5

RGTEVENT INDEX searching for the index of a specific regrid event 2 2.6.3.1.6

Counter handling 2.6.3.2
TYPE t ncrgcnt structure for the counter 3 2.6.3.2.1
NEW NCRGCNT creation of a new list entry in the counter list 3 2.6.3.2.2
LOC NCRGCNT location of a specific counter in counter list 3 2.6.3.2.3
GET NEXT NCRGCNT next element in counter list 3 2.6.3.2.4
RGTOOL NCRGCNT RST interface for counter handling at start and restart 3 2.6.3.2.5
NCRGCNT HALT error flag handling 3 2.6.3.2.6
ncrgcnt error str production of an error messages 3 2.6.3.2.7
CLEAN NCRGCNT LIST removing all counter list entries 3 2.6.3.2.8
WRITE NCRGCNT LIST dumping counter list to ASCII file 3 2.6.3.2.9
READ NCRGCNT LIST reading list of counters from ASCII file 3 2.6.3.2.10
MAIN IMPORT GRID WRITE RESTART calling WRITE NCRGCNT LIST in case of an interrup-

tion of simulation
2 2.6.3.2.11

MAIN IMPORT GRID READ RESTART calling READ NCRGCNT LIST in case of a resumed
simulation

2 2.6.3.2.12

IMPORT GRID TOOLS FREE MEMORY releasing memory of counter list 2 2.6.3.2.13

The importing routines 2.6.3.3
READ NAMELIST reading the regridding namelist 3 2.6.3.3.5
PARSE VARSTR parsing the variable string (var=...) 3 2.6.3.3.6
RGTOOL READ NCVAR import and regridding of a single variables 3 2.6.3.3.2
RGTOOL READ NCFILE import and regridding of all variables of one data

file
3 2.6.3.3.3

18 Kerkweg and Jöckel: IMPORT User Manual

Table 2.2: List of routines in IMPORT GRID (... continued)

Routine name Short description file Sect.
READ CONTROL data import by reading the regridding namelists

and afterwards importing the data from the file
3 2.6.3.3.4

Parallelisation 2.6.3.4
t mpi def information of parallel environment 4 2.6.3.4
DISTRIBUTE VARS ON PES parallelisation along variable space 4 2.6.3.4.1
INIT PNCREGRID initialisation of variables used for parallelisation 4 2.6.3.4.2
INIT PARALLEL collecting information of parallel environment 4 2.6.3.4.3
EXPAND FILENAME expanding the output filename by PE number in

case of parallelisation
4 2.6.3.4.4

2.6.3.1.1 TYPE T RGTEVENT
For the handling of the regrid events the type T_RGTEVENT hosting the event information is defined:

! USED FOR NAMELIST-INPUT
TYPE T_RGTEVENT_IO

TYPE(io_time_event) :: &
evt = io_time_event(1, TIME_INC_MONTHS,TRIG_EXACT,0)

TYPE(T_NCRGCNT) :: cnt = T_NCRGCNT(’’, -1, -1, -1, -1)
CHARACTER(LEN=RGTMAXACTSTR) :: act = ’’

END TYPE T_RGTEVENT_IO

! INTERNAL WORKSPACE
TYPE T_RGTEVENT

TYPE(T_RGTEVENT_IO) :: io
TYPE(time_event) :: event

END TYPE T_RGTEVENT

Type T_RGTEVENT consists of the corresponding structure component of type T_RGTEVENT_IO used for
the namelist input of the regrid event, and an internally used time_event (see TIMER User Manual).
The type T_RGTEVENT_IO contains the structure components described above: the io_time_event,
the counter (type T_NCRGCNT) and the action string. For the definition of the counter see Sect. 2.6.3.2.

2.6.3.1.2 SUBROUTINE RGTEVENT INIT NML
The &RGTEVENTS namelist is read in this subroutine by calling the private subroutine

RGTEVENT_READ_NML_CPL on the I/O-PE and afterwards broadcasted to all PEs. Additionally,
the individual time_events are initialised via subroutine RGTEVENT_INIT, followed directly by the
investigation of the regrid event status by calling the subroutine RGTEVENT_STATUS.

Kerkweg and Jöckel: IMPORT User Manual 19

2.6.3.1.3 SUBROUTINE RGTEVENT STATUS
The interface of the subroutine RGTEVENT_STATUS is defined by

! --
SUBROUTINE RGTEVENT_STATUS(status, cpos, rgt, modstr, name, index, action &

, lstop, linit)

! RETURNS THE EVENT STATUS (flag) OF A NAMED (name)
! OR INDEXED (index) RGT-EVENT IN A LIST (rgt)
!
! Author: Patrick Joeckel, MPICH, Mainz, October 2002

...

IMPLICIT NONE
...

! I/O
LOGICAL, INTENT(OUT) :: status ! event status
INTEGER, INTENT(OUT) :: cpos ! counter pos.
TYPE(T_RGTEVENT), DIMENSION(:), POINTER :: rgt ! RGT-event list
CHARACTER(LEN=*), INTENT(IN) :: modstr ! calling module
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: name ! name of event
INTEGER, INTENT(IN), OPTIONAL :: index ! index of event
CHARACTER(LEN=RGTMAXACTSTR), INTENT(OUT), OPTIONAL :: action ! action string
LOGICAL, INTENT(IN), OPTIONAL :: lstop ! stop on error
LOGICAL, INTENT(IN), OPTIONAL :: linit ! initialize?

! --

The status of the time_event is calculated using the subroutine RGTEVENT_STAT. Secondly, the counter
of the regrid event is updated using subroutine RGTOOL_NCRGCNT_RST. Last but not least, the output
parameters, i.e., the current position of the counter (cpos) and the status flag are set. If the action
string is requested, it is copied to the optional parameter action.

For identification of the respective regrid event, the name or the index are required. If both are not
present the returned status is non-zero. If only the name is provided, the index is obtained by calling
the subroutine RGTEVENT_INDEX. If no regrid event with the provided name is found, the returned
status flag is non-zero. The same happens, if the given index is not available in the list of regrid
events. Note: if the index is provided during the subroutine call, the value of name is ignored. There
is no internal test, if name and index fit.

2.6.3.1.4 SUBROUTINE RGTEVENT INIT
This subroutine performs the initialisation of the time_events corresponding to the regrid events.

2.6.3.1.5 SUBROUTINE RGTEVENT STAT
This subroutine evaluates the status of a time event by calling the TIMER function event_state.

20 Kerkweg and Jöckel: IMPORT User Manual

2.6.3.1.6 SUBROUTINE RGTEVENT INDEX
This subroutine searches the list of regrid events to locate the index of a regrid event of a specific

name.

2.6.3.2 Counter handling

This subsection describes how the counter information is processed. For this,
MESSY_MAIN_IMPORT_GRID contains an additional type declaration, and the corresponding sub-
routines to provide this functionality.

2.6.3.2.1 TYPE T NCRGCNT
The type T_NCRGCNT provides a structure to store counter information:

TYPE T_NCRGCNT
CHARACTER(LEN=NCCNTMAXNLEN) :: name = ’’
INTEGER :: start = 1
INTEGER :: step = 1
INTEGER :: reset = 1
INTEGER :: current = 1

END TYPE T_NCRGCNT

name is used to identify the counter (e.g., in a list of counters), start contains the minimum counter
position, step the increment, and reset the maximum counter position. The current counter position
can for instance be used to read / regrid a specific time step of a netCDF variable by setting the
parameter t of subroutine RGTOOL_READ_NCVAR or subroutine RGTOOL_READ_NCFILE to current (see
Sect. 2.6.3.3).

To process a large number of counters the individual counters are stored in a concatenated list:

TYPE T_NCRGCNT_LIST
CHARACTER(NCCRSTRL) :: mname = ’’
TYPE(T_NCRGCNT) :: this
TYPE(T_NCRGCNT_LIST), POINTER :: next => NULL()

END TYPE T_NCRGCNT_LIST

mname is the name of the submodel defining this counter.

2.6.3.2.2 SUBROUTINE NEW NCRGCNT
With this subroutine a new list entry in the concatenated list of counters is created.

! --
SUBROUTINE new_ncrgcnt(status, mname, cnt)

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
CHARACTER(LEN=*), INTENT(IN) :: mname
TYPE(t_ncrgcnt), INTENT(IN) :: cnt

! --

Kerkweg and Jöckel: IMPORT User Manual 21

Input to the subroutine is a counter of type T_NCRGCNT and the name mname of the submodel defining
the counter, i.e., ’import_grid’. (This option is a relict of earlier versions without unique interface for
data import into a MESSy model: all submodels importing data had to include there own interface to
NCREGRID. In this case it was important to know, which submodel defined the respective counter). A
status flag is handed back to the calling routine providing information about errors or the information,
if a counter already exists.

2.6.3.2.3 SUBROUTINE LOC NCRGCNT
This subroutine locates a counter in the concatenated list:

! ---
SUBROUTINE loc_ncrgcnt(status, mname, cname, cntptr)

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
CHARACTER(LEN=*), INTENT(IN) :: mname
CHARACTER(LEN=*), INTENT(IN) :: cname
TYPE(t_ncrgcnt), POINTER :: cntptr

! ---

The name of the defining submodel (mname) and the counter name (cname) are input to the routine. If
the counter is found, the pointer cntptr is associated to the counter and the status is zero. Otherwise,
the pointer cntptr is NULLIF(Y)ied and the status flag provides information about the reason:

status error
5003 mname too long
5006 cname too long
5005 counter does not exist

2.6.3.2.4 SUBROUTINE GET NEXT NCRGCNT
The subroutine GET_NEXT_NCRGCNT can be used to loop over all currently stored counters in the

internal list, e.g., to search for a specific counter:

LOGICAL :: last
TYPE(t_ncrgcnt), POINTER :: cptr
...

DO
CALL GET_NEXT_NCRGCNT(last, cptr)
IF (last) EXIT
! check cptr here
....

END DO

last is .TRUE., if the end of the list is reached. This construction is required, since the number
of counters stored in the internal list is not known a priori. Internally the subroutine distinguishes
two modes: MODE_INIT and MODE_CONT. At the first call, the MODE is set to MODE_INIT. This triggers

22 Kerkweg and Jöckel: IMPORT User Manual

that the internal pointer is set to the start element of the concatenated list of counters (GRGTLIST).
Afterwards the MODE is set to MODE_CONT. If the first list element exists, this pointer is returned and
MODE is still MODE_CONT, so that at the next call of the subroutine the next pointer in the list can be
accessed.

! ---
SUBROUTINE GET_NEXT_NCRGCNT(last, cntptr)

IMPLICIT NONE

! I/O
LOGICAL, INTENT(OUT) :: last
TYPE(t_ncrgcnt), POINTER :: cntptr

! ---

As long as more list elements exist, upon return, cntptr is associated to the next element and last
is set .FALSE.. If no more elements are available, last is set .TRUE. and cntptr keeps its associ-
ation. Additionally MODE is reset to MODE_INIT, indicating that at the next call of the subroutine
GET_NEXT_NCRGCNT the cycling of the concatenated list must start at the very beginning of the list.

2.6.3.2.5 SUBROUTINE RGTOOL NCRGCNT RST
This subroutine provides an interface for the automatic handling of counter information, including

• the update of the counter (triggered by event==.TRUE.): The actual counter position current
is incremented by step. If the result is larger than reset, current is reset to start. This
allows cyclic counting.

• the unambiguous storage of a specific counter in the concatenated list of all counters (triggered
by linit==.TRUE.). This makes the counter accessible from everywhere, which is required to
save the counters in an external file at model interruption during a user defined checkpointing
(restart).

• the continuous update of the actual counter and its copy stored in the concatenated central list.

The subroutine is called with the following parameters:

! --
SUBROUTINE RGTOOL_NCRGCNT_RST(mname, start, restart, event, c, lout, linit)

! MANAGES I/O OF COUNTER INFORMATION AT START AND RESTART
!
...

IMPLICIT NONE

INTRINSIC :: PRESENT, TRIM

! I/O

Kerkweg and Jöckel: IMPORT User Manual 23

CHARACTER(LEN=*), INTENT(IN) :: mname
LOGICAL, INTENT(IN) :: start ! .true. at first time step
LOGICAL, INTENT(IN) :: restart ! .true. at first time step of

! rerun
LOGICAL, INTENT(IN) :: event ! .true. on event
TYPE(T_NCRGCNT), INTENT(INOUT) :: c ! counter - struct
LOGICAL, INTENT(IN) :: lout
LOGICAL,OPTIONAL, INTENT(IN) :: linit

! --

• mname is a name identifying the defining submodel.

• start must be .TRUE. only at the very first model time step. It is used to prevent a counter
update immediately at model start, if at the same time the event is triggered.

• restart must be .TRUE. only after the first initialisation of the counter list from the restart file.
This is used to restore the actual counter from the list, even if the event is not triggered.

• event is .TRUE., indicating that the counter update is triggered.

• c is the counter structure of the actual counter.

• lout is .TRUE. for diagnostic output.

• linit is an optional switch (default: .FALSE.). If set to .TRUE., it prevents counters of the
same name and mname to be updated, if the counter exists already in the list, but creates a new
entry in the counter list, if it is new. This is required to enable the definition of additional regrid
events after restart.

The sequence of operations is as follows:

1. If start, restart, and event are all .FALSE., the subroutine is left immediately.

2. The algorithm locates the specified counter c by its name and mname. If the counter is found,
the content of the respective counter in the list is copied to the actual counter c.

3. The initialisation flag linit is checked: Only if linit is .TRUE. the presence of the counter in
the list is re-evaluated: If it exists in the list, the routine returns with a non-zero error status,
since during the initialisation, the counter must not yet exist. If the counter is new, however, it
is added to the list.

4. The algorithm checks, if an update has been triggered. Only if event is .TRUE. and start is
.FALSE., an existing actual counter and its copy in the central list are updated, as described
above. If the counter does not exist in the list, the routine exits with a non-zero status.

2.6.3.2.6 SUBROUTINE NCRGCNT HALT
This routine provides the handling of the error status flags delivered by other subroutines. It uses

the RMSG subroutine from GRID to stop the simulation, if an error occurs.

24 Kerkweg and Jöckel: IMPORT User Manual

! --
SUBROUTINE ncrgcnt_halt(substr, status)

! MESSy
USE messy_main_constants_mem, ONLY: STRLEN_VLONG
USE messy_main_grid_netcdf, ONLY: RGMSG, RGMLE

IMPLICIT NONE
! I/O
CHARACTER(LEN=*), INTENT(IN) :: substr
INTEGER, INTENT(IN) :: status

! --

Input to the subroutine are a character string (substr) indicating the calling routine and the status
flag to be evaluated.

2.6.3.2.7 FUNCTION ncrgcnt error str
This function provides a meaningful error string associated to the respective status flag. It is used

by subroutine NCRGCNT_HALT.

2.6.3.2.8 SUBROUTINE CLEAN NCRGCNT LIST
This subroutine is used to remove all counter list entries, i.e., to clean up the memory.

2.6.3.2.9 SUBROUTINE WRITE NCRGCNT LIST
With the subroutine WRITE_NCRGCNT_LIST the complete concatenated list of currently stored counter

information is dumped into an ASCII file. This is required for restarts.

2.6.3.2.10 SUBROUTINE READ NCRGCNT LIST
With subroutine READ_CRGCNT_LIST, the counter information is restored from a file previously

written by subroutine WRITE_NCRGCNT_LIST. This is required for restarts.

2.6.3.2.11 SUBROUTINE MAIN IMPORT GRID WRITE RESTART
This BMIL subroutine calls the SMCL routine WRITE_NCRGCNT_LIST, if writing of restart files is

triggered.

2.6.3.2.12 SUBROUTINE MAIN IMPORT GRID READ RESTART
This BMIL subroutine calls the SMCL routine READ_NCRGCNT_LIST, if a simulation is resumed after

restart.

2.6.3.2.13 SUBROUTINE IMPORT GRID TOOLS FREE MEMORY
This BMIL subroutine initiates the initialisation of the concatenated list of counters by calling the

SMCL routine CLEAN_NCRGCNT_LIST.

Kerkweg and Jöckel: IMPORT User Manual 25

2.6.3.3 Interfaces for file reading and regridding

The SMCL file MESSY_MAIN_IMPORT_GRID contains all subroutines managing the data import and re-
gridding. The subroutines RGTOOL_READ_NCVAR and RGTOOL_READ_NCFILE are the drivers of these
processes for import of single variables (NCVAR), or all variables contained in one file (NCFILE),
respectively. The corresponding BMIL interfaces are the subroutines RGTOOL_BI_READ_NCVAR and
RGTOOL_BI_READ_NCFILE, respectively, located in MESSY_MAIN_IMPORT_GRID_TOOLS_BI.

2.6.3.3.1 Subroutines RGTOOL BI READ NCVAR and RGTOOL BI READ NCFILE
These two subroutines provide the main entry points on the BMIL of IMPORT GRID and internally

call the corresponding SMCL routines, which acutally do the reading and regridding of the input data
and the main IMPORT GRID BMIL. After processing the data, the format of the data is converted
from the internal 1D vector to the 4D arrays corresponding to the respective representation. This
conversion is performed by the GRID subroutine RGTOOL_CONVERT. Here especially the order of the
ranks in the 4D arrays is important. Additionally, if the processing is not performed in parallel mode
and a new grid has been created by the SMCL routines, this grid is broadcasted to all PEs. In case
of parallel domain decomposed input (ldompar =.TRUE.) each PE hosts its own sub-grid definition.

2.6.3.3.2 SUBROUTINE RGTOOL READ NCVAR
This subroutine manages the import and the regridding of the data for single variables. The interface

is given by:

SUBROUTINE RGTOOL_READ_NCVAR(status, iou, nmlfile, vname, t, var &
, iipol, ogridid, igridid, SCRIP_ID &
, lrg, lrgx, lrgy, lrgz, lok , oarea &
, convgrid, ldompar, lvarpar)

The meaning of the individual arguments is briefly described in Table 2.3. The subroutine starts
with the initialisation of local variables controlled by the optional arguments. First the output grid
structures (conv_grid and ogrid) are initialised. These two grids are different, if the subroutine
RGTOOL_READ_NCVAR is used to simply read the input field. Additionally, the structure var containing
the read or regridded field is initialised. As in principle, the namelist file of one regrid event can contain
any number of &RGTEVENT namelists, an endless DO-loop builds the main part of the subroutine. To
control the cycling conditions three internal parameters are used:

• RG_CTRL:

– RG_SCAN: scan the namelist

– RG_PROC: process data

– RG_STOP: stop data processing and namelist scanning

• RG_NML:

– NML_NEXT: read next namelist

– NML_STAY: read namelist again and import data

• RG_STATUS:

– RGSTAT_START: start regridding procedure

26 Kerkweg and Jöckel: IMPORT User Manual

– RGSTAT_CONT: continue endless DO-loop

– RGSTAT_STOP: exit endless DO-loop

Start values at the beginning of the endless loop are RG_CTRL=RG_SCAN, as the namelist file has to be
scanned for the required namelist entry, and RG_NML=RG_NEXT as the next namelist should be read.
Figure 2.2 illustrates the flow of the subroutine RGTOOL_READ_NCVAR. First in the endless DO-loop,
the subroutine READ_CONTROL is called. In that subroutine, depending on the switches RG_CTRL and
RG_NML, a namelist and the required data are read (see Sect. 2.6.3.3.4). After exiting the subroutine
READ_CONTROL, it is checked whether the currently read namelist entry (variable name) is the requested
variable. If not, RG_CTRL and RG_NML are set to RG_SCAN and RG_NEXT, respectively, and the endless
DO-loop cycle starts again. If the required variable has been found, the data is processed according
to llrg:

• llrg=.FALSE.: In the initialisation phase of the model, i.e., for dimensioning the output data
(channel objects), the namelists are read once, without starting the remapping. Thus, llrg
is set .FALSE. in the initialisation phase. In this case, only raw data input is required. RG_CTRL
is set to RG_SCAN and the imported raw data (local structure rvar) is copied to the output
structure var. Additionally, the input grid specifications are added to the list of geo-hybrid
grids by calling the GRID subroutine NEW_GEOHYBGRID. Furthermore, if the data set should be
regridded by SCRIP, the SCRIP interpolation weights are calculated and stored in the respective
data structures. Last but not least, the input grid is copied to the output structure conv_grid
for the dimensioning of the output structures.

variable INTENT type meaning

status OUT INTEGER status flag for GRID routines (0 = ok, if /= 0 infor-
mation is provided via function grid_error)

iou IN INTEGER I/O unit
nmlfile IN CHARACTER namelist filename
vname IN CHARACTER name of the variable to process
t IN INTEGER times step in netCDF file
var OUT TYPE(t_ncvar) out structure
iipol IN INTEGER interpolation method (one of GTRF_NONE, GTRF_SCRP

or GTRF_NRGT)
ogridid IN INTEGER ID of destination grid
igridid INOUT INTEGER ID of source (netCDF file) grid
SCRIP_ID INOUT INTEGER ID of SCRIP structure
lrg IN LOGICAL OPTIONAL flag for interpolation. If .FALSE. data is only read

in.
lrgx IN LOGICAL OPTIONAL flag for interpolation in first horizontal (x-)direction
lrgy IN LOGICAL OPTIONAL flag for interpolation in second horizontal

(y-)direction
lrgz IN LOGICAL OPTIONAL flag for vertical interpolation
lok OUT LOGICAL OPTIONAL success flag for subroutine (lok = .TRUE. includes

status == 0, but not the other way round.)
oarea IN REAL(dp) OPTIONAL area of zells in output grid, might be used in SCRIP
conv_grid INOUT TYPE(t_geohybgrid) OPTIONAL grid structure, which is required for grid conversions

in the interface subroutine RGTOOL_BI_READ_NCVAR

ldompar IN LOGICAL OPTIONAL parallelisation over the destination domain
lvarpar IN LOGICAL OPTIONAL parallelisation over variables

Table 2.3: List of arguments of subroutine RGTOOL READ NCVAR

Kerkweg and Jöckel: IMPORT User Manual 27

READ_CONTROL

RG_CTRL = RG_SCAN
RG_NML = RG_NEXT

varname = rvar%name?No

interpolation?

EXIT LOOP

 var = rvar
conv_grid = igrid Interpolation method?

RG_CTRL = RG_SCAN
RG_NML = RG_NEXT

RG_CTRL = RG_PROC
RG_NML = RG_STAY

 var = rvar
conv_grid = igrid

REGRID_CONTROL

Yes

No Yes

SCRP_CONTROL

REGRID_CONTROL

iipol = GTRF_NONE

iipol = GTRF_NRGT

iipol = GTRF_SCRP

 var = ovar
conv_grid = ogrid

 var = sovar
conv_grid = ogrid

 RG_STATUS = RGSTAT_STOP

RG_CTRL = RG_STOP
RG_NML = RG_STAY

Figure 2.2: Flux diagram for endless DO-loop in subroutine RGTOOL READ NCVAR. Blue letters indicate
subroutine calls, the light yellow boxes show settings of the internal switches.

• llrg=.TRUE.: This signifies (usually during the time loop) that regridding of the imported raw
data is requested. In this case, RG_CTRL is set to RG_PROC. Depending on the chosen method,
the data is regridded:

– GTRF_NONE: If no grid transformation is requested, the raw data is copied to the output
structure var and the input grid is copied to the output grid structure conv_grid.

28 Kerkweg and Jöckel: IMPORT User Manual

– GTRF_NRGT: If regridding by NREGRID is chosen, REGRID_CONTROL is called (see GRID-
User-Manual). Afterwards, the regridded structure ovar is copied to the output structure
var and the destination grid is copied to conv_grid.

– GTRF_SCRP: This is the most complex call, as SCRIP transforms only horizontal grids.
Thus, first it is checked, if horizontal regridding is requested (llrgx=.TRUE. and / or
llrgy=.TRUE.). In this case, SCRIP_CONTROL is called, otherwise the raw data is copied to
the intermediate structure sovar. If vertical grid transformation is requested, NREGRID
is used. In this case, the grid specification has to be adapted to the horizontally regrid-
ded data. This is especially important for data on curvi-linear grids, as NREGRID can
not deal with this. As NREGRID is only used for the vertical grid transformation, the
horizontal grid is defined in a way, that NREGRID can handle it. A simple example: For
the COSMO model grid, the coordinates of the horizontal grid are defined in the rotated
coordinate system. This grid is “pseudo-geographically-rectangular” and not curvi-linear
and NREGRID can deal with it. After redefining the input grid, REGRID_CONTROL is called
with the arguments llrgx=.FALSE. and llrgy=.FALSE., as the horizonal mapping was
already performed by SCRIP. After the vertical grid transformation, the output structures
var and conv_grid are filled.

After processing, RG_CTRL is set to RG_STOP and some local structures and variables are reinitialised
to free the memory. In the next call of READ_CONTROL some further internally allocated memory is
released and the endless DO-loop is exited.

2.6.3.3.3 SUBROUTINE RGTOOL READ NCFILE
The systematic of this subroutine is the same as for RGTOOL_READ_NCVAR. In contrast to the sub-

routine RGTOOL_READ_NCVAR, where the variable name (vname) is parameter of the subroutine, in
the subroutine RGTOOL_READ_NCFILE a filename (fname) is provided and the namelist file is searched
for the respective filename until this file is found. Afterwards, all variables named in the respective
namelist are processed.

2.6.3.3.4 SUBROUTINE READ CONTROL
This subroutine is the “heart” of the actual data import. It reads the individual ®rid namelists

and inputs the raw data fields accordingly. READ_CONTROL is split in two parts: the reading and anal-
ysis of the namelist (subroutine READ_CONTROL_INIT) and the actual import of the data (subroutine
READ_CONTROL_WORK). The work flow of READ_CONTROL is determined by the local switches GSTAT,
GCTRL and GNML, which are the local counterparts to the switches RG_STATUS, RG_CTRL and RG_NML
used in the subroutines RGTOOL_READ_NCVAR and RGTOOL_READ_NCFILE.

In READ_CONTROL_INIT, depending on the control switches, different procedures are passed through:

• GSTAT == RG_START .OR. GNML == NML_NEXT:
In this case, the ®rid namelist is read on all PEs (more details about the parallelisation
are given in Subsect. 2.6.3.4) by the subroutine READ_NAMELIST as described in Sect. 2.5. The
string of namelist entry var, specifying the names of the variables and optional scaling fac-
tors, is parsed using the subroutine parse_varstr. If an error in reading the namelist oc-
curs, or the end of the namelist file is reached, GSTAT is set to RGSTAT_STOP. After read-
ing the namelist, the variables controlling the parallelisation of the data processing (see
Sect. 2.6.3.4) are set: If ldompar=.TRUE., i_am_worker is always .TRUE. and nproc_work =1.
In case of lvarpar=.TRUE., the subroutine DISTRIBUTE_VARS_ON_PES distributes the variables

Kerkweg and Jöckel: IMPORT User Manual 29

on the available PEs and sets the switches i_am_worker and nproc_work accordingly (see
Sect. 2.6.3.4.1). If no parallelisation is requested (i.e., ldompar=.FALSE. and lvarpar=.FALSE.)
the subroutine READ_CONTROL has to be called on the I/O-PE only. For this PE the switches
i_am_worker and nproc_work are set to .TRUE. and 1, respectively.

• GNML == NML_STAY:
In this case the namelist is not read again, but the variable string is parsed again by subroutine
parse_varstr.

If at this point GSTAT = RGSTAT_STOP, the I/O-unit is closed and the memory of various local variables
is released.

The second subroutine, READ_CONTROL_WORK, is only called, if i_am_worker = .TRUE..

• At the beginning the respective step selector, driving the input of the correct time step from
a multi-time step file (according to the counter) are checked and set. Secondly, in case of
parallelisation, the filename of the output file, if direct output in a netCDF file is requested,
needs to be expanded by the processor number, as otherwise different PEs would write differently
dimensioned data to the same file via serial netCDF output.

• After the initialisation is finished, the import starts with reading of the input grid
(CALL IMPORT_GEOHYBGRID(gi)). If the output grid (gg) is provided by a file and not on-
line, it is also read. Both grids are successively checked (CALL CHECK_GEOHYBGRID), whether
they provide sufficient information.

• If the procedure is run in domain parallel decomposition (ldompar=.TRUE.) the input grid is re-
duced to the part required for the subdomain on the respective PE (CALL REDUCE_INPUT_GRID).
This step is very important to reduce the memory footprint for the imported raw data, as well
as for the whole interpolation process.

• Subsequently, all variables attributed to the respective PE are imported (CALL IMPORT_NCVAR).
In case of a reduced input grid, the variables zstart and zcount provide the informa-
tion, which hyperslice of the variable has to be read (for more detail see the GRID-
User-Manual). After import, a check of the grid of the imported variable is performed
(CALL CHECK_NCVAR_ON_GROHYBRID).

• If everything is ok, the imported variables are copied to the output structures, renamed and
scaled, and the time axis is adjusted, if required.

• At the end, locally allocated memory is released and grid specific structures are initialised.

2.6.3.3.5 SUBROUTINE READ NAMELIST
This subroutine is called by READ_CONTROL and reads the ®rid namelists. The content of the

namelists is described in detail in Sect. 2.5.

2.6.3.3.6 SUBROUTINE PARSE VARSTR
The subroutine parse_varstr parses the string of the var specifier in the ®rid namelist (see

Sect. 2.5). It might look like

var = ’NO=NOx_flux,2.00671e+25;LAI:IDX;SO2=SO2_flux,9.39932e+24;’,

30 Kerkweg and Jöckel: IMPORT User Manual

i.e., it contains an arbitrary number of specifications. For each imported variable, a new name can
be assigned, a scaling factor and the regridding method can be given. In this example the input field
NOx_flux is renamed to NO and scaled by 2.00671e+25. The LAI is index regridded. The entries for
the individual input fields are semicolon seperated, the renaming is indicated by an equal sign and the
scaling factor is seperated by a comma, while the integration method is seperated by a colon. This
syntax is used to process the string.

• First the string is split in the substrings between the semicolons yieldung nvar substrings.

• Afterwards, each substring is searched for the colon and the comma. The content after these signs
is then associated to the RGTstr (regrid methods as string) and the scaling factor, respectively.

• Along, if an equal sign is part of the substring, the string left (right) of the equal sign is assigned
as destination (source) name of the variable, respectively.

• After all substrings are processed, the acquired information are forwarded to the calling subrou-
tine in form of 1D arrays dimensioned by nvar. The arrays are

– ivar: input variable names, i.e., the names of the fields in the file,

– ovar: output variable names, i.e., the names associated by IMPORT GRID to the respec-
tive variables,

– scl: the scaling factor (default: 1.),

– RGT: integer indicating the regridding method (default: RG_INT)

– RGTstr: string indicating the regridding method (default: ’INT’)

2.6.3.4 Parallelisation of GRID TRAFO

In principle the data import and the regridding can be processed in parallel. Depending on the
calling model different methods are applicable. For the stand-alone tools parallelisation is not nec-
essarily required. For 3D models, one option is to utilise the parallel domain decomposition of the
basemodel, i.e., each PE processes the data required for its respective subpart of the model domain
(ldompar=.TRUE.). For IMPORT GRID this is the case for the COSMO model. In models with a
more complex domain decomposition (e.g., ECHAM5) this is not straightforwardly applicable. Thus,
either no parallelisation at all is chosen, or, if the number of variables contained in one file is large
enough, the parallelisation can be applied over the variables (lvarpar=.TRUE.) This is the case for the
data import in the tracer initialisation in EMAC7. Internally, ldompar is always prefered over lvarpar,
e.g. the tracer initialisation in COSMO/MESSy is always performed in domain decomposition.

The information about which PE is processing what is internally provided by the logical switch
i_am_worker, which is .TRUE. if the PE is supposed to process data, and the number of processing
units (nproc_work). Additionally, to enable the coordinated work of the PEs, the structure my_mpi
of type T_MPI_DEF

TYPE T_MPI_DEF
INTEGER :: rank = -1
INTEGER :: nproc = -1
INTEGER :: comm = -1

END TYPE T_MPI_DEF

7Note: As a special case, tracer initialisation is triggered by the BMIL of TRACER and not by the BMIL of IMPORT.

Kerkweg and Jöckel: IMPORT User Manual 31

contains the information about the parallel environment: comm is the communicator, nproc the number
of PEs belonging to comm and rank is the rank of the respective PE in comm. Furthermore, the 1D
variable pe_list provides a list, which variable is handled on which PE. In case of lvarpar=.TRUE.
these variables and structure components are set in the subroutine DISTRIBUTE_VARS_ON_PES. In all
other cases, they are initialised with meaningful values. This happens partly in the READ_CONTROL
and partly in the helper routines INIT_PNCREGRID and INIT_PARALLEL.

2.6.3.4.1 SUBROUTINE DISTRIBUTE VARS ON PES
This subroutine is called from READ_CONTROL. Dependent on the number of imported variables and

the number of PEs, the variables are distributed over the PEs. To reduce the memory load, only a
maximal number of working PEs is set. First, the overall number of working PEs (nproc_work) is
determined as the minimum of

• the number of available PEs,

• the number of variables to import, and

• the maximum number of working PEs.

Afterwards, the variables are distributed among the working PEs. This information is hosted in the
variable pe_list. The variables are distributed such, that the working PEs have the largest possible
distance to each other, which in the end leads to as few as possible variables per node. For example,
during a simulation with 256 tals (32 tasks per node), 16 fields should be processed at once. In this
case, pe_list would be

pe_list(0:15) = (0,16,32,48,64,80,96,112,128,144,160,176,192,208,224,240)

which means that on each node 2 variables are processed (variable 1 on PE 0, variable 2 on PE 16,
variable 3 on PE 32 ... → on node 1 the processes 0 and 16 (i.e. 2 processes) are working).

After the calculation of pe_list, it is counted for each PE, how many variables are processed. After
the allocation of the local variables, the imported raw data is copied to the local variables and the
memory for the original (global) import fields is released.

2.6.3.4.2 SUBROUTINE INIT PNCREGRID
If no parallelisation over the variable number occurs, the pe_list has no meaning. Nevertheless,

it needs to be allocated to avoid run time errors. The subroutine INIT_PNCREGRID sets a default.

2.6.3.4.3 SUBROUTINE INIT PARALLEL
With this subroutine the information about the parallel environment is copied to the local structure

my_mpi of type T_MPI_DEF.

my_mpi%rank = p_pe
my_mpi%nproc = p_nprocs
my_mpi%comm = p_all_comm

my_mpi%rank contains the number of the corresponding PE. my_mpi%nprocs provides the number of
overall PEs and my_mpi%comm provides the MPI communicator for the my_mpi%nprocs PEs

32 Kerkweg and Jöckel: IMPORT User Manual

2.6.3.4.4 SUBROUTINE EXPAND FILENAME
In principle it is possible to request direct output of the processed data. For this an output filename

can be given in the namelist. In parallel mode, the PE number has to be added to the output filename,
in order to avoid parallel access to the same file of different PEs via serial netCDF output.

Chapter 3

IMPORT TS

IMPORT TS provides a unified interface for the reading of abstract time series data, i.e., data available
for a specific period in time and with a specific number of parameters.

3.1 Namelist Control∗

IMPORT TS is driven by the &CTRL_TS namelist. See Fig. 3.1 for an example. Each TS entry describes
one time series data set. The meaning of the components is:

• The first string defines the name of the time series data set and thus the name of the CHANNEL
object containing the finally processed data. By means of this name the data can be accessed
in other parts of the model.

• The second string comprises the name, including the full path, of the data file. Only for netCDF
files, additionally the string contains the name of the variable to be read. The variable name has
to be given at the beginning of the string and is seperated from the filename by an @-sign. In the
example in Fig. 3.1 TS(1) defines the time series data named ’exnc’. The variable in the netCDF
file is named "EXNC", while the data file is found under /DATA/exnc/EXNC_1950_2012.nc.

• The next two float entries determine the valid range of the data. In case of TS(1) in Fig. 3.1
this is between -99.9 and 99.9. The default valid range is between -HUGE(0.) and HUGE(0.)1.

• The next two integer variables set the valid time range for the time series data, i.e., if data is
provided in cases where the simulation date lies outside of the time span covered by the data
file. If set to “0” the model execution is stopped, where as “1” allows for the continuation of
the simulation. In the second case, the data of the nearest point in time present in the file is
used. As the desired policy may differ for dates before and after the covered time span, the first
integer determines the method used for dates prior to the time span comprised in the file, and
the second integer the method used after the provided time span. In the example (Fig. 3.1) the
simulation would be stopped, if a date outside the time frame covered by the exnc file (TS(1)) is
reached. For TS(2), the simulation will be continued after 1990, as the second integer flag is set
to 1. In this case, IMPORT TS would provide the data for 1990 for all dates later than 1990.

∗This is the same chapter as in the paper
1Fortran intrinsic

33

34 Kerkweg and Jöckel: IMPORT User Manual

• The third integer defines the mapping method for time steps in between the points in time
defined by the time series data.

-1: The previous point in time is used.

0: A linear interpolation between the two nearest points in time is performed.

1: The next point in time is used.

In Fig. 3.1 the data for ’exnc’ is linearly interpolated, while for TS(2) the previous point in time
is used.

• The following six integers allow for the selection of a specific date or a specific time span of
the data file. The order of entries is year, month, day, hour, minute, second. If all six
variables are defined one specific date is used independent of the simulation date. If, for example,
only the year has been set for a monthly data set, IMPORT TS cycles over the 12 months of
this specific year. Note: the other entries are always deduced from the current date. Thus a
simulation using a monthly data set and cycling through one specific year (e.g., 1989 as for
TS(2)) starting in June would at model start correctly use the data for June. Additionally, it is
possible to use, e.g., only 12 UTC data of an hourly data set.

By default, i.e., all six variables are not set, the data is selected according to the actual simulation
date.

• The last float variable defines an offset. The unit of this offset is days. With this entry the whole
time series can be shifted by a fixed time interval. Thus, for a daily data set defined at 00 UTC,
an offset of 0.5 would trigger the usage of new data at 12 UTC instead of 00 UTC.

3.2 Detailed code information

The full information of one data set is contained in a structure of type T_TS. This structure consists
of two components:

• the information describing the data set read from this &CTRL_TS namelist. The information is
gathered in a structure of type T_TS_IO.

• the data itself.

The type T_TS_IO is defined by

TYPE T_TS_IO
!
! NAME OF TIME SERIES
CHARACTER(LEN=STRLEN_OBJECT) :: name = ’’
! NAME OF FILE WITH DATA
CHARACTER(LEN=STRLEN_ULONG) :: fname = ’’
! VALID RANGE
REAL(DP), DIMENSION(2) :: vr = (/ -HUGE(0.0_dp), HUGE(0.0_dp) /)
! WHAT TODO IF BEYOND LOWER/UPPER BOUNDARY
INTEGER, DIMENSION(2) :: cnt = (/TS_BD_STOP, TS_BD_STOP/)

Kerkweg and Jöckel: IMPORT User Manual 35

! INTERPOLATION METHOD
INTEGER :: im = TS_IM_PREV
!
! PICK OUT THIS DATE/TIME (year, month, day, hour, minute, second)
INTEGER, DIMENSION(6) :: pdt = (/ -1, -1, -1, -1, -1, -1 /)
!
! SHIFT BY THIS NUMBER OF DAYS
REAL(DP) :: offset = 0.0_dp
!

END TYPE T_TS_IO

It contains the information listed from the namelist above:

• the name of the special time series (name),

• the filename (fname),

• the data range (vr),

• the “out of time range” policy (cnt),

• the interpolation method (im),

• the special date (pdt) and

• the offset (offset).

! --
&CTRL_TS
! ### SYNTAX:
! - name of time series
! - [var@] name (incl. path) of data file
! .nc -> netCDF, e.g., "var@my_path_to_my_file/my_file.nc"
! -> ASCII, e.g., "my_path_to_my_file/my_file.txt"
! - valid range (default: -HUGE(0._dp), HUGE(0._dp))
! - out of time interval policy: 0: stop; 1: continue with nearest ...
! ... (before time interval, after time interval)
! - interpolation method: -1: previous; 0: linear interpolation; 1: next
! - yr,mo,dy,hr,mi,se : pick out always this date/time
! (example: 2000, , , , , , will cycle through the year 2000 etc.)
! - offset (in days)
!
! ### EXAMPLE netCDF ###
TS(1) = ’exnc’, ’EXNC@/DATA/exnc/EXNC_1950_2012.nc’,-99.90,99.90, 0, 0, 0, , , , , , , 0.0,
!
! ### EXAMPLE ASCII ###
TS(2) = ’exascii’,’/DATA/example/misc/ex_1985-1990.txt’, , , 0, 1, -1, 1989, , , , , , 0.0,
!
/
! --

Figure 3.1: Example for the CTRL TS namelist of IMPORT TS.

36 Kerkweg and Jöckel: IMPORT User Manual

The structure describing the time series data (T_TS) comprises in addition to the I/O information the
data set information, i.e.

• the number of time steps (nt),

• the number of parameters (np),

• the time axis in julian days (jd),

• the 1D vector containing the information about the parameter axis (par), e.g., the level heights,

• the 2D data pointer spanning all parameters and all points in time (data),

• a logical flag, if the memory for the output data channel is allocated (lalloc),

• the channel object pointer (obj) dimensioned by the length of the parameter axis,

• a flag indicating, if the data is within the (namelist defined) valid range (flg), and

• the name of the parameter dimension (dimname), i.e., the content of header line 6 (used for an
ASCII file) or a 1D-vector of dimension attributes (dimvaratt), used in case of netCDF files.

TYPE T_TS
!
! IO
TYPE(T_TS_IO) :: io
!
! NUMBER OF TIME STEPS IN SERIES
INTEGER :: nt = 0
!
! NUMBER OF PARAMETERS IN SERIES
INTEGER :: np = 0
!
! TIME AXIS
REAL(DP), DIMENSION(:), POINTER :: jd => NULL() ! Julian day + fract.
!
! ’PARAMETER’ AXIS
REAL(DP), DIMENSION(:), POINTER :: par => NULL()
!
! DATA (RANK-1: time, RANK-2: number of parameters)
REAL(DP), DIMENSION(:,:), POINTER :: data => NULL()
!
! ’CURRENT’ VALUE (channel object)
LOGICAL :: lalloc = .FALSE.
REAL(DP), DIMENSION(:), POINTER :: obj => NULL()
!
! ’FLAG’ VALUE (1: OK, 0: OUT OF VALID RANGE)
REAL(DP), DIMENSION(:), POINTER :: flg => NULL()
!
! NAME OF PARAMETER DIMENSION
CHARACTER(LEN=STRLEN_MEDIUM) :: dimname = ’’

Kerkweg and Jöckel: IMPORT User Manual 37

!
! ATTRIBUTES OF PARAMETER DIMENSION
TYPE (t_ncatt), DIMENSION(:), POINTER :: dimvaratt => NULL()
!

END TYPE T_TS

3.2.1 The SMCL

Apart from the type declarations for T_TS and T_TS_IO, the SMCL consists of five public and two
private subroutines:

• import_ts_read_nml_ctrl reads the &CTRL_TS namelist (Sect. 3.2.1.1)

• its_read_ts analyses the filename string and the data file filling the data structure TS with the
namelist and file specific values. This subroutine contains two private routines for reading ASCII
(its_read_ts_ascii) and netCDF (its_read_ts_netcdf) files, respectively (Sect. 3.2.1.2).

• its_copy_io copys a structure of type T_TS_IO to another structure of type T_TS_IO
(Sect. 3.2.1.3).

• its_set_value_ts processes the data (Sect. 3.2.1.4).

• its_delete_ts deletes structures of type T_TS. More specifically, it releases the memory allo-
cated in T_TS (Sect. 3.2.1.5).

The following subsections provide futher details about these subroutines.

3.2.1.1 import ts read nml ctrl

This subroutine reads the namelist &CTRL_TS. The only parameter of the namelist is the variable
TS, which is an array of structures of type T_TS_IO and dimensioned with NMAXTS = 100, as a fixed
number of entries is required for namelist parameters.

3.2.1.2 its read ts

This subroutine reads the data files. First of all the file type (netCDF or ASCII) is determined. For
this the filename (zts%io%fname) as read in from the &CTRL_TS namelist is analysed. If the last three
characters in the string equal ’.nc’ a netCDF file is to be read, otherwise an ASCII file. In case of
a netCDF file, the string is further broken down to determine the variable name and the filename. If
no @-sign is found in the string the subroutine returns a non-zero error status. Otherwise, the local
filename variable (fname) is set to the string behind the @-sign, while the local variable name vname is
set to the first part of the string. In case of an ASCII file, fname is set to the full string, while vname
is an empty string.

After determination of the filename, it is inquired whether the file exists. If not, the subroutine returns
a non-zero error status. Otherwise, depending on the extension of the filename, one of the two sub-
routines its_read_ts_netcdf or is_read_ts_ascii is called. Upon return from these subroutines,
some logfile output is provided. More precise:

• the date range in julian days,

38 Kerkweg and Jöckel: IMPORT User Manual

• the range of the data,

• the picked date, and

• the offset

are written. Finally, the memory for the output objects (zts%obj) and the output data flag (zts%flag)
are allocated, if this is requested (i.e., if the third subroutine parameter lalloc is .TRUE.). This is
used in box model applications only, if MESSy CHANNEL is not used and import_ts_init_memory
is never called.

3.2.1.2.1 SUBROUTINE its read ts netcdf
This subroutine is called if a netCDF file is processed. Parameters of the subroutine are

• a status flag,

• the structure zts of type T_TS,

• a string containing the filename (fname), and

• a string containing the variable name (vname) of the respective data set.

Figure 3.2 schematically illustrates the steps required in the subroutine to dimension and import the
requested data correctly. More explicitly, the following steps are conducted in the given order:

• The two strings are written to the logfile output telling the name of the variable to be read and
the file from which the variable is read.

• The local structure var of type T_NCVAR is read from the netCDF file using the subroutine
IMPORT_NCVAR, which is provided by MESSy submodel GRID.

• If the structure does not contain an unlimited dimension, the routine returns with a non-zero
error status, as it is required that the variable has a time component.

• If the number of dimensions of the variable is larger than 2, the routine exists with the non-zero
error status, because IMORT TS only deals with 2D data (i.e., time axis x parameter axis).

• If no variable ID is available, the required information is not accessible from the file and thus
the subroutine returns with a non-zero error status.

• Time axis setup:

– Determination of the number of time steps: A loop over the dimensions is performed to
search for the time dimension (indicated by the UNLIMITED ID in netCDF). If this di-
mension is found, the length of this dimension is equal to the number of time steps and
thus saved in zts%nt and written to the logfile.

– Layout of the time axis: The respective time attributes are imported using the subrou-
tine IMPORT_NCATT (hosted by messy_main_grid_netcdf.f90). The time unit is first
written to the logfile and afterwards parsed by the subroutine eval_time_str (hosted
by messy_main_timer.f90) in order to acquire date and time information from the string2

2If the string is not successfully parsed, the subroutine returns with an error status.

Kerkweg and Jöckel: IMPORT User Manual 39

its_read_ts_netcdf

IMPORT variable

#time steps = len(DT)

search time dimension(DT)

no unlimited dimension

S
u

br
ou

tin
e

re
tu

rn
s

w
ith

 n
on

-z
er

o
st

at
u

s

#dimensions > 2

no variable ID present

IMPORT time unit
error in parsing unit string

Convert time variable to
Julian days

S
e

tu
p

 o
f tim

e
 axis

S
e

tu
p

 o
f

 p
aram

e
rte

r axis

#parameter = len(Dp)

allocate parameter
variable

allocate data array

IMPORT parameter var
COPY attributes

Copy variable
to data array

EXIT subroutine

Figure 3.2: Schematic overview of the data processing in the subroutine its read ts netcdf.

40 Kerkweg and Jöckel: IMPORT User Manual

The time variable is read and converted to the julian day format using the conversion factor
and offset determined by the analysis of the netCDF date string and unit3.

• Parameter axis setup

– The length of the parameter axis (zts%np) is given by the length of the second available
dimension. The number of parameters is written to the logfile. Knowing the number of
parameters the component zts%par is allocated to the correct length and preset with a
running index.

– If the parameter axis is present4, the variable is imported using IMPORT_NCVAR and copied
to zts%par.

– The name of the dimension is copied to zts%dimname and

– if dimension attributes exist, these are also copied to the respective structure component
(zts%dimvaratt) using COPY_NCATT (available in the module MESSY_MAIN_GRID_NETCDF).

– The content of zts%par is dumped to the logfile.

• Finally, the structure component hosting the data (zts%data) is allocated and the content of
the local structure var is copied to the structure describing the data set.

Before leaving the subroutine, the local structure var is reinitialised and the status flag is set to zero,
indicating success of the subroutine.

3.2.1.2.2 SUBROUTINE its read ts ascii
This subroutine is called, if an ASCII file is processed. Parameters of the subroutine are

• a status flag and

• the structure zts of type T_TS.

Figure 3.3 schematically illustrates the steps required in the subroutine to dimension and import the
requested data correctly. The subroutine analyses the ASCII file in the following order:

• First it is checked, if the structure components zts%jd, zts%par and zts%data are associated.
If so, they are deallocated. Afterwards all three pointers are NULLIFYied.

• After acquiring a free unit using the subroutine FIND_NEXT_FREE_UNIT from MESSY_MAIN_TOOLS
the file is opened and the first four header lines are read and ignored.

• From the fifth line the 4 integers time interval flag (flag), start year (y1), end year (y2) and
number of parameters (zts%np) are read. If flag is outside of the range 1 to 6, the subroutine
returns with a non-zreo status. Subsequently, the logfile output, providing the time resolution
and the number of parameters is produced.

3The usual netCDF date format is something like “hour since 2000-08-01 00:00:00”. From this the unit (“hours”)
and the starting date and time (“2000-08-01 00:00:00”) are used to calculate the conversion factors for the internal date
format julian days. Thus a conversion factor for the time unit (here “hours” to “days”) is required (i.e., 24). The offset
between the start date and time (“2000-08-01 00:00:00”) and the 0th julian day is calculated.

4In case of a scalar variable it is not present.

Kerkweg and Jöckel: IMPORT User Manual 41

its_read_ts_ascii

get logical unit
open ascii file

Read 7th header line:
get parameter

Read 4th header line:
Get time interval,

start and stop year
parameter

error upon reading

S
u

br
ou

tin
e

re
tu

rn
s

w
ith

 n
on

-z
er

o
st

at
us

endless DO-loop read:
time steps

endless DO-loop read:
fill julian days / data

S
e

tu
p

 tim
e axis /

 g
e

t d
ata

S
e

tu
p

 p
aram

erte
r axis

allocate parameter
variable

allocate time axis
and data array

CLOSE file

EXIT subroutine

julian days not monoton

Figure 3.3: Schematic overview of the data processing in the subroutine its read ts ascii.

• Parameter axis setup:

– Knowing the number of parameters, the float vector containing the information about the
parameters axis is allocated (zts%par(zts%np)).

– This structure component is filled with the content of line 7 of the data file and the respective
information is written to the logfile.

• The header lines 6 and 8 are read, but their content is ignored.

42 Kerkweg and Jöckel: IMPORT User Manual

• Determination of the number of time steps: An endless DO-loop is performed, reading one line
(i.e. one time step) of the file and enhancing the number of time steps by 1, if the status upon
reading is zero. For a negativ status the DO-loop is existed and thus the number of time steps
in the file is determined. This information is also written into the logfile. Afterwards, the file is
closed.

• Knowing the number of time steps, the structure components containing the julian date (zts%jd)
and the data (zts%data) are allocated.

• Data acquisition: To fill the structure components, the data file is opened again. The 8 header
lines are skipped. Subsequently, each data line (date (i)) is processed individually. Depending
on the time interval, the respective number of integers (e.g., yearly data = 1 integer; daily data
= 4 integers) and the data for this specific point in time are read. If an error occurs upon
reading, the subroutine returns with a non-zero status. Using the date components, the julian
date (zts%jd(i)) is calculated from the newly read date components. If the julian date does
not increase monotonically within the file, the subroutine returns with a non-zero status.

• Finally, the data file is closed and the status flag is set to zero.

3.2.1.3 its copy io

The subroutine its_copy_io copies one structure of type T_TS_IO to a second structure of the same
type. Therefore it has two parameters of type T_TS_IO.

! ---
SUBROUTINE its_copy_io(d, s)

IMPLICIT NONE

! I/O
TYPE (T_TS_IO), INTENT(OUT) :: d
TYPE (T_TS_IO), INTENT(IN) :: s

! ---

The first parameter is the destination structure, the second the source structure. Within the subroutine
the components of the structure T_TS_IO are copied from the source to the destination. This subroutine
is used to fill the T_TS_IO structure component of the structure of type T_TS with the namelist content.

3.2.1.4 its set value ts

This subroutine performs the data acquisition for the current date.

! ---
SUBROUTINE its_set_value_ts(status, zts, yr, mo, dy, hr, mi, se)

USE messy_main_timer, ONLY: gregor2julian

IMPLICIT NONE
INTRINSIC :: TRIM

Kerkweg and Jöckel: IMPORT User Manual 43

! I/O
INTEGER, INTENT(OUT) :: status
TYPE(T_TS), INTENT(INOUT) :: zts
INTEGER, INTENT(IN) :: yr, mo, dy, hr, mi, se

! ---

The arguments of this subroutine are:

variable data type INTENT meaning
status INTEGER OUT error flag (zero = success)
zts TYPE(T TS) IN data structure of specific time series
yr INTEGER IN year of actual simulation time step
mo INTEGER IN month of actual simulation time

step
dy INTEGER IN day of actual simulation time step
hr INTEGER IN hour of actual simulation time step
mi INTEGER IN minute of actual simulation time

step
se INTEGER IN second of actual simulation time

step

The subroutine works as follows:

1. Calculation of the “processing date” / time step to be selected:
First, the internal data time components are preset with the simulation date and time. Af-
terwards, the date components “picked” in the namelist are overwritten. This modified date
components are converted to julian days, which is the time format the subroutine is internally
working with. This date is named the “processing date” in the following.

2. Date check:
First, it is checked whether the processing date lies within the time range covered by the data
file. If not and the “out of time range” policy “0” is requested, the subroutine returns with a
non-zero status.

3. Search for the correct time step:
In a DO-loop over all time steps of the data set, the time step nt is searched for which the
processing data lies within the interval zts%jd(nt) and zts%jd(nt+1).

4. Data processing and check of data range:
The data handling depends on the chosen interpolation method and on whether the processing
date is covered by the data set:

• If the date is outside the covered time range, but the simulation is continued, the output
object zts%obj is set to the values of the nearest data point, i.e., the first or the last time
step depending on whether the current date is prior or after the date range of the data set.
According to the range of valid data regulated in the namelist, a flag (zts%flg(np)) is set,
indicating whether the data is valid or not. 0 stands for out of range, 1 for valid data.

• Interpolation method: -1 (previous time step)
If interpolation method -1 was chosen in the namelist, the output object zts%obj is set to

44 Kerkweg and Jöckel: IMPORT User Manual

the content of the data set at time step nt. Afterwards each entry np of the parameter axis
is checked, if the data is in the valid data range and the flag zts%flg(np) is set accordingly
(0 for out of range and 1 for valid data).

• Interpolation method: 0 (linear interpolation between previous and next time step)
If linear interpolation between the two nearest points in time is requested, a weighting
factor f depending on the distance to the two adjacent points in time is calculated and the
output data is then weighted between these two points in time according to this factor:

f = (jd - zts%jd(nt)) / (zts%jd(nt+1) - zts%jd(nt))
zts%obj(:) = f * zts%data(nt+1,:) + (1.0 - f) * zts%data(nt,:)

In contrast to the two other interpolation methods, it is checked, whether the data of both
times of the original data set are within the required range and the flag zts%flg(np) is set
accordingly.

• Interpolation method: 1 (next time step)
If interpolation method 1 was chosen in the namelist, the output object zts%obj is set to
the content of the data set at time step nt+1. Afterwards each entry np of the parameter
axis is checked, if the data is in the valid data range and the flag zts%flg(np) is set
accordingly (0 for out of range and 1 for valid data).

Finally the status flag is set to 0 indicating the success of the subroutine upon return to the calling
routine.

3.2.1.5 its delete ts

Within the subroutine its_delete_ts the components of a structure of type T_TS are deallocated or,
depending on the data type, set to their initial values, respectively.

3.2.2 The Basemodel Interface Layer

The BMIL of IMPORT TS uses four MESSy entry points:

• two in the initial phase,

– the first for reading and analysing the namelist (import_ts_initialise), and

– the second for memory initialisation (import_ts_init_memory),

• one during the integration phase (import_ts_global_start), and

• the last one in the finalising phase freeing the memory allocated by the submodel
(import_ts_free_memory).

3.2.2.1 import ts initialise

In the first call during the initialisation phase of MESSy, the namelist &CTRL_TS contained
in the namelist file import.nml is read and analysed. For reading the SMCL subroutine
IMPORT_TS_READ_NML_CTRL (Sect. 3.2.1.1) is called on the I/O-PE. Afterwards the namelist entries of
type T_TS_IO are processed on the I/O-PE. First the algorithm loops over the maximum number of in-
put data sets (NMAXTS). The algorithm cycles, if the name is empty, as this indicates, that no event with

Kerkweg and Jöckel: IMPORT User Manual 45

this number was defined in the namelist. Otherwise the read structure TS of type T_TS_IO is copied to
XTS(NTS)%io using the SMCL subroutine its_copy_io (Sect. 3.2.1.3), where XTS is of type T_TS, io
is its component of type T_TS_IO, and NTS is a running index for the respective data set. The namelist
entries are written to the logfile (see Sect. 3.3.2 for more details). After analysing the namelist entries,
the file is opened and analysed using the SMCL subroutine its_read_ts (Sect. 3.2.1.2). Within this
subroutine the other components of the structure XTS are allocated according to the dimensions read
from the file.

After all namelist entries have been processed on the I/O-PE, NTS is set to the actual number of
namelist entries. First, this number is broadcasted to all PEs. In a second loop over all actual data
sets, the results of the namelist and file analyses are broadcasted to all PEs and the data arrays are
allocated on all PEs.

3.2.2.2 import ts init memory

Here, the memory for the actual output data is allocated in form of channel objects5.

At the beginning, two list variables list_dimid and list_reprid are dimensioned according to the
number of data sets. In a loop over all data sets, the following steps are required to determine the
correct dimensioning of the channel objects for each data set.

1. Determination of the dimension ID:
the correct dimension ID required for the parameter axis needs to be identified, if it already exists,
or created, if it does not yet exist. Calling the CHANNEL subroutine get_dimension_info it
is tested, whether the dimension ID already exists. If so, the subroutine returns with the status
flag set to zero and the two variables DIMID, providing the respective dimension ID, and len
providing the length of the dimension. If len is not identical to the number of parameters for
the respective data set, the dimension name exists already, but not with the correct length.
Therefore the dimension name needs to be changed. In this case an arbitrary number between
1 and 1000 is added to the name. In a loop from 1 to 1000 a dimension name is searched,
which does not already exist. If an unused dimension name is found, the number is added to
the original dimension name

XTS(i)%dimname = TRIM(XTS(i)%dimname)//nrstr

with nrstr the added number as string, and the logical identifier ldim_ok is set to .TRUE..
ldim_ok = .TRUE. indicates, that the dimension needs to be created, while ldim_ok = .FALSE.
means, that a dimension of the correct length exists. If ldim_ok = .TRUE. a new dimension of
the length of the parameter axis (XTS(i)%np) and the name determined above is defined. The
corresponding dimension variable is filled with the float values of XTS(i)%par (i.e., the content
of line 7 in an ASCII file). Additionally, if dimension attributes are defined in the input file
(netCDF file only), they are copied as attributes to the dimension variable. The dimension ID
of the newly defined dimension is saved in the variable list_dimid. For ldim_ok = .FALSE.
the dimension ID of the already existing dimension is saved in list_dimid.

2. Definition of the representation:
After the dimension is determined, the representation of the channel object needs to be acquired.
First it is checked, if the dimension ID of the current data set was already used for a previous
data set. In this case, the same representation can be used. If this is not the case, a new

5See the Channel User Manual, which is part of the electronic supplement of Jöckel et al., 2010

46 Kerkweg and Jöckel: IMPORT User Manual

representation for a 1D variable on an “N”-axis is defined. All respresentation names defined
by IMPORT TS start with the string “TSR ”. The representation ID of the newly defined
representation is saved in the variable list_reprid.

3. Definition of the data channel object:
Finally, the new channel object and its attributes are defined. The channel is named import_ts
and the variable name from the namelist is used as channel object name. The information
provided by the original namelist entry are defined as namelist attributes for the channel object,
i.e., the filename, the valid range, the “out of to time range” policy and the interpolation method.

4. Definiton of the “flag” channel object:
A second channel object with the same representation is defined, which contains the flag indi-
cating whether the data is in the valid range (XTS(i)%flag = 1) or not (XTS(i)%flag = 0).

3.2.2.3 import ts global start

This subroutine is called at the beginning of the time loop. Looping over all data sets, the
time series data is processed according to the actual simulation date using the SMCL subroutine
its_set_value_ts.

3.2.2.4 import ts free memory

At the end of the integration the allocated memory (for the variables list_dimid and list_reprid)
is released.

3.3 The stand-alone tool IMPORT TS

The stand-alone tool of IMPORT TS is part of the electronical supplement as this User Manual.

3.3.1 Installing stand-alone tool IMPORT TS

1. unzip the zip-file:
unzip import_ts.zip

2. change into the subdirectory ./import_ts:
cd import_ts

3. add the necessary entries for your system and compiler to the Makefile, i.e.,

F90 Fortran90/95 compiler
F90FLAGS Fortran90/95 compiler options (e.g., options for invoking the cpp pre-

processor
DEFOPT prefix for compiler directive definitions
NETCDF_LIB netCDF library path
NETCDF_INCLUDE netCDF include path

4. build the executables and modules:
gmake

Kerkweg and Jöckel: IMPORT User Manual 47

5. the directory can be cleaned by
gmake clean

The executable import_ts.exe should now be available in the main directory. The status after
unpacking the zip-file can be archieved with gmake distclean.

3.3.2 Running the stand-alone tool IMPORT TS

After setting up IMPORT TS as described in the previous section, IMPORT TS is run by

./import_ts.exe import.nml

The import.nml namelist file should contain at least one entry in the &CTRL_TS namelist. An example
file is distributed together within the stand-alone tool.

The tool produces the following logfile output:

**
*** START import: INITIALISATION (import_ts_read_nml_ctrl)
Reading namelist ’CTRL_TS’ from ’import.nml’ (unit 101) ...
... OK !
*** END import: INITIALISATION (import_ts_read_nml_ctrl)
**
TIME SERIES : test

FILE : test_data_monthly.txt
VALID RANGE: -99.9000000000000057 99.9000000000000057
BND POLICY : stop
BND POLICY : stop
SELECTION : linear interpolation
READING DATA ...
its_read_ts_ascii: OPENING FILE test_data_monthly.txt
its_read_ts_ascii: TIME RESOLUTION : month
its_read_ts_ascii: NUMBER OF PARAMETERES: 19
its_read_ts_ascii: AXIS : 300.000000000000000

400.000000000000000 500.000000000000000 600.000000000000000
800.000000000000000 1000.00000000000000 1200.00000000000000
1500.00000000000000 2000.00000000000000 2500.00000000000000
3000.00000000000000 3500.00000000000000 4000.00000000000000
4500.00000000000000 5000.00000000000000 6000.00000000000000
7000.00000000000000 8000.00000000000000 9000.00000000000000

its_read_ts_ascii: NUMBER OF TIME STEPS : 642
its_read_ts_ascii: CLOSING FILE test_data_monthly.txt
its_read_ts: RANGE OF JULIAN DAY : 2434743.50000000000 - 2454252.50000000000
its_read_ts: RANGE OF DATA : -41.0000000000000000 - 99.9000000000000057
its_read_ts: PICK OUT : -1 -1 -1 -1 -1 -1
its_read_ts: OFFSET : 0.000000000000000000E+00 days
... DONE!

--

48 Kerkweg and Jöckel: IMPORT User Manual

==
TIME INTEGRATION STARTS ...
... DONE!
==

First, the &CTRL_TS namelist is read without error. Afterwards the tool loops over all possible TS
events and produces analytical output. In the example, only one event is found. Its name is ’test’
and the file “test_data_monthly.txt” is read. The valid data ranges between -90.0 and 90.0. The
simulation is stopped, if the simulation date is outside the time span covered by the data file. The
data will be linearly interpolated for dates between two data points in the file. Subsequently, the
header lines are evaluated: The file contains monthly data. The parameter axis is 19 entries long.
The respective values (here heights) are listed in the line labeled AXIS. After the evaluation of the
header, the data set is scanned: It is 642 steps long, ranges from julian day 2434743.50 to julian day
2454252.50. The actual range of data is -41.0 to 99.90. No special day is picked and no offset was
requested. After the initial phase, the time integration starts. In this case, the model loops from
the start date of the data file to the end date and processes the data for all parameters and dates
as requested in the namelist. The result is written into an ASCII output file named output_xx.dat,
where xx is a place holder for the index of the processed time series data set.

Bibliography

Jöckel, P.: Technical note: Recursive rediscretisation of geo-scientific data in the Modular Earth
Submodel System (MESSy), Atmos. Chem. Phys., 6, 3557–3562, 2006.

Jones, P.: First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordi-
nates, Mon. Wea. Rev., 127, 22042210, 1999.

49

	Introduction
	IMPORT and NREGRID license
	SCRIP license

	IMPORT_GRID
	Prerequisites
	Installation of the stand-alone tool IMPORT_GRID
	Usage
	Regridding Types
	Namelist control
	Grid specification
	Syntax of the namelist variable var
	Time control
	Vertical axis specifications
	Surface and reference pressure
	Vertical regridding coordinates

	Namelist examples

	Interface Mode
	Destination grid specification
	IMPORT_GRID namelist control in interface mode
	The IMPORT_GRID BMIL, Tools and SMCL
	RGTEVENT handling
	Counter handling
	Interfaces for file reading and regridding
	Parallelisation of GRID_TRAFO

	IMPORT_TS
	Namelist Control*
	Detailed code information
	The SMCL
	blue import_ts_read_nml_ctrl
	blue its_read_ts
	blue its_copy_io
	blue its_set_value_ts
	blue its_delete_ts

	The Basemodel Interface Layer
	import_ts_initialise
	import_ts_init_memory
	import_ts_global_start
	import_ts_free_memory

	The stand-alone tool IMPORT_TS
	Installing stand-alone tool IMPORT_TS
	Running the stand-alone tool IMPORT_TS

