
GRID User Manual

Astrid Kerkweg1 & Patrick Jöckel2

1 Institut für Physik der Atmosphäre
Johannes Gutenberg Universität Mainz

55099 Mainz, Germany
kerkweg@uni-mainz.de

2 Deutsches Zentrum für Luft-und Raumfahrt (DLR),
Institut für Physik der Atmosphäre,

Oberpfaffenhofen, D-82234 Weßling, Germany
patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “The infrastructure MESSy
submodels GRID (v1.0) and IMPORT (v1.0) ” in Geosci. Model Dev. (2015), available at:
http://www.geosci-model-dev.net

Date: July 17, 2015

2 Kerkweg and Jöckel: GRID user manual

Kerkweg and Jöckel: GRID user manual 3

Contents

1 Introduction 5

2 Overview 5

3 The SMCL GRID files 9

3.1 MESSY MAIN GRID NETCDF . 11

3.1.1 GRID data types . 11

3.1.2 Functions and Subroutines for type handling 14

3.1.3 Functions and Subroutine for message handling 20

3.2 MESSY MAIN GRID . 28

3.2.1 TYPE t geohybgrid . 28

3.2.2 FUNCTIONS and SUBROUTINES for grid handling 29

3.3 MESSY MAIN GRID TRAFO . 36

3.3.1 SWITCH GEOHYBGRID . 36

3.3.2 CHECK GEOHYBGRID . 36

3.3.3 SORT GEOHYBGRID . 37

3.3.4 H2PSIG . 37

3.3.5 COMPLETE GEOHYBGRID . 38

3.3.6 CHECK NCVAR ON GEOHYBGRID . 40

3.3.7 SORT GEOHYBGRID NCVAR . 40

3.3.8 PACK GEOHYBGRID NCVAR . 41

3.3.9 BALANCE GEOHYBGRID . 41

3.3.10 BALANCE GEOHYBGRID NCVAR . 42

3.3.11 BALANCE GEOHYBGRID TIME . 42

3.3.12 REDUCE INPUT GRID . 43

3.3.13 Conversion of rotated to geographical cooordinates and vise versa 43

3.3.14 Wind vector conversion between grids: UVROT2UV VEC, UV2UVROT VEC,
UVROT2UV VEC JLOOP . 44

3.4 MESSY MAIN GRID TOOLS . 45

3.4.1 RGTOOL CONVERT . 45

3.4.2 RGTOOL CONVERT DAT2VAR . 46

3.4.3 RGTOOL G2C . 46

3.4.4 ALINE ARRAY . 46

3.4.5 DEALINE ARRAY . 47

3.4.6 SET SURFACE PRESSURE . 47

3.5 MESSY MAIN GRID TRAFO NRGD BASE . 48

4 Kerkweg and Jöckel: GRID user manual

3.6 MESSY MAIN GRID TRAFO NRGD . 49

3.6.1 REGRID CONTROL . 49

3.6.2 GEOHYBGRID AXES . 53

3.6.3 PS2PS . 54

3.6.4 BALANCE GEOHYBGRID PS . 54

3.6.5 REGRID GEOHYBRID PS . 54

3.7 MESSY MAIN GRID TRAFO SCRP BASE . 55

3.8 MESSY MAIN GRID TRAFO SCRP . 56

3.8.1 INIT SCRIPGRID . 59

3.8.2 COPY SCRIPGRID . 59

3.8.3 DEFINE SCRIPGRID . 60

3.8.4 CLEAN SCRIPGRID LIST . 60

3.8.5 COMPARE TO SCRIPGRID . 61

3.8.6 GEOHYB2SCRIPGRID . 62

3.8.7 INIT SCRIPDATA . 67

3.8.8 DEFINE SCRIPDATA . 68

3.8.9 COMPARE SCRIPDATA . 69

3.8.10 LOCATE SCRIPDATA . 69

3.8.11 CLEAN SCRIPDATA LIST . 69

3.8.12 CALC SCRIPDATA . 69

3.8.13 INIT WEIGHTS . 70

3.8.14 CALC SCRIP WEIGHTS . 71

3.8.15 APPLY SCRIP WEIGHTS . 72

3.8.16 SCRIP CONTROL . 74

3.8.17 INTERPOL GEOHYBGRID PS . 77

3.8.18 BALANCE CURVILINEAR PS . 77

3.8.19 CONSTRUCT INPUT SURF PRESSURE . 78

3.9 MESSY MAIN GRID MPI . 79

4 The BMIL GRID files 81

4.1 MESSY MAIN GRID BI . 81

4.1.1 P BCAST GRID . 81

4.1.2 MAIN GRID INIT MEMORY . 81

4.1.3 MAIN GRID FREE MEMORY . 82

4.2 MESSY MAIN GRID NETCDF BI . 83

4.2.1 P BCAST NCVAR . 83

4.2.2 P BCAST NCATT . 83

4.2.3 P BCAST NCDIM . 83

4.2.4 P BCAST NARRAY . 83

Kerkweg and Jöckel: GRID user manual 5

1 Introduction

This is the User Manual of the generic MESSy submodel GRID. GRID is used by submodels requiring
grid transformations. Therefore it is internally used within MESSy and a model user need not to bother
about the technical details of GRID. However, code developers, implementing grid transformation or
other grid relevant routines into a MESSy code, may find useful information by reading this manuscript
as it provides a detailed description of the data types, the modules and subroutines of GRID and its
subsubmodels. Section 2 gives an overview of how the different subroutines and modules play together.
The details about all files in the submodel core layer (SMCL) and the basemodel interface layer (BMIL)
are provided in Sects. 3 and 4, respectively.

2 Overview

Figure 1 depicts the dependencies of the GRID submodel. The basic GRID modules1

(MESSY_MAIN_GRID and MESSY_MAIN_GRID_NETCDF) are used by nearly every GRID module (purple
arrows). Only the subsubmodels GRID TRAFO SCRP BASE is completely autonomeous.

Table 1: List of routines and type declarations in GRID. Routines are coloured blue and structures
red.

Routine name Short description Sect.

MESSY MAIN GRID NETCDF 3.1
t narray definition of data type array (t_narray) 3.1.1.1
t ncdim definition of data type dimension (t_ncdim) 3.1.1.2
t ncatt definition of data type attribute (t_ncatt) 3.1.1.3
t ncvar definition of data type variable (t_ncvar) 3.1.1.4
INIT NCDIM initialisation of a variable of type t ncdim 3.1.2.1
INIT NCATT initialisation of a variable of type t ncatt 3.1.2.1
INIT NCVAR initialisation of a variable of type t ncvar 3.1.2.1
INIT NARRAY initialisation / allocation of a variable of type

t narray
3.1.2.2

COPY NCDIM copying of a variable of type t ncdim 3.1.2.3
COPY NCATT copying of a variable of type t ncatt 3.1.2.3
COPY NCVAR copying of a variable of type t ncvar 3.1.2.3
COPY NARRAY copying of a variable of type t_narray 3.1.2.3
PRINT NCDIM printing of a variable of type t ncdim 3.1.2.4
PRINT NCATT printing of a variable of type t ncatt 3.1.2.4
PRINT NCVAR printing of a variable of type t ncvar 3.1.2.4
PRINT NARRAY printing of a variable of type t_narray 3.1.2.4
QCMP NCDIM comparison of variables of type t ncdim 3.1.2.5
QCMP NCATT comparison of variables of type t ncatt 3.1.2.5
QCMP NCVAR comparison of variables of type t ncvar 3.1.2.5
QCMP NARRAY comparison of variables of type t_narray 3.1.2.5
IMPORT NCDIM import of a variable of type t ncdim 3.1.2.6.1
IMPORT NCATT import of a variable of type t ncatt 3.1.2.6.2

1Following the MESSy naming convention, the Fortran files are named as the modules they contain.

6 Kerkweg and Jöckel: GRID user manual

Table 1: List of routines in GRID (... continued)

Routine name Short description Sect.
IMPORT NCVAR import of a variable of type t ncvar 3.1.2.6.3
EXPORT NCDIM export of a variable of type t ncdim 3.1.2.7
EXPORT NCATT export of a variable of type t ncatt 3.1.2.7
EXPORT NCVAR export of a variable of type t ncvar 3.1.2.7
ADD NCATT definition of an attribute variable 3.1.2.8
QDEF NCVAR check of definition status of variable of type

t ncvar
3.1.2.9

SCAN NCVAR import of all variables contained in a netCDF file 3.1.2.10
RENAME NCVAR renaming of a variable of type t_ncvar 3.1.2.11
IDX2FRAC NCVAR preparation for ’IXF’ and ’IDX’ remapping 3.1.2.12
MAXFRAC2IDX NCVAR postprocessing of data required for ’IDX’ remap-

ping
3.1.2.13

EXTRACT NCATT conversion of GRID to CHANNEL attributes 3.1.2.14
NFERR output of netCDF error messages 3.1.3.1
STRING conversion of a 1D character pointer to string 3.1.3.2
SORT NARRAY Sorting of a 1D variable of type t_narray 3.1.3.3
REORDER NARRAY Reordering of a variable of type t_narray 3.1.3.4
DP NARRAY conversion of a variable of type t_narray to double

precision float (VTYPE_DOUBLE)
3.1.3.5

SP NARRAY conversion of a variable of type t_narray to single
precision float (VTYPE_REAL)

3.1.3.6

SCALE NARRAY Scaling of a variable of type t_narray 3.1.3.7
CAT NARRAY merging of two variables of type t_narray 3.1.3.8
POSITION calculation of position number in 1D array 3.1.3.9
ELEMENT calculation of the element vector of an element of

given position
3.1.3.10

QSORT I sorting of a 1D integer data array 3.1.3.11
QSORT B sorting of a 1D byte data array 3.1.3.11
QSORT R sorting of a 1D single precision data array 3.1.3.11
QSORT D sorting of a 1D double precision data array 3.1.3.11
ERRMSG error handling subroutine 3.1.3.12
RGMSG interface of message system 3.1.3.13
MAIN GRID SET MESSAGEMODE definition of verbosity of RGMSG 3.1.3.14
NARRAYMAXVAL determination of the maximum value of the dat

component for a given variable of type t_narray
3.1.3.15

NARRAYMINVAL determination of the minimum value of the dat
component for a given variable of type t_narray

3.1.3.15

MESSY MAIN GRID 3.2
t geohybgrid definition of data type for geohybrid grids 3.2.1
INIT GEOHYBGRID initialisation of a variable of type t_geohybgrid 3.2.2.1
COPY GEOHYBGRID copying of a variable of type t_geohybgrid 3.2.2.2
PRINT GEOHYBGRID printing of a variable of type t_geohybgrid 3.2.2.3
IMPORT GEOHYBGRID import of a variable of type t_geohybgrid 3.2.2.4
EXPORT GEOHYBGRID export of a variable of type t_geohybgrid 3.2.2.5

Kerkweg and Jöckel: GRID user manual 7

Table 1: List of routines in GRID (... continued)

Routine name Short description Sect.
NEW GEOHYBGRID definition of a new grid of type t_geohybgrid 3.2.2.6
COMPARE TO GRID comparison of a grid of type t_geohybgrid to given

grid components
3.2.2.7

LOCATE GEOHYBGRID location of grid of type t_geohybgrid in concate-
nated list of grids

3.2.2.8

CLEAN GEOHYBGRID LIST deletion of the concatenated list of geohybrid grids 3.2.2.9
GRID ERROR error function 3.2.2.10

MESSY MAIN GRID TRAFO 3.3
SWITCH GEOHYBGRID deletion of spacial dimensions from a grid of type

t_geohybgrid
3.3.1

CHECK GEOHYBGRID consistency check for components of a grid of type
t_geohybgrid

3.3.2

SORT GEOHYBGRID sorting of individual grid components from smallest
to largest

3.3.3

H2PSIG calculation of sigma or pressure levels from hybgrid
pressure coordinates

3.3.4

COMPLETE GEOHYBGRID consistent definition of mid-points and interfaces in
a grid of type t_geohybgrid

3.3.5

CHECK VAR ON GEOHYBGRID check if a variable of type t_ncvar is defined on a
grid of type t_geohybgrid

3.3.6

SORT GEOHYBGRID NCVAR sorting of a variable of type t_ncvar according to
a sorted grid of type t_geohybgrid

3.3.7

PACK GEOHYBGRID NCVAR packing of a variable of type t_ncvar according to
axes and dimension information

3.3.8

BALANCE GEOHYBGRID copying of components of one grid of type
t_geohybgrid to another

3.3.9

BALANCE GEOHYBGRID NCVAR dimensioning of a variable of type t_ncvar accord-
ing to a grid of type t_geohybgrid

3.3.10

BALANCE GEOHYBGRID TIME adjustment of the time axis of two grids of type
t_geohybgrid

3.3.11

REDUCE INPUT GRID reduction of input grid of type t_geohybgrid 3.3.12
PHIROT2PHI calculation of (geographical) latitude 3.3.13.2
PHI2PHIROT calculation of rotated latitude 3.3.13.1
RLAROT2RLA calculation of (geographical) longitude 3.3.13.3
RLAROT2RLA calculation of rotated longitude 3.3.13.4
UVROT2UV conversion of rotated wind vector to geographical

wind vector
3.3.14

UV2UVROT conversion of geographical wind vector to rotated
wind vector

3.3.14

UVROT2UV VEC JLOOP conversion of rotated wind vector to geographical
wind vector operating on j-vector

3.3.14

8 Kerkweg and Jöckel: GRID user manual

Table 1: List of routines in GRID (... continued)

Routine name Short description Sect.

MESSY MAIN GRID TOOLS 3.4
RGTOOL CONVERT conversion of a variable of type t_ncvar to a 4D

array
3.4.1

RGTOOL CONVERT DAT2VAR conversion of a 4D array to a variable of type
t_ncvar

3.4.2

RGTOOL G2C conversion of grid components to multi-dimensional
arrays

3.4.3

ALINE ARRAY conversion of a 2D array to a 1D vector 3.4.4
DEALINE ARRAY conversion of a 1D vector to a 2D array 3.4.5
SET SURFACE PRESSURE (re-)setting of surface pressure component in a grid

of type t_geohybgrid
3.4.6

MESSY MAIN GRID TRAFO NRGD BASE 3.5

MESSY MAIN GRID TRAFO NRGD 3.6
REGRID CONTROL driver of remapping by NREGRID 3.6.1
GEOHYBGRID AXES construction of axes from grid information 3.6.2
PS2PS extraction of a variable of type t_narray from a

variable of type t_ncvar
3.6.3

BALANCE GEOHYBGRID PS adjustment of the surface pressure fields of two
grids

3.6.4

REGRID GEOHYBGRID PS mapping of the surface pressure field of one grid to
another grid

3.6.5

MESSY MAIN GRID TRAFO SCRP BASE 3.7

MESSY MAIN GRID TRAFO SCRP 3.8
t scrip grid definition of a structure describing a SCRIP grid 3.8.0.1
t scrip data definition of a structure combining two SCRIP

grids, a mapping method and the corresponding
weights

3.8.0.2

t scrip weights structure containing SCRIP weights 3.8.0.3
INIT SCRIPGRID (re-)initialisation of a grid of type t_scrip_grid 3.8.1
COPY SCRIPGRID copying of one grid of type t_scrip_grid to an-

other grid of the same type
3.8.2

DEFINE SCRIPGRID definition of a grid of type t_scrip_grid 3.8.3
CLEAN SCRIPGRID LIST deletion of the concatenated list of grids of type

t_scrip_grid
3.8.4

COMPARE TO SCRIPGRID comparison of grid components to a grid of type
t_scrip_grid

3.8.5

GEOHYB2SCRIPGRID conversion of a grid of type t_geohybgrid to a grid
of type t_scrip_grid

3.8.6

INIT SCRIPDATA (re-)initialisation of a structure of type
t_scrip_data

3.8.7

Kerkweg and Jöckel: GRID user manual 9

Table 1: List of routines in GRID (... continued)

Routine name Short description Sect.
DEFINE SCRIPDATA definition of a variable of type t_scrip_data 3.8.8
COMPARE SCRIPDATA comparison of individual components to a SCRIP

data set of type t_scrip_data
3.8.9

LOCATE SCRIPDATA location of a SCRIP data set of type t_scrip_data
in the concatenated SCRIP data list

3.8.10

CLEAN SCRIPDATA LIST deletion of the concatenated list of data sets of type
t_scrip_data

3.8.11

CALC SCRIPDATA definition of a SCRIP data set of type
t_scrip_data

3.8.12

INIT WEIGHTS re-initialisation of a variable of type
t_scrip_weights

3.8.13

CALC SCRIP WEIGHTS calculation of the weights component of a SCRIP
data set

3.8.14

APPLY SCRIP WEIGHTS SCRIP interpolation 3.8.15
SCRIP CONTROL driver of remapping by SCRIP 3.8.16
INTERPOL GEOHYBGRID PS interpolation of a surface pressure fields defined on

one grid to another grid of type t_scrip_grid
3.8.17

BALANCE CURVILINEAR PS adjustment of the surface pressure definition of two
grids

3.8.18

CONSTRUCT INPUT SURF PRESSURE definition of a surface pressure component for a grid 3.8.19

MESSY MAIN GRID MPI 3.9

MESSY MAIN GRID BI 4.1
P BCAST GRID broadcasting of a grid of type t_geohybgrid 4.1.1
MAIN GRID INIT MEMORY allocation of memory 4.1.2
MAIN GRID FREE MEMORY deallocation of memory 4.1.3

MESSY MAIN GRID NETCDF BI 4.2
P BCAST NCVAR broadcasting of a variable of type t_ncvar 4.2.1
P BCAST NCATT broadcasting of a variable of type t_ncatt 4.2.4
P BCAST NCDIM broadcasting of a variable of type t_ncdim 4.2.3
P BCAST NARRAY broadcasting of a variable of type t_narray 4.2.4

3 The SMCL GRID files

In the hierarchy of the GRID SMCL modules MESSY_MAIN_GRID_NETCDF is the most basic one. It
provides the netCDF related type declarations and corresponding routines. The structures are used
as components of more complex structures. They build the basis for all other process routines. Addi-
tionally, MESSY_MAIN_GRID_NETCDF contains the error output routines.

10 Kerkweg and Jöckel: GRID user manual

GRID_TRAFO

GRID_TRAFO_NCRG_BASE

GRID_TRAFO_SCRP GRID_TRAFO_NCRG

GRID_TRAFO_SCRP_BASE

netcdf

GRID

GRID_NETCDF

grid_mpi

GRID_TOOLS

GRID_BI

GRID_NETCDF_BI

BMIL

SMCL

Figure 1: Diagram of dependencies of the MESSy GRID modules. The arrows point in the direction
of USEage.

The module MESSY_MAIN_GRID contains the definition and the handling routines of the geohybrid grid.
For this, the structures declared in MESSY_MAIN_GRID_NETCDF are used. The geohybrid grid definition
and respective handling routines are the basis for the grid transformation.

The actual grid transformation routines are split into seven modules:

• Each individual mapping algorithm (at the time being SCRIP and NREGRID) consists of two
module files:

– a “base” file, containing the code of the actual regridding algorithm and

– the interface file that calls those core routines and contains the subroutines required for

Kerkweg and Jöckel: GRID user manual 11

Parameter pointer type / meaning
name name in

t_narray
VTYPE_UNDEF undefined, i.e. none of the pointers in the variable of type

t_narray is associated
VTYPE_INT vi the integer pointer is associated
VTYPE_REAL vr the single precision pointer is associated
VTYPE_DOUBLE vd the double precision pointer is associated
VTYPE_BYTE vb the byte value (integer I4) pointer is associated
VTYPE_CHAR vc the character pointer is associated

Table 2: Table of variable types available in variables of the type t narray

the pre- and postprocessing of the input and output to/from the core, according to the
requirements of the respective regridding algorithm.

• In addition to the mapping algorithm dependent modules, one module
(MESSY_MAIN_GRID_TRAFO) provides tools for data operations which are independent of
the mapping method.

• The module MESSY_MAIN_GRID_TOOLS contains tools for conversions between the internally used
1D storage format and the user defined 2D and 4D arrays, which are attributed to geo-spacial
grids of the respective model. Furthermore, a subroutine is provided for updating the surface
pressure field contained in the grid definition during the simulation.

• Last but not least, the module MESSY_MAIN_GRID_MPI comprises routines for the proper abortion
of the simulations, e.g., in case of error, in parallel mode.

3.1 MESSY MAIN GRID NETCDF

3.1.1 GRID data types

The layout of the basic GRID data types is based on the netCDF file format definition. Thus structures
for data arrays (t_narray), dimensions (t_ncdim), attributes (t_ncatt) and variables (t_ncvar) are
defined here.

3.1.1.1 TYPE t narray
The type t_narray defines a universal data array. Universal means here, that each data type can be

used. For this, the type definition contains a vector pointer for each basic data type: single precision
float (vr), double precision float (vd), integer(I8) (vi), integer(I4) or byte (vb), and characters (vc).

!---
TYPE t_narray

! n-dimenional array as 1D (LINEAR) array (REAL)
INTEGER :: type = VTYPE_UNDEF
INTEGER :: n = 0 ! number of dimensions
INTEGER , DIMENSION(:), POINTER :: dim => NULL() ! dim. vector
REAL (SP) , DIMENSION(:), POINTER :: vr => NULL() ! real values

12 Kerkweg and Jöckel: GRID user manual

REAL (DP) , DIMENSION(:), POINTER :: vd => NULL() ! double values
INTEGER (I8), DIMENSION(:), POINTER :: vi => NULL() ! integer values
INTEGER (I4), DIMENSION(:), POINTER :: vb => NULL() ! byte values
CHARACTER, DIMENSION(:), POINTER :: vc => NULL() ! char. values

END TYPE t_narray
!---

Only one of the pointers will become associated, when a variable of type t_narray is defined. All other
pointers are nullified. The integer component type indicates which of the data pointers is associated
(see Table 2 for a list of the possible values of type), and the variable n contains the length of the data
array. The integer parameter VTPYE_UNDEF is zero and indicates, if currently no data is associated.
The component dim is a vector which is allocated to the number of ranks of the corresponding user
variable. Each entry of dim contains the length of that respective dimension.

3.1.1.2 t ncdim
The structure t_ncdim contains information to describe a dimension as in the netCDF standard.

!---
TYPE t_ncdim

CHARACTER(LEN=GRD_MAXSTRLEN) :: name = ’’ ! name of dimension
INTEGER :: id = NULL_DIMID ! dimension ID
INTEGER :: len = 0 ! length of dimension
LOGICAL :: fuid = .false. ! flag for "UNLIMITED" dimension
INTEGER :: varid = NULL_VARID ! variable ID, if coordinate var

END TYPE t_ncdim
!---

This structure consists of

• a (unique) name,

• an ID (id) indicating the dimension distinctively,

• the length of the dimension (len),

• a logical flag (fiud) indicating, if this dimension is the “unlimited” dimension,

• the variable ID (varid) of the corresponding dimension variable in a netCDF file, if the dimension
is read from / written to a netCDF file.

The integer parameters NULL_DIMID and NULL_VARID are both “-1” and indicate if the IDs are not yet
set.

3.1.1.3 t ncatt
The structure t_ncatt serves to store the information for the definiton of an attribute.

Kerkweg and Jöckel: GRID user manual 13

!---
TYPE t_ncatt

CHARACTER(LEN=GRD_MAXSTRLEN) :: name = ’’ ! attribute name
INTEGER :: ID = 0 ! ID of attribute
INTEGER :: xtype = NULL_XTYPE ! type of attribute
INTEGER :: varid = NULL_VARID ! variable ID or

! ... NF90_GLOBAL
INTEGER :: len = 0 ! length of attribute
TYPE(t_narray) :: dat ! content of attribute

END TYPE t_ncatt
!---

It consists of

• a (unique) name,

• the ID of the attribute ID, identifying the attribute unambiguously.

• the type of the attribute (xtype). If the attribute is undefined, xtype is set to NULL_XTYPE,
otherwise xtype indicates of which type the component dat (as structure of type t_narray, see
Sect. 3.1.1.1) is. Table 2 lists the possible values.

• the component varid is set to the netCDF ID of the respective attribute, if the attribute is read
from a netCDF file. varid = NULL_VARID indicates that the attribute is not defined in the file,
or that it has not yet been read.

• the length of the attribute variable (len) and

• the attribute contents (dat) of type t_narray.

3.1.1.4 t ncvar
The structure t_ncvar stores the definition of a netCDF variable.

!---
TYPE t_ncvar

CHARACTER(LEN=GRD_MAXSTRLEN) :: name = ’’ ! variable name
INTEGER :: id = NULL_VARID ! variable ID
INTEGER :: xtype = NULL_XTYPE ! type of variable
INTEGER :: ndims = 0 ! number of dimensions
TYPE(t_ncdim), DIMENSION(:), POINTER :: dim => NULL() ! netCDF dimensions
INTEGER :: uid = NULL_DIMID ! unlimited dim ID
INTEGER :: ustep = 0 ! step along unlim. ID
INTEGER :: natts = 0 ! number of attributes
TYPE(t_ncatt), DIMENSION(:), POINTER :: att => NULL() ! list of attributes
TYPE(t_narray) :: dat ! content of variable

END TYPE t_ncvar
!---

It contains the components:

14 Kerkweg and Jöckel: GRID user manual

• a name (name), (the maximal length of the string is 200 characters,)

• the variable ID (id), unambiguously identifying the variable,

• an indicator of the variable type (xtype). Table 2 lists the possible values of xtype. If the
variable is undefined, xtype is set to NULL_XTYPE.

• the number of dimensions (ndims),

• a 1D pointer (dim) of type t_ncdim for the definition of the dimension,

• the dimenion id of the unlimited dimension (uid, usually the time axis),

• the hyperslice along the unlimited axis (ustep),

• the number of attributes (natts),

• a 1D pointer (att) of type t_ncatt for the definition of the attributes,

• the variable contents (dat) of type t_narray.

3.1.2 Functions and Subroutines for type handling

3.1.2.1 INIT NCDIM, INIT NCATT, INIT NCVAR
These subroutines initialise the variables of the corresponding type, i.e., they are reset to their initial

default contents:

• numbers are set to zero or their “undef”-value (e.g., xtype = NULL_XTYPE), respectively.

• allocated memory is released and

• pointers are nullified.

3.1.2.2 INIT NARRAY
In contrast to the previous subroutines, the components of a variable of type t_narray are not

only deallocated and set to their default value in INIT NARRAY, but depending on the optional
parameters of the variable can be allocated to a requested data size.

! --
SUBROUTINE INIT_NARRAY(na, n, dim, qtype)

! initialise array of type narray
! INPUT:
! - n : number of dimensions
! - dim: length of dimensions
! - type: type of array (REAL, REAL(dp), INTEGER, CHAR, BYTE)

IMPLICIT NONE

! I/O
TYPE (t_narray), INTENT(INOUT) :: na

Kerkweg and Jöckel: GRID user manual 15

INTEGER, INTENT(IN), OPTIONAL :: n
INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL :: dim
INTEGER, OPTIONAL :: qtype

! --

• n is the number of dimensions (i.e. na%n)

• The 1D integer vector dim provides the length of the individual dimensions of a variable. Ex-
ample: for a 3D array of a sides X × Y × Z with length of 3× 4× 2 cells, dim = (3,4,2) and
na%n = 3. The required length of a data array is 3× 4× 2 = 24.

• If qtype is present and a dimension dim is provided, the data pointer of the corresponding type
is allocated to the length as determined by the product of the dimensions.

3.1.2.3 COPY NARRAY, COPY NCDIM, COPY NCATT, COPY NCVAR
These subroutines copy the content of one variable of the corresponding data type to another variable

of the same type. To avoid memory leaks, the destination variable always has the INTENT(INOUT)
attribute and is re-initialised at the beginning of the subroutines.

3.1.2.4 PRINT NARRAY, PRINT NCDIM, PRINT NCATT, PRINT NCVAR
These subroutines provide log-file output of all components of the corresponding type. These sub-

routines are usually not used during a production simulation. Nevertheless, they are very helpful tools
during the implementation phase.

3.1.2.5 QCMP NARRAY, QCMP NCDIM, QCMP NCATT, QCMP NCVAR
These logical functions compare two variables of the corresponding data type to each other. If

all components are equal, the variables are equal and the functions return .TRUE.. Otherwise the
functions return .FALSE..

3.1.2.6 IMPORT NCDIM, IMPORT NCATT, IMPORT NCVAR
These subroutines import the corresponding types from a netCDF file.

3.1.2.6.1 IMPORT NCDIM
Parameters to the routine are a dimension variable to store the read informationen (dim), and,

optionally, the dimension name or the dimension ID, and the name or the ID of the netCDF file. For
both, the dimension and the netCDF file, either the name or the ID must be given, otherwise the
subroutine produces an error messages and terminates the simulation.

! --
SUBROUTINE IMPORT_NCDIM(dim, dimname, dimid, file, ncid)

! read structure of type t_ncdim from netcdf file

IMPLICIT NONE

! I/O

16 Kerkweg and Jöckel: GRID user manual

TYPE (t_ncdim), INTENT(OUT) :: dim ! dimension
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: dimname ! name of dimension
INTEGER, INTENT(IN), OPTIONAL :: dimid ! dimension ID
INTEGER, INTENT(IN), OPTIONAL :: ncid ! netCDF file ID
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: file ! filename

! --

3.1.2.6.2 IMPORT NCATT
Parameter to the subroutine are an attribute variable to store the read information (att) of type

t_ncatt. The name (varname) or the ID (varid) of the corresponding netCDF variable, the attribute
name (attname) or the ID (attID), the netCDF file name (file) or ID (ncid) and a logical flag
indicating, if the simulation should be terminated or continued, if the attribute is not available in the
netCDF file.

! --
SUBROUTINE IMPORT_NCATT(att, varname, varid, attname, attID &

,file, ncid &
,lnostop)

! read structure of type t_ncatt from netcdf file

IMPLICIT NONE

! I/O
TYPE (t_ncatt), INTENT(OUT) :: att ! attribute
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: varname ! variable name
INTEGER, INTENT(IN), OPTIONAL :: varid ! netCDF variable ID
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: attname ! attribute name
INTEGER, INTENT(IN), OPTIONAL :: attID ! attribute ID
INTEGER, INTENT(IN), OPTIONAL :: ncid ! netCDF file ID
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: file ! filename
LOGICAL, INTENT(IN), OPTIONAL :: lnostop ! do not stop if

! att. does not exist
! --

3.1.2.6.3 IMPORT NCVAR
IMPORT_NCVAR imports a variable of type t_ncvar from a netCDF-file.

! --
SUBROUTINE IMPORT_NCVAR(var, ustep, varname, varid, file, ncid, setuid &

, pstart, pcount)

! read variable structure of type t_ncvar from netcdf file

IMPLICIT NONE

! I/O

Kerkweg and Jöckel: GRID user manual 17

TYPE (t_ncvar), INTENT(INOUT) :: var ! variable
INTEGER, INTENT(IN), OPTIONAL :: ustep ! step along unlim. DIM
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: varname ! variable name
INTEGER, INTENT(IN), OPTIONAL :: varid ! variable ID
INTEGER, INTENT(IN), OPTIONAL :: ncid ! netCDF file ID
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: file ! filename
INTEGER, INTENT(IN), OPTIONAL :: setuid ! set this as unlim. ID
INTEGER, DIMENSION(2), INTENT(IN), OPTIONAL :: pstart
INTEGER, DIMENSION(2), INTENT(IN), OPTIONAL :: pcount

! --

Parameters to this subroutine are

• the variable of type t_ncvar to store the imported data,

• the “time step” to be read (ustep), i.e., the hyperslice of the unlimited dimension,

• the name (varname) or the ID (varid) of the corresponding netCDF variable,

• the netCDF file name (file) or ID (ncid),

• an integer (setuid), which indicates that the dimension should be treated as unlimited dimen-
sion.

• two 2D integers (pstart and pcount) defining the hyperslice of data to be read. pstart indicates
the position at which the reading should start, pcount how many data points should be read
from pstart on. This is, for instance, used to reduce the size of the input grid and thus the
required memory. This is of special interest, if GRID is used in parallel domain decomposition.

3.1.2.7 EXPORT NCDIM, EXPORT NCATT, EXPORT NCVAR
These subroutines export the variables of the corresponding type to a netCDF file. Parameters are

the corresponding variable and the name or ID of the netCDF file. For EXPORT NCATT, additionally,
the logical parameter clobber can be defined, if .TRUE. an existing attribute will be overwritten.

3.1.2.8 ADD NCATT
This subroutine inserts an attribute to the attribute list of a variable of type t_ncvar.

! --
SUBROUTINE ADD_NCATT(var, name, replace, vs, vr, vd, vi, vb)

! add/replace attribute of name ’name’ to variable of type t_ncvar

IMPLICIT NONE

! I/O
TYPE (t_ncvar), INTENT(INOUT) :: var
CHARACTER(LEN=*), INTENT(IN) :: name
LOGICAL, INTENT(IN), OPTIONAL :: replace
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: vs

18 Kerkweg and Jöckel: GRID user manual

REAL (SP), DIMENSION(:), INTENT(IN), OPTIONAL :: vr
REAL (DP), DIMENSION(:), INTENT(IN), OPTIONAL :: vd
INTEGER(I8), DIMENSION(:), INTENT(IN), OPTIONAL :: vi
INTEGER(I4), DIMENSION(:), INTENT(IN), OPTIONAL :: vb

! --

Parameters of the subroutine are

• the variable var of type t_ncvar to which the attribute will be added,

• the name of the attribute,

• an optional argument (replace), indicating whether an existing attribute of the same name
shall be replaced by the new one,

• 1D pointers (optional) corresponding to the type of the attribute to be stored in a variable of
type t_narray containing the actual data of the attribute.

3.1.2.9 QDEF NCVAR
This logical function tests if a variable var of type t_narray is defined. Actually, it is tested whether

the structure component type is equal to VTYPE_UNDEF:

QDEF_NCVAR = (var%dat%type /= VTYPE_UNDEF)

3.1.2.10 SCAN NCVAR
This subroutine reads in all variables contained in a netCDF file of file ID ncid or name file.

! --
SUBROUTINE SCAN_NCVAR(var, file, ncid)

IMPLICIT NONE

! I/O
TYPE (t_ncvar), DIMENSION(:), POINTER :: var ! variables
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: file ! filename
INTEGER, INTENT(IN), OPTIONAL :: ncid ! netCDF ID

! --

Arguments of the subroutine are a 1D pointer var of type t_ncvar and the file name or file ID,
respectively. The pointer is allocated to the number of variables found in the file. Subsequently, all
variables are imported from the file.

Kerkweg and Jöckel: GRID user manual 19

3.1.2.11 RENAME NCVAR
This subroutine changes the name of a variable (var) of type t_ncvar to a griven new name

(newname).

! --
SUBROUTINE RENAME_NCVAR(var, newname)

! rename variable of type t_ncvar

IMPLICIT NONE

! I/O
TYPE (t_ncvar), INTENT(INOUT) :: var
CHARACTER(LEN=*), INTENT(IN) :: newname

! --

3.1.2.12 IDX2FRAC NCVAR
This subroutine is called before the remapping, if ’IDX’ or ’IXF’ mapping is required. This is used

for data represented by integer bins or categories, e.g. soil classes.

! --
SUBROUTINE IDX2FRAC_NCVAR(vi, vf, vtype)

IMPLICIT NONE

! I/O
TYPE (t_ncvar), INTENT(IN) :: vi ! variable with index field
TYPE (t_ncvar), INTENT(INOUT) :: vf ! variable with index fraction
INTEGER, INTENT(IN), OPTIONAL :: vtype

! --

Within the subroutine IDX2FRAC_NCVAR a new variable (vf) is defined which has one additional dimen-
sion in comparison to the input variable (vi). The length of the additional dimension is determined
by the number of categories, e.g. the number of available soil classes. Subsequently, the new variable
is initialised with zero and afterwards filled with “1” for the actual class of the input file. For example,
if a soil class input field indicates that grid point (i,j) belongs to soil class 5, the entry in the new
variable associated to the indices (i,j,5) is set to 1, while the entries for the other soil classes or bins
((i,j,1), (i,j,2), (i,j,3), ...) are zero.

Remapping of such a field yields automatically to the information, which fraction of the target field
is covered by a certain category (e.g. soil class).

3.1.2.13 MAXFRAC2IDX NCVAR
This subroutine is called after the remapping, if ’IDX’ regridding is requested.

! --
SUBROUTINE MAXFRAC2IDX_NCVAR(vf, vi, vtype)

20 Kerkweg and Jöckel: GRID user manual

IMPLICIT NONE

! I/O
TYPE (t_ncvar), INTENT(IN) :: vf ! index fractions
TYPE (t_ncvar), INTENT(INOUT) :: vi ! index
INTEGER, INTENT(IN), OPTIONAL :: vtype

!
--

In this case, the information provided by the remapping of the field, created by the subroutine
IDX2FRAC_NCVAR before the mapping, needs to be reduced, as ’IDX’ regridding requests only the
category of the largest fraction, i.e. the most abundant category. For example: a soil-vegetation-
scheme of an ESM can only work with one soil type per grid point. In this case only the soil class
which is dominating in the overlapping grid cells of the input field is used.

The output variable vi is defined with one dimension less than the input variable vf, as the dimension
for the individual categories is not required. Afterwards, the vector containing all categories for one
grid point is extracted and sorted. In the end, the category with the largest fraction is assigned to the
output variable vi.

3.1.2.14 EXTRACT NCATT
This subroutine decomposes a variable of type t_ncvar into its components. This is especially used

in MESSY_MAIN_IMPORT_GRID_TOOLS_BI to convert GRID attributes to CHANNEL attributes.

! --
SUBROUTINE EXTRACT_NCATT(att, type, name, i, c, r)

IMPLICIT NONE
INTRINSIC :: INT, MIN, REAL, LEN

! I/O
TYPE (t_ncatt), INTENT(IN) :: att
INTEGER, INTENT(OUT) :: type ! 1: integer, 2: string, 3: real(dp)
CHARACTER(LEN=*), INTENT(OUT) :: name
INTEGER, INTENT(INOUT) :: i
CHARACTER(LEN=*), INTENT(INOUT) :: c
REAL(DP), INTENT(INOUT) :: r

! --

Input is the attribute of type t_ncatt, output are the type of the attribute, its name and —depending
on the type— the respective integer, character or real value.

3.1.3 Functions and Subroutine for message handling

3.1.3.1 NFERR
This subroutine provides output of netCDF error messages.

Kerkweg and Jöckel: GRID user manual 21

! --
SUBROUTINE NFERR(routine, status, no)

! improved netcdf error output routines

IMPLICIT NONE

! I/O
CHARACTER(LEN=*), INTENT(IN) :: routine
INTEGER, INTENT(IN) :: status
INTEGER, INTENT(IN), OPTIONAL :: no

! --

Input are a status flag, the name of the calling routine and an optional integer parameter, which
can be used to indicate the position in the calling sequence.

3.1.3.2 STRING
This function converts a 1D character pointer c into a string. This is useful for the conversion of

the 1D character pointer such as the component in the type t_narray.

3.1.3.3 SORT NARRAY
This subroutine sorts the entries of a 1D variable of type t_narray.

! --
SUBROUTINE SORT_NARRAY(na, nx, reverse)

IMPLICIT NONE

! I/O
TYPE (t_narray), INTENT(INOUT) :: na
TYPE (t_narray), INTENT(INOUT) :: nx
LOGICAL , INTENT(IN) ,OPTIONAL :: reverse

! --

The subroutine has two modi operandi:

1. If the LOGICAL reverse is present and .TRUE.: the input variable na of type t_narray is
sorted according to the indices provided by the second input variable nx of type t_narray,
which basic data type needs to be integer.

2. If reverse is not present or .FALSE., the input variable na of type t_narray is sorted from
smallest to largest numbers. The output variable nx then contains a vector of the same length
of na storing the original indices of the position. This index array can be used as input to
SORT_NARRAY to sort the array into its original order (e.g. after the remapping). Additionally, it
can be used as input to the subroutine REORDER_NARRAY to sort an additional array in the same
way.

22 Kerkweg and Jöckel: GRID user manual

3.1.3.4 REORDER NARRAY
This subroutine reorders the input variable na of type t_narray in a way determined by the second

input variable nx of type t_narray.

! --
SUBROUTINE REORDER_NARRAY(na, nx)

IMPLICIT NONE

! I/O
TYPE (t_narray), INTENT(INOUT) :: na ! n-array to reorder
TYPE (t_narray), INTENT(IN) :: nx ! index n-array

! --

As nx provides the required indices, it has to be of type VTYPE_INT. Additionally, the two variables
na and nx need to have the same length.

3.1.3.5 DOUBLE NARRAY
This subroutine converts a variable of type t_narray to double precision float (VTYPE_DOUBLE).

This is only possible for variables of type VTYPE_DOUBLE, VTYPE_REAL, VTYPE_INT and VTYPE_BYTE.

3.1.3.6 REAL SP NARRAY
This subroutine converts a variable of type t_narray to single precision float (VTYPE_REAL). This

is only possible for variables of type VTYPE_DOUBLE, VTYPE_REAL, VTYPE_INT and VTYPE_BYTE.

3.1.3.7 SCALE NARRAY
This subroutine scales a variable of type t_narray by a given scaling factor sc.

! --
SUBROUTINE SCALE_NARRAY(na, sc)

! scale data of the variable of type t_narray by sc

IMPLICIT NONE

! I/O
TYPE (t_narray), INTENT(INOUT) :: na ! N-array
REAL , INTENT(IN) :: sc ! scaling factor

! --

This is only possible for variables of type VTYPE_DOUBLE, VTYPE_REAL, VTYPE_INT and VTYPE_BYTE.
Variables of type VTYPE_INT and VTYPE_BYTE are converted to VTYPE_REAL.

Kerkweg and Jöckel: GRID user manual 23

3.1.3.8 CAT NARRAY
This subroutine appends a variable nb of type t_narray to the variable na of type t_narray.

! --
SUBROUTINE CAT_NARRAY(na, nb)

IMPLICIT NONE

! I/O
TYPE(t_narray), INTENT(INOUT) :: na
TYPE(t_narray), INTENT(in) :: nb

! --

Therefore, na and nb have to be of the same vasic type and nb has to be defined. If na is undefined
nb is copied to na. If na and nb exist and are of the same type, nb is appended to na.

3.1.3.9 POSITION
This function calculates the position number in a 1D (linear) array, given, that the array is inter-

preted as an n-dimensional array with dimensions of length dim = (d1, d2, d3, ..., dN) of the
element vector vec = (v1, v2, v3, ..., vN). Example: In a 1D array of dimensions 4× 3× 2, the
position of the element with element vector (2,2,1) is 6.

! --
INTEGER FUNCTION POSITION(vdim, vec)

IMPLICIT NONE

! I/O
INTEGER, DIMENSION(:), INTENT(IN) :: vdim
INTEGER, DIMENSION(:), INTENT(IN) :: vec

! --

Input to the function are the integer vector vdim containing the lengths of the individual dimensions
of the n-dimensional array, and the vector vec containing the indices of the required element in the
n-dimensional space.

3.1.3.10 ELEMENT
This subroutine is the reverse of the function POSITION. It calculates the element vector vec of the

element with a position n in a 1D (linear) array, given that the array is interpreted as an n-dimensional
array with dimensions of length dim.

! --
SUBROUTINE ELEMENT(dim, n, vec)

IMPLICIT NONE

24 Kerkweg and Jöckel: GRID user manual

! I/O
INTEGER, DIMENSION(:), INTENT(IN) :: dim ! dimension vector
INTEGER, INTENT(IN) :: n ! element in linear array
INTEGER, DIMENSION(:), POINTER :: vec ! element vector

! --

Example: for a 4× 3× 2 space, position n=6 corresponds to the element vector vec=(2,2,1).

3.1.3.11 QSORT I, QSORT B, QSORT R, QSORT D
These subroutines sort a given 1D data array of type integer, byte, real or double precision, respec-

tively, from smallest to largest numbers.

! --
RECURSIVE SUBROUTINE QSORT_X(data,idx,ileft,iright)

IMPLICIT NONE

! I/O
REAL (SP), DIMENSION(:), INTENT(INOUT) :: data ! data to sort
INTEGER (I8), DIMENSION(:), POINTER :: idx ! index list
INTEGER (I8), INTENT(IN), OPTIONAL :: ileft, iright

! --

The subroutines QSORT_X (X is one of I, B, R or D) are recursive subroutines which efficiently sort
a given 1D data array. The pointer idx contains the original index of the data point. The optional
arguments ileft and iright allow for an application of the subroutine to a hyperslice of the data
array, thus making the sorting algorithm more efficient.

3.1.3.12 ERRMSG
This is an error handling subroutine for the output of meaningful error messages to the log-file.

applications.

! --
SUBROUTINE ERRMSG(routine, status, pos)

IMPLICIT NONE

! I/O
CHARACTER(LEN=*), INTENT(IN) :: routine
INTEGER, INTENT(IN) :: status
INTEGER, INTENT(IN) :: pos

! --

It returns without any action, if the status equals zero. Otherwise it produces an error message
printing the status flag and the position pos. Finally, the simulation is terminated.

Kerkweg and Jöckel: GRID user manual 25

variable name number meaning
MSGMODE_S 0 silent
MSGMODE_E 1 error messages only
MSGMODE_VL 2 little verbosity
MSGMODE_W 4 warning messages
MSGMODE_VM 8 medium verbosity
MSGMODE_I 16 all info messages

Table 3: List of verbosity stages

marker number meaning
RGMLE 0 error
RGMLEC 1 error continued
RGMLVL 2 little verbose
RGMLVLC 3 little verbose continued
RGMLW 4 warning
RGMLWC 5 warning continued
RGMLVM 6 medium verbose
RGMLVMC 7 medium verbose continued
RGMLI 8 information
RGMLIC 9 information continued

Table 4: List of message verbosity markers.

3.1.3.13 RGMSG
The submodel GRID uses a multi-level message system. RGMSG is an interface for four differ-

ent message subroutines (see below). In this way the talkativeness of the mapping software can
be easily changed. This is helpful, as during debugging phases a lot of information simplifies the
troubleshooting. Otherwise, during long-term simulations a longish log-file output is awkward and
costs unnecessary simulation time. The verbosity of the message system is set via the subroutine
MAIN_GRID_SET_MESSAGEMODE. Six stages of verbosity exist. Table 3 lists the identifiers used from
the user side to determine how many output is produced. The interface RGMSG is called with markers
indicating how important the respective output is. Table 4 lists these identifiers.

In case of “error”, “warning” or “info” the messages start with a respective identifier and afterwards
print the string provided to the message subroutine. The “continued” specifiers indicate that the
message is a continuation of an already started message, thus no identifier is printed and the text is
indented.

Additionally, RGMSG terminates the simulation, if this is triggered by the optional argument lstop.
If it is provided and .TRUE. the simulation will aborted after printing the message text. In case of
error messages (identifier RGMLE or RGMLEC) the simulation will be aborted automatically. Only if
lstop = .FALSE. this overrules the automatically produced abortion. In this way a continued error
message is generated.

3.1.3.13.1 RGMSG C
The main working horse is the subroutine RGMSG_C. It produces the above mentioned message types

and forces the model to stop, if necessary.

26 Kerkweg and Jöckel: GRID user manual

! --
SUBROUTINE RGMSG_C(routine, level, c, lstop)

#if defined(MPI)
USE messy_main_grid_mpi, ONLY: grid_abort

#endif

IMPLICIT NONE

! I/O
CHARACTER(LEN=*), INTENT(IN) :: routine
INTEGER, INTENT(IN) :: level
CHARACTER(LEN=*), INTENT(IN) :: c
LOGICAL, INTENT(IN), OPTIONAL :: lstop

! --

Input to the subroutine are the name of the calling subroutine (routine), the verbosity of the output
(level, see Table 4), a string containing the error message itself (c), and the optional argument lstop
indicating whether the simulation shall be terminated.

3.1.3.13.2 RGMSG I
In addition to pure character output it might be required to print integer numbers.

Therefore the subroutine RGMSG_I allows to print an integer value (i) flanked by the character stings
(c1 and c2).

! --
SUBROUTINE RGMSG_I(routine, level, c1, i, c2, lstop)

IMPLICIT NONE

! I/O
CHARACTER(LEN=*), INTENT(IN) :: routine
INTEGER, INTENT(IN) :: level
CHARACTER(LEN=*), INTENT(IN) :: c1
INTEGER, INTENT(IN) :: i
CHARACTER(LEN=*), INTENT(IN) :: c2
LOGICAL, INTENT(IN), OPTIONAL :: lstop

! --

Internally, a character string is produced from the two strings and the integer value. This string is
subsequently used as input to the routine RGMSG_C.

3.1.3.13.3 RGMSG IA
If not only one integer, but an array of integers should be printed, the subroutine RGMSG_IA is called.

! --
SUBROUTINE RGMSG_IA(routine, level, c1, i, c2, lstop)

Kerkweg and Jöckel: GRID user manual 27

IMPLICIT NONE

! I/O
CHARACTER(LEN=*), INTENT(IN) :: routine
INTEGER, INTENT(IN) :: level
CHARACTER(LEN=*), INTENT(IN) :: c1
INTEGER, DIMENSION(:), INTENT(IN) :: i
CHARACTER(LEN=*), INTENT(IN) :: c2
LOGICAL, INTENT(IN), OPTIONAL :: lstop

! --

As in the subroutine RGMSG_I a character string is produced from the two character strings c1 and c2
and the integer vector. This in turn is used as input for the subroutine RGMSG_C.

3.1.3.13.4 RGMSG R
Last but not least, the subroutine RSMSG_R enables the output of a single precision float value. As

in RSMSG_I a single character string is created from the float value and the two input strings c1 and
c2, which serves as input for the subroutine call to RGMSG_C.

3.1.3.14 MAIN GRID SET MESSAGEMODE
With this subroutine the verbosity of the error message system RGMSG is controlled.

! --
SUBROUTINE MAIN_GRID_SET_MESSAGEMODE(SETVALUE)

! set MESSAGE mode

IMPLICIT NONE

INTEGER, INTENT(IN), OPTIONAL :: SETVALUE
! --

If called without an argument, the highest possible verbosity is applied. Possible values are arbitrary
sums of message mode markers (see Table 3).

3.1.3.15 NARRAYMAXVAL, NARRAYMINVAL
These functions provide the maximum or minimum value of the dat component for a given variable

of type t_narray.

28 Kerkweg and Jöckel: GRID user manual

3.2 MESSY MAIN GRID

The module file MESSY_MAIN_GRID contains basically everything that is required for the definition
and handling of the geohybrid grids. In the module header the structure for geohybgrid grids of
type t_geohybgrid is defined. As in a model simulation a large variety of geohybrid grids may
be required, a concatenated list of variables of type t_geohybgrid, GEOHYBGRIDLIST, of type
t_geohybgrid_list is constructed.

3.2.1 TYPE t geohybgrid

Due to different grid structures a geohybrid grid can be defined in many different ways. The structure
t_geohybgrid contains all information required for the submodel GRID.

! ---
TYPE t_geohybgrid

CHARACTER(LEN=GRD_MAXSTRLEN) :: name ! grid name
INTEGER :: ID = -99 ! GRID ID
CHARACTER(LEN=GRD_MAXSTRLEN) :: file ! path/filename
INTEGER :: t ! time step
TYPE(t_ncatt) :: att ! attribute
REAL(dp), DIMENSION(4,2) :: ranges = RGEMPTY
!
! MINIUM / MAXIMUM GEOGRAPHICAL EXTENSION
REAL(dp), DIMENSION(2,2) :: minmaxlonlat = RGEMPTY
INTEGER, DIMENSION(2) :: start = -99
INTEGER, DIMENSION(2) :: count = -99
LOGICAL :: lonc = .TRUE.
TYPE (t_ncvar) :: lonm, latm, hyam, hybm, timem !mid-layer
TYPE (t_ncvar) :: loni, lati, hyai, hybi !interface
TYPE (t_ncvar) :: ps, p0
! curved grid variables
! geographical coordinates
LOGICAL :: clonc = .TRUE.
TYPE (t_ncvar) :: clonm, clatm, cloni, clati
! rotated coordinates
LOGICAL :: rlonc = .TRUE.
TYPE (t_ncvar) :: rlonm, rlatm, rloni, rlati
! rotated pole for rotated coordinates
TYPE (t_ncvar) :: pollon, pollat, polgam

END TYPE t_geohybgrid
! ---

A variable of type t_geohybgrid gets a unique name (name) and a unique ID (ID). If the definition of a
geohybrid grid is read from a file, the file name and path (file) and the time step (t) (i.e., the hyper-
slice along the unlimited id) are required. For the more in depth description of the grid, an attribute
(att) can be provided. Depending on the basemodel, some variables have to be limited in certain
ranges. The structure component ranges contains for all four space dimensions lower and upper
bounds. The structure component minmaxlonlat is required for the subroutine REDUCE_INPUT_GRID

Kerkweg and Jöckel: GRID user manual 29

(see Sect. 3.3.12) to check whether both grids are defined over the same domain. The structure
components start and count are also required for the input grid reduction.

Horizontal coordinates of the grid can be defined on grid mid-points (variable name ends with m)
and/or on interfaces (variable name ends with i). Depending on the actual grid, different definitions
of the horizontal coordinates apply. The reference system is always based on geographical coordi-
nates. Currently, three different sets for the definition of the horizontal coordinates are available in
t_geohybgrid:

1. rectangular geographical coordinates: lonm, latm, loni and lati
These variables of type t_ncvar are defined for geographically-rectangular grids. Thus these
variables contain geographical coordinate information and correspond to only one dimension,
i.e., a simple longitude or latitude axis. Additionally, the logical variable lonc indicates whether
the longitude axis is a modulo axis.

2. curvilinear coordinates: clonm, clatm, cloni, clati
These are coordinates which are not rectangular in geographical coordinates, e.g. a rotated
regional domain or an ocean model grid. The variables contain geographical coordinates, but, as
they are not rectangular in geographical coordinates, they comprise coordinate information for
each single grid point. Additionally, the logical variable clonc indicates whether the longitude
axis is a modulo axis.

3. rotated rectangular coordinates: rlonm, rlatm, rloni, rlati:
These coordinates are again rectangular, but they do not contain geographical coordinates.
These structure components are useful for rotated grids, as these can be handled similar to
geographical coordinates as long as only grids with the same rotation are transformed into
each other. The rotation of the grid in reference to the geographical system is defined by the
longitude, the latitude and the rotation angle for the north pole, i.e. pollon, pollat and polgam,
respectively. Additionally, the logical variable rlonc indicates whether the longitude axis is a
modulo axis.

The vertical axis is defined via hybrid coefficients (on box mids and interfaces, hyam,hybm,hyai,hybi,
respectively) and the surface pressure ps and a reference pressure p0.

timem defines the point in time the grid is associated to.

3.2.2 FUNCTIONS and SUBROUTINES for grid handling

The module MESSY_MAIN_GRID contains routines to handle variables of the above described type:

3.2.2.1 INIT GEOHYBGRID
This subroutines initialises all components of the variable grid of type t_geohybgrid, i.e., all

components are set to default values.

3.2.2.2 COPY GEOHYBGRID
This subroutine copies one variable of type t_geohybgrid to another variable of the same type.

At the beginning of the subroutine, the destination variable is re-initialised. Therefore, all information
stored in the variable upon calling this subroutine are lost.

30 Kerkweg and Jöckel: GRID user manual

3.2.2.3 PRINT GEOHYBGRID
This subroutine prints components of the variable grid of type t_geohybgrid into the log-file. It

is not called during model simulation, as it produces an enormous amount of output. Nevertheless, it
is a useful tool during code implementation, to test if the grid is defined as expected.

3.2.2.4 IMPORT GEOHYBGRID
This subroutine imports all components of a variable of type t_geohybgrid from a netCDF file,

mostly by calling IMPORT_NCVAR (see Sect. 3.1.2.6.3).

!---
SUBROUTINE IMPORT_GEOHYBGRID(grid, pstart, pcount)

! read geohybgrid from netcdf file
! NO CHECKING IN THIS ROUTINE !!!

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(INOUT) :: grid
INTEGER, DIMENSION(2), INTENT(IN), OPTIONAL :: pstart
INTEGER, DIMENSION(2), INTENT(IN), OPTIONAL :: pcount

!---

Here, pstart and pcount define the hyperslice of data to be read. pstart indicates the position at
which the reading should start, pcount how many data points should be read from pstart on. This
is used to reduce the size of the input grid and thus the required memory. This is of special interest, if
GRID is used in parallel domain decomposition. pstart and pcount contain 2 entries each in order to
limit the data in longitude and latitude direction. If the data is only 1D in the horizontal, the second
entry has no meaning.

3.2.2.5 EXPORT GEOHYBGRID
This subroutine exports the components of a variable grid of type t_geohybgrid to a netCDF file.

The filename is given by the component grid%file. The components of type t_ncvar are written to
the file by calling EXPORT_NVCAR.

3.2.2.6 NEW GEOHYBGRID
During more complex model simulations, the definition of serveral geohybrid grids may be nec-

essary. To make them universally accessible and searchable, new grids are added to a concate-
nated list called GEOHYBGRIDLIST. The subroutine NEW_GEOHYBGRID adds a new entry to this list.
A new list element can be provided either by a variable of type t_geohybgrid, which has been
defined beforehand somewhere else in the code (NEW_GEOHYBGRID_BY_GRID) or by providing the com-
ponents of the grid (NEW_GEOHYBGRID_BY_COMPONENTS). Internally, NEW_GEOHYBGRID_BY_GRID calls
NEW_GEOHYBGRID_BY_COMPONENTS passing the individual grid components.

Kerkweg and Jöckel: GRID user manual 31

! ==
SUBROUTINE NEW_GEOHYBGRID_BY_COMPONENTS(status, id, name &

, lonm, latm, hyam, hybm, timem &
, loni, lati, hyai, hybi, &
, clonm, clatm, cloni, clati &
, rlonm, rlatm, rloni, rlati &
, ps, p0, file, t &
, ranges, minmaxlonlat &
, pollon, pollat, polgam, col)

! define new geohybgrid
! INPUT:
! - components of geohybgrid
! OUTPUT:
! - id: the id of the newly defined grid

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(OUT) :: id
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: name
! mid-layer
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: lonm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: latm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: hyam
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: hybm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: timem
! interface layer
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: loni
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: lati
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: hyai
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: hybi
! curvilinear
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: clonm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: clatm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: cloni
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: clati
! rotated curvilinear
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: rlonm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: rlatm
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: rloni
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: rlati
! pressure
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: ps
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: p0
! rotated north pole
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: pollon

32 Kerkweg and Jöckel: GRID user manual

TYPE(t_ncvar), INTENT(IN), OPTIONAL :: pollat
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: polgam
! unstructured grid
TYPE(t_ncvar), INTENT(IN), OPTIONAL :: col
! if required file name for imported grid
CHARACTER(LEN=*), INTENT(IN), OPTIONAL :: file
! if required time step in file of imported grid
INTEGER, INTENT(IN), OPTIONAL :: t
REAL(dp), DIMENSION(4,2), INTENT(IN), OPTIONAL :: ranges
REAL(dp), DIMENSION(2,2), INTENT(IN), OPTIONAL :: minmaxlonlat

! LOCAL
TYPE(t_geohybgrid_list), POINTER :: gi => NULL()
TYPE(t_geohybgrid_list), POINTER :: ge => NULL()
TYPE(t_geohybgrid), POINTER :: lgrid
INTEGER :: cid ! grid id returned by compare

! ==

The subroutine has only two mandatory arguments: the output variables status indicating success,
error or that the grid exists already, and the ID of the newly defined (or the already defined, identi-
cal) grid. All other structure components of t_geohybgrid are optional arguments, thus only those
meaningful for the desired grid have to be provided. While the ID is used to identify geohybrid grids
unambiguously internally in GRID, the name of the grid is required to identify the grid for external
use (e.g., in IMPORT GRID, if in the namelist a special target grid is requested). Thus, if the name
is present and non-empty the definition of a grid of this name is forced, even of all other components
of the grid are equal to another already defined grid. If the name is not present or empty the grid will
be named genericly.

At the beginning, the subroutine cycles through the list of already defined grids calling
COMPARE_TO_GRID (see Sect. 3.2.2.7) for each entry.

• The cycling is continued as long as COMPARE_TO_GRID returns with an negative ID, indicating
that the grids are not equal.

• If the grids are equal and name is not present or empty, ID is set to the ID of the already defined
grid and status is set to "1" indicating, that no new grid has been defined.

• If the grids are equal and a name is present, non-empty and not equivalent to the grid, the
cycling of the grid list is continued.

If a non-empty name is argument to the subroutine, an additional check is performed during the cycling
of the grid list: in order to make the grids later on uniquely identifyable also by name, the names of
the grid must be different. Therefore, it is checked whether the names are equal, if the grids differ.
Otherwise the simulation is terminated with an error.

If the new grid is not equal to one of the grids in the list, a new list entry is created and the subroutine
returns the new ID of the list entry and the status is set to zero, indicating success, i.e., the definition
of a new list entry. In case that a non-empty name is argument to the subroutine, this name is used,
otherwise the subroutine generates a grid name consisting of the string ’GENERICGRID’ and a five
digits long number.

Kerkweg and Jöckel: GRID user manual 33

3.2.2.7 COMPARE TO GRID
This subroutine compares a list of grid components to a provided variable of type t_geohybgrid.

! ==
SUBROUTINE COMPARE_TO_GRID(id, grid, lonm, latm, hyam, hybm, timem &

, loni, lati, hyai, hybi, &
, clonm, clatm, cloni, clati &
, rlonm, rlatm, rloni, rlati &
, ps, p0, file, t, ranges &
, minmaxlonlat, pollon, pollat, polgam)

! ==

Mandatory arguments are only the output variable ID, which, in case of identical grids, contains the
grid ID, and the pointer to the grid, which should be compared to the components.

In the remainder of the subroutine, each present component is compared to the respective component
of grid. If they differ, the subroutine returns with ID set to -99, indicating that the grid components
are not equal to the provided components.

If the component is not present, but defined for grid the subroutine also returns with ID set to -99
indicating that the grid components are not fully equal to the provided components.

At the end, after the comparison of all components of the variable type t_geohybgrid, all components
of the grids are equal and the output variable ID is set to the ID of grid.

Note: there are two components that are not compared. First the ID, as this is simply the iden-
tifier of the grid in the list and second, the name is not compared, as it is often generated gener-
icly by NEW_GEOHYBGRID. If the name should also be tested this needs to be done “by hand” (as in
NEW_GEOHYBGRID).

3.2.2.8 LOCATE GEOHYBGRID
During more complex model simulations it might be of interest to locate and access a cer-

tain grid in the list created by NEW_GEOHYBGRID. A grid is uniquely identifyable by its ID and
by its name. Therefore the subroutine interface LOCATE_GEOHYBGRID comprises two subroutines:
LOCATE_GEOHYBGRID_BY_ID and LOCATE_GEOHYBGRID_BY_NAME.

3.2.2.8.1 LOCATE GEOHYBGRID BY ID
This subroutine locates a variable of type t_geohybgrid based on an ID within the list of geohybrid

grids (GEOHYBGRIDLIST).

!---
SUBROUTINE LOCATE_GEOHYBGRID_BY_ID(status, ID, pgrid, grid)

! search grid according to the given ID
! OUTPUT:
! - grid: the grid itself
! - pgrid: a pointer to the grid

IMPLICIT NONE

34 Kerkweg and Jöckel: GRID user manual

! I/O
INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(IN) :: ID
TYPE(t_geohybgrid), POINTER, OPTIONAL :: pgrid
TYPE(t_geohybgrid), OPTIONAL :: grid

!---

Input to the subroutine LOCATE_GEOHYBGRID_BY_ID is only an ID. The list of defined grids is cycled
until the ID is found. Depending on the arguments, a pointer pgrid is associated to the corresponding
list element or the content of the list element is copied to the output variable grid. In all cases a
status flag provides information about success or failure of the subroutine.

3.2.2.8.2 LOCATE GEOHYBGRID BY NAME
This subroutine locates a variable of type t_geohybgrid based on the grid name within the list of

geohybrid grids (GEOHYBGRIDLIST).

!---
SUBROUTINE LOCATE_GEOHYBGRID_BY_NAME(status, name, pgrid, grid, ID)

! search grid according to the given name
! OUTPUT:
! - grid: the grid itself
! - pgrid: a pointer to the grid
! - ID: the grid ID

USE messy_main_constants_mem, ONLY: STRLEN_MEDIUM

IMPLICIT NONE

INTRINSIC :: ADJUSTL, ASSOCIATED, LEN_TRIM, TRIM

! I/O
INTEGER, INTENT(OUT) :: status
CHARACTER(LEN=*), INTENT(IN) :: name
TYPE(t_geohybgrid), POINTER, OPTIONAL :: pgrid
TYPE(t_geohybgrid), INTENT(INOUT), OPTIONAL :: grid
INTEGER, INTENT(OUT), OPTIONAL :: ID

!---

Input to the subroutine LOCATE_GEOHYBGRID_BY_NAME is only the name of the grid. The list of defined
grids is cycled until the grid with the name is found. Depending on the arguments, a pointer pgrid is
associated to the corresponding list element, or the content of the list element is copied to the output
variable grid. Furthermore, on demand this subroutine hands back the ID of the grid. In all cases a
status flag provides information about success or failure of the subroutine.

3.2.2.9 CLEAN GEOHYBGRID LIST
At the end of the simulation the concatenated list of geohybgrid grids needs to be deleted. This is

done by the subroutine CLEAN_GEOHYBGRID_LIST.

Kerkweg and Jöckel: GRID user manual 35

3.2.2.10 Function GRID ERROR
Within the subroutines of the submodel GRID consistency checks are performed and status flags

are set accordingly. These integer numbers are converted to meaningful error messages by the function
GRID_ERROR.

!---
CHARACTER(LEN=256) FUNCTION GRID_ERROR(status)

! This subroutine provides an error string for a given status

IMPLICIT NONE

INTEGER, INTENT(IN) :: status

!---

The function GRID_ERROR produces the error string for a given status flag.

36 Kerkweg and Jöckel: GRID user manual

3.3 MESSY MAIN GRID TRAFO

The module MESSY_MAIN_GRID_TRAFO contains routines necessary to operate on grids. These rou-
tines are mostly applied during the transformation / mapping process in REGRID_CONTROL and
SCRIP_CONTROL.

3.3.1 SWITCH GEOHYBGRID

This subroutine deletes dimensions and the respective components from a variable of type
t_geohybgrid.

!---
SUBROUTINE SWITCH_GEOHYBGRID(g, lx, ly, lz)

! this subroutine initializes (=deletes) dimensions of a geohybgrid,
! if respective logicals are true:
! - lx = .FALSE: : re-initialise lonm and loni
! - ly = .FALSE: : re-initialise latm and lati
! - lz = .FALSE: : re-initialise vertical definition

IMPLICIT NONE

! I/O
TYPE(t_geohybgrid), INTENT(INOUT) :: g
LOGICAL , INTENT(IN) :: lx, ly, lz

!---

The logicals lx, ly, lz indicate which dimensions are erased. If lz=.FALSE., the components hyai,
hybi, hyam, hybm, p0 and ps are re-initialised. For lx=.FALSE., lonm and loni, and for ly=.FALSE.,
latm and lati are re-initialised. The rotated and curvilinear components (clonm, cloni, clatm,
clati, rlonm, rloni, rlatm, rlati) are deleted, if either lx or ly, or both are .FALSE..

3.3.2 CHECK GEOHYBGRID

The subroutine CHECK_GEOHYBGRID checks the components of a geohybrid grid for consistency. The
subroutine terminates the simulation if

• the number of dimensions is larger than 1

– for the horizontal components lonm, loni, latm, lati,

– for the time variable timem,

– for the hybrid coefficients hyai, hybi, hyam, hybm.

• for defined hyai and hybi the lengths of the dimension are not equal.

• for defined hyam and hybm the lengths of the dimension are not equal.

• for defined hyam and hyai the length of the dimension of hyai is not exactly larger by one as
the dimension length of hyam.

Kerkweg and Jöckel: GRID user manual 37

• for defined hybm and hybi the length of the dimension of hybi is not exactly larger by one as
the dimension length of hybm.

• the number of dimensions of the surface pressure component ps is larger than 3 (longitude,
latitude and time).

• no meaningful ranges are set in the special cases where the dimension length of lonm, latm,
hyam or hybm equals 1.

3.3.3 SORT GEOHYBGRID

This subroutine sorts the inidividual grid components from smallest to largest. This subroutine can
only be applied of the dimensions are independent of each other. Therefore it is not applicable for
curvilinear grids. This subroutine is freuqently used in NREGRID, as for NREGRID the independence
of the dimensions is a prerequisite. It is not called for SCRIP application, as SCRIP deals with more
general grids.

!---
SUBROUTINE SORT_GEOHYBGRID(gi, go, gx, reverse)

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(IN) :: gi ! INPUT GRID
TYPE (t_geohybgrid), INTENT(OUT) :: go ! OUTPUT GRID
TYPE (t_geohybgrid), INTENT(INOUT) :: gx ! INDEX ’GRID’
LOGICAL, OPTIONAL, INTENT(IN) :: reverse

!---

Within the subroutine the grid components lonm, loni, latm, lati, timem, p0, hyai, hyam, hybi,
hybm and ps are sorted mainly by calling the subroutine SORT_NARRAY from module MESSY_MAIN_GRID.

3.3.4 H2PSIG

This subroutine calculates sigma or pressure levels from hybrid pressure coordinates.

!---
SUBROUTINE H2PSIG(psig, hya, hyb, ps, p0, lp)

IMPLICIT NONE

! I/O
TYPE (t_narray), INTENT(INOUT) :: psig
TYPE (t_narray), INTENT(IN) :: hya, hyb, ps, p0
LOGICAL , INTENT(IN) :: lp ! .true. -> pressure axis

! .false. -> dimensionless axis
!---

38 Kerkweg and Jöckel: GRID user manual

Input of the subroutine are variables of type t_narray for the hybrid coefficients (hya, hyb), the
surface (ps) and the reference (p0) pressure. Additionally the flag lp indicates, whether the pressure
psig should be given in sigma or in pressure coordinates.

Dependent on the definition status of the variables, the vertical coordinate as pressure or sigma
coordinate is calculated in different ways:

• Hybrid pressure levels (hya and hyb are both defined):
Pressure coordinates (lp=.TRUE.) are calculated as

psig = hya ∗ p0 + hyb ∗ ps, (1)

sigma coordinates (lp=.FALSE.) as

psig = (hya ∗ p0 + hyb ∗ ps)/ps. (2)

• Sigma levels (hya is undefined, hyb defined):
Pressure coordinates (lp=.TRUE.) are calculated as

psig = hyb ∗ ps (3)

and sigma coordinates (lp=.FALSE.) as

psig = hyb/hybmax (4)

with hybmax the largest entry of hyb.

• Constant pressure levels (hya is defined, hyb is undefined):
Pressure coordinates (lp=.TRUE.) are calculated as

psig = hya ∗ p0 (5)

and sigma coordinates (lp=.FALSE.) as

psig = hya/hyamax (6)

with hyamax the largest entry of hya.

3.3.5 COMPLETE GEOHYBGRID

This subroutine checks a variable of type t_geohybgrid, if the variables on mid-points and interfaces
are consistently defined. Additionally, if only mid-point or interface variables are defined, the missing
one is calculated from the other.

! --
SUBROUTINE COMPLETE_GEOHYBGRID(g, gx, oranges)

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(INOUT) :: g
TYPE (t_geohybgrid), INTENT(INOUT), OPTIONAL :: gx ! SORT INDICES
REAL(DP), DIMENSION(4,2), INTENT(IN) , OPTIONAL :: oranges

! --

Kerkweg and Jöckel: GRID user manual 39

Here, g is the input grid of type t_geohybgrid and gx is the index grid containing the information
how to sort (back) the components of g (see Sect. 3.3.3).

For each of the variable pairs (lonm, loni), (latm, lati), (hyam, hyai), (hybm, hybi) the same
sequence of four checking subroutines IMMI_NARRAY, IMMI_NCVAR, IMMI_NARRAY_IDX, IMMI_NCVAR,
is called. For the component pairs (clonm, cloni) and (clatm, clati) only IMMI_NARRAY with
ltestonly =.TRUE. is called as the other routines are not applicable to curvilinear coordinates. For
the rotated coordinates (rlonm, rloni) and (rlatm, rlati) the two subroutines IMMI_NARRAY and
IMMI_NCVAR plus the additional subroutines IMMI_CLONI_CLATI and IMMI_CLONM_CLATM, respectively,
are called.

3.3.5.1 IMMI NARRAY
This subroutine checks the consistency of a variable pair of type t_narray and dependent on the

verbosity of the output, writes each diagnostic step into the log-file.

• Everything is ok, if both variables are undefined.

• If both are defined, they have to be of the same type. Otherwise, an information about the
number of dimensions is written to the log-file and the simulation is stopped by calling RGMSG
with an error flag. Finally, the length of the dimension of the interface variable has to be exactly
greater by one as the length of the dimension of the mid-point variable.

• If one of the variables is undefined, the other defined, the undefined one is calculated from the
other. This is only applicable for rectangular grids. Thus, this calculation can be skipped by
setting the input logical switch ltestonly .TRUE..

3.3.5.2 IMMI NARRAY IDX
If the input grid of type t_geohybgrid upon the call of COMPLETE_GEOHYBGRID is already sorted (see

Sect. 3.3.3) an additional grid variable gx has to be argument of the call containing the information
how to sort back the grid components to the order of the original grid. This information is also
required for the the components added by IMMI_NARRAY to the original grid g. Thus, the components
added to g also need to be added to gx. This is done by the subroutine IMMI_NARRAY_IDX.

3.3.5.3 IMMI NCVAR
The subroutines IMMI_NARRAY and IMMI_NARRAY_IDX only analyse the data structure components

of the variables, i.e. they determine the dimensions and calculate missing components if possible. The
additional information required for a full variable of type t_ncvar, i.e., the name, id, and attributes
etc., are added by the subroutine IMMI_NCVAR.

3.3.5.4 IMMI CLONM CLATM
This subroutine calculates clonm and clatm from the rotated coordinates, if rlonm, rlatm are

defined. For this calculation the definition of the rotated pole (pollon, pollat and polgam) and the
two conversion subroutines RLAROT2RLA and PHIROT2PHI (Sect. 3.3.13) are used.

3.3.5.5 IMMI CLONI CLATI
This subroutine calculates cloni, clati from the rotated coordinates, if rloni and rlati are

defined. For this calculation the definition of the rotated pole (pollon, pollat and polgam) and the
two conversion subroutines RLAROT2RLA and PHIROT2PHI (Sect. 3.3.13) are used.

40 Kerkweg and Jöckel: GRID user manual

3.3.5.6 RNGADJ NARRAY
This subroutine adjusts the ranges of the newly created coordinate components according to oranges

or, if oranges is not present, to g%ranges.

3.3.6 CHECK NCVAR ON GEOHYBGRID

This subroutine checks if a variable var of type t_ncvar is defined on a grid g of type t_geohybgrid.

!---
SUBROUTINE CHECK_NCVAR_ON_GEOHYBGRID(var, g, dims, axes, ok)

IMPLICIT NONE

! I/O
TYPE (t_ncvar) , INTENT(IN) :: var ! variable
TYPE (t_geohybgrid), INTENT(IN) :: g ! grid
INTEGER, DIMENSION(:), POINTER :: dims ! order of g-dims in var
INTEGER , INTENT(OUT) :: axes(3)! dimension no. of lon->lat->lev
LOGICAL , INTENT(OUT) :: ok ! conform ?

!---

Output of the subroutine are

• a 1D pointer dims dimensioned by the number of dimensions of var. It associates the i-th
dimension of variable var with the j-th dimension of g.

• an integer array axes of length 3 identifying the i-th dimension of var as longitude, latitude and
level axis (in this order).

• the logical ok which is .TRUE., if the variable definition is conform with the grid definition.

Example: if in the grid the dimension variables are allocated in the order (lon, lat, lev, num) and in
var in the order (lon, num, lev, lat) this results in dims =(1,0,3,2) and axes = (1,4,3).

3.3.7 SORT GEOHYBGRID NCVAR

This subroutine sorts a variable var according to the index information provided by a geohybrid grid
with index information gx. The newly sorted variable svar is output of the subroutine.

!---
SUBROUTINE SORT_GEOHYBGRID_NCVAR(var, gx, axes, svar, reverse)

IMPLICIT NONE

! I/O
TYPE (t_ncvar) , INTENT(IN) :: var ! input variable
TYPE (t_geohybgrid), INTENT(IN) :: gx ! hybrid grid with ...

! ... index information

Kerkweg and Jöckel: GRID user manual 41

INTEGER , INTENT(IN) :: axes(3) ! lon,lat,lev dim. no.
TYPE (t_ncvar) , INTENT(INOUT) :: svar ! sorted variable
LOGICAL , INTENT(IN), OPTIONAL :: reverse

!---

If reverse is given and .TRUE. the variable is reordered to its original order. Additional, mandatory
input of the subroutine is the information of the order of the dimensions in the variable (axes). This
information is obtained by calling CHECK_NCVAR_ON_GEOHYBGRID prior to the call to this subroutine.

3.3.8 PACK GEOHYBGRID NCVAR

This subroutine (un-)packs a variable vi of type t_ncvar according to the axes and dimension infor-
mation provided by the subroutine CHECK_NCVAR_ON_GEOHYBGRID.

!---
SUBROUTINE PACK_GEOHYBGRID_NCVAR(vi, dims, axes ,vo, reverse)

IMPLICIT NONE

! I/O
TYPE (t_ncvar) , INTENT(IN) :: vi ! input variable
INTEGER, DIMENSION(:) , INTENT(IN) :: dims
INTEGER , INTENT(IN) :: axes(3)
TYPE (t_ncvar) , INTENT(INOUT) :: vo ! output variable
LOGICAL, OPTIONAL , INTENT(IN) :: reverse

!---

The variable name of the packed variable is labeled by adding _pd at the end of the original variable
name. The packing algorithm permutes the data in the 1d storage format according to transposed
dimensions. These transposed dimensions are ordered such, that the invariant and unused dimensions
are stored at the end.

3.3.9 BALANCE GEOHYBGRID

Parameter of this subroutine are one input and one output grid, gi and go, respectively.

!---
SUBROUTINE BALANCE_GEOHYBGRID(gi, go)

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(INOUT) :: gi ! input grid
TYPE (t_geohybgrid), INTENT(INOUT) :: go ! output grid

!---

All coordinate variables2, that do not exist in go but in gi are copied from gi to go.
2lonm, latm, loni, lati, clonm, clatm, cloni,clati, rlonm, rlatm, rloni, rlati, hyam, hybm, hyai, hybi

42 Kerkweg and Jöckel: GRID user manual

3.3.10 BALANCE GEOHYBGRID NCVAR

This subroutine dimensions a variable varo of type t_ncvar in such a way, that the three spacial axes
are dimensioned according to a given output grid go, while the invariant dimensions are allocated as
in the input variable vari.

!---
SUBROUTINE BALANCE_GEOHYBGRID_NCVAR(vari, axes, go, varo, lrgz)

USE messy_main_grid_netcdf, ONLY: NULL_XTYPE

IMPLICIT NONE

! Note: go must already be ’balanced’

! I/O
TYPE(t_ncvar) , INTENT(IN) :: vari ! input variable
INTEGER , INTENT(IN) :: axes(3) ! dim.no of lon, lat, lev
TYPE(t_geohybgrid), INTENT(IN) :: go ! output grid
TYPE(t_ncvar) , INTENT(INOUT) :: varo ! output variable
LOGICAL , INTENT(IN), OPTIONAL :: lrgz

!---

The subroutine parameter axes is required to associate the spacial dimensions to each other. Addition-
ally, the optional parameter lrgz allows for keeping the vertical dimension. In the case lrgz=.FALSE.
the vertical axis is treated as invariant axis.

3.3.11 BALANCE GEOHYBGRID TIME

The subroutine BALANCE_GEOHYBGRID_TIME adjusts the time axes of the two grids gi and go.

!---
SUBROUTINE BALANCE_GEOHYBGRID_TIME(gi, go, lint)

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(INOUT) :: gi, go
LOGICAL, INTENT(IN) :: lint

!---

If lint = .TRUE. the time information of the input grid is used for the output grid. If lint = .FALSE.
the output grid time information is used for the input grid. The balancing is performed for the time
axis in the pressure component of the grid and for the time axis of the grids themselves.

Kerkweg and Jöckel: GRID user manual 43

3.3.12 REDUCE INPUT GRID

For interpolation of off-line data, the domain of the data to be remapped can be much larger as the
target domain. An example is a global emission field, which should be remapped to a regional domain.
Here the data read in from the file could be reduced to those covering the regional domain. This
becomes even more efficient, if the regional model domain is decomposed by domain decomposition
among serveral parallel tasks.

Therefore the subroutine REDUCE_INPUT_GRID reduces an input grid to the required size determined
by the target domain. In a second read-cycle the fields are then read on the reduced grid.

Parameter to the subroutine are the input (or source) grid gs, which will be redefined in this subroutine,
and the target (or destination) grid gd, which is required for a meaningful reduction of the input grid.

The subroutine works as follows:

1. Check, if a longitudinal dimension is defined.

2. Copy source and destination longitude to a local array and convert both to type double.

3. Check, if the two longitude axes are defined in the same way, i.e. in the interval [-180,180] or
[0,360]; if not, both longitudinal axes are converted to [0,360].

4. Check, if the source grid is larger than the target grid.

5. Repeat the above steps (1,2,4) for the latitude axes.

6. Determine the maximum/minimum longitude/latitudes (lonmin, lonmax, latmin and latmax
that should be covered by the source grid by widening the destination grid by 2 times the grid
spacing (2*dlon or 2*dlat) at all sides. This domain is called the extended domain in the
following.

7. Loop along all longitudes and latitudes to find the lowest and highest indices, at which the source
grid boxes are located within the extended domain. The start indices are stored in the structure
component gs%start(1) for the longitudes and gs%start(2) for the latitudes, respectively. For
a curvilinear grid the two variables are equal. In addition to the start indices the counts are saved
in the components gs%count(1) and gs%count(2) for longitudes and latitudes, respectively.
They are determined as difference of the end and the start indices.

8. If the longitude axis of the grid is reduced after this procedure, the longitudinal axis is longer a
modulo axis. Thus gs%lonc, gs%clonc and gs%rlonc are set .FALSE..

Finally, some local variables are re-initialised to release the memory.

3.3.13 Conversion of rotated to geographical cooordinates and vise versa

For many applications, especially the mapping of different grids, different types of horizontal coordi-
nates are required. The four functions PHIROT2PHI, PHI2PHIROT, RLAROT2RLA and RLA2RLAROT provide
the functionality to convert longitudes (or lambda) and latitudes (or phi) from one rotated system to
the other. The functions have been adopted from the COSMO model code. All four functions require
four to five input parameters:

• the source latitude

44 Kerkweg and Jöckel: GRID user manual

• the source longitude

• the latitude of the north pole of the rotated system (polphi)

• the longitude of the north pole of the rotated system (pollam)

• optionally, the angle between the north poles of the rotated systems (polgam). If polgam is not
present, the other system is the geographical system.

3.3.13.1 PHI2PHIROT
This function calculates the target (if polgam is not present, geographic) latitude.

3.3.13.2 PHIROT2PHI
This function calculates the target (i.e., rotated) latitude.

3.3.13.3 RLAROT2RLA
This function calculates the target (if polgam is not present, geographic) longitude.

3.3.13.4 RLA2RLAROT
This function calculates the target (i.e., rotated) longitude.

3.3.14 Wind vector conversion between grids: UVROT2UV VEC, UV2UVROT VEC,
UVROT2UV VEC JLOOP

In contrast to the coordinate transformation of scalars, vector variables need to be converted in a
different way. Therefore the subroutines UVROT2UV_VEC and UV2UVROT_VEC convert the wind vector
defined by the variables u and v from the rotated system to the geographical system and vice versa.

Parameter of the subroutines are the 2D (u, v) wind field, the rotated latitude and longitude points
(rlat and rlon), the latitude and the longitude of the rotated north pole (pollat, pollon) and the
dimensions of the wind fields (idim and jdim).

The additional subroutine UVROT2UV_VEC_JLOOP allows for the transformation of 2D wind fields cov-
ering one horizontal and the vertical dimension. This subroutine was implemented as in some codes
(e.g. ECHAM5) a so-called “local loop” is used in which only one horizontal dimension is accessible.

Kerkweg and Jöckel: GRID user manual 45

3.4 MESSY MAIN GRID TOOLS

This module contains routines for the conversion of data between the multi-dimensional array repre-
sentation models and the 1D vector representation of the GRID SMCL routines.

3.4.1 RGTOOL CONVERT

This subroutine converts a variable (var) of type t_narray, which is defined on the geohybgrid grid
to a 4D array (dat).

!---
SUBROUTINE RGTOOL_CONVERT(var, dat, grid, order)

! CONVERTS NCREGRID OUTPUT OF TYPE N-ARRAY (var) ON GRID
! grid TO 4D-ARRAY (dat)
! THE OPTIONAL STRING order DEFINES THE ORDER OF DIMENSIONS
! (DEFAULT: ’xyzn’)
!
! Author: Patrick Joeckel, MPIC, October 2002

USE ...

! REGRID MODULES

IMPLICIT NONE

INTRINSIC :: ASSOCIATED, INDEX, PRESENT, PRODUCT, REAL, SIZE, SUM, TRIM

! I/O
TYPE (t_ncvar), INTENT(IN) :: var ! nc-variable
REAL(dp), DIMENSION(:,:,:,:), POINTER :: dat ! DATA ON DESTINATION GRID
TYPE(t_geohybgrid),INTENT(IN), OPTIONAL :: grid ! grid information
CHARACTER(LEN=4), INTENT(IN), OPTIONAL :: order ! DEFAULT: ’xyzn’

!---

The order of the dimensions of the 4D array is determined by the optional string order. If order is
not present, the default ’xyzn’ is assumed.

Internally, the subroutine

1. determines the required order of dat. The 1D vector of length 4, variable ovec, contains the index
of the x-axis or first horizontal axis (ovec(1)), of the y- or second horizontal axis (ovec(2)),
of the vertical axis (ovec(3)) and of the number or parameter dimension (ovec(4)). The
associated strings ’x/LON’, ’y/LAT’, ’z/LEV’ and ’n/PAR’ are stored in the respective order
in the character vector variable ostr.

2. loops over the grid dimensions and compares each dimensions of grid with the dimensions of the
variable var, the respective dimension lengths are stored in the vector variable ldvar of length
4 at the same index as the corresponding dimension of var. Additionally, the vector variable

46 Kerkweg and Jöckel: GRID user manual

dpos of length 4 stores the indices of the four dimensions in the order ’x,y,z,n’, i.e., dpos(1)
stores the index of the dimension of grid, which contains the ’x’-axis. Furthermore, the number
of identified dimensions is counted (with nrvdim as integer counter).

3. the length of the parameter dimension ldvar(ovec(4)) is determined by

ldvar(ovec(4)) = npdlv/(ldvar(ovec(1)) ∗ ldvar(ovec(2)) ∗ ldvar(ovec(3))), (7)

nldlv is the size of the overall array. Thus the parameter dimension is determined by dividing
the overall size by the product of the 3 spacial dimensions.

4. if the verbosity is high enough, the information about the dimensionality of the variables and
the association of dimensions is written to the log-file.

5. Finally, the 4D output array dat is allocated to the respective dimension length, i.e.,

ALLOCATE DAT(ldvar(1),ldvar(2),ldvar(3),ldvar(4))

and filled: for each entry i of the 1D array of var, first the respective indices in the
4D space as defined in grid (vec) are determined by calling the function ELEMENT. Af-
terwards vec is re-ordered according to the order of x-,y-, z- and n-axis in the 1D
(source) and the 4D (destination) array, yielding the index vector nvec. Finally, the
value of var%dat at the current position is copied to dat at the positions given by nvec:
dat(nvec(1), nvec(2), nvec(3), nvec(4)) = var%dat%vd(i)

3.4.2 RGTOOL CONVERT DAT2VAR

This subroutine is the reverse of the subroutine RGTOOL_CONVERT. It converts a 4D array dat of order
“order” to a variable of type t_narray on the grid “GRID”. This subroutine requires as additional
input the name of the variable (vname) as this needs to be set in the output variable of type t_narray.

3.4.3 RGTOOL G2C

This subroutine converts the components of a grid of type t_geohybgrid to “normal” arrays. More
precise, it converts the hybrid coefficients (hyam, hybm, hyai and hybi), the reference and the surface
pressure (p0 and ps) the 1D longitude and latitude components latm, lati, lonm and loni to 1D
arrays (except for ps, which will be converted to a 2D array). This conversion routine does not work
for the curvilinear and rotated grid variables.

Internally, this subroutine calls RGTOOL_CONVERT for all of the listed grid components.

3.4.4 ALINE ARRAY

This subroutine converts a 2D array (var2d) to a 1D vector (var1D). Thus var1D and a status flag
are the output parameters of this subroutine. Input are the 2D array which should be alined into the
1D variable.

Kerkweg and Jöckel: GRID user manual 47

3.4.5 DEALINE ARRAY

This subroutine provides the reverse operation of ALINE_ARRAY. It converts a 1D array to a 2D variable.

!---
SUBROUTINE dealine_array(status, dim1, dim2, var1d, var2d)

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(IN) :: dim1, dim2
REAL(dp), DIMENSION(:), INTENT(IN) :: var1d
REAL(dp), DIMENSION(:,:), POINTER :: var2d

!---

A status flag and a 2D array var2d are the output parameters of this subroutine. Input parameters
are the dimensions of the variable var2d and the 1D array var1d.

3.4.6 SET SURFACE PRESSURE

This subroutine (re-)sets the surface pressure component in a geohybrid grid. As, in contrast to the
other grid defining parameters, the surface pressure might change during a model simulation, it might
become necessary to use the updated surface pressure for vertical remapping in NREGRID model.

Parameters to the subroutine are an integer status flag status reporting about success or failure of
the subroutine, the grid variable (grid) of type t_geohybgrid to which the surface pressure field will
be copied, the 2D surface pressure field press and, optionally, the logical 2D field lcalc, which is
.TRUE. in those columns where vertical remapping takes place. If lcalc is not present, it is assumed
that vertical remapping will be performed in the entire domain.

48 Kerkweg and Jöckel: GRID user manual

3.5 MESSY MAIN GRID TRAFO NRGD BASE

This module contains the core of the NCREGRID submodel. It is published and documented by
Jöckel (2006). Therefore the contents will not be reported here again. All subroutines now contained
in MESSY_MAIN_GRID_TRAFO_NRGD_BASE (i.e., NREGRID, NREGRID_STAT and the subroutines calculating
the overlap between region OVL_*) are part of the NCREGRID SMCL file messy_ncregrid_base.f90.

Kerkweg and Jöckel: GRID user manual 49

3.6 MESSY MAIN GRID TRAFO NRGD

This module contains one public, REGRID_CONTROL, and four private routines. The four private rou-
tines are used within REGRID_CONTROL, but are specific for NREGRID requirements (geographically-
rectangular grids). Therefore they have been included in the NREGRID module and not, as the other
subroutines, in the general transformation module MESSY_MAIN_GRID_TRAFO.

3.6.1 REGRID CONTROL

REGRID_CONTROL drives the grid mapping algorithm NREGRID and is called several times within
a regrid loop. Internally, REGRID_CONTROL is split into two subroutine REGRID_CONTROL_INIT and
REGRID_CONTROL_WORK. REGRID_CONTROL_INIT conducts the initialisation of the local variables de-
duced from the optional arguments and the deallocation of the data fields allocated during the other
calls of REGRID_CONTROL.

! --
SUBROUTINE REGRID_CONTROL(grid_in, grid_out, tvar, var &

, RG_TYPE, lint &
, lrgx, lrgy, lrgz &
, lfirsto &
, lpresaxis &
, lwork &
, lstatout)

IMPLICIT NONE

TYPE (t_geohybgrid), INTENT(IN) :: grid_in ! input grid info
TYPE (t_geohybgrid), INTENT(IN) :: grid_out ! output grid info
! list of input variables
TYPE (t_ncvar), DIMENSION(:), POINTER :: tvar
! list of output variables
TYPE (t_ncvar), DIMENSION(:), POINTER :: var

INTEGER, INTENT(IN) :: RG_TYPE(:) ! regrid type
LOGICAL, INTENT(IN) :: lint ! input time ?
LOGICAL, INTENT(IN) , OPTIONAL :: lrgx ! regrid along ’lon’
LOGICAL, INTENT(IN) , OPTIONAL :: lrgy ! regrid along ’lat’
LOGICAL, INTENT(IN) , OPTIONAL :: lrgz ! regrid along ’lev’
LOGICAL, INTENT(IN) , OPTIONAL :: lfirsto ! first output step
LOGICAL, INTENT(IN), OPTIONAL :: lpresaxis ! pressure axis regrid
LOGICAL, INTENT(IN), OPTIONAL :: lwork ! i_am_worker = T ?

!---

While REGRID_CONTROL_INIT is, in a distributed memory parallel application called by each task,
REGRID_CONTROL_WORK does the actual regridding work and is only called on the so-called “worker-
PEs”, i.e., those PEs, which are dedicated to perform the remapping. If a PE is a worker-PE is
indicated by the optional argument lwork. If lwork=.TRUE., the PE performs the remapping. If
lwork is not present, .TRUE. is the default.

50 Kerkweg and Jöckel: GRID user manual

The other arguments of REGRID_CONTROL are

• the source grid (grid_in),

• the destination grid (grid_out),

• the list of variables to be regridded (tvar),

• the list of the finally regridded variables (var),

• the regridding type RG_TYPE, which is one of INT, EXT, IXF and IDX, for regridding intensive or
extensive variables, index fraction and index regridding, respectively. The default is INT.

• lint denoting, if the time information of the input grid or the time information of the output
grid should be used for the finally regridded variables.

• lrgx, lrgy and lrgz indicating whether regridding along the x-, y- and z-axis is requested,
respectively. If these optional arguments are not present, the default is .TRUE., i.e., regridding
along that axis is performed.

• the logical lfirsto indicating, whether export of the grid and the variables to a file is performed
for the first time. This is important, as attributes are only written once. If lfisto is not present,
attributes are not written.

• the logical lpresaxis signalling whether vertical regridding takes place along the pressure or the
sigma coordinate. The default is .FALSE. i.e., regridding in sigma coordinates will be performed.

The workflow of REGRID_CONTROL_WORK is as follows:

• Preparation of grids and variables for the regridding.

– Grid operations

∗ Allocation of local variables to number of actual variables.
∗ Creation of local copies gi and gg of input and output grid, respectively.
∗ Check of input grid gi by calling CHECK_GEOHYBGRID.
∗ If horizontal interpolation is required, switching of output grid gg by calling
SWITCH_GEOHYBGRID, i.e., the grid is reordered such that the regridded axes come first.

∗ Check of output grid gg by calling CHECK_GEOHYBGRID.
∗ Balancing of the time axes of gi and gg by calling BALANCE_GEOHYBGRID_TIME, i.e.,

both grids are adjusted to the same time, i.e., the input grid time if lint=.TRUE. the
output grid time otherwise.

∗ Balancing of surface pressure of gi and gg by calling BALANCE_GEOHYBGRID_PS.
∗ If only vertical interpolation is required, switch output grid gg by calling
SWITCH_GEOHYBGRID here.

∗ Sorting of input grid by calling SORT_GEOHYBGRID. gis is the sorted input grid and gix
the index grid required for the “un-sorting” of variables, i.e., the transformation back
to it original order.

∗ Sorting of output grid by calling SORT_GEOHYBGRID. ggs is the sorted output grid and
ggx the index grid required for the un-sorting of variables.

Kerkweg and Jöckel: GRID user manual 51

∗ Completion of the sorted and the “index grid” gis and gix by calling
COMPLETE_GEOHYBGRID. In this subroutine missing components for interfaces or mid-
point variables are calculated from the other component, i.e., interfaces from mid-points
or mid-points from interfaces. If both, interfaces and mid-points, are unavailable, these
components stay undefined.

∗ Completion of the sorted and the “index grid” ggs and ggx by calling
COMPLETE_GEOHYBGRID.

∗ Balancing the sorted input and output grids gis and ggs with each other, i.e., missing
information in the one grid is added by the respective information of the other grid.
Struktur components defined or undefined in both grids stay as they are.

∗ Balancing the sorted input and output index grids gix and ggx with each other.
∗ Construction of axis information by calling GEOHYBGRID_AXES. sax and dax contain the

axes information for the input and output grid respectively.

– Variable operations:
In a loop over the variables (indexed i) to be regridded the following preparations are made:

∗ Check of conformity of variable with input grid gi by calling
CHECK_NCVAR_ON_GEOHYBGRID. If yes, addition of variable to list of regridding
variables and copying of tvar(i) to local variable xivar(i).

∗ If IXF or IDX regridding is required, call of subroutine IDX2FRAC_NCVAR (see
Sect. 3.1.2.12). IDX2FRAC_NCVAR outputs the new local variable qvari. If
IDX2FRAC_NCVAR is not called, copying of xivar(i) to the local variable qvari.

∗ Check of conformity of variable qvari with sorted input grid gis definition by calling
CHECK_NCVAR_ON_GEOHYBGRID.

∗ Balancing of the output variable xovar(i) with input variable qvari and sorted output
grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Sorting of input variable qvari according the input index grid gix by calling
SORT_GEOHYBGRID_NCVAR. The sorted variable is svari.

∗ Balancing of the sorted output variable svaro(i) with input variable svari and sorted
output grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Packing sorted input variable svari by calling PACK_GEOHYBGRID_NCVAR. The packed
variable is called pvari.

∗ Balancing of the packed output variable pvaro(i) with packed input variable pvari
and sorted output grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Deallocation / Initialisation of the data component of pvaro(i) by calling
INIT_NARRAY(pvaro(i)%dat).

∗ Copying of the content of data array of packed input variable pvari to variable nai(i)
of type t_narray, i.e., the variable which is input to the NREGRID algorithm.

∗ Deallocation / Initialisation of local input variables qvari, svari, pvari by calling
INIT_NCVAR.

After this is done for every variable the data is prepared for regridding.

• Regridding:
The regridding algorithm NREGRID is called for all variables at the same time. Parameters to the
subroutine are

– the input and output data arrays nai and nao, respectively.

52 Kerkweg and Jöckel: GRID user manual

– the input and output (source and destination) data axes information sax and dax, respec-
tively.

– the regridding type RGT that is requested individually for each variable.

– the global overlap fractions sovl and dovl for source and destination grid, respectively.

– the counter for the recursive level rcnt, as NREGRID is a algorithm being called for each
axis recursivly.

If requested, a statistic of the regridding process can be output into the log file afterwards by
calling NREGRID_STAT.

• Reformatting of output variables and grids:
After the regridding the data needs to be transformed back to the requested order.

– In a loop over all regridded variables (loop index i) the variables are transformed back into
their requested form and order:

∗ Copying of the contents of the data array nao, output of NREGRID, to the data array
of the packed output variable pvaro(i) by calling COPY_NARRAY.

∗ Check of the sorted variable svaro(i) on the sorted output grid by calling
CHECK_NCVAR_ON_GEOHYBGRID to get the definition of output axes (axes) and dimen-
sions (dims).

∗ Unpacking of packed output variable pvaro(i) using axes and dims by calling
PACK_GEOHYBGRID_NCVAR. Output of this subroutine is the sorted output variable
svaro(i).

∗ Un-sorting of sorted output variable svaro(i) by calling SORT_GEOHYBGRID_NCVAR
using the output index grid ggx and the axes definitions. Output of this subroutine is
the variable qvaro, which is in the original order compared to the input variable tvar.

∗ For ’IDX’ regridded variables, backtransition of the data by calling the subrou-
tine MAXFRAC2IDX_NCVAR. Otherwise, copying of qvaro to the final output variable
xovar(i).

∗ Re-initialisation of the local variables pvaro(i), svaro(i), qvaro.

– Memory deallocation:
The variables nai, nao, pvaro and svaro are initialised and deallocated and the corre-
sponding pointers are nullified.

– The unsorted, completed and balanced output grid go is calculated by calling
SORT_GEOHYBGRID.

– If a filename is defined in the grid structure go, direct output of the regridded fields is
requested. First go is written to the file by the subroutine EXPORT_GEOHYBGRID. Then,
if called for the first time (lfirsto = .TRUE.), the attributes are written to the file by
EXPORT_NCATT. Finally, the variables are written to the file using EXPORT_NCVAR.

– Preparation of the returned data: The output variable var is allocated to the number of
actually regridded variables and the content of the local output variable xovar is copied to
var.

• At the end internally used memory is released.

Kerkweg and Jöckel: GRID user manual 53

3.6.2 GEOHYBGRID AXES

This subroutine constructs the axes from the grid information.

!---
SUBROUTINE GEOHYBGRID_AXES(g, a, g2, a2, pflag)

! Note: NO CHECKING
! g, g2 must be ’ordered’, ’complete’, and ’consistent’

IMPLICIT NONE

! I/O
TYPE (t_geohybgrid), INTENT(IN) :: g ! GEOHYBRID-GRID
TYPE (t_axis), DIMENSION(:), POINTER :: a ! LIST OF AXES FOR REGRIDDING
TYPE (t_geohybgrid), INTENT(IN) , OPTIONAL :: g2 ! GEOHYBRID-GRID
TYPE (t_axis), DIMENSION(:), POINTER, OPTIONAL :: a2 ! LIST OF AXES
LOGICAL, OPTIONAL, INTENT(IN) :: pflag ! .true.: pressure axis

! .false. sigma-axis (default)
!---

Input to the subroutine are one or two geohybgrid grids (g and g2), and, optionally, a flag, pflag,
indicating, if a pressure or a sigma axis is used as vertical axis. Output of the subroutine are one or
two 1D pointer arrays of axis definitions of type t_axis (a and a2). If a second grid and a second
axis array is provided, the procedure is the same as for the first pair, so we explain the procedure here
referring only to one grid and one axis array. The axis array is defined according to the grid definition.
The following order of actions is taken:

1. The number of axes is determined, by checking if the variables g%lati, g%loni and g%hyai
or g%hybi are defined. This subroutine assumes, that the input grids are already ’ordered’,
’complete’ and ’consistent’.

2. The 1D axis pointer array is allocated to the number of dimensions (a free dimension is always
assumed to exist in addition).

3. If g contains a longitude axis the corresponding definitions are copied from the grid definition
and g%loni%dat is copied to a(n)%dat.

4. The latitude axis is converted from geographical to mathematical coordinates in radians.

5. If a vertical axis exists, the axis is processed depending on the request: by calling the subroutine
H2PSIG the vertical axis will be transformed to pressure or sigma coordinates. Additionally, the
dependence of the vertical axis on the longitude and/or latitude axes is checked.

As this subroutine only checks the non-rotated, non-curvilinear longitude and latitude coordinates, it
is only applicable within NREGRID.

54 Kerkweg and Jöckel: GRID user manual

3.6.3 PS2PS

This subroutine basically extracts a variable of type t_narray from a variable of type t_ncvar. As
this subroutine only checks the non-rotated, non-curvilinear longitude and latitude coordinates, it is
only applicable within NREGRID. As the name of the subroutine indicates, this subroutine is used
for extraction of the surface pressure.

3.6.4 BALANCE GEOHYBGRID PS

This subroutine adjusts the surface pressure definition of two grids to each other.

First some consistency checks have to be performed:

• In case none of the two grids contains a surface pressure definition, the hybrid-b coefficients
must also be undefined.

• In case none of the two grids contains a reference pressure definition, the hybrid-a coefficients
must also be undefined.

• The subroutine returns, if the grid is 2D, i.e., neither the surface or the reference pressure, nor
any hybrid coefficients are defined.

If the consistency checks are passed, the grids can be balanced. If p0 is defined in one of the grids and
not in the other, the defined reference pressure is copied to the other grid. For the surface pressure
itself, four different cases can occur:

A) ps is defined in both grids. Thus only the time axis of both grids needs to be adjusted, but this
is done in the subroutine BALANCE_GEOHYBGRID_TIME.

B) ps is undefined in both grids. In this case nothing is to be done.

C) the surface pressure of the outgoing grid go%ps is defined, but on the wrong grid.
In this case an error message is produced and the remapping is interrupted.

D) If the incoming or the outgoing surface pressure are defined, the missing surface pressure is
remapped by calling the subroutine REGRID_GEOHYBGRID_PS.

As REGRID_GEOHYBGRID_PS calls NREGRID, this subroutine is only applicable for NREGRID, i.e.
non-curvilinear grids.

3.6.5 REGRID GEOHYBRID PS

This subroutine basically uses the same algorithm as REGRID_CONTROL to horizontally remap the
surface pressure defined on one grid to the surface pressure field of another grid.

As this subroutine calls NREGRID, it is only applicable within NREGRID.

Kerkweg and Jöckel: GRID user manual 55

3.7 MESSY MAIN GRID TRAFO SCRP BASE

This module contains the core of the SCRIP software. Its contents are published by Jones (1999) and
on the SCRIP homepage (http://oceans11.lanl.gov/trac/SCRIP (last access data: 05-11-2014)).

Therefore the content of the module is not further described here.

56 Kerkweg and Jöckel: GRID user manual

3.8 MESSY MAIN GRID TRAFO SCRP

This module builds the interface to the original SCRIP interpolation software. As SCRIP uses another
type of grid description, this module defines a “SCRIP grid” i.e., the data type t_scrip_grid contain-
ing the information required by SCRIP for the remapping from or to that grid. In addition to the grid
definition itself, there is a concatenated list of SCRIP grids named SCRIPGRIDLIST. SCRIPGRIDLIST
is of type t_scrip_grid_list:

!--
TYPE t_scrip_grid_list

TYPE(t_scrip_grid) :: this
TYPE(t_scrip_grid_list), POINTER :: next => NULL()

END type t_scrip_grid_list
!--

Using this list, all grids can be stored and searched. If exactly the same definition is required multiple
times, no additional grid need to be defined thus saving memory.

In addition to the definition of SCRIP grids, a data type defining a “SCRIP data set” (t_scrip_data)
is defined. This structure contains the information required for the remapping of one grid to another.
Thus, it contains the source and the destination grid, both of type t_scrip_grid, and the weights.
The weights are typically calculated once during the initialisation phase of the model and stored in a
variable of type t_scrip_weights.

As for the SCRIP grids, the SCRIP data sets are stored within a concatenated list (SCRIPDATALIST).
This makes a search for a specific combination of grids and interpolation methods possible in order to
avoid calculation of the same weights twice. This saves computing time and memory.

3.8.0.1 t scrip grid
The structure t_scrip_grid is defined as:

!---
TYPE t_scrip_grid

INTEGER :: ID = -99
INTEGER :: size = 0 ! "Horizontal" size product of lon/lat grid dims

! i.e. a 1D size horizontal part of the grid
INTEGER :: corners = 4 ! number of corners, in our case always 4
INTEGER :: rank = 0 ! number of dimensions in "model code"

! length of dimensions in "model code" (dimensioned by rank)
TYPE (t_ncdim), DIMENSION(:), POINTER :: dim => NULL()

LOGICAL, DIMENSION(:), POINTER :: lmask ! dimensioned by grid_size
! T for participating points
! F for neglected points

! longitude of grid centers (dim: grid_size ; unit: radian)
REAL(dp), DIMENSION(:), POINTER :: center_lon
! latitude of grid centers (dim: grid_size ; unit: radian)

Kerkweg and Jöckel: GRID user manual 57

REAL(dp), DIMENSION(:), POINTER :: center_lat
! longitude of grid corners (dim: (grid_size, grid_corners); unit: radian)
REAL(dp), DIMENSION(:,:), POINTER :: corner_lon
! latitude of grid corners (dim: (grid_size, grid_corners); unit: radian)
REAL(dp), DIMENSION(:,:), POINTER :: corner_lat

END type t_scrip_grid
!---

The structure t_scrip_grid contains

• an ID to unambiguously identify the grid.

• the size of the horizontal grid, i.e. number of grid cells in longitude direction times number of
cells in latitude direction. In case of 1-dimenisonal grids it is simply the number of grid cells in
a horizontal plane.

• corners, indicating the number of corners of the grid. As until now only rectangular cases have
been implemented, the default is set to 4. Nevertheless, SCRIP is able to deal with different
number of corners, but GRID might need some further extension for these grids.

• the rank storing the number of spacial dimensions the grid corresponds to.

• a vector dim, dimensioned by rank, providing the length of the dimension axes of the corre-
sponding spacial grid.

• a logical mask (lmask) used by SCRIP to reduce the search area.

• the longitude of each grid cell center (mid point) in radian (center_lon).

• the latitude of each grid cell center (mid point) in radian (center_lat).

• the longitude of each corner of each grid cell in radian (corner_lon). It is a 2D field dimensioned
by the number of corners and the number of grid cells.

• the latitude of each corner of each grid cell in radian (corner_lat). It is a 2D field dimensioned
by the number of corners and the number of grid cells.

3.8.0.2 t scrip data
The structure t_scrip_data combines the two grids (source and destination grid) and the weights

required for the interpolation from the one to the other grid in one data type.

!---
TYPE t_scrip_data

! SCRIP data ID
INTEGER :: ID = 0
! remapping type
INTEGER :: map_type = map_type_conserv
! normalize option
INTEGER :: norm_opt = norm_opt_none
! use source grid area
LOGICAL :: luse_sgrd_area = .FALSE.

58 Kerkweg and Jöckel: GRID user manual

! use destination grid area
LOGICAL :: luse_dgrd_area = .FALSE.
TYPE(t_scrip_weights) :: wghts
TYPE(t_scrip_grid), POINTER :: sgrd
TYPE(t_scrip_grid), POINTER :: dgrd

END type t_scrip_data
!---

The source and destination grids (sgrd and dgrd) are both pointers, as the original grid definition
is located in the list of SCRIP grids SCRIPGRIDLIST. As the weights are unique for a specific pair of
grids and the chosen mapping type, they are stored within this structure. It contains an ID for unique
identification of a specific SCRIP data set. SCRIP provides different interpolation and normalisation
types. As the weights depend on the interpolation type, the map_type is a structure component here.
Additionally, the normalisation specification is stored in the component norm_opt.

3.8.0.3 t scrip weights
Internally, SCRIP works with 1D data arrays. Therefore, all non-zero-dimensional components of

the type t_scrip_weights are 1-dimensional.

!---
TYPE t_scrip_weights

! number of unique address pairs in the remapping == number of entries
! in the sparse matrix for the remapping
INTEGER :: num_links = 0

! number of required weights
! - bilinear num_wgts = 1
! - distance-weighted num_wgts = 1
! - conservative num_wgts = 3
! - bicubic num_wgts = 4
INTEGER :: num_wgts = 0

! normally the weights are calculated only at the beginning of the
! simulation. If ltimedependent is set to true, the weights are recalculated
! each import time step.
! Note: this is much more computing time and memory intensive and is only
! required, if time dependent masks (e.g. ice mask) are important for the
! remapping
LOGICAL :: ltimedependent = .FALSE.

! remap matrix dimensioned by (num_wghts, num_links)
REAL(dp), DIMENSION(:), POINTER :: weights => NULL()
REAL(dp), DIMENSION(:), POINTER :: dstfrac => NULL() ! fraction
! area of destination field
REAL(dp), DIMENSION(:), POINTER :: dstarea => NULL()
! source address of each link (dim: num_links)
INTEGER, DIMENSION(:), POINTER :: srcadd => NULL()
! destination address of each link (dim: num_links)

Kerkweg and Jöckel: GRID user manual 59

INTEGER, DIMENSION(:), POINTER :: dstadd => NULL()
END type t_scrip_weights

!---

The data internally determined by SCRIP during the weight calculation is stored in a variable of type
t_scrip_weights. The components are:

• integer num_links: number of overlapping regions.

• integer num_wghts: number of required weights (dependent on interpolation type).

• logical ltimedependent: indicating whether the weights are time dependent; if so, the weights
need to be calculated each timestep. IMPORT GRID only handels time independent grids so
far.

• 1D float pointer array weights: currently only interpolation methods requiring one weight are
implemented. Thus weight will be dimensioned by num_links.

• 1D float pointer array dstfrac: fraction of destination grid cells covered by linked source grid
cell, dimensioned by num_links.

• 1D float pointer arraydstarea: grid box area of each grid box of the destination grid and thus
dimensioned by the number of grid cells of the destination grid.

• 1D float pointer array srcadd: source address of each link, thus dimensioned by num_links.

• 1D float pointer array dstadd: destination address of each link, thus dimensioned by num_links.

3.8.1 INIT SCRIPGRID

The subroutine INIT_SCRIPGRID initialises a variable of type t_scrip_grid.

• grid%ID is initialised with -99.

• grid%size is set to 0,

• grid%corners to 4 and

• grid%rank to 0.

• For grid%dim first all dimensions are initialised using the subroutine INIT_NCDIM, afterwards,
grid%dim is deallocated and nullified.

• grid%lmask, grid%center_lon, grid%center_lat, grid%corner_lon and grid%corner_lat
are deallocated and nullified.

3.8.2 COPY SCRIPGRID

This subroutine copies a source grid sgrid of type t_scrip_grid to a destination grid dgrid of the
same type.

60 Kerkweg and Jöckel: GRID user manual

3.8.3 DEFINE SCRIPGRID

The subroutine DEFINE_SCRIPGRID defines a variable of type t_scrip_grid and adds it to the con-
catenated list of SCRIP grids.

! ==
SUBROUTINE define_scripgrid (status, rank, size, corners &

, dims, lmask, clon, clat, corlon, corlat, id, grid, pgrid)

USE messy_main_grid_netcdf, ONLY: INIT_NCDIM

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(IN) :: rank
INTEGER, INTENT(IN) :: size
INTEGER, INTENT(IN) :: corners
! FIELD in
INTEGER, DIMENSION(:), INTENT(IN) :: dims
LOGICAL, DIMENSION(:), INTENT(IN) :: lmask
REAL(dp), DIMENSION(:), INTENT(IN) :: clon
REAL(dp), DIMENSION(:), INTENT(IN) :: clat
REAL(dp), DIMENSION(:,:), INTENT(IN) :: corlon
REAL(dp), DIMENSION(:,:), INTENT(IN) :: corlat

INTEGER, INTENT(OUT), OPTIONAL :: ID
TYPE(t_scrip_grid), INTENT(INOUT), OPTIONAL :: grid
TYPE(t_scrip_grid), POINTER, OPTIONAL :: pgrid

! ==

Input to this subroutine are the the rank, the size, the number of corners, the number of dimensions
(dim), the logical mask (lmask), the center longitudes and latitudes (clon, clat) and the corner
longitudes and latitudes (corlon, corlat). Output of the subroutine are a mandatory status flag,
reporting failure or success of the subroutine, the ID of the newly added grid, in the concatenated list
of SCRIP grids, a variable grid of type t_scrip_grid containing all data given to the subroutine,
and a pointer to the respective SCRIP grid in the concatenated list SCRIPGRIDLIST.
Internally, the subroutine cycles the concatenated list of SCRIP grids SCRIPGRIDLIST and compares
each grid of this list to the actual parameters of the subroutine. This comparison is done by the
subroutine COMPARE_TO_SCRIPGRID (Sect. 3.8.5). If an identical grid is found, the optional output
parameters are filled with the corresponding grid information. If no identical grid is found, an addi-
tional entry in SCRIPGRIDLIST is created using all input parameters. At the end, the optional output
parameters of the subroutine are filled, if present.

3.8.4 CLEAN SCRIPGRID LIST

This subroutine deletes the concatenated list of SCRIP grids (SCRIPGRIDLIST). Internally, the sub-
routine cycles through all list entries. First a pointer to the next list element is stored. Afterwards,

Kerkweg and Jöckel: GRID user manual 61

the current list entry is (re-)initialised by calling INIT_SCRIPGRID. Finally, the pointer to the current
list entry is deallocated and nullified. Using the pointer to the next list element, the deletion process
is carried forward until all list elements are erased.

3.8.5 COMPARE TO SCRIPGRID

The subroutine COMPARE_TO_SCRIPGRID compares a list of variables corresponding to the components
of a structure variable of type t_scrip_grid to a grid, which is also provided to the subroutine.

! ==
SUBROUTINE COMPARE_TO_SCRIPGRID(id, grid, rank, size, corners &

, dims, lmask, clon, clat, corlon, corlat)

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: id
TYPE(t_scrip_grid), POINTER :: grid
INTEGER, INTENT(IN) :: rank
INTEGER, INTENT(IN) :: size
INTEGER, INTENT(IN) :: corners
! FIELD in
INTEGER, DIMENSION(rank), INTENT(IN) :: dims
LOGICAL, DIMENSION(size), INTENT(IN) :: lmask
REAL(dp), DIMENSION(size), INTENT(IN) :: clon
REAL(dp), DIMENSION(size), INTENT(IN) :: clat
REAL(dp), DIMENSION(corners,size), INTENT(IN) :: corlon
REAL(dp), DIMENSION(corners,size), INTENT(IN) :: corlat

! ==

Input arguments of the subroutine are

• a pointer to the grid of type t_scrip_grid to which the variables should be compared,

• an integer naming the rank of the horizontal grid,

• an integer giving the size, i.e. the number of grid cells, of the grid,

• an integer corners giving the number of corners of a grid cell,

• an integer 1D vector naming the length of each individual rank of the grid dims,

• a logical 1D vector lmask giving the logical mask for interpolation,

• a 1D vector clon containing the longitudes of the grid cell centers,

• a 1D vector clat listing the latitudes of the grid cell centers,

• a 2D array corlon providing the longitudes of all corners of each grid cell, and

• a 2D array corlat listing the latitudes of all corners of each grid cell.

62 Kerkweg and Jöckel: GRID user manual

The only output parameter is an ID. At the beginning of the subroutine ID is set to -99. If the grid
components and the separate variables are equivalent, ID is set to the ID of grid. Otherwise, an
ID value of -99 is returned by the subroutine indicating that the grid components and the separate
variables differ.

3.8.6 GEOHYB2SCRIPGRID

The subroutine geohyb2scripgrid converts a variable of type t_geohybgrid into a variable of type
t_scrip_grid.

!---
SUBROUTINE geohyb2scripgrid(status, ggrid, sgrid, psgrid, ID, l_set_ranges)

USE ...

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
TYPE(t_geohybgrid), INTENT(IN) :: ggrid
TYPE(t_scrip_grid), OPTIONAL, INTENT(INOUT) :: sgrid
TYPE(t_scrip_grid), OPTIONAL, POINTER :: psgrid
INTEGER, OPTIONAL, INTENT(OUT) :: ID
LOGICAL, OPTIONAL, INTENT(IN) :: l_set_ranges

!---

Parameters of this subroutine are

• an integer status flag reporting back a possible error,

• the geohybrid grid ggrid to be converted,

• the output grid sgrid of type t_scrip_grid,

• a pointer to the output grid sgrid psgrid,

• the ID of the grid in the concatenated list of SCRIP grids as an optional output argument, and

• an optional logical flag l_set_ranges forcing the subroutine to set limited longitude ranges
dependent on the grid definition.

The subroutine itself is split into different parts:

1. Initialisation of local variables:
To simplify the further processing of the data, the local variables llonm, llatm, lloni and llati
are filled depending on the definitions of the input geohybrid grid. If the grid components lonm,
latm, loni and lati are defined, these components are copied to the local variables. If they are
not defined, the curvilinear components are copied. To indicate, which structure components are
assigned to the local variables, the logical l_curvilinear is set .TRUE., if only the curvilinear

Kerkweg and Jöckel: GRID user manual 63

components are used. Additionally, the two logicals l_mids and l_interfaces indicate, if
the mid-point and the interface components are defined, respectively. To further simplify the
processing, the local longitude and latitude variables are converted to double precision, if not
already available as such. Last but not least, if the optional subroutine argument l_set_ranges
is present and .TRUE., the subroutine set_ranges checks whether the longitudes are all defined
within the intervall [-180,360]. If the maximum longitude is smaller than 180 the local range
variable lon_ranges is set to the interval [-180,180], otherwise the range is set to [0,360]. If
l_set_ranges is not present or .FALSE.., lon_ranges is set to the interval [0,360].

2. Determination of the grid size:
The grid size gsize is defined as product of the length of the two horizontal dimensions
locdims(1:2). The latter are determined according to the available information:

• If the mid-point variables on a non-curvilinear grid are defined, the locdims are simply the
lengths of the longitude and the latitude axes, respectively.

• If only the interface variables on the non-curvilinear grid are defined, the corresponding
local dimensions are the lengths of the axes minus 1.

• For a curvilinear grid the longitude variable corresponds to a 2D spacial array. Therefore
the local dimensions correspond to the length of the first and the second dimension axis of
the longitude variable for the mid-point variables. The length of the interface dimensions
is larger by one.

3. Determination of the rank and lmask:
A rank of 2 is assumed for all calculations within this subroutine. If another grid, i.e., a 1D
horizontal grid shall be transformed, another transformation routine is required. Finally, a
logical map lmask, indicating where the interpolation algorithm should search for overlap, is set
.TRUE. everywhere. This might be improved in the future.

4. Determination of the center and corner longitude and latitudes:
For SCRIP the longitude and latitudes have to be defined in radian. Thus a conversion factor
fac is defined. Depending on the unit of longitudes in the geohybrid grid fac is 1, if the unit is
already radian. Otherwise, it is assumed that the unit of the longitudes and latitudes is degrees
and the conversion factor is set to DTR = pi/180. dp as defined in the generic MESSy submodel
CONSTANTS (file: messy_main_constants_mem.f90).

• Determination of center variables clon and clat:
If the mid-point variables are defined, the center variables can be simply set. For the
geographically-rectangular grid the 1D variables clon and clat are set in loops over
the two horizontal dimensions:

!--
DO i = 1, locdims(1)

DO j = 1, locdims(2)
n = (j-1) * locdims(1) + i
clon(n) = llonm%vd(i) * fac
clat(n) = llatm%vd(j) * fac

END DO
END DO
!--

64 Kerkweg and Jöckel: GRID user manual

For a curvilinear grid, the longitudes and latitudes are already defined by a 1D vector.
Thus clon and clat are simply set by

!--
DO n = 1, gsize

clon(n) = llonm%vd(n) * fac
clat(n) = llatm%vd(n) * fac

END DO
!--

If only the interface variables are defined, the center variables need to be calculated. For
the geographically-rectangular grid the centers are in the mid between the interfaces
thus the centers are determined by:

!--
DO i = 1, locdims(1)

DO j = 1, locdims(2)
n = (j-1) * locdims(1) + i
clon(n) = (lloni%vd(i)+lloni%vd(i+1))/2. * fac
clat(n) = (llati%vd(j)+llati%vd(j+1))/2. * fac

END DO
END DO
!--

There is no way to unambiguously determine the centers in geographical longitudes and
latitudes for a curvilinear grid only from the interfaces. Thus an error message stops
the execution of the simulation, if the geohybrid definition is incomplete.

• Determination of corner variables corlon and corlat:
For a calculation of the corners it has to be taken into account that the corners must be
defined counter-clockwise for the SCRIP algorithm.

– For a geographically-rectangular grid the corners are easily determined from the
interface variables. To simplify the conversion to counter-clockwisely ordered cor-
ners, the helper indices jll and jur adjust the indices to the correct order, depending
on whether the latitude axis is increasing or decreasing.
!---
IF (llati%vd(1) < llati%vd(2)) THEN

jll = 0
jur = 1

ELSE
jll = 1
jur = 0

END IF
DO j = 1, locdims(2)

DO i = 1, locdims(1)
n = (j-1) * locdims(1) + i
! counter clockwise start lower left
! lower left corner
tcorlon(1,n) = lloni%vd(i)
tcorlat(1,n) = llati%vd(j+jll)

Kerkweg and Jöckel: GRID user manual 65

! lower right corner
tcorlon(2,n) = lloni%vd(i+1)
tcorlat(2,n) = tcorlat(1,n)
! upper right corner
tcorlon(3,n) = tcorlon(2,n)
tcorlat(3,n) = llati%vd(j+jur)
! upper left corner
tcorlon(4,n) = tcorlon(1,n)
tcorlat(4,n) = tcorlat(3,n)

END DO
END DO
!---

If only the mid-point variables are defined for a geographically-rectangular grid,
the corners are calculated from the mid-points. First, the grid distances dlon and dlat
are determined. Afterwards these are used to calculated the longitudes and latitudes
of the corners:
!---
dlon = ABS(llonm%vd(2) - llonm%vd(1))
DO j = 1, locdims(2)

IF (j == 1) THEN
dlat1 = ABS(llatm%vd(2) - llatm%vd(1))

ELSE
dlat1 = ABS(llatm%vd(j) - llatm%vd(j-1))

ENDIF
IF (j == locdims(2)) THEN

dlat2 = ABS(llatm%vd(j) - llatm%vd(j-1))
ELSE

dlat2 = ABS(llatm%vd(j+1) - llatm%vd(j))
ENDIF
DO i = 1, locdims(1)

n = (j-1) * locdims(1) + i
! lower left corner
tcorlon(1,n) = (llonm%vd(i) - 0.5_dp * dlon)
tcorlat(1,n) = (llatm%vd(j) - 0.5_dp * dlat1)
! lower right corner
tcorlon(2,n) = (llonm%vd(i) + 0.5_dp * dlon)
tcorlat(2,n) = tcorlat(1,n)
! upper right corner
tcorlon(3,n) = tcorlon(2,n)
tcorlat(3,n) = llatm%vd(j) + 0.5_dp * dlat2
! upper left corner
tcorlon(4,n) = tcorlon(1,n)
tcorlat(4,n) = tcorlat(3,n)
jur = 10
if_rgempty: IF (gi%ranges(2,1) /= RGEMPTY .AND. &

gi%ranges(2,2) /= RGEMPTY) THEN
IF (j == 1) THEN

IF (llatm%vd(1) < llatm%vd(2)) THEN

66 Kerkweg and Jöckel: GRID user manual

tcorlat(1,n) = MINVAL(gi%ranges(2,:))
tcorlat(2,n) = MINVAL(gi%ranges(2,:))
jur = 5

ELSE
tcorlat(3,n) = MAXVAL(gi%ranges(2,:))
tcorlat(4,n) = MAXVAL(gi%ranges(2,:))
jur = 6

END IF
ELSE IF (j == locdims(2)) THEN

IF (llatm%vd(1) < llatm%vd(2)) THEN
tcorlat(3,n) = MAXVAL(gi%ranges(2,:))
tcorlat(4,n) = MAXVAL(gi%ranges(2,:))
jur = 7

ELSE
tcorlat(1,n) = MINVAL(gi%ranges(2,:))
tcorlat(2,n) = MINVAL(gi%ranges(2,:))
jur = 8

END IF
END IF

ENDIF if_rgempty
END DO

END DO
!---

Finally, if the component ranges of the geohybrid grid is set, the longitudes and lati-
tudes of the corners are adjusted accordingly.

– For curvilinear grids calculation of the corners is only possible if the interface vari-
ables are defined. If only mid-point variables are defined, the simulation is inter-
rupted. For the assignment of the interface variables to the corners, the respective
indices are calculated using the subroutine ELEMENT.
!---

! ... a) interfaces are provided:
vdim(1) = gi%cloni%dim(1)%len - 1
vdim(2) = gi%cloni%dim(2)%len - 1

DO n = 1, SIZE(tcorlon,2)
! get element vector for mids
CALL ELEMENT(vdim,n,ivec)
! calculate position in interface array
iul = n + vdim(1) + 1 + ivec(2) - 1
iur = n + vdim(1) + 1 + ivec(2)
ilr = n + ivec(2)
ill = n + ivec(2) - 1

IF (llati%vd(ill) > llati%vd(iul)) THEN
! switch upper and lower
! enforce coutner-clockwise
ilr = iul
iul = n + ivec(2)

Kerkweg and Jöckel: GRID user manual 67

ENDIF
! lower left corner
tcorlon(1,n) = lloni%vd(ill)
tcorlat(1,n) = llati%vd(ill)

! lower right corner
tcorlon(2,n) = lloni%vd(ilr)
tcorlat(2,n) = llati%vd(ilr)
! upper right corner
tcorlon(3,n) = lloni%vd(iur)
tcorlat(3,n) = llati%vd(iur)
! upper left corner
tcorlon(4,n) = lloni%vd(iul)
tcorlat(4,n) = llati%vd(iul)

DEALLOCATE(ivec, STAT=status)
NULLIFY(ivec)

END DO
!---

So far only the local variables tcorlon and tcorlat have been calculated. These are now
additionally adjusted to the longitude range given by lon_ranges, converted to radian and
finally adjusted to the latitude interval [-pi/2, pi/2] as required by SCRIP.

5. Definition of SCRIP grid:
After the components of a SCRIP grid have been calculated individually, the subroutine
DEFINE_SCRIPGRID (Sect. 3.8.3) is called to define a variable of type t_scrip_grid and to
add the grid to the list.

6. Copying of INTENT(OUT) variables:
Depending on their presence, the variable sgrid containing the newly defined SCRIP grid, the
ID containing the ID of the SCRIP grid in the concatenated list of SCRIP grids, and the pointer
to the SCRIP grid in the concatenated list psgrid are assigned.

7. Clean up:
Local variables are initialised and deallocated.

3.8.7 INIT SCRIPDATA

The subroutine INIT_SCRIPDATA initialises a variable of type t_scrip_data, which is the only ar-
gument of this subroutine. The components of the input/output variable sdata are initialised as
follows:

• sdata%ID is set to 0.

• sdata%map_type is set to map_type_conserv.

• sdata%norm_opt is set to norm_opt_none.

• sdata%luse_sgrd_area is set .FALSE. .

• sdata%luse_dgrd_area is set .FALSE. .

68 Kerkweg and Jöckel: GRID user manual

• The weights (sdata%wghts) are initialised by calling INIT_SCRIP_WEIGHTS (Sect. 3.8.13).

• sdata%sgrd and sdata%dgrd are initialised by calling INIT_SCRIPGRID (Sect. 3.8.1).

3.8.8 DEFINE SCRIPDATA

The subroutine DEFINE_SCRIPDATA defines a variable of type t_scrip_data and adds it to the con-
catenated list of SCRIP data (SCRIPDATALIST).

!---
SUBROUTINE define_scripdata(status, SDAT_id, maptype, normopt &

, luse_area, dgrd, sgrd, garea2, PSD)

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(OUT) :: SDAT_ID
CHARACTER(LEN=*), INTENT(IN) :: name
INTEGER, INTENT(IN) :: maptype
INTEGER, INTENT(IN) :: normopt
LOGICAL, INTENT(IN) :: luse_area

TYPE(t_scrip_grid), POINTER :: dgrd
TYPE(t_scrip_grid), POINTER :: sgrd

REAL(dp), DIMENSION(:), POINTER :: garea2
TYPE(t_scrip_data), POINTER, OPTIONAL :: PSD

!---

Input parameters are the variables which together determine the components of the newly defined
SCRIP data set, i.e.,

• the maptype,

• the normopt,

• a switch luse_area indicating whether a predefined area of the grid shall be used,

• the source SCRIP grid sgrd and

• the destination SCRIP grid dgrd and

• a pointer which, if associated, points to a 1D array containing the area of each grid cell (garea2).

Output parameters are

• the status flag,

• the ID (SDAT_ID) of and

Kerkweg and Jöckel: GRID user manual 69

• the pointer PSD pointing to the newly defined SCRIP data set in the concatenated list.

Internally the subroutine cycles through the list of SCRIP data sets and compares each of the already
defined data sets with the new components by calling the subroutine COMPARE_SCRIPDATA (Sect. 3.8.9).
If an equivalent data set is found, SDAT_id is set to the equivalent SCRIP data set and, if present,
the pointer PSD is set to the already existing data set in the SCRIPDATALIST before returning from the
subroutine.

If none of the SCRIP data sets in the list fits all new components, a new SCRIP data set is added to
the concatenated list.

3.8.9 COMPARE SCRIPDATA

Input parameters are the individual components of a SCRIP data set and a pointer to the SCRIP
data set (data) to compare the variables to. The source and the destination grid are unambiguously
defined by their SCRIP grid ID. The only output parameter is an ID. ID is set to -99 at the beginning
of the subroutine. If components differ, the subroutine returns and an ID of -99 indicates that the data
sets differ. Otherwise, if all components are equivalent, ID is set to the id of the data set (data%ID).

3.8.10 LOCATE SCRIPDATA

This subroutine locates a SCRIP data set in the concatenated list of SCRIP data sets
(SCRIPDATALIST). Input to this subroutine is the ID of a SCRIP data set. Output parameters are a
status flag and a pointer (pdata) which the subroutine associates to the requested SCRIP data set.

Internally, the SCRIPDATALIST is searched for a data set with the respective ID. If such a data set is
found, pdata is associated to this data set. Otherwise, status is set to error number 3013 indicating
that such a data set does not exist.

3.8.11 CLEAN SCRIPDATA LIST

This subroutine deletes the complete concatenated list of SCRIP data sets (SCRIPDATALIST). Internally
the subroutine cycles through all list entries. First the pointer to the next list element is stored.
Afterwards, the current list entry is initialised by calling INIT_SCRIPDATA. Finally, the pointer to the
current list entry is deallocated and nullified.

Subsequently, the next list element is processed in the same way. This continues until all list elements
are deleted.

3.8.12 CALC SCRIPDATA

This subroutine defines a SCRIP data set. It outputs, apart from a status flag, an ID (SCRIP_ID) of
and, optionally, a pointer (PSD) to the newly defined SCRIP data set.

!---
SUBROUTINE calc_scrip_data(status, igrid, ogrid, RGT, SCRIP_ID, oarea,PSD &

, norm_opt_in, map_type_in)

USE ...

70 Kerkweg and Jöckel: GRID user manual

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: STATUS
TYPE(t_geohybgrid), INTENT(IN) :: igrid
TYPE(t_geohybgrid), INTENT(IN) :: ogrid
INTEGER, INTENT(IN) :: RGT(:) ! regridding type

INTEGER, INTENT(OUT) :: SCRIP_ID
! OPTIONAL
REAL(dp), DIMENSION(:,:), POINTER, OPTIONAL :: oarea
TYPE(t_scrip_data), POINTER, OPTIONAL :: PSD
INTEGER, OPTIONAL :: norm_opt_in
INTEGER, OPTIONAL :: map_type_in

!---

Input parameters are the input and the output geohybrid grids (igrid and ogrid), the regridding
type RGT and, optionally, the area of the output grid (oarea), the map type (map_type_in), and the
normalisation option (norm_opt_in).

Internally, the following steps are processed:

1. Calculation of the SCRIP input and output grids from the geohybrid grids by calling the sub-
routine GEOHYB2SCRIPGRID.

2. Determination of the map_type and norm_opt
Per default, map_type and norm_opt are determined from the regridding type RGT.

• If RGT equals one of RG_INT, RG_IDX or RG_IXF, norm_opt is set to norm_opt_frcarea and
map_type is set to map_type_conserv.

• For RGT==RGT_EXT norm_opt is set to norm_opt_none and map_type to map_type_conserv.

• However, if required these values can be overwritten by the optional parameters
map_type_in and norm_opt_in, respectively.

3. Transformation of the output gridarea (input parameter garea2 of DEFINE_SCRIPDATA) into a
1D array by calling ALINE_ARRAY and conversion to the unit required by SCRIP, if the pointer
oarea is present and associated. Additionally, luse_area is set .TRUE. in this case.

4. Creation of a new SCRIP data set by calling DEFINE_SCRIPDATA.

5. Re-initialisation of local variables.

3.8.13 INIT WEIGHTS

This subroutine initialises, deallocates and nullifies (where apropriate) the components of the structure
variable t_scrip_weights.

Kerkweg and Jöckel: GRID user manual 71

3.8.14 CALC SCRIP WEIGHTS

This subroutine calculates the weights for the remapping between the two grids and the interpolation
methods defined by a SCRIP data set. Input to the subroutine is a pointer to a SCRIP data set
(PSD), output is a status flag, informing about success or failure of the subroutine. The subroutine
is divided into three parts:

1. Definition phase:
The internal SCRIP variables (e.g. grid1_center_lon) are set to there counterparts in the
SCRIP data set. The SCRIP variables north_thresh and south_thresh are calculated from
the corner latitudes:

north_thresh = MAX(MAXVAL(grid1_corner_lat),MAXVAL(grid2_corner_lat))
south_thresh = MIN(MINVAL(grid1_corner_lat),MINVAL(grid2_corner_lat))

Additionally, the variable babystep needs to be set. This is a small expansion we introduced
to SCRIP: Normally, in the subroutine intersection the search step s1 is increased by 0.001
in each iteration. However, dependent on the grids, a smaller increase might be necessary. As
this is very expensive (in terms of computing time), we defined an additional variable called
babystep which by default is 0.001, but can be decreased for certain grids. This babystep also
needs to be set in the definition phase.

2. Calculation phase:
In this phase the sequence of SCRIP routines is called:

• remap_init

• bounds_calc

• remap_vars(1)

• remap_XXX with XXX equals one of conserv, bilin, bicub or distwgt, dependent on the
map_type.

• remap_vars(2).

3. Saving phase:
In this phase the results of the interpolation need to be saved in PSD%wghts. To be more precise,

• num_links_map1 is copied to PSD%wghts%num_links,

• num_wts to PSD%wghts%num_wgts,

• wts_map1(1,:) to PSD%wghts%weights,

• grid1_add_map1 to PSD%wghts%srcadd,

• grid2_add_map1 to PSD%wghts%dstadd,

• grid2_frac to PSD%wghts%dstfrac and

• grid2_area to PSD%wghts%dstarea.

4. Cleaning phase:
At the end the local variables and pointers need to be deallocated and, where appropriate,
nullified. Additonally, the SCRIP internal subroutine remap_dealloc is called.

72 Kerkweg and Jöckel: GRID user manual

3.8.15 APPLY SCRIP WEIGHTS

This subroutine performs the actual interpolation.

!---
SUBROUTINE APPLY_SCRIP_WEIGHTS(status, pvari, pvaro, PSDID)

USE ...

IMPLICIT NONE

! I/O
INTEGER, INTENT(OUT) :: status
! INTENT(IN)
TYPE(t_ncvar), DIMENSION(:), POINTER :: pvari ! variable to be interpolated
INTEGER, INTENT(IN) :: PSDID
! INTENT(INOUT)
TYPE(t_ncvar), DIMENSION(:), POINTER :: pvaro ! interpolated fields

!---

Input are the 1D pointer array pvari of type t_ncvar, which contains the data to be interpolated and
the ID of the SCRIP data set PSDID comprising the interpolation weights. Output are the interpolated
data pvaro, i.e., a 1D pointer array of type t_ncvar and a status flag.

• At the beginning of the subroutine the SCRIP data set is located by calling LOCATE_SCRIPDATA
(Sect. 3.8.10).

• Even if SCRIP can only be used for horizonal interpolation of the data, the data itself can be of
more dimensions. The additional dimensions are invariant dimensions, they are not altered by
the horizontal interpolation. The size of this invariant dimension (nfree) is determined first: as
the source grid size (PSD%sgrd%size) contains the product of the horizontal dimensions, nfree
is simply the quotient of the overall SIZE of the data array and the grid size:

nfree = SIZE(pvari(i)%dat%vr) / PSD%sgrd%size .

• Knowing the number of free dimensions and the grid size of the horizontal destination grid, the
dat component of the output variable pvaro can be allocated to the correct size:

ALLOCATE(pvaro(i)%dat%vr(nfree * PSD%dgrd%size))

The length of the pointer array pvaro has to be determined outside of APPLY_SCRIP_WEIGHTS.
Moreover, the above expressions are shown for the single precision variables, but the same
statements exist for double precision in the code. This is also the case for the following item.

• Application of the precalculated weights, i.e., the interpolation:
For the application of the weights, the equations given in the SCRIP user guide for the different
normalisation options are applied for each variable:

Kerkweg and Jöckel: GRID user manual 73

! ---
do_free: DO ifree = 0, nfree-1

! shift for each free dimension
dshft = ifree * PSD%dgrd%size
sshft = ifree * PSD%sgrd%size
SELECT CASE(PSD%norm_opt)
CASE(norm_opt_frcarea)

IF (pvari(i)%dat%type == VTYPE_REAL) THEN
DO j = 1, PSD%wghts%num_links
pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) = &

pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) &
+ PSD%wghts%weights(j) * &
pvari(i)%dat%vr(sshft+PSD%wghts%srcadd(j))

END DO
ELSE IF (pvari(i)%dat%type == VTYPE_DOUBLE) THEN

...
ENDIF

CASE(norm_opt_dstarea)
IF (pvari(i)%dat%type == VTYPE_REAL) THEN

DO j = 1, PSD%wghts%num_links
IF (PSD%wghts%dstfrac(PSD%wghts%dstadd(j)) /= zero) THEN

pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) = &
pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) &
+ (PSD%wghts%weights(j) * &
pvari(i)%dat%vr(sshft+PSD%wghts%srcadd(j))) &
/ PSD%wghts%dstfrac(PSD%wghts%dstadd(j))

ELSE
pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) = 0.

ENDIF
END DO

ELSE IF (pvari(i)%dat%type == VTYPE_DOUBLE) THEN
...

ENDIF
CASE(norm_opt_none)

IF (pvari(i)%dat%type == VTYPE_REAL) THEN
DO j = 1, PSD%wghts%num_links

IF (PSD%wghts%dstfrac(PSD%wghts%dstadd(j)) /= zero) THEN

pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) = &
pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) &
+ (PSD%wghts%weights(j) * &
pvari(i)%dat%vr(sshft+PSD%wghts%srcadd(j))) &
/ (PSD%wghts%dstfrac(PSD%wghts%dstadd(j)) &
*PSD%wghts%dstarea(PSD%wghts%dstadd(j)))

ELSE
pvaro(i)%dat%vr(dshft+PSD%wghts%dstadd(j)) = 0.

ENDIF
END DO

74 Kerkweg and Jöckel: GRID user manual

ELSE IF (pvari(i)%dat%type == VTYPE_DOUBLE) THEN
...

ENDIF
CASE DEFAULT

! normalize option not implemented
status = 3030
RETURN

END SELECT
END DO do_free
! ---

For readability the double precision sections have been skipped, but they are in the code. Ac-
cording to the number of invariant dimensions (nfree) data “slices” are interpolated in this
routine for each variable. For the correct addressing of the individual slices, the shift variables
sshft and dshft for the index shift in the source and in the destination grid are defined.

3.8.16 SCRIP CONTROL

The subroutine SCRIP_CONTROL is the SCRIP counterpart to REGRID_CONTROL. Thus the overall pro-
cedure is the same.

! --
SUBROUTINE SCRIP_CONTROL (status, SCRIP_ID, igrid, ogrid, RG_TYPE, lint &

, invar, var, grid, llrgz, lfirsto)

IMPLICIT NONE

INTEGER, INTENT(OUT) :: status
INTEGER, INTENT(IN) :: SCRIP_ID
TYPE(t_geohybgrid), INTENT(IN) :: igrid
TYPE(t_geohybgrid), INTENT(IN) :: ogrid

INTEGER, INTENT(IN) :: RG_TYPE(:) ! regrid type
LOGICAL, INTENT(IN) :: lint ! input time ?
TYPE (t_ncvar), DIMENSION(:), POINTER :: invar ! list of input variables
TYPE (t_ncvar), DIMENSION(:), POINTER :: var ! list of output variables
TYPE(t_geohybgrid), INTENT(INOUT), OPTIONAL :: grid
LOGICAL, INTENT(IN) , OPTIONAL :: llrgz
LOGICAL, INTENT(IN) , OPTIONAL :: lfirsto ! first output step

! --

Arguments to the subroutine are

• a status flag status indicating success or failure of the subroutine.

• the ID SCRIP_ID of the SCRIP data set to be used.

• the input grid igrid.

Kerkweg and Jöckel: GRID user manual 75

• the output grid ogrid.

• the interpolation type RG_TYPE, i.e., one of INT, EXT, IDX or IXF.

• the logical lint, indicating if the input or the output grid time should be use: lint=.TRUE.
means input time is used.

• the list of input variables invar.

• the list of output variables var.

• optionally a grid variable (grid), on which, if present, the final unsorted, completed grid is
copied.

• an optional logical (llrgz), indicating if the variable should also be vertically interpolated. As
SCRIP does only horizontal interpolations this information is required for the file export of the
interpolated data. In case the variable will be also vertically interpolated the output must not
be performed in SCRIP_CONTROL, but in REGRID_CONTROL.

• the logical lfirsto is also required for the output of the regridded data. It indicates, whether
this is the first output step. This information is necessary, as the attributes can be written only
once to the output file.

SCRIP_CONTROL starts with the initialisation of some local and the output variables.

The workflow of SCRIP_CONTROL is as follows:

• Preparation of grids and variables for the regridding:

– Grid operations:

∗ Creation of local copies gi and gg of input and output grid (igrid and ogrid), respec-
tively.

∗ Check of input grid gi by calling CHECK_GEOHYBGRID.
∗ Switching of the vertical axis to an invariant axis in the output grid gg by calling
SWITCH_GEOHYBGRID in order to trigger purly horizontal interpolation.

∗ Check of output grid gg by calling CHECK_GEOHYBGRID.
∗ Balancing of the time axes of gi and gg by calling BALANCE_GEOHYBGRID_TIME, i.e.,

both grids are adjusted to the same time, i.e., the input grid time if lint=.TRUE.,
otherwise the output grid time is used.

∗ Copying of the input grid gi to the sorted grid gis. The grids are automatically sorted
by SWITCH_GEOHYBGRID call.

∗ Copying of the ouput grid gg to the sorted grid ggs. The grids are automatically sorted
by SWITCH_GEOHYBGRID call.

∗ Completion of the “sorted” input grid gis by calling COMPLETE_GEOHYBGRID. In this
subroutine missing components for interfaces or mid-point variables are calculated from
the other component, i.e., interfaces from mid-point or mid-point from interfaces. If
interfaces and mid-points are not available, these components stay undefined.

∗ Completion of the “sorted” output grid ggs by calling COMPLETE_GEOHYBGRID.

– Variable operations:
In a loop over the variables (indexed i) to be regridded the following preparations are made:

76 Kerkweg and Jöckel: GRID user manual

∗ Call of subroutine IDX2FRAC_NCVAR for preparation of input variable, if IXF or IDX
regridding is requested (see section 3.1.2.12). In this case IDX2FRAC_NCVAR outputs the
new local variable qvari. Otherwise, copying of invar(i) to the new local variable
qvari.

∗ Check of conformity of variable qvari with the sorted input grid gis definition by
calling CHECK_NCVAR_ON_GEOHYBGRID.

∗ Balancing of the output variable xovar(i) with input variable qvari and sorted output
grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Balancing of the sorted output variable svaro(i) with input variable qvari and sorted
output grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Packing of sorted input variable qvari by calling PACK_GEOHYBGRID_NCVAR. The packed
variable is called pvari.

∗ Balancing of packed output variable pvaro(i) with packed input variable pvari and
sorted output grid ggs by calling BALANCE_GEOHYBGRID_NCVAR (see Sect. 3.3.10).

∗ Deallocation / Initialisation of the data component of pvaro(i) by calling
INIT_NARRAY(pvaro(i)%dat).

∗ Deallocation / Initialisation of local input variables qvari and svari by calling
INIT_NCVAR.

After this is done for every variable to be interpolated, the data is ready for interpolation.

• SCRIP interpolation:
The interpolation via SCRIP is simply performed by calling the subroutine
APPLY_SCRIP_WEIGHTS (Sect. 3.8.15).

• Reformatting of output variables and grids:
After the interpolation the data needs to be transformed back to its requested order.

– In a loop over all variables (loop index i) the variables are transformed back into their
requested form:

∗ Check of the sorted variable svaro(i) on the sorted output grid ggs by calling
CHECK_NCVAR_ON_GEOHYBGRID to get the definition of output axes (axes) and dimen-
sions (dims).

∗ Unpacking of packed output variable pvaro(i) using axes and dims by calling
PACK_GEOHYBGRID_NCVAR. Output of this subroutine is the sorted output variable
svaro(i).

∗ For ’IDX’ interpolated variables, transformation of the data by calling the subrou-
tine MAXFRAC2IDX_NCVAR, otherwise copying of svaro(i) to the final output variable
xovar(i).

∗ Finally in the loop over the variables, initialisation of the local variables pvari(i),
pvaro(i), svaro(i), qvaro.

– Memory deallocation:
The variables pvari, pvaro and svaro are initialised and deallocated and the corresponding
pointers are nullified.

– If a filename is defined in the grid structure gg and lrgz == .FALSE., direct output of
the interpolated fields is requested. First, gg is written to the file by the subroutine
EXPORT_GEOHYBGRID. Second, if called for the first time (lfirsto = .TRUE.), the attributes
are added to the file. Finally, the variables are written using EXPORT_NCVAR.

Kerkweg and Jöckel: GRID user manual 77

– Preparation of the returned data:
The output variable var is allocated to the number of interpolated variables and the content
of the local output variable xovar is copied to var. If the output grid is required, ggs is
copied to the output subroutine argument grid.

• At the end, internal memory is released.

3.8.17 INTERPOL GEOHYBGRID PS

This subroutine basically uses the same algorithm as SCRIP_CONTROL to horizontally interpolate the
surface pressure defined on one grid to a surface pressure field on another grid.

As this subroutine calls APPLY_SCRIP_WEIGHTS, it is only applicable within SCRIP.

3.8.18 BALANCE CURVILINEAR PS

This subroutine adjusts the surface pressure definition of two grids to each other.

First, some consistency checks have to be performed:

• In case none of the two grids contains a surface pressure definition (ps), the hybrid-b coefficients
must also be undefined.

• In case none of the two grids contains a reference pressure definition (p0), the hybrid-a coefficients
must also be undefined.

• The subroutine returns, if the grid is 2D, i.e., neither the surface or the reference pressure, nor
any hybrid coefficients are defined.

If the consistency checks are passed, the grids can be balanced. If p0 is defined on one of the grids and
not on the other, the defined reference pressure is copied to the other grid. For the surface pressure
itself, four different cases can occur:

A) ps is defined for both grids. Thus only the time axis of both grids need to be adjusted, but this
is done in the subroutine BALANCE_GEOHYBGRID_TIME.

B) ps is undefined in both grids. In this case nothing needs to be done.

C) the surface pressure of the outgoing grid go%ps is defined, but on the wrong grid.
In this case an error message is produced and the interpolation is interrupted.

D) If the incoming or the outgoing surface pressure are defined, the missing surface pressure is
constructed by calling the subroutine INTERPOL_GEOHYBGRID_PS (Sect. 3.8.17).

As INTERPOL_GEOHYBGRID_PS calls APPLY_SCRIP_WEIGHTS, this subroutine is only applicable for
SCRIP interpolation.

78 Kerkweg and Jöckel: GRID user manual

3.8.19 CONSTRUCT INPUT SURF PRESSURE

The subroutine CONSTRUCT_INPUT_SURF_PRESSURE helps to construct a surface pressure for the input
grid. Currently this subroutine is called from the module MESSY_MAIN_IMPORT_GRID to construct a
surface pressure for the grid which is, after horizontal interpolation via SCRIP, vertically interpolated
by NREGRID. Input parameter to this subroutine are the input grid gi of type t_geohybgrid, which
was already input to SCRIP_CONTROL and the SCRIP data set ID PSDID. Additionally, the intermediate
grid (i.e., after horizontal interpolation, before vertical interpolation) gips, which requires the newly
constructed surface pressure variable to be INTENT(INOUT), while a status flag informs about success
or failure of the subroutine.

If the input grid component ps is not defined for the input grid, a surface variable ps is constructed
from the dimensions of the longitude and latitude axes of the gips grid. As no information about the
actual pressure is available, ps is set to 101325 Pa everywhere.

If gi%ps is defined, the surface pressure is interpolated from the input to the intermediate grid by
calling INTERPOL_GEOHYBGRID_PS.

As this subroutine calls a subroutine, which is only applicable for SCRIP, this subroutine is also only
applicable for SCRIP.

Kerkweg and Jöckel: GRID user manual 79

3.9 MESSY MAIN GRID MPI

As both, the IMPORT GRID stand-alone tool and GRID implemented in a 3D model, can be applied
in (distributed memory) parallel decomposition, it is important, that in case of an error the model is
aborted correctly, i.e., by calling MPI_ABORT. There are two ways to implement such a model abort.
Either handing back status flags to the highest model layer and aborting the model from there, or,
calling the model abort directly.

The second way was chosen for NREGRID and thus now for GRID. MESSY_MAIN_GRID_MPI contains
the abortion routines GRID_ABORT and P_ABORT. GRID_ABORT writes an error file (named “END”),
which is specifially required, if GRID is run within the MESSy infrastructure, as the universal runscript
xmessy_mmd interrupts the job chain, if a file named “END” exists. At the end the subroutine P_ABORT
is called.

P_ABORT calls MPI_ABORT for the communicator MPI_COMM_WORLD, thus terminating the simulation on
all PEs associated with the job.

80 Kerkweg and Jöckel: GRID user manual

Kerkweg and Jöckel: GRID user manual 81

4 The BMIL GRID files

Most of the grid definition and transformation is done in the SMCL layer of the submodel. Neverthe-
less, GRID can be run in parallel environments and higher order models. For the parallel environment
it might be necessary, depending on the implementation, that a grid definition is only performed on
one processor. In this case the grid needs to be broadcasted to the other processors. This functional-
ity is provided by the subroutine P_BCAST_GRID in the module MESSY_MAIN_GRID_BI: This subroutine
requires itself subroutines for broadcasting the components of a grid. They are located in the module
MESSY_MAIN_GRID_NETCDF_BI.

Additionally in MESSY_MAIN_GRID_BI, for a multi-dimensional model a so-called basemodel grid is
defined, which is the reference grid.

4.1 MESSY MAIN GRID BI

The module MESSY_MAIN_GRID_BI is the interface file linking the core of the submodel GRID to a
multi-dimensional model. Apart from the exchange of grid definitions between parallel running talks,
a standard target (default) basemodel grid is defined. A pointer to the basemodel grid bgrid_ptr and
the ID of the grid definition in the list of grids (BASEGRID_ID) are defined in MAIN_GRID_INIT_MEMORY
and are made available throughout the simulation / model. While the pointer to the basemodel
grid (bgrid_ptr) is defined in MESSY_MAIN_GRID_BI, for avoiding circular dependencies in the
COSMO/MESSy model, the BASEGRID_ID is defined in the module MESSY_MAIN_DATA_BI.

4.1.1 P BCAST GRID

In case of a parallel processing of the model, it might be intended that only one task (or PE) is
gathering the information of a grid at first. If thereafter the grid is to be known on all PEs, the grid,
i.e., a variable of type t_geohybgrid needs to be broadcasted. This is what P_BCAST_GRID is doing.
To go into a little more detail, input to this subroutine are the variable of type t_geohybgrid to be
broadcasted (grid) and the ID of the sending PE (proc). First, the grid is initialised on all PEs
except the one with ID proc by calling the subroutine INIT_GEOHYBGRID. Secondly, all components
of grid are broadcasted by calling the subroutines P_BCAST or P_BCAST_NCVAR.

4.1.2 MAIN GRID INIT MEMORY

This subroutine is called during the initial phase of a model simulation. It primarily contains the
definition of the basemodel grid in a variable of type t_geohybgrid. This subroutine needs to be
called prior to the memory allocation in other submodels. Specificially, this subroutine needs to be
called prior to MAIN_IMPORT_INIT_MEMORY, as the base grid definition is required there.

Depending on the basemodel, MAIN_GRID_INIT_MEMORY needs to be called once or twice. The manda-
tory call is the one with flag=2. In this call, the basemodel grid is defined and the global identifiers,
i.e., the ID of the basemodel grid (BASEGRID_ID) and the pointer to the basemodel grid (bgrid_ptr)
are set accordingly. At the moment, GRID is used within two 3D models: EMAC and COSMO/MESSy.
For the EMAC model the call with flag==2 is sufficient, while for the COSMO model an extra call
is required, because the vertical grid is not fully set up at this point in time during the model ini-
tialisation. Therefore the information of the vertical grid needs to be acquired earlier during the
initialisation (i.e., here) in addition to the usual place where it is read in COSMO. Depending on the

82 Kerkweg and Jöckel: GRID user manual

mode of operation of COSMO/MESSy (stand-alone or on-line nested into EMAC or COSMO/MESSy)
the information needs to be read from different files: In the on-line nested mode, the information comes
from the INT2COSMO namelist INPUT.nml, while in the stand-alone mode the information is part of
the initial or boundary files. Therefore, the subroutine GRID_READ_VERTAXIS, which is contained in
MAIN_GRID_INIT_MEMORY calls different reading procedures depending on the mode of operation.

4.1.3 MAIN GRID FREE MEMORY

The subroutine MAIN_GRID_FREE_MEMORY is called in the finalising phase of a model simulation. It
calls the subroutines CLEAN_SCRIPDATA_LIST and CLEAN_SCRIPGRID_LIST (both located in the module
MESSY_MAIN_GRID_TRAFO_SCRP) to free the memory that has been allocated during the intialisation
phase for the grid and data definition and destroy the concatenated lists.

Kerkweg and Jöckel: GRID user manual 83

4.2 MESSY MAIN GRID NETCDF BI

If a grid was only read on one PE, it must be broadcasted to the other PEs. The module
MESSY_MAIN_GRID_NETCDF_BI contains the broadcasting subroutines for the structure elements of
t_geohybgrid, which are defined in MESSY_MAIN_GRID_NETCDF. They are based on and handle netCDF
specific structures.

4.2.1 P BCAST NCVAR

This subroutine broadcasts a variable of type t_ncvar.

4.2.2 P BCAST NCATT

This subroutine broadcasts a variable of type t_ncatt.

4.2.3 P BCAST NCDIM

This subroutine broadcasts a variable of type t_ncdim.

4.2.4 P BCAST NARRAY

This subroutine broadcasts a variable of type t_narray.

84 Kerkweg and Jöckel: GRID user manual

References

Jöckel, P.: Technical note: Recursive rediscretisation of geo-scientific data in the Modular Earth
Submodel System (MESSy), Atmos. Chem. Phys., 6, 3557–3562, 2006.

Jones, P.: First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordi-
nates, Mon. Wea. Rev., 127, 22042210, 1999.

