Interactive comment on “On constraining the strength of the terrestrial CO$_2$ fertilization effect in an Earth system model” by V. K. Arora and J. F. Scinocca

V. K. Arora and J. F. Scinocca

vivek.arora@ec.gc.ca

Received and published: 9 May 2016

We thank our reviewers for their constructive and detailed comments. Our responses to reviewers’ comments are indicated in bold font and indented, while reviewers’ comments are shown in a regular font.

Reviewer #1

In this manuscript, the authors attempted to constrain a parameter of the Canadian Earth System Model version 4.2 in terms of atmospheric CO$_2$ fertilization effect, which is one of the most uncertain processes in the future climate–carbon cycle feedback. By conducting a series of simulations using different parameter values (gamma-d = 0.25, 0.4, 0.55), they chose the most plausible parameter value that allows most realistic simulations of atmospheric CO$_2$ growth and its seasonal amplitude. Apparently, this is an up-to-date and meaningful work to improve the reliability of Earth System Models. The new experiment, "relaxed-CO$_2$", is especially interesting for me. The manuscript was clearly written and I found no logical fault. Nevertheless, I have a few moderate caveats on this study.

First, the CO$_2$ fertilization parameter (gamma-d) represents photosynthetic down-regulation (not the fertilization effect itself) in an empirical manner. So, the selected parameter value (i.e., 0.4) seems to be specific to the CanESM4.2.

Thank you pointing this. Yes, indeed the γ_d parameter is related to down-regulation. A smaller value of γ_d indicates more down-regulation, and a higher value of γ_d indicates higher strength of the CO2 fertilization effect. We now make this clear in the revised manuscript. Also, as we mention later in response to reviewer # 3, while the parameter γ_d is specific to our model, it is the rate of increase of NPP that is relevant to other modellers and the community at large.

Second, this study compared only three parameter values, and so the selected one (0.4) may not be exactly the best one.

It wasn’t our objective to run the model for tens of possible values of the γ_d parameter. Rather, the objective of the manuscript is to illustrate how this parameter can be adjusted in the framework of our model to best reproduce aspects of the global carbon cycle and the historical carbon budget.

Third, recently, Schimel et al. (2015) published a very relevant paper on constraining the CO$_2$ fertilization effect, but this was not referred in the manuscript.

The Schimel et al. (2015) paper focusses on the relative roles of tropical and extra-tropical terrestrial carbon sinks but does not explicitly attempt to constrain the strength of the CO$_2$ fertilization effect. Yet, it’s a relevant paper and we now mention this in the introductory section.

In conclusion, the manuscript is well prepared and may be accepted for publication after moderate revision.

Thank you.

Specific comments are given below.

Page 4 Line 21–26: Several studies used FACE data for benchmarking of terrestrial vegetation models (Piao et al., 2013; Zaehle et al., 2014).
Reviewer # 3 mentions that the traditional and more widely followed approach of model evaluation and parameter calibration is where process level understanding can be gained. This is in contrast to our top-down kind of approach where we evaluate an emergent property at the global scale. The Zaehle et al. (2014) reference is now mentioned in the discussions and the conclusions section, in the context of evaluating models for gaining understanding at the process level.

Page 12 Line 24: How the default parameter of CanESM2 (gamma-d = 0.25) was determined?
For CanESM2 we used only two determinants to determine the value of γ, parameter – globally averaged surface CO2 concentration during 1850-2005 periods, with simulation ensembles and different parameters/configurations. In their evaluation, they focus on particularly the land ecosystem process so called “CO2 fertilization effect”, which is strongly associated with the most uncertain feedback process within the global carbon cycle. It is noteworthy that the authors consider four types of observation constraints in their model evaluation, which makes their conclusions more robust. Overall, this paper is clearly written and well structured, and will contribute to the journal. Detailed comments are listed below, and I believe most of them will not require much effort to improve.

Page 19 Line 25: Remove the space between “under” and “predict”.

Thank you for noting this. This has been corrected.

Reviewer # 2

Authors present in this paper the structure of the new Earth system model developed in CCCma, and then they attempt to evaluate the model’s performance to reproduce the global carbon budget and atmospheric CO2 concentration during 1850-2005 periods, with simulation ensembles and different parameters/configurations. In their evaluation, they focus on particularly the land ecosystem process so called “CO2 fertilization effect”, which is strongly associated with the most uncertain feedback process within the global carbon cycle. It is noteworthy that the authors consider four types of observation constraints in their model evaluation, which makes their conclusions more robust. Overall, this paper is clearly written and well structured, and will contribute to the journal. Detailed comments are listed below, and I believe most of them will not require much effort to improve.

Page 12 Line 24: How the default parameter of CanESM2 (gamma-d = 0.25) was determined?

For CanESM2 we used only two determinants to determine the value of γ, parameter – globally averaged surface CO2 concentration during 1850-2005 periods, with simulation ensembles and different parameters/configurations. In their evaluation, they focus on particularly the land ecosystem process so called “CO2 fertilization effect”, which is strongly associated with the most uncertain feedback process within the global carbon cycle. It is noteworthy that the authors consider four types of observation constraints in their model evaluation, which makes their conclusions more robust. Overall, this paper is clearly written and well structured, and will contribute to the journal. Detailed comments are listed below, and I believe most of them will not require much effort to improve.

Page 19 Line 25: Remove the space between “under” and “predict”.

Thank you for noting this. This has been corrected.

C3

our sentence attempts to compares the uncertainty in calculated values of the feedback parameters as indicated by their standard deviation. This is now clarified in the revised manuscript.

P10, L23- It will be helpful for readers to briefly mention the decay-timescale of the pools for “short” and “long” (from Arora and Boer 2011, it seems the two product pools are equivalent to litter/soil). This information will be helpful to understand the reduction of soil carbon mass in LUC simulation and the delayed response of soil carbon pools (Fig. 5c).

Yes, the short and long time scales for the land use change (LUC) products correspond to time scales of the litter and soil carbon pools. This is now mentioned in the revised manuscript.

P23 L19; p24 L10; p27 L5 Should these “CanESM2” be replaced by “CanESM4.2”?

Thank you for noting these typos.

P24 L28- p25 L2 In my understanding, your choice of “emission-driven” configuration might be one of the reasons to underestimate the LUC emission (EL): since LUC emission is omitted in the “without LUC experiments”, the CO2 concentration stays lower level and the CO2 fertilization effect becomes weaker. As a result, the cumulative land carbon uptake in the “without LUC” experiment (FL) is more or less underestimated, which yields lower EL (=FL' - FL). I recommend the authors to mention this.

When LUC emissions are determined by differencing atmosphere-land CO2 flux from simulations with and without LUC, then the diagnosed LUC emissions depend on how simulations are performed. It is correct, that if concentration-driven simulations were to be used the diagnosed LUC emissions would have been higher and closer to Houghton (2008) estimates. We have now added additional text in the manuscript to clarify this.

Discussion section

As commented above, simulations without LUC inevitably lead to lower CO2 concentration and weaker CO2 fertilization effect. I think this can be a “noise” when evaluating LUC emission/impacts. Specifically, in Fig.4(b), NPP in ‘without LUC” simulation are generally lower than “with LUC”, but it is difficult to identify the reason of the difference, because the NPP difference can be affected by CO2 fertilization, increased GPP by crops, and vegetation regrowth. I hope the authors to make a few discussions about the configuration settings for evaluating LUC impacts. I believe such information will be helpful when making simulation designs in the coming CMIP.

We do not think that, when evaluating LUC emissions as the difference between
As mentioned above, we now mention in the revised manuscript what the LUC emissions would have been had we use concentration-driven simulations. However, we feel that while concentration-driven simulations make interpretation of results easier, emissions-driven simulations are more appropriate for our context. The real-world system is, of course, emissions-driven.

In Fig. 2, $\gamma_d = 0.25$ simulations display moderate land carbon sink among CMIP5-ESMs. I think this result is reasonable because most CMIP5-ESMs may not consider down-regulation mechanism; Fig. 9 also supports the choice of the parameter value. However, the historical simulations with $\gamma_d = 0.25$ did not do a good job for reproducing land carbon uptake (Fig. 4). Although you discussed on this in the text, I suppose we have two more things to discuss. The first is the additional carbon uptake by vegetation regrowth. Although the regrowth mechanisms in the model are presented on p10-11, I’m not sure if the modeling was appropriate or not. If we can expect more carbon gain by vegetation regrowth, simulations with $\gamma_d = 0.25$ may work better. The second is the parameter value of humification factor. If you choose a more moderate value for the humification factor (or modify the fractions of deforested/removed biomass that goes into fast/slow pools), soil carbon mass displayed in Fig. 5c will push up toward positive, and this treatment will also make the simulation with $\gamma_d = 0.25$ more realistic. I hope to see some discussions on these two points.

This comment is somewhat unclear. The terrestrial ecosystem model used in our Earth system model grows vegetation in response to environmental conditions including atmospheric CO$_2$ concentration. Once the model reaches equilibrium, e.g. for environmental conditions corresponding to 1850, then a change in climate and/or atmospheric CO$_2$ concentration will make the model lose or gain carbon. Since CO$_2$ increases over the historical period, then in a globally-averaged sense the model gains carbon. However, the model now yields carbon uptake that is highest amongst all CMIP5 models. This does yield the best possible comparison with observation-based estimates from Le Quere et al. (2015), as was the case for CanESM2.

The other dilemma we faced is that while $\gamma_\nu = 0.1$ yields the best possible comparison with observation-based determinants of the global carbon cycle and historical carbon budget the model now yields carbon uptake that is highest amongst all CMIP5 models. This does not indicate that CanESM4.2 simulation of the historical carbon budget is grossly incorrect, but does make us an outlier amongst CMIP5 models.

About Title:

I’m thinking the key feature of this paper is constraining the historical carbon budget of the model from different angles. Of course, it is necessary for your model to choose an appropriate value for the down-regulation, but its parameterization looks somewhat specific to your model. My suggestion is to change the title to reflect “CO$_2$ fertilization”, “LUC”, and “historical carbon budget”: I believe these are the main issues in the background and will have more meaningful messages for readers.

While a valid suggestion, we feel the current title of the manuscript conveys the primary intent of the manuscript.
contribution, I also feel that, in the end, the answer to the problem posed in the title is that it very much depends on what is in the ESM itself, and so without understanding how accurate the model is across a wide range of predictions, it is impossible to know whether the specific answer inferred by the comparison is informative of the real world or not.

Thank you for your interesting view point. Yes, it is true that traditionally models are evaluated using the bottom-up approach where aspects of the model are compared with observations to assess its various process-based parameterizations. The Canadian terrestrial ecosystem model (CTEM), which is the terrestrial carbon cycle component of CanESM4.2, has indeed been evaluated at point (e.g. Arora and Boer, 2005; Melton et al., 2015), regional (e.g. Peng et al., 2014) and global (e.g. Garnaud et al., 2014; Arora and Boer, 2010; Melton and Arora, 2014) scales in a number of studies. In regards to the CO₂ fertilization effect, based on results from FACE and other studies that grew plants at ambient and elevated CO₂, Arora et al. (2009) obtained a value of γd equivalent to about 0.46 for use in CTEM.

Just like top-down inversion-based studies are complementary to bottom-up studies (e.g. those which measure forest stem growth rates) in determining spatial distribution of carbon sinks and sources, we believe that there is value in evaluating and “tuning” CTEM using a top-down approach, as in our study, against an emergent model property. Amongst model simulations performed for our study for γ = 0.25, 0.4 and 0.55, the simulation with γd = 0.4 yields the best comparison with observation-based estimates. Indeed our “best” γd of 0.4 is broadly consistent with Arora et al. (2009) derived γd of 0.46 based on FACE studies.

The tuned value of γd is indeed model-dependent and we do mention this on top of page 26 of the discussion paper. To place confidence in the model, however, we attempt to compare different aspects of the model with observation-based estimates. These include loss in the global soil carbon amount due to anthropogenic LUC and the amplitude of annual CO₂ cycle and its rate of increase over the historical period.

Finally, while the γd parameter is specific to our model what’s more useful for other modellers and the community at large is the simulated rate of increase of NPP over the historical period (which we explicitly mention in our abstract). The rate of increase of NPP can be directly compared across different models.

These points have now been clarified in the revised manuscript.
sufficient sensitivity studies to identify where that transition is? Thirdly, the minimal downregulation case is quite close to the standard model, why was that chosen?

Thank you for another good question. As explained in Arora et al. (2009), the functional form of the down-regulation factor derives from the fact that earlier simpler models of net or gross primary productivity (NPP or GPP) expressed it as a logarithmic function of atmospheric CO$_2$ concentration (e.g. Cao et al., 2001; Alexandrov and Oikawa, 2002).

$$G(t) = G_0 \left(1 + \gamma_p \ln \left(\frac{C(t)}{C_0}\right)\right)$$ \hspace{1cm} (1)

where GPP at any given time, $G(t)$, is a function of its initial value G_0, CO$_2$ concentration at time t, $C(t)$, and its initial value C_0. The rate of increase of GPP is determined by the parameter γ_p.

The ratio of GPP in two different versions of a model in which they increase at different rates (γ_p and let’s say γ_p') is given by

$$\frac{1 + \gamma_p \ln \frac{C(t)}{C_0}}{1 + \gamma_p' \ln \frac{C(t)}{C_0}}$$ \hspace{1cm} (2)

Equation (2) forms the basis for the functional form of down-regulation. For the case when $\gamma_p < \gamma_p'$ the above ratio is less than 1 and its difference from 1 increases as $C(t)$ increase. In this sense the down-regulation is progressive. However, as reviewer #3 notes the slope of down-regulation factor decreases. This second-order effect is a limitation of the formulation and we will make a note of this in revising our manuscript.

Reviewer #3 raises a good point in regards to the boundary at which GPP may actually start to decrease with increasing CO$_2$. Although we have not derived the analytical equations that would allow to find where this boundary occurs, the model does not show any indication of decreasing GPP at least up until atmospheric CO$_2$ concentration of around 1000 ppm (as in the RCP 8.5 scenario) (see Arora and Boer, 2014). Although not relevant for this manuscript this comment provides us the reason to derive those analytical equations.

Finally, the values of γ_p chosen are equal to 0.40±0.15. While the minimal downregulation case ($\gamma_p = 0.5$) appears close to the standard model ($\gamma_p = 0.4$) in Figure 1 this isn’t in the case for the results obtained (see e.g. Figures 4a, 5a, 5c, and 7) because of the non-linear behaviour of the system.

We have modified the manuscript to clarify these points.

page 28, last paragraph. Implicit in this argument seems to be the idea that the degree of historical growth and the response of the terrestrial biosphere over the historical period ought to be informative of an idealized 1%/yr forcing. But to the extent that downregulation is progressively driven by nutrient limitations, it ought to be expressed differently based on the rate at which CO$_2$ increases. So it may be just as informative to consider an extremely rapid CO$_2$ increase even if not at global scale, as in a FACE experiment, as it is to consider the slower-than 1%/yr forcing that has been applied globally over the historical period.

It wasn’t our intent to imply that the 1% per year increasing CO$_2$ simulation is in any way indicative of the model response over the historical period, or vice-versa. The reference to Figure 2 again in this last paragraph of the manuscript was merely to mention that the value of $\gamma_p = 0.4$ that gives best comparison against observation-based determinants of the historical carbon budget makes CanESM4.2 an outlier amongst CMIP5 models. We now clarify this in the last paragraph of Section 5.0.

References

Cao, M., Q. Zhang, and H.H. Shugart: Dynamic responses of African ecosystem carbon cycling to climate

On constraining the strength of the terrestrial CO$_2$ fertilization effect in an Earth system model

V. K. Arora and J. F. Scinocca.

Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada,
University of Victoria, Victoria, B.C., V8W 2Y2, Canada
Abstract

Earth system models (ESMs) explicitly simulate the interactions between the physical climate system components and biogeochemical cycles. Physical and biogeochemical aspects of ESMs are routinely compared against their observation-based counterparts to assess model performance and to evaluate how this performance is affected by ongoing model development. Here, we assess the performance of version 4.2 of the Canadian Earth system model against four, land carbon cycle focused, observation-based determinants of the global carbon cycle and the historical global carbon budget over the 1850-2005 period. Our objective is to constrain the strength of the terrestrial CO$_2$ fertilization effect which is known to be the most uncertain of all carbon cycle feedbacks. The observation-based determinants include 1) globally-averaged atmospheric CO$_2$ concentration, 2) cumulative atmosphere-land CO$_2$ flux, 3) atmosphere-land CO$_2$ flux for the decades of 1960s, 1970s, 1980s, 1990s and 2000s and 4) the amplitude of the globally-averaged annual CO$_2$ cycle and its increase over the 1980 to 2005 period. The optimal simulation that satisfies constraints imposed by the first three determinants yields a net primary productivity (NPP) increase from ~58 Pg C/yr in 1850 to about ~74 Pg C/yr in 2005; an increase of ~27% over the 1850-2005 period. The simulated loss in the global soil carbon amount due to anthropogenic land use change over the historical period is also broadly consistent with empirical estimates. Yet, it remains possible that these determinants of the global carbon cycle are insufficient to adequately constrain the historical carbon budget, and consequently the strength of terrestrial CO$_2$ fertilization effect as it is represented in the model, given the large uncertainty associated with LUC emissions over the historical period.
1. Introduction

The evolution of the atmospheric CO$_2$ concentration in response to anthropogenic fossil fuel CO$_2$ emissions is determined by the rate at which a fraction of these emissions is taken up by the land and ocean. Had the land and ocean not provided this “ecosystem service” since the start of the industrial era, and not removed about 50% of CO$_2$ emissions from the atmosphere (Knorr, 2009), the present concentration of CO$_2$ in the atmosphere would have been around 500 ppm, compared to its current value of around 400 ppm. Over land, temperate and boreal forests as well as forests in the tropical region are known to be sinks of atmospheric carbon (Ciais et al., 2013; Gourdji et al., 2012; Schimel et al., 2015). The sink in the tropical forests is, however, compensated by anthropogenic land use change emissions (Phillips and Lewis, 2014). Over ocean, the uptake of anthropogenic carbon is observed to be larger in the high latitudes than in the tropical and subtropical regions (Khatiwala et al., 2009). The manner in which the land and ocean will continue to provide this ecosystem service in future is of both scientific and policy relevance.

Future projections of atmospheric CO$_2$ concentration, [CO$_2$], in response to continued anthropogenic CO$_2$ emissions, or alternatively projections of CO$_2$ emissions compatible with a given future [CO$_2$] pathway, are based primarily on comprehensive Earth system models (ESMs) which include interactive land and ocean carbon cycle components (Jones et al., 2013). The land and ocean carbon cycle components in ESMs respond both to increases in [CO$_2$] as well as the associated changes in climate. These carbon components also respond to changes in climate associated with other forcings including changes in concentration of non-CO$_2$ greenhouse gases and aerosols, to nitrogen deposition and over land to anthropogenic land use change (LUC).
The response of land and ocean carbon cycle components to changes in \([\text{CO}_2]\) and the associated change in climate is most simply characterized in the framework of the 140-year long 1\% per year increasing CO\(_2\) (1pctCO\(_2\)) experiment, in which \([\text{CO}_2]\) increases at a rate of 1\% per year from pre-industrial value of about 285 ppm until concentration quadruples to about 1140 ppm. The 1pctCO\(_2\) experiment has been recognized as a standard experiment by the coupled model intercomparison project (CMIP) which serves to quantify the response of several climate and Earth system metrics to increasing CO\(_2\). These metrics include the transient climate response (TCR) and the transient climate response to cumulative emissions (TCRE, Gillett et al., 2013). Arora et al. (2013) analyzed results from fully-, biogeochemically- and radiatively-coupled versions of the 1pctCO\(_2\) experiment from eight ESMs that participated in the phase five of the CMIP (CMIP5). They calculated the response of land and ocean carbon cycle components to changes in \([\text{CO}_2]\) and the associated change in climate expressed in terms of carbon-concentration and carbon-climate feedbacks, respectively. Arora et al. (2013) found that of all the carbon cycle feedbacks, the carbon-concentration feedback over land, which is primarily determined by the strength of the terrestrial CO\(_2\) fertilization effect, is the most uncertain across models. They found that while the uncertainty in the carbon-concentration feedback over land (expressed in terms of the standard deviation of the magnitude of the feedbacks) had somewhat reduced since the first coupled carbon cycle climate model intercomparison project (C4MIP) (Friedlingstein et al., 2006) its uncertainty remained the largest of all carbon cycle feedbacks. The comparison of the actual magnitudes of the carbon cycle feedbacks over land is, however, not straightforward between the Arora et al. (2013) and Friedlingstein et al. (2006) studies because they used different CO\(_2\) scenarios.
The reason for this large uncertainty is that it is fairly difficult at present to constrain the strength of the terrestrial CO₂ fertilization effect at the global scale. The net atmosphere-land CO₂ flux since the start of the industrial era has not only been influenced by the changes in [CO₂] but also the associated change in climate (due both to changes in [CO₂] and other climate forcers), nitrogen deposition, and more importantly land use change - the contribution of which itself remains highly uncertain. Since it is difficult to estimate the observed magnitude of net atmosphere-land CO₂ flux since the start of the industrial era attributable only to increase in [CO₂] it is consequently difficult to estimate the strength of the terrestrial CO₂ fertilization effect.

Measurements at Free-Air CO₂ Enrichment (FACE) sites in which vegetation is exposed to elevated levels of [CO₂] help to assess some aspects of CO₂ fertilization and how nutrients constraints regulate photosynthesis at elevated [CO₂] (Medlyn et al., 1999; McGuire et al., 1995). However, FACE results cannot be easily extrapolated to the global scale and the response of vegetation corresponds to a step increase in [CO₂] not the gradual increase which the real world vegetation is experiencing.

As part of the ongoing evaluation of carbon cycle in ESMs, the model simulated aspects of the global carbon cycle are routinely evaluated against their observation-based counterparts. These evaluations also provide the opportunity to adjust physical processes that influence the strength of the terrestrial CO₂ fertilization effect to provide the best comparison with observation-based aspects of the global carbon cycle. Here, we present results from such an evaluation for a new version of the Canadian Earth system model (CanESM4.2). An earlier version of the Canadian Earth system model (CanESM2, Arora et al., 2011) participated in the CMIP5 (Taylor et al. 2012)
and its results also contributed to the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). We evaluate the response of CanESM4.2, for three different strengths of the terrestrial CO$_2$ fertilization effect, against four observation-based determinants of the global carbon cycle and the historical global carbon budget over the 1850-2005 period, with a focus on the land carbon cycle component. These determinants include 1) globally-averaged atmospheric CO$_2$ concentration, 2) cumulative atmosphere-land CO$_2$ flux, 3) atmosphere-land CO$_2$ flux for the decades of 1960s, 1970s, 1980s, 1990s and 2000s, and 4) the amplitude of the globally-averaged annual CO$_2$ cycle and its increase over the 1980 to 2005 period.

The strength of the CO$_2$ fertilization effect influences all four of these determinants of the global carbon cycle and the historical carbon budget. A stronger CO$_2$ fertilization effect, of course, implies a larger carbon uptake by land and consequently a lower rate of increase of [CO$_2$] in response to anthropogenic fossil fuel emissions. However, the strength of the CO$_2$ fertilization effect also influences the amplitude of the annual [CO$_2$] cycle which is primarily controlled by the northern hemisphere’s biospheric activity. The amplitude of the annual [CO$_2$] cycle has been observed to increase over the past five decades suggesting a gradual increase in photosynthesis in association with a strengthening of the CO$_2$ fertilization effect (Keeling et al., 1996; Randerson et al., 1997) and thus possibly can help to constrain the strength of the terrestrial CO$_2$ fertilization effect in Earth system models.

2. The coupled climate-carbon system and CanESM4.2

2.1 The coupled climate-carbon system
The globally-averaged and vertically-integrated carbon budget for the combined atmosphere-
land-ocean system may be written as:

\[\frac{dH_G}{dt} = \frac{dH_A}{dt} + \frac{dH_L}{dt} + \frac{dH_O}{dt} = E_F \] (1)

where the Global carbon pool \(H_G = H_A + H_L + H_O \) is the sum of carbon in the Atmosphere, Land
and Ocean components, respectively (Pg C), and \(E_F \) is the rate of anthropogenic CO\(_2\) emissions
(Pg C/yr) into the atmosphere. The equations for the atmosphere, land and ocean components are
written as

\[\frac{dH_A}{dt} = F_A + E_F \\
= -F_L - F_O + E_F \\
= -(F_L - E_L) - F_O + E_F \\
= -F_L - F_O + E_F + E_L \] (2)

\[\frac{dH_L}{dt} = F_L = F_L - E_L \]

\[\frac{dH_O}{dt} = F_O \]

where \((F_L + F_O) = -F_A\) are the fluxes (Pg C/yr) between the atmosphere and the underlying land
and ocean, taken to be positive into the components. The net atmosphere-land CO\(_2\) flux
\(F_L = F_L - E_L \) is composed of LUC emission rate \(E_L \) (Pg C/yr) as well as the remaining global
“natural” CO\(_2\) flux \(F_L \) that is often referred to as the residual or missing land sink in the context of
the historical carbon budget (Le Quéré et al., 2015). The emissions associated with LUC occur
when natural vegetation, for example, is deforested and replaced by croplands resulting in net loss
of carbon from land to the atmosphere (i.e. positive \(E_L \)). Conversely, when croplands are
abandoned and gradually replaced by forests then carbon is gained from atmosphere into the land (i.e. negative \(E_L \)).

Over land, the rate of change of carbon is reflected in the model’s three land pools (vegetation, \(V \); soil, \(S \); and litter or detritus, \(D \))

\[
\frac{dH_L}{dt} = F_L = F_i - E_L
\]

\[
= \frac{dH_V}{dt} + \frac{dH_S}{dt} + \frac{dH_D}{dt} = (G - R_A) - R_H - E_L
\]

\[
= N - R_H - E_L
\]

where \(G \) is the gross primary productivity (Pg C/yr) which represents the rate of carbon uptake by vegetation through photosynthesis, and \(R_A \) and \(R_H \) are the autotrophic and heterotrophic respiratory fluxes (Pg C/yr) from living vegetation and dead litter and soil carbon pools, respectively. \(N = G - R_A \) is the net primary productivity (NPP) which represents the carbon uptake by vegetation after autotrophic respiratory costs have been taken into account. The heterotrophic respiration \(R_H = R_{H,D} + R_{H,S} \) is composed of respiration from the litter and soil carbon pools. The rate of change in carbon in model’s litter (\(H_D \)) and soil (\(H_S \)) pools is written as

\[
\frac{dH_D}{dt} = D_L + D_S + D_R - C_{D\rightarrow S} - R_{H,D}
\]

\[
\frac{dH_S}{dt} = C_{D\rightarrow S} - R_{H,S}
\]

where \(D_{\text{L},\text{S},\text{R}} \) is the litter fall from the model’s Leaf, Stem and Root components into the model’s litter pool. \(C_{D\rightarrow S} \) is the transfer of humidified litter into the soil carbon pool calculated as a fraction of the litter respiration (\(R_{H,D} \))

\[
C_{D\rightarrow S} = \chi R_{H,D}
\]
and χ is the humification factor.

Integrating (2) and (3) in time with $\int_{t_0}^{t} (dH \cdot dt) = H(t) - H(t_0) = \Delta H(t)$ and $\int_{t_0}^{t} F \cdot dt = \tilde{F}(t)$ (Pg C) gives

$$\Delta H_A = -\left(\tilde{F}_O + \tilde{F}_f\right) + \left(\tilde{E}_f + \tilde{E}_L\right)$$

$$\Delta H_O = \tilde{F}_O$$

$$\Delta H_L = \tilde{F}_L = \tilde{F}_f - \tilde{E}_L;$$

$$= \Delta H_f + \Delta H_s + \Delta H_B = \tilde{F}_L - \tilde{E}_L = \tilde{N} - \tilde{R}_H - \tilde{E}_L$$

$$\Delta H_I = \tilde{F}_I$$

$$\Delta H = \tilde{E}_f$$

The cumulative change in the atmosphere, the ocean and the land carbon pools is written as

$$\Delta H_A + \Delta H_O + \left(\Delta H_f - \tilde{E}_L\right) = \tilde{E}_f$$

$$\Delta H_A + \Delta H_O + \Delta H_I = \tilde{E}_f + \tilde{E}_L = \tilde{E}$$

(7)

where \tilde{E} (Pg C) is the cumulative sum of the anthropogenic emissions from fossil fuel consumption and land use change. When emissions associated with LUC are zero, equation (7) becomes

$$\Delta H_A + \Delta H_O + \Delta H_L = \tilde{E}_f + \tilde{E}_L = \tilde{E}$$

(8)

which indicates how cumulative emissions are parsed into changes in atmospheric carbon burden and carbon uptake by the ocean and land components.

2.2 Canadian Earth System Model version 4.2

2.2.1 Physical components
At the Canadian Centre for Climate Modelling and Analysis (CCCma), the earth system model, CanESM2, has undergone further development since its use for CMIP5. This version of the model has been equivalently labelled CanESM4.0 in an effort to rationalize the ESM naming convention to better reflect the fact that this model version employs the 4th generation atmosphere component, CanAM4, (Von Salzen et al. 2013) and the 4th generation ocean component, CanOM4 (Arora et al., 2011). The version of the CCCma earth system model used for this study is CanESM4.2 and so, represents two full cycles of model development on all of its components. Similar to CanESM2, the physical ocean component of CanESM4.2 (CanOM4.2) has 40 levels with approximately 10 m resolution in the upper ocean while the horizontal ocean resolution is approximately 1.41° (longitude) × 0.94° (latitude). The majority of development in CanESM4.2, relative to CanESM2, has occurred on its atmospheric component CanAM4.2. CanAM4.2 is a spectral model employing T63 triangular truncation with physical tendencies calculated on a 128 × 64 (~2.81°) horizontal linear grid with 49 layers in the vertical whose thicknesses increase monotonically with height to 1 hPa. Relative to CanAM4, CanAM4.2 includes a new version of the Canadian Land Surface Scheme, CLASS3.6, which models the energy and water fluxes at the atmosphere-land boundary by tracking energy and water through the soil, snow, and vegetation canopy components (Verseghy, 2012). CLASS models the land surface energy and water balance and calculates liquid and frozen soil moisture, and soil temperature for three soil layers (with thicknesses 0.1, 0.25 and 3.75 m). The thickness of the third layer depends on the depth to bedrock (and is in many places less than 3.75 m) based on the Zobler (1986) soil data set. Changes to CLASS primarily include improvements to the simulation of snow at the land surface. These incorporate new formulations for vegetation interception of snow (Bartlett et al., 2006), for
unloading of snow from vegetation (Hedstrom and Pomeroy, 1998), for the albedo of snow-
covered canopies (Bartlett and Verseghy, 2015), for limiting snow density as a function of depth
(Tabler et al., 1990; Brown et al., 2006), and for the thermal conductivity of snow (Sturm et al.,
1997). Water retention in snowpacks has also been incorporated. CanAM4.2 also includes an
aerosol microphysics scheme (von Salzen, 2006; Ma et al., 2008; Peng et al., 2012), a higher
vertical resolution in the upper troposphere, a reduced solar constant (1361 W/m²) and an
improved treatment of the solar continuum used in the radiative transfer. CanAM4.2 also
considers natural and anthropogenic aerosols and their emissions, transport, gas-phase and
aqueous-phase chemistry, and dry and wet deposition as summarized in Namazi et al. (2015).

2.2.2 Land and ocean carbon cycle components

The ocean and land carbon cycle components of CanESM4.2, are similar to CanESM2, and
represented by the Canadian Model of Ocean Carbon (CMOC) (Christian et al., 2010) and the
Canadian Terrestrial Ecosystem Model (CTEM) (Arora et al., 2009; Arora and Boer, 2010),
respectively.

LUC emissions in CTEM are modelled interactively on the basis of changes in land cover which
are determined by changes in crop area. The historical land cover used in the simulations
presented here is reconstructed using the linear approach of Arora and Boer (2010) and is the
same as used for CMIP5 simulations; as the fraction of crop area in a grid cell changes, the
fraction of non-crop plant functional types (PFTs) is adjusted linearly in proportion to their
existing coverage. The historical changes in crop area are based on the data set provided for
CMIP5 simulations as explained in Arora and Boer (2014). When the fraction of crop area in a grid cell increases then the fractional coverage of other PFTs is reduced which results in deforested biomass. The deforested biomass is allocated to three components that are i) burned instantaneously and contribute to ii) short (paper) and iii) long (wood products) term pools (Arora and Boer, 2010). The deforested biomass corresponding to paper and wood products is transferred to model’s litter and soil carbon pools, respectively. When the fraction of crop area decreases, the fractional coverage of non-crop PFTs increases and their vegetation biomass is spread over a larger area reducing vegetation density. Carbon is sequestered until a new equilibrium is reached providing a carbon sink associated with regrowth as the abandoned areas revert back to natural vegetation.

The LUC emissions term \(E_L \) in the equations (1) through (8) is not easily defined or calculated. Pongratz et al. (2014) discuss the multiple definitions and methods of calculating \(E_L \). When \(E_L \) is calculated using models, it is most usually defined as the difference in \(F_L \) between simulations with and without LUC. This is also the basic definition used by Pongratz et al. (2014). Calculating \(E_L \) thus requires performing additional simulations without land use change in which land cover is held constant at its pre-industrial state. For a simulation without LUC equation (3) becomes

\[
\frac{dH'_L}{dt} = F''_L = F'_L \tag{9}
\]

and an estimate of \(E_L \), and its cumulative values \(\overline{E_L} \), is obtained as

\[
E_L = F''_L - F'_L \quad \overline{E_L} = \overline{F''_L} - \overline{F'_L} \tag{10}
\]
Over the historical period, globally, F'_L is expected to be higher than F_L (both considered positive downwards) due, at least, to two processes: 1) fraction of deforested biomass that is burned and which contributes to short and long term product pools all release carbon to the atmosphere, albeit at different time scales, 2) the area that is deforested and put under agricultural use loses soil carbon and cannot sequester carbon in response to increase [CO$_2$] since crops are frequently harvested. As a result E_L is positive.

Relative to CanESM2, the version of CTEM employed in CanESM4.2, CTEM4.2, includes changes to the humification factor (χ, see equations 4 and 5) which determines what fraction of the humidified litter is transferred from litter (H_d) to the soil carbon pool (H_s). The value of χ employed in CTEM4.2 has been changed for crop PFTs from 0.45 to 0.10, which decreases the transfer of the humidified litter to the soil carbon when natural vegetation is converted to cropland pool. As a result, a decrease in global soil carbon over the historical period is obtained as natural vegetation is replaced by croplands as would be expected based is seen in empirical measurements (Wei et al., 2014). This change in humification factor was required despite the higher litter decomposition rates over croplands and is discussed in more detail later in the results section. In addition, in CTEM4.2 the sensitivity of photosynthesis to soil moisture is reduced for coupling to CLASS 3.6, especially for the broadleaf evergreen PFT (which exists mainly in the tropics) to somewhat account for deep roots, for example, in the Amazonian region (e.g. see da Rocha et al., 2004).

CTEM has always included a parameterization of photosynthesis down-regulation, which represents acclimatization to elevated CO$_2$ in the form of a decline in maximum photosynthetic
rate. In the absence of explicit coupling of terrestrial carbon and nitrogen cycles this parameterization yields a mechanism to reduce photosynthesis rates as $[\text{CO}_2]$ increases. The photosynthesis down-regulation parameterization is described in detail in Arora et al. (2009) and is based on earlier simpler models which expressed net or gross primary productivity (NPP or GPP) as a logarithmic function of atmospheric CO$_2$ concentration (e.g. Cao et al., 2001; Alexandrov and Oikawa, 2002).

$$G(t) = G_0 \left(1 + \gamma_p \ln \left(\frac{C(t)}{C_0}\right)\right)$$ \hspace{0.5cm} (11)

where GPP at any given time, $G(t)$, is a function of its initial value G_0, atmospheric CO$_2$ concentration at time t, $C(t)$, and its initial value C_0. The rate of increase of GPP is determined by the parameter γ_p (where ρ indicates the “potential” rate of increase of GPP with CO$_2$). The ratio of GPP in two different versions of a model in which GPP increases at different rates (γ_p and γ_d) is given by

$$\xi(C) = \frac{1 + \gamma_d \ln(C/C_0)}{1 + \gamma_p \ln(C/C_0)}$$ \hspace{0.5cm} (12)

where t is omitted for clarity. When $\gamma_d < \gamma_p$ Briefly, the modelled “potential” gross photosynthesis rate (G_p), which is not constrained by nutrient limitation, can by is multiplied by a the scalar $\xi(C)$ (equation 142) which yields the gross primary productivity (G) used in equation (3) that now increases in response to CO$_2$ increases at a rate determined by the value of γ_d (the subscript d indicates down-regulation).

$$G = \xi(C) \cdot \frac{G_p}{1}$$ \hspace{0.5cm} (143)
where \(\gamma_d < \gamma_p \). A lower value of \(\gamma_d \) than \(\gamma_p \) yields a value of \(\xi(C) \) that is less than one. As the concentration of CO2, expressed as \(C \) in equation (142), increases above its pre-industrial level \(C_0 \) (285 ppm), \(\xi(C) \) progressively decreases resulting in a gross primary productivity \(G \), which is less than the its potential value \(G_p \). Figure 1 shows the behaviour of \(\xi(C) \) for \(\gamma_p = 0.95 \) and three values of \(\gamma_d \) (0.25, 0.4 and 0.55) corresponding to three different strengths of the terrestrial CO2 fertilization effect. The value of \(\gamma_d = 0.25 \) was used for CanESM2 to best simulate the globally-averaged surface CO2 concentration and cumulative 1850-2005 atmosphere-land CO2 flux. CanESM2, however, wasn’t as rigourously evaluated as we have attempted here for CanESM4.2.

Through the parameter \(\gamma_d \), the physical process of down-regulation has a direct influence on the strength of the terrestrial CO2 fertilization effect. In practice, different combinations of \(\gamma_d \) and \(\gamma_p \) are able to yield very similar values of \(\xi(C) \). Arora et al. (2009) calculated the value of \(\gamma_d \) based on results from six studies, two of which were meta-analyses each based on 15 and 77 individual studies, that grow plants in ambient and elevated CO2 environment. Their results are equivalent to \(\gamma_d = 0.46 \) with a range from 0.22 to 0.63 for \(\gamma_p = 0.95 \).

In Figure 1, while \(\xi(C) \) decreases with an increase in atmospheric CO2, indicating progressive decline in photosynthesis due to nutrient limitation, the slope \(\frac{d\xi}{dC} \) also decreases. Although a second-order effect, this is a limitation of the current formulation of \(\xi(C) \). A decreasing \(\xi(C) \) as CO2 increases can eventually also lead to decrease in GPP although we have not seen this behaviour up to CO2 concentration of around 1000 ppm in simulations performed with CanESM2.
(see Arora and Boer, 2014). While γ_d is used to model down-regulation of photosynthesis it may also be used as a measure of the strength of the CO$_2$ fertilization effect. Lower values of γ_d indicate higher down-regulation (see Figure 1) so higher values of γ_d imply higher strength of the CO$_2$ fertilization effect. Finally, γ_d is specific to CTEM and as such the value of this parameter is irrelevant to other models. More relevant for comparison with other models is the simulated rate of increase of NPP over the historical period that a given value of γ_d yields.

2.2.3 Treatment of CO$_2$ in the atmosphere

The land and ocean components of the carbon cycle in CanESM4.2 are operable for two experimental designs – 1) an emissions-driven mode, where the atmospheric CO$_2$ concentration is a freely evolving 3D tracer in the model and 2) a concentrations-driven mode, where the atmospheric CO$_2$ concentration is prescribed externally.

In the emissions-driven mode the anthropogenic CO$_2$ emissions (E_F) are specified and since the interactive land and ocean carbon cycle components simulate the F_L and F_O terms, respectively, the model is able to simulate the evolution of [CO$_2$] through the H_d term, which represents the atmospheric carbon burden, in equation (2). This is referred to as the “free” or interactively simulated [CO$_2$], or “free-CO$_2$” configuration. In this case, the model simulates the transport of CO$_2$ in the atmosphere and as a result it is producing 3D structure, in space, units annual cycle, through a year and its inter-annual variability.
In the concentrations-driven mode, the land and ocean CO\textsubscript{2} fluxes, F_L and F_O, remain interactively determined so model results can be used to diagnose the E_F term (based on equation 2) that is compatible with a given $[\text{CO}_2]$ pathway at the global scale. The concentrations-driven mode can be executed in two CanESM4.2 configurations. In the first configuration, a single scalar value of $[\text{CO}_2]$, which may be time evolving, is imposed at all geographical and vertical locations in the model. This follows the CMIP5 prescription for concentrations-driven simulations and we refer to it here as, “specified-CO\textsubscript{2}” concentrations-driven mode. In the second configuration, a new approach for specifying CO\textsubscript{2} concentration has been implemented in CanESM4.2. In this new approach, only the globally averaged concentration of CO\textsubscript{2} in the lowest model level is constrained by the prescribed value. The geographical and vertical distribution of CO\textsubscript{2} in the atmosphere and its annual cycle in this second configuration is otherwise free to evolve in the same manner as in essentially identical to the emissions-driven, free-CO\textsubscript{2}, configuration, mode except that it employs zero emissions and a strong relaxation on the global-mean value of $[\text{CO}_2]$ in the lowest model level towards the specified reference value. A relaxation timescale of one day is employed in this new configuration and a fixed annual cycle, derived from the free-CO\textsubscript{2} preindustrial control simulation, is imposed on the reference value of $[\text{CO}_2^-]$. The reference value of $[\text{CO}_2]$ may additionally be specified as time-evolving and includes a fixed annual cycle derived from the free-CO\textsubscript{2} preindustrial control simulation. We refer to this configuration as the “relaxed-CO\textsubscript{2}” concentrations-driven mode. Aside from the relaxational constraint on the global-mean surface value of $[\text{CO}_2]$, the atmospheric configuration for relaxed-CO\textsubscript{2} is identical to that for free-CO\textsubscript{2} with zero emissions. As a consequence, the relaxed CO\textsubscript{2} configuration allows the same nonlinearity in the atmosphere-surface exchange of CO\textsubscript{2} as the free CO\textsubscript{2} configuration leading to nearly identical 3D structure and seasonal variation of CO\textsubscript{2} in the relaxed CO\textsubscript{2}...
case will have some radiative implications, compared to the specified CO2 case, but the effects are expected to be of second order since CO2 is a fairly well-mixed greenhouse gas. More importantly, nonlinearity in the atmosphere-surface exchange of CO2 means that the geographical structure and a seasonal cycle of atmosphere CO2 concentrations. In this regard, the relaxed CO2 configuration is more physically more realistic than the specified CO2 configuration. The nonlinearity in the atmosphere-surface exchange of CO2 means that the geographical structure and a seasonal cycle allowed in the relaxed CO2 approach produces a different, but more realistic, atmosphere-surface CO2 exchange than the specified CO2 configuration.

allowed in the relaxed CO2 approach will produce a different atmosphere-surface CO2 exchange than the specified CO2 configuration (the relaxed being much more similar to the free CO2 case).

There are other practical advantages to using the relaxed CO2 configuration over the specified- CO2 configuration for concentrations-driven simulations. When spinning up land and ocean carbon pools for a prescribed atmospheric CO2 concentration in the preindustrial control simulation, the model is executed in concentrations driven mode to bring these pools into equilibrium with a prescribed CO2 concentration. In earlier versions of the CanESM, a specified- CO2 configuration was used for this purpose. Beginning with version 4.1, the relaxed CO2 configuration is used for this purpose because it produces little or no drift when used to initialize the free- CO2 preindustrial control simulations. In fact, the relaxed-CO2 preindustrial control simulation may be used as the control simulation for both emissions-driven and (relaxed-CO2)
concentrations-driven experiments. This is not the case when the specified-CO2 is used as the configuration is employed for concentration driven experiments.

3. Experimental set up

Three different kinds of experiments are performed for this study. The first is the standard 1% per year increasing CO₂ experiment (1pctCO2) performed for three different strengths of the terrestrial CO₂ fertilization effect. The 1pctCO2 is a concentration-driven experiment and we use the “relaxed-CO2” configuration to specify CO₂ in the atmosphere. The second experiment is the CMIP5 1850-2005 historical experiment, referred to as esmhistorical following CMIP5 terminology, which is performed with specified anthropogenic CO₂ emissions (i.e. in emissions-driven, or “free-CO₂”, mode), where [CO₂] is simulated interactively. Concentrations of non-CO₂ greenhouse gases and emissions of aerosols and their precursors are specified in the esmhistorical experiment following the CMIP5 protocol. The third experiment is same as the esmhistorical experiment but LUC is not permitted and the land cover remains at its 1850 value; referred to as the esmhistorical_noluc experiment. Two ensemble members are performed for each of the three versions of the esmhistorical and esmhistorical_noluc experiments corresponding to three different strengths of the terrestrial CO₂ fertilization effect. The rationale for performing historical simulations without LUC is to be able to quantify LUC emissions E_L using equation (10). Table 1 summarizes all the simulations performed.

The 1pctCO2 simulations with “relaxed” CO₂ for three different strengths of the terrestrial CO₂ fertilization effect are initialized from a corresponding pre-industrial control simulation with CO₂ specified at ~285 ppm and all other forcings at their 1850 values. The esmhistorical and
esmhistorical_noluc simulations are initialized from a pre-industrial control simulation with “free” CO₂ and zero anthropogenic CO₂ emissions.

4. Results

4.1. 1% per year increasing CO₂ experiments

Figure 2 shows the carbon budget components of equation (8); ΔHₐ, ΔHₒ and ΔHₙ, i.e. the change in atmospheric carbon burden and cumulative atmosphere-ocean and atmosphere-land CO₂ flux which together make up the cumulative diagnosed emissions (E̅) based on results from the fully-coupled 1pctCO₂ experiment. Results are shown from eight CMIP5 models that participated in the Arora et al. (2013) study, including CanESM2 which used γₜₐₗ₀=0.25, together with those from CanESM4.2 for three different strengths of the terrestrial CO₂ fertilization effect. The cumulative atmosphere-land CO₂ flux across models varies much more than the cumulative atmosphere-ocean CO₂ flux across the CMIP5 models as already noted in Arora et al. (2013). The results for CanESM4.2 indicate that the influence of γₜₐₗ₀ (equation 142) on the strength of the model’s terrestrial CO₂ fertilization effect allows CanESM4.2’s cumulative diagnosed emissions to essentially span the range of the other CMIP5 models. For the three different strengths of the terrestrial CO₂ fertilization effect, γₜₐₗ₀ = 0.25, 0.4 and 0.55, the γₜₐₗ₀ values of 0.4 and 0.55 yield cumulative atmosphere-land CO₂ flux that is higher than all the CMIP5 models. The basis for choosing these values of γₜₐₗ₀ within the range 0.4±0.15 will become obvious later is that they span the observation-based estimates of various quantities reasonably well as shown later.
The cumulative atmosphere-land CO₂ flux ΔH_L for CanESM4.2 for the simulation with $\gamma_d=0.25$ is higher than that for CanESM2 which also uses $\gamma_d=0.25$, because of the changes made to soil moisture sensitivity of photosynthesis and because ΔH_L also depends on the model climate. In particular, the CanESM2 bias of low precipitation over the Amazonian region has been reduced in CanESM4.2, as shown in Figure 3. The increased precipitation over the Amazonian region causes increased carbon uptake with increasing [CO₂]. The improved precipitation bias of CanESM4.2 in this region is in part caused by the decreased sensitivity of photosynthesis to soil moisture in CTEM4.2, especially for broadleaf evergreen PFT, which helps to increase evapotranspiration and in turn increase precipitation over the region.

4.2. Historical simulations with LUC

The results presented in this section evaluate the model against four observation-based determinants of the global carbon cycle and the historical global carbon budget over the 1850-2005 period mentioned earlier. Simulated atmosphere-ocean CO₂ fluxes are also compared with observation-based estimates although, of course, they are not directly affected by the strength of the terrestrial CO₂ fertilization effect.

4.2.1. Components of land carbon budget

In Figure 4, time series of instantaneous (F_L panel a) and cumulative ($\overline{F_L}$ panel b) atmosphere-land CO₂ flux over the period 1850-2005 are displayed for CanESM2 (which contributed results to CMIP5) and CanESM4.2 for the three different strengths of the terrestrial CO₂ fertilization effect. The observation-based estimates of $F_L = (F_i - E_L)$ in Figure 4a for the decades of 1960,
1970, 1980, 1990 and 2000 are reproduced from Le Quéré et al. (2015) who derive the $F_L = (F_L - E_L)$ term as residual of the carbon budget equation $dH_A/dt = -(F_L - E_L) - F_O + E_F$ using observation-based estimates of change in atmospheric carbon budget (dH_A/dt), atmosphere-ocean CO2 flux (F_O) and fossil fuel emissions (E_F). The observation-based estimate of -11 ± 47 Pg C in Figure 4b for $\overline{F_L}$ over the period 1850-2005 is from Arora et al. (2011) (their Table 1).

The primary difference between CanESM2 and CanESM4.2 simulations in Figure 4 is that $\overline{F_L}$ for CanESM2 generally stays positive throughout the historical period, whereas for CanESM4.2 it first becomes negative (indicating that land is losing carbon) and then becomes positive (indicating that land is gaining carbon) towards the end of the 20th century, depending on the strength of the CO2 fertilization effect. The behaviour of $\overline{F_L}$ for CanESM4.2 is considered to be more realistic. As the land responds to anthropogenic land use change, associated with an increase in crop area early in the historical period, it causes a decrease in vegetation and soil carbon (see Figure 5). Later in the 20th Century, the CO2 fertilization effect causes the land to become a sink for carbon resulting in both vegetation and soil carbon increases. This behavior is consistent with the mean model response of the 15 CMIP5 models analyzed by Hoffman et al. (2013) (their Figure 2b). In contrast, CanESM2 shows a gradual increase in the global soil carbon amount (Figure 5a) over the historical period. In Figure 5, it can be seen that the effect of CO2 fertilization in the second half of the 20th century is delayed for soil carbon compared to that for vegetation. This is primarily because of the lag introduced by the turnover time of vegetation (i.e., increased NPP inputs have to go through vegetation pool first) and the longer turnover time scale of the soil carbon pool. The more reasonable response of soil carbon to anthropogenic land use change, in
Figure 5a for CanESM4.2, is achieved by changing the humification factor from 0.45 (in CanESM2) to 0.10 (in CanESM4.2) in equation (5) which yields a reduction in global soil carbon amount in response to land use change up until the time that the effect of CO₂ fertilization starts to take effect. In Figure 4a, CanESM4.2 is also able to simulate continuously increasing \(F_L \) during the period 1960 to 2005, depending on the strength of the CO₂ fertilization effect, while CanESM2 simulates near constant or decreasing \(F_L \) from about 1990 onwards, as is also seen in Figure 4b for \(\bar{F}_L \). This behaviour of \(F_L \) is not consistent with observation-based estimates from Le Quéré et al. (2015) which show continued strengthening of the land carbon sink since 1960s.

In Figure 4a, amongst the three versions of the CanESM4.2, the simulation with \(\gamma_d = 0.4 \) (blue line) yields the best comparison with observation-based estimates of \(F_L \) from Le Quéré et al. (2015), while the simulations with \(\gamma_d = 0.25 \) (green line) and \(\gamma_d = 0.55 \) (red line) yield \(F_L \) values that are lower and higher, respectively, than observation-based estimates. In Figure 4b, the cumulative atmosphere-land CO₂ flux \(\bar{F}_L \) over the 1850-2005 period from the simulations with \(\gamma_d = 0.25 \) and 0.4 (green and blue lines, respectively) lies within the uncertainty of observation-based estimates, while the simulation with \(\gamma_d = 0.55 \) (red line) yields \(\bar{F}_L \) value that is high relative to observation-based estimate.

Figure 6 shows the change in and absolute values of NPP from CanESM2 and the simulations made with CanESM4.2 for three different strengths of the CO₂ fertilization effect. Consistent with 1pctCO₂ simulations, the rate of increase of NPP in CanESM4.2 with \(\gamma_d = 0.25 \) is higher than that in CanESM2 which also uses \(\gamma_d = 0.25 \). This is because the underlying model climate is
different in CanESM2 and CanESM4.2, as mentioned earlier, and the fact that photosynthesis sensitivity to soil moisture has also been reduced. The rates of increase of NPP for \(\gamma_d = 0.40 \) and 0.50 are, of course, even higher. The CanESM4.2 simulation with \(\gamma_d = 0.40 \), which yields the best comparison with observation-based estimates of \(F_L \) for the decade of 1960 through 2000 (Figure 4a) as well as \(\tilde{F}_L \) for the period 1850-2005 (Figure 4b), yields an increase in NPP of \(\sim 16 \) Pg C/yr over the 1850-2005 period. A caveat here is that part of this increase is also caused by increase in the crop area over the historical period that is realized in the model regardless of the strength of the CO\(_2\) fertilization effect. In CTEM4.2, the maximum photosynthetic capacity of crops is higher than for other PFTs to account for the fact that agricultural areas are generally fertilized. As a result, increase in crop area also increases global NPP. The increasing crop productivity has been suggested to contribute to the increase in amplitude of the annual [CO\(_2\)] cycle since 1960s (Zeng et al., 2014). However, in the absence of an explicit representation of terrestrial N cycle (and thus fertilization of cropped areas) or a representation of increase in crop yield per unit area due to genetic modifications, the only processes in CTEM that contribute to changes in crop yield are the change in crop area itself and the increase in crop NPP due to the CO\(_2\) fertilization effect.

4.2.2. Globally-averaged [CO\(_2\)]

Figure 7 shows the simulated globally-averaged surface [CO\(_2\)] from the emissions-driven esmhistorical simulation of CanESM2 and that of CanESM4.2 for three different strengths of the CO\(_2\) fertilization effect. The observation-based time series of [CO\(_2\)] is illustrated by the heavy black line. The CanESM2 (\(\gamma_d = 0.25 \)) simulation yields a reasonable comparison with observation-
Based on CanESM4.2 with different strengths of the CO₂ fertilization effect, the version with \(\gamma_d = 0.40 \) yields the best comparison. The CanESM4.2 version with \(\gamma_d = 0.25 \) (weaker strength of the CO₂ fertilization effect) and 0.55 (stronger CO₂ fertilization effect) yield CO₂ concentrations that are respectively higher and lower than the observational estimate from roughly mid-20th Century onward. The reason CanESM4.2 (\(\gamma_d = 0.40 \)) requires a stronger CO₂ fertilization effect than CanESM2 (\(\gamma_d = 0.25 \)) for simulating the observation-based increase in atmospheric CO₂ burden over the historical period is the enhanced impact of LUC in CanESM4.2 due to its increased humification factor and the associated response of the global soil carbon pool, as discussed in the previous section. The differences in simulated [CO₂] in Figure 7 from CanESM4.2 are due only to differences in the strength of the CO₂ fertilization effect. Although, of course, since in these simulations [CO₂] is simulated interactively, the simulated atmosphere-land flux \(F_L \) and [CO₂] both respond to and affect each other.

Both CanESM2 and CanESM4.2 under-predict [CO₂] relative to observational estimates over the period 1850-1930, and are also unable to reproduce the near zero rate of increase of [CO₂] around 1940. Possible reasons for these discrepancies include 1) the possibility that carbon cycle before 1850 was not in true equilibrium and this aspect cannot be captured since the model is spun up to equilibrium for 1850 conditions, 2) the uncertainties associated with anthropogenic emissions for the late 19th and early 20th century that are used to drive the model, and 3) the uncertainties associated with pre Mauna-Loa [CO₂] observations.

4.2.3. Atmosphere-ocean CO₂ flux
Figures 8a and b, respectively, show time series of instantaneous (F_O) and cumulative (\tilde{F}_O) atmosphere-ocean CO$_2$ fluxes over the period 1850-2005 for the set of emissions-driven simulations presented in Fig. 7. The strength of the terrestrial CO$_2$ fertilization effect has little or no impact on the ocean biogeochemical processes. The differences in values of F_O and \tilde{F}_O for the three versions CanESM4.2 are, therefore, primarily due to the differences in [CO$_2$]. The observation-based estimates of F_O in Figure 8a for the decades of 1960, 1970, 1980, 1990 and 2000 are from Le Quéré et al. (2015). The observation-based estimate of \tilde{F}_O of 141±27 Pg C in Figure 8b for the period 1850-2005 is from Arora et al. (2011) (their Table 1).

Both CanESM2 and the CanESM4.2 simulation for $\gamma_d=0.40$ (which provides the best comparison with observation-based estimate for [CO$_2$]; blue line in Figure 7) yield lower \tilde{F}_O compared to observation-based values. The F_O value from CanESM2 and the CanESM4.2 simulation for $\gamma_d=0.40$ are lower than the mean estimates from Le Quéré et al. (2015) for the decades of 1960s through 2000s, although still within their uncertainty range. The family of ESMs from CCCma, all of which have the same physical ocean model, including CanESM1 (Arora et al., 2009), CanESM2 (Arora et al., 2011) and now CanESM4.2, yield lower than observed ocean carbon uptake over the historical period. Recent analyses of these model versions suggest that the primary reason for their low carbon uptake is a negative bias in near surface wind speeds over the Southern Ocean and an iron limitation in the same region which is too strong (personal communication, Dr. Neil Swart, Canadian Centre for Climate Modelling and Analysis). The CanESM4.2 simulation with $\gamma_d=0.25$ (green line in Figure 8) yields a better comparison with
observation-based estimates of F_o and $\overline{F_o}$ but that is because of the higher simulated [CO$_2$] in that simulation associated with lower carbon uptake by land.

4.2.4. Amplitude of the annual CO$_2$ cycle

The annual CO$_2$ cycle is influenced strongly by the terrestrial biospheric activity of the northern hemisphere (Keeling et al., 1996; Randerson et al., 1997). Higher than normal biospheric uptake of carbon during a northern hemisphere’s growing season, for example, will yield lower than normal [CO$_2$] by the end of the growing season, around September when [CO$_2$] is at its lowest level (see Figure 9a). Similarly, during the northern hemisphere’s dormant season, increased respiration from live vegetation and decomposition of dead carbon, including leaf litter, that may be associated with increased carbon uptake during the last growing season, will yield higher than normal [CO$_2$] during April when [CO$_2$] is at its highest level. Both processes increase the amplitude of the annual [CO$_2$] cycle. Given this strong control, the rate of change of the amplitude of the annual [CO$_2$] cycle can potentially help to constrain the strength of the terrestrial CO$_2$ fertilization effect.

Figure 9a compares the annual cycle of the trend-adjusted globally-averaged near-surface monthly [CO$_2$] anomalies from CanESM2 and the versions of CanESM4.2 for three different strengths of the CO$_2$ fertilization effect with observation-based estimates for the 1991-2000 period. Figure 9b shows the time series of the amplitude of the annual cycle of the trend adjusted globally-averaged near-surface monthly [CO$_2$] anomalies (referred to as Φ_{co2}) from CanESM2 and CanEM4.2, as well as observation-based estimates going back to 1980s. While CO$_2$
measurements at Mauna Loa started in 1959, observation-based globally-averaged near-surface
[CO₂] values are only available since 1980s (ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt). In Figure 9b, consistent with the
strengthening of the CO₂ fertilization effect, associated with the increase in [CO₂], the
observation-based estimate of \(\Phi_{\text{CO₂}} \) shows an increase from 1980s to the present. Both CanESM2
and versions of CanESM4.2 also show an increase in the amplitude of \(\Phi_{\text{CO₂}} \) over the period
1850-2005. However, the absolute values of \(\Phi_{\text{CO₂}} \) are lower in CanESM2 than in CanESM4.2
(Figure 9b). Of course, in the absence of an observation-based estimate of pre-industrial value of
\(\Phi_{\text{CO₂}} \) it is difficult to say which value is more correct. However, when considering the present
day values of \(\Phi_{\text{CO₂}} \) the three versions of CanESM4.2 yield better comparison with observation-based estimate as also shown in Figure 9a. The increase in the value of \(\Phi_{\text{CO₂}} \) from CanESM2 to
CanESM4.2, which now yields better comparison with observation-based value of \(\Phi_{\text{CO₂}} \), is most
likely caused by the change in the land surface scheme from CLASS 2.7 (that is implemented in
CanESM2) to CLASS 3.6 (implemented in CanESM4.2), since the atmospheric component of the
model hasn’t changed substantially. It is, however, difficult to attribute the cause of this
improvement in the present day value of \(\Phi_{\text{CO₂}} \) in CanESM4.2 to a particular aspect of the new
version of the land surface scheme. The annual [CO₂] cycle is driven primarily by the response of
the terrestrial biosphere to the annual cycle of temperature and the associated greening of the
biosphere every summer in the northern hemisphere. However, the simulated amplitude of the
annual cycle of near-surface temperature hasn’t changed substantially from CanESM2 to
CanESM4.2 (not shown).
In Figure 9b, the simulated values of Φ_{CO_2} for the CanESM4.2 simulations with $\gamma_d=0.25$, 0.40 and 0.55 are 4.41, 4.69 and 4.85 ppm, respectively, averaged over the period 1991-2000, compared to observation-based value of Φ_{CO_2} of 4.36 ppm. Here, CanESM4.2 simulation with $\gamma_d=0.25$ yields the best comparison with observation-based value of Φ_{CO_2}. An increase in the strength of the CO$_2$ fertilization effect increases the amplitude of the annual [CO$_2$] cycle so a larger value of γ_d yields a larger value of Φ_{CO_2}. The increase in the amplitude of the annual [CO$_2$] cycle comes both from lower [CO$_2$] at the end of the growing season in September as well as higher [CO$_2$] at the start of the northern hemisphere’s growing season in April (see Figure 9a), as mentioned earlier in this section.

More important than the absolute value of Φ_{CO_2} is its rate of increase over time which is a measure of the strength of the terrestrial CO$_2$ fertilization effect. Figure 9b also shows the trend in Φ_{CO_2} over the 1980-2005 overlapping period for which for both the model and observation-based estimates of Φ_{CO_2} are available. The magnitude of trend for observation-based estimate of Φ_{CO_2} is 0.142±0.08 ppm/10-years (mean ± standard deviation, $\bar{x} \pm \sigma_x$), implying that over the 26 year 1980-2005 period the amplitude of annual [CO$_2$] cycle has increased by 0.37±0.21 ppm. The calculated mean and standard deviation of the observation-based trend, however, does not take into account the uncertainty associated with the observation-based estimates of [CO$_2$], consideration of which will increase the calculated standard deviation even more. The magnitudes of trend in Φ_{CO_2} simulated by CanESM2 ($\gamma_d=0.25$) and CanESM4.2 (for $\gamma_d=0.25$) are 0.103±0.05 and 0.153±0.031, respectively, and statistically not different from the trend in the observation-based value of Φ_{CO_2} implying an increase of 0.27±0.13 and 0.40±0.08 ppm,
respectively, in Φ_{CO_2} over the 1980-2005 period. The statistical difference is calculated on the
basis of $\bar{x} \pm 1.385 \sigma$, range which corresponds to 83.4% confidence intervals; the estimates from
two sources are statistically not different at the 95% confidence level if this range overlaps (Knol
et al., 2011). The magnitudes of the trend in Φ_{CO_2} over the 1980-2005 period for CanESM4.2
simulations with $\gamma_d = 0.4$ and 0.55 (0.328 ± 0.038 and 0.314 ± 0.034 ppm/10-years, respectively)
are, however, more than twice, and statistically different from the observation-based estimate
(0.142±0.08 ppm/10-years).

Overall, the CanESM4.2 simulation with $\gamma_d=0.25$ yields the amplitude of the globally-average
annual CO$_2$ cycle and its rate of increase over the 1980-2005 period that compares best with
observation-based estimates.

4.3. Historical simulations without LUC

Figure 10 and 11 show results from CanESM4.2 emissions-driven simulations for three different
strengths of the CO$_2$ fertilization effect that do not implement anthropogenic LUC over the
historical period and compare them to their corresponding simulations with LUC.

Figure 10a compares the simulated [CO$_2$]; as expected in the absence of anthropogenic LUC the
simulated [CO$_2$] is lower since LUC emissions do not contribute to increase in [CO$_2$]. The
difference in [CO$_2$] at the end of the simulation, in year 2005, between simulations with and
without LUC is 29.0, 23.6 and 19.0 ppm for $\gamma_d=0.25$, 0.40 and 0.55. The simulations with the
lowest strength of the CO$_2$ fertilization effect ($\gamma_d=0.25$) yield the largest difference because these
simulations also have the largest [CO₂] amongst their set of simulations with and without LUC. The CO₂ fertilization of the terrestrial biosphere implies that the effect of deforestation will be higher, because of reduced carbon uptake by deforested vegetation, if background [CO₂] is higher.

Figure 10b compares the simulated NPP from CanESM4.2 simulations with and without LUC. The increase in simulated NPP, regardless of the strength of the CO₂ fertilization effect, is lower over the historical period in simulations without LUC for two apparent reasons. First, the rate of increase of [CO₂] is itself lower and second, in the absence of LUC, there is no contribution from increasing crop area to NPP. Overall, the increase in NPP over the 1850-2005 period in simulations with LUC is a little more than twice that in simulations without LUC. Figure 10c and 10d compare the changes in global vegetation biomass and soil carbon mass, over the historical period, from simulations with and without LUC. As expected, in the absence of LUC, global vegetation biomass and soil carbon mass more or less show a continuous increase, associated with the increase in NPP which itself is due to the increase in [CO₂]. Consequently, in Figure 11a, the cumulative atmosphere-land CO₂ flux \tilde{F}_L in simulations without LUC also shows a more or less continuous increase over the historical period.

Finally, Figure 11b shows the diagnosed cumulative LUC emissions \tilde{E}_L calculated as the difference between cumulative \tilde{F}_L, following equation 10, from simulations with and without LUC. The calculated diagnosed \tilde{E}_L in this manner are equal to 95, 81 and 67 Pg C, over the 1850-2005 period, for $\gamma_d=0.25$, 0.40 and 0.55. The calculated diagnosed \tilde{E}_L are highest for $\gamma_d=0.25$.

associated with the highest background simulated [CO$_2$] in these simulations, as mentioned earlier. For comparison, LUC emissions estimated by Houghton (2008) for the period 1850-2005, based on a book-keeping approach, are 156 Pg C but these estimates are generally believed to be ±50% uncertain (see Figure 1 of Ramankutty et al. (2007)). LUC emissions, when calculated by differencing F_i from simulations with and without LUC, also depend on the type of simulations performed - in particular, if simulations are driven with specified CO$_2$ concentrations or specified CO$_2$ emissions. Had our simulations been concentration-driven, in contrast to being emissions driven, then both with and without LUC simulations would have experienced the same specified observed CO$_2$ concentration over the historical period and the simulated LUC emissions would have been higher. Arora and Boer (2010) found that diagnosed LUC emissions in the first version of the Canadian Earth System Model (CanESM1) increased from 71 Pg C (for emissions-driven simulations) to 124 Pg C (for concentration-driven simulations). Concentration-driven simulations, however, cannot be evaluated against observation-based amplitude of the annual CO$_2$ cycle and its increase over the historical period. These simulations either ignore the annual cycle of CO$_2$ (our specified-CO$_2$ case) or use a specified amplitude of the CO$_2$ annual cycle (our relaxed-CO$_2$ case).

5.0. Discussion and conclusions

This study evaluates the ability of four observation-based determinants of the global carbon cycle and the historical carbon budget to constrain the parameterization of photosynthesis down-regulation, which directly determines the strength of the CO$_2$ fertilization effect, over the historical period 1850-2005. The key parameter that controls photosynthesis down-regulation...
strength of the CO$_2$ fertilization effect in CTEM, γ_d, was varied in the latest version of CCCma’s earth system model CanESM4.2. Comparing simulated and observation-based estimates of 1) globally-averaged atmospheric CO$_2$ concentration, 2) cumulative atmosphere-land CO$_2$ flux, and 3) atmosphere-land CO$_2$ flux for the decades of 1960s, 1970s, 1980s, 1990s and 2000s, it is found that the CanESM4.2 version with $\gamma_d=0.40$ yields the best comparison.

The evaluation of CTEM within the framework of CanESM4.2 presented here is based on an emergent model property at the global scale and may be considered as a top-down approach of model evaluation. In contrast, the bottom-up approaches of model evaluation typically evaluate model results and processes against observations of primary atmosphere-land carbon and/or nitrogen fluxes and sizes of the vegetation, litter and soil carbon/nitrogen pools (e.g. Zaehle et al., 2014). Indeed, CTEM has been evaluated at point (e.g. Arora and Boer, 2005; Melton et al., 2015), regional (e.g. Peng et al., 2014; Garnaud et al., 2014) and global (e.g. Arora and Boer, 2010; Melton and Arora, 2014) scales in a number of studies when driven with observation-based reanalysis data. Both top-down and bottom-up approaches of model evaluation are complimentary to each other and allow to evaluate different aspects of the model at different spatial and temporal scales.

For the top-down approach used here, CanESM4.2 simulates globally-averaged near-surface [CO$_2$] of 400, 381 and 368 ppm for $\gamma_d=0.25$, 0.40 and 0.55, respectively, compared to the observation-based estimate of 379 ppm for year 2005. The cumulative atmosphere-land CO$_2$ flux of 18 Pg C for the period 1850-2005 for $\gamma_d=0.40$ lies within the range of the observation-based estimate of -11±47 Pg C in Figure 4b, and so do the average atmosphere-land CO$_2$ flux for the
decades of 1960s through to 2000s in Figure 4a when compared to observation-based estimates from Le Quéré et al. (2015). \(\gamma_d = 0.25 \) and 0.55 yield average atmosphere-land CO\(_2\) flux for the decades of 1960s through to 2000s that are lower and higher, respectively, than the observation-based estimates from Le Quéré et al. (2015). The only determinant against which \(\gamma_d = 0.40 \) does not yield the best comparison with observation-based estimates is the amplitude of the globally-averaged annual CO\(_2\) cycle and its increase over the 1980 to 2005 period. For this determinant, \(\gamma_d = 0.25 \) seems to yield the best comparison (Figure 9). The value of \(\gamma_d = 0.40 \) that yields best overall comparison with observation-based determinants of the global carbon cycle and the historical carbon budget is also broadly consistent with Arora et al. (2009) who derived a value of \(\gamma_d = 0.46 \) based on results from FACE studies (as mentioned in Section 2.2.2).

The caveat with the analyses presented here, or for any model for that matter, is that the strength of the terrestrial CO\(_2\) fertilization effect is dependent on the processes included in the model and the parameter values associated with them. The primary example of this is the adjustment to the humification factor in CTEM4.2, which leads to reduction in the global soil carbon amount as anthropogenic LUC becomes significant towards the mid-20\(^{th}\) Century. This response of soil carbon was not present in the model’s configuration of CTEM and historical simulations made with CanESM2. The representation of soil carbon loss, in response to anthropogenic LUC in CanESM4.2, implies that a stronger CO\(_2\) fertilization effect (or weaker photosynthesis down-regulation) should be required to reproduce realistic atmosphere-land CO\(_2\) flux over the historical period and this was found to be the case in Figure 4a. Despite this dependence on processes included in the model, the response of the land carbon cycle, over the historical period, to the two primary forcings of increased [CO\(_2\)] and anthropogenic land use change must be sufficiently
realistic in the model to satisfy all the four determinants of the global carbon cycle and the historical global carbon budget.

The simulated loss in soil carbon in response to anthropogenic LUC over the historical period may also be assessed against observation-based estimates from Wei et al. (2014). Using data from 453 sites that were converted from forest to agricultural land, Wei et al. (2014) find that the soil organic carbon stocks decreased by an average of 43.1 ± 1.1% for all sites. Based on the HYDE v3.1 data set from which the changes in crop area are derived (Hurtt et al., 2011), LUC as implemented in CanESM4.2 yields an increase in crop area from about 5 million km² in 1850 to about 15 million km² in 2005. Assuming an initial soil carbon amount of 10 Kg C/m² (see Figure 2c of Melton and Arora (2014)) and an average 40% decrease in soil carbon amount, based on Wei et al. (2014), implies that the increase in crop area of about 10 million km² over the historical period has likely yielded a global soil organic carbon loss of 40 Pg C. The loss in soil carbon in Figure 5a is simulated to 18 Pg C for CanESM4.2 simulation with $\gamma_d = 0.40$, the simulation that yield best comparison with observation-based determinants of the global carbon cycle and the historical carbon budget. This loss of 18 Pg C is expected to be less than the 40 Pg C because the model estimates also include an increase associated with the increase in NPP due to the CO₂ fertilization effect from non-crop areas. The effect of LUC on global soil carbon loss may also be estimated by differencing global soil carbon amounts from simulations with and without LUC from Figure 10d at the end of the simulation in year 2005. For CanESM4.2 simulation with $\gamma_d = 0.40$, this amounts to around 50 Pg C. Both these estimates of soil carbon loss are broadly consistent with the back-of-the-envelope calculation of 40 Pg C soil carbon loss, based on Wei et
al. (2014) estimates, indicating that the soil carbon loss simulated in response to anthropogenic LUC over the historical period is not grossly over or underestimated.

The CanESM4.2 simulation with $\gamma_d=0.40$, however, fails to satisfy the rate of increase of the amplitude of the globally-averaged annual CO$_2$ cycle over the 1980-2005 period implying that there are still limitations in the model structure and/or parameter values. Of course, the fact that the amplitude of the globally-averaged annual CO$_2$ cycle is also affected by the atmosphere-ocean CO$_2$ fluxes makes it more difficult to attribute the changes in the amplitude of the globally-averaged annual CO$_2$ cycle solely to atmosphere-land CO$_2$ fluxes. Additionally, the increase in crop area as well as crop yield per unit area over the historical period have been suggested by Zeng et al. (2014) to contribute towards the observed increase in the amplitude of annual CO$_2$ cycle. Based on their sensitivity tests, Zeng et al. (2014) attribute 45, 29 and 26 percent of the observed increase in the seasonal-cycle amplitude of the CO$_2$ cycle to LUC, climate variability and change (including factors such as the lengthening of the growing season) and increased productivity due to CO$_2$ fertilization, respectively. Comparison of the rate of increase of NPP in CanESM4.2 experiments with and without LUC (Figure 10b), as a measure of increase in the strength of the CO$_2$ fertilization effect, suggests that the contribution of anthropogenic LUC to the increase in the seasonal-cycle amplitude is 52%, which is broadly consistent with the 45% value obtained by Zeng et al. (2014).

While CanESM4.2 simulation with $\gamma_d=0.40$ is able to simulate a realistic rate of increase of [CO$_2$] over the period 1960 to 2005, the modelled atmosphere-ocean CO$_2$ fluxes for this and the CanESM2 version are lower than observational estimates of this quantity (Figure 8). This implies
that if the modelled atmosphere-ocean CO₂ flux were to increase and become more consistent
with observation-based estimates then the modelled atmosphere-land CO₂ flux must decrease to
still be able to yield sufficiently realistic rate of increase of [CO₂]. This implies that the strength
of the terrestrial CO₂ fertilization effect should likely be somewhat lower than what is obtained by
γ_d=0.40 or the simulated atmosphere-land CO₂ flux is higher because of some other reason, most
likely lower LUC emissions. Indeed, the required decrease in modelled atmosphere-land CO₂ flux
is consistent with the fact that the modelled LUC emissions for γ_d=0.40 (81 Pg C) are about half
the estimate from Houghton (2008) (156 Pg C) with the caveat, of course, that Houghton’s
estimates themselves have an uncertainty of roughly ±50%. The LUC module of CTEM currently
only accounts for changes in crop area and does not take into account changes associated with
pasture area given their ambiguous definition (pasture may or may not be grasslands). The model
also does not take into account wood harvesting which amongst other uses is also used as a
biofuel. Treatment of these additional processes will increase modelled LUC emissions.

Although the CanESM4.2 simulation with γ_d=0.40 satisfies three out of four constraints placed
by the chosen determinants of the global carbon cycle and the historical carbon budget, and also
simulates reasonable soil carbon loss in response to anthropogenic LUC, the model now yields
the highest land carbon uptake, in the 1pcICO21pcCO2 experiment, amongst the CMIP5 models
that were compared by Arora et al. (2013) as seen in Figure 2. Of course, the 1pcICO2 experiment
is in no way indicative of models’ performance over the historical period, nor is being an outlier
amongst CMIP5 models a conclusive evaluation of CanESM4.2’s land carbon uptake. However,
it remains it is quite possible that the chosen determinants of the global carbon cycle and the
historical carbon budget are not able to constrain the model sufficiently, given the especially large
uncertainty associated with LUC emissions. Nevertheless, these observation-based constraints of the carbon cycle and historical carbon budget are essentially the only means to evaluate carbon cycle aspects of the ESMs at the global scale including the strength of the terrestrial CO₂ fertilization effect. In the near future, availability of model output from the sixth phase of CMIP (CMIP6) will allow a comparison of the simulated aspects of the global carbon cycle and the historical carbon budget from ESMs to observations-based estimates for the 1850-2014 period. These data will allow a comparison of the rate of increase of the amplitude of globally-averaged surface [CO₂] in models with observation-based estimates over a longer period. This should help better constrain the strength of the terrestrial CO₂ fertilization effect, as it is represented in models, in a somewhat more robust manner.

6.0 Source code and data availability

Source code for the complete CanESM4.2 model is an extremely complex set of FORTRAN subroutines, with C preprocessor (CPP) directives, that reside in CCCma libraries. Unix shell scripts process the model code for compilation based on CPP directives and several other switches (e.g. those related to free-CO₂, specified-CO₂, and relaxed-CO₂ settings). As such, it is extremely difficult to make the full model code available. However, selected model subroutines related to specific physical and biogeochemical processes can be made available by either author (vivek.arora@canada.ca, john.scinocca@canada.ca) upon agreeing to Environment and Climate Change Canada’s software licensing agreement available at http://collaboration.cmc.ec.gc.ca/science/rpn.comm/license.html. Data used to produce plots and figures can be obtained from the first author (vivek.arora@canada.ca).
Copyright statement

The works published in this journal are distributed under the Creative Commons Attribution 3.0 License. This license does not affect this Crown copyright work, which is re-usable under the Open Government License (OGL). The Creative Commons Attribution 3.0 License and the OGL are interoperable and do not conflict with, reduce or limit each other. ©Crown copyright 2015.

Acknowledgements

We would like to thank Joe Melton and Neil Swart for providing comments on an earlier version of this paper. We also thank the three anonymous reviewers for their constructive and helpful comments.
References

T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B.,
Raupach, M. R., Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U.,
Schwinger, J., Séférian, R., Segers, C., Steinhoff, T., Stocker, B. D., Sutton, A. J.,
Takahashi, T., Tilbrook, B., van der Werf, G. R., Viovy, N., Wang, Y.-P., Wanninkhof,

net primary productivity to elevated atmospheric carbon dioxide, Annual Reviews of
Ecology and Systematics, 26, 473-503.

Medlyn, B. E., F. -W. Badeck, D. G. De Pury, C. V. M. Barton, M. Broadmeadow, R. Ceulemans,
P. De Angelis, M. Forstreuter, M. E. Jach, S. Kellomäki, E. Laitat, M. Marek, S. Philippot,
A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P. Robertz, K. Wang, P. G.
Jost (1999): Effects of elevated [CO2] on photosynthesis in European forest species: a

surface schemes: implications for estimation of the terrestrial carbon sink, Biogeosciences,

surface schemes: implications for estimation of the terrestrial carbon sink, Biogeosciences,

respiration exerts a strong control on net ecosystem productivity in seasonally dry

climate impact in the Canadian Global Climate Model, Atmos. Chem. Phys. Discuss., 15,

(2014) Climate and atmospheric drivers of historical terrestrial carbon uptake in the
province of British Columbia, Canada, Biogeosciences, 11, 635-649, doi:10.5194/bg-11-
635-2014.

Table 1: Summary of simulations performed for this study and the forcings used.

<table>
<thead>
<tr>
<th>Simulation details</th>
<th>1pctCO2</th>
<th>esmhistorical</th>
<th>esmhistorical_noluc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation details</td>
<td>1% per year increasing CO₂ simulation</td>
<td>1850-2005 historical simulation based on CMIP5 protocol</td>
<td>1850-2005 historical simulation based on CMIP5 protocol, but with no anthropogenic land use change</td>
</tr>
<tr>
<td>Purpose</td>
<td>To allow comparison of CanESM4.2 with CMIP5 models especially in terms of its land carbon uptake</td>
<td>To compare simulated aspects of the global carbon cycle and historical carbon budget with observation-based estimates</td>
<td>To diagnose LUC emissions by differencing atmosphere-land CO₂ flux between historical simulations with and without LUC.</td>
</tr>
<tr>
<td>Length</td>
<td>140 years</td>
<td>156 years</td>
<td></td>
</tr>
<tr>
<td>CO₂ forcing</td>
<td>285 ppm at the start of the simulation and 1140 ppm after 140 years.</td>
<td>Historical CO₂ forcing</td>
<td></td>
</tr>
<tr>
<td>Land cover forcing</td>
<td>Land cover corresponds to its 1850 state</td>
<td>Land cover evolution is based on increase in crop area over the historical period</td>
<td>Land cover corresponds to its 1850 state</td>
</tr>
<tr>
<td>Non-CO₂ greenhouse gases forcing</td>
<td>Concentration of non-CO₂ GHGs is specified at their 1850 levels.</td>
<td>Concentration of non-CO₂ GHGs is specified and evolves over the historical period based on the CMIP5 protocol</td>
<td></td>
</tr>
<tr>
<td>Aerosols forcing</td>
<td>Emissions of aerosols and their precursors are specified at their 1850 levels.</td>
<td>Emissions of aerosols and their precursors are specified and evolve over the historical period based on the CMIP5 protocol</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: The behaviour of terrestrial photosynthesis down-regulation scalar $\xi(C)$ (equation 124) for $\gamma_p=0.95$ and values of γ_d equal to 0.25, 0.4 and 0.55 that are used in CanESM4.2 simulations.
Figure 2: Components of the carbon budget equation (8) that make up cumulative diagnosed emissions based on results from the fully-coupled 1pctCO2 experiment. Results shown are from eight CMIP5 models that participated in the Arora et al. (2013) study and from three CanESM4.2 simulations (shown in darker colours) for three different strengths of the terrestrial CO$_2$ fertilization effect.
Figure 3: CanESM2 (panel a) and CanESM4.2 (panel b, $\gamma_d=0.40$) precipitation anomalies compared to the observation-based estimates from CPC Merged Analysis of Precipitation (CMAP) based on Xie and Arkin (1997) averaged over the 1979–1998 period.
Figure 4: Atmosphere-land CO₂ flux (F_L) (panel a) and its cumulative values \overline{F}_L (panel b) from CanESM2 and the three CanESM4.2 historical 1850-2005 simulations for different strengths of the terrestrial CO₂ fertilization effect. In panel (a) the observation-based estimates of F_L and their uncertainty, show via boxes, for the decades of 1960, 1970, 1980, 1990 and 2000 are reproduced from Le Quéré et al. (2015). The bold lines in panel (a) are the 10-year moving averages of the annual F_L values which are shown in light colours. The results from CanESM2 and CanESM4.2 are the average of the two ensemble members.
Figure 5: Change in and absolute values of global soil carbon and vegetation biomass amounts from CanESM2 and the three CanESM4.2 historical 1850-2005 simulations with different strengths of the terrestrial CO₂ fertilization effect. The results shown in all panels are the average of the two ensemble members.
Figure 6: Absolute values of (panel a), and change in (panel b), net primary productivity (NPP) from CanESM2 and the three CanESM4.2 historical 1850-2005 simulations with different strengths of the terrestrial CO$_2$ fertilization effect. The thin lines show the ensemble-mean based on results from the two ensemble members and the bold lines are their 10-year moving averages.
Figure 7: Simulated globally-averaged surface atmospheric CO₂ concentration from CanESM2 and the three CanESM4.2 historical 1850-2005 simulations with different strengths of the terrestrial CO₂ fertilization effect. The observation-based concentration is shown in black. Also shown is the CO₂ concentration of 284.6 ppm used in CanESM4.2’s pre-industrial simulation with “specified” CO₂ in the relaxed-CO₂ configuration and the simulated concentration from the pre-industrial CanESM4.2 simulation with interactively determined CO₂.
Figure 8: Atmosphere-ocean CO2 flux (F_O) (panel a) and its cumulative values \overline{F}_O (panel b) from CanESM2 and the three CanESM4.2 historical 1850-2005 simulations for three different strengths of the terrestrial CO2 fertilization effect. In panel (a) the observation-based estimates of F_O and their uncertainty, show via boxes, for the decades of 1960, 1970, 1980, 1990 and 2000 are reproduced from Le Quéré et al. (2015). The bold lines in panel (a) are the 10-year moving averages of the annual F_I values which are shown in light colours. The results from CanESM2 and CanESM4.2 are the average of the two ensemble members.
Figure 9: The annual cycle of trend-adjusted globally-averaged near-surface monthly [CO₂] anomalies from CanESM2, the versions of CanESM4.2 for three different strengths of the CO₂ fertilization effect and observation-based estimates for the 1991-2000 period (panel a). Panel (b) shows the time series of the amplitude of the annual cycle of the trend adjusted globally-averaged near-surface monthly [CO₂] anomalies for corresponding model and observation-based estimates. The bold lines are 10-year moving averages and the thin lines for model results are the average of results from two ensemble members.
Figure 10: Comparison of CanESM4.2 simulations with and without implementation of anthropogenic land use change over the historical period for three different strengths of the terrestrial CO₂ fertilization effect: a) Globally-averaged annual surface atmospheric CO₂ concentration, b) net primary productivity, c) global vegetation biomass, and c) global soil carbon mass. All lines are the average of results from two ensemble members. Additionally, in panel (b) the bold lines are the 10-year moving averages.
Figure 11: Comparison of simulated cumulative atmosphere-land CO$_2$ flux from CanESM4.2 simulations with and without implementation of anthropogenic land use change over the historical period for three different strengths of the terrestrial CO$_2$ fertilization (panel a). Panel (b) shows the cumulative diagnosed LUC emissions calculated using equation (10) as the difference between cumulative atmosphere-land CO$_2$ flux from simulations with and without LUC shown in panel (a). All lines are the average of results from two ensemble members.