Dear Dr. Jason Williams,

We are most grateful to you and the reviewers for the helpful comments on the original version of our manuscript. We have taken all the comments into account and submit a revised version of our paper here. Please find attached the comments of the referees and our replies (available also on-line) together with the revised manuscript with highlighted modifications.

Please note:

- Figure 1 and Figure 22 in the original manuscript have been deleted according to the suggestions by referee #1.

- Many equations are highlighted. However, the modifications are just to be modified from “italic letters” to “straight letters” according to the suggestions by referee #3.

- Figure 2, Figure 8, Figures 12a and 12b have been modified according to the suggestions by referees, however they are not highlighted due to some technical issues with “latexdiff.” These modifications are all described in the following replies.

- We add a section “Appendix; Glossary” after the section “7. Conclusions”, where we explain the several terminologies of the GA optimization. The terms from the glossary are written in italics in the text.

- A lack of information, e.g. a name of journal, volumes, pages, etc. is added in the section “References”. However they are not highlighted due to some technical issues with “latexdiff.”

Thank you very much again for your guiding the editorial process of our manuscript. We are looking forward to hearing from you.

Yours sincerely,
Hiroshi Yamashita (on behalf of all co-authors)
We are most grateful to the referee #1 for the very helpful and encouraging comments on the original version of our manuscript. Here are our replies:

- **Summary:** This paper describes a new model which will eventually be used in calculating the climate impact of aircraft routes. There are several different parts to the model, which are detailed in the paper, including generating the route either by calculating a great circle or time-optimal route (the two constraints which are described and tested here), calculating the fuel use along the route, and the emissions for example of water vapour and NOx along the route. A thorough assessment is made of the model and its ability to generate the routes and calculate the various parameters; the model performs well and appears to be fit for purpose. The paper is generally clear and the different components of the model are well-described. My only major concern regards the vertical flight profiles, please see the major comment below. I recommend the paper for publication after revision.

Reply: We thank the referee #1 for these positive comments. We will reply to your major concern regarding the vertical flight profiles in the “General comment” section.

- **General comment:** In the calculation of the time-optimal flights, the flight altitude is allowed to vary freely between FL290 and FL410. Some of the resulting time-optimal flight profiles display significant altitude changes during the flight, as shown in Figure 14 (b), where the flight altitude profile along the flight is ‘m’ shaped (i.e. increases, decreases, increases and then decreases again). This is in contrast to the familiar stepped profiles, where the aircraft altitude increases are done as step climbs when enough fuel has been burned off, or alternatively a gradual increase in height to a maximum cruising altitude, followed by a descent. It is difficult to see how (or why) an aircraft would do this ‘m’ profile in real life, given air traffic constraints, for example. Given how unusual these profiles are, some justification or explanation for why these profiles are allowed in this study should be given, as well as a comment on how realistic it would be for an aircraft to fly this profile.

Reply: In this paper, we have confirmed that the 'm' shaped flight profile effectively takes advantages of the wind fields and leads to the time-optimal solution (please see on page 20 line 647 – 657).

As the referee #1 pointed out, AirTraf allows aircraft to vary flight altitudes freely between FL290 and FL410. Here, the AirTraf submodel is used to investigate an optimization strategy of aircraft routing for minimizing the climate impact of aircraft emissions and to show its mitigation gain for the future. The regions with high climate impacts, e.g. regions where contrail form, are often very shallow (vertically). In order to investigate how such regions can be avoided more flexibility in the routing options is required. Hence, in this approach it is necessary for aircraft to have a high flexibility for flight profiles to explore widely the possibility of minimizing climate impact by aircraft routing.

If the optimization strategy is found, it will be proven by a more realistic air traffic simulation model, considering realistic air traffic constraints. The “m” shaped flight profile will be modified to adapt to the constraints (probably stepped profiles). The development of the realistic air traffic simulation model is addressed by research groups of DLR-Hamburg and DLR-Braunschweig in the DLR Project WeCare.

We will add this information in the revised manuscript: on page 14 line 472, “Here x_1 to x_{11} indicate altitude values. Note that these values vary freely between FL290 and FL410 to explore widely the possibility of minimizing climate impact by aircraft routing.” On page 14 line 466, “...were used (Fig. 7, top). Here x_7 to x_11 indicate altitude values.” This modification is related to our reply to the comment “p 14, l 461 and 472” of referee #3.

Further, we will add the text: on page 19 line 635, “…while that for west-bound showed large altitude changes, i.e. it climbed, descended, climbed and then descended again.”

- **Minor comments:**
L61 – the Spichtinger et al (2003) study referenced by the authors analyses the vertical distribution of ice-supersaturated regions. The mean length of 150 km is from Gierens and Spichtinger (2000), as stated in the Spichtinger paper.

Reply: Thank you very much. We will refer the paper in the revised manuscript: on page 3 line 61, “...extend a few hundred meters vertically and around about 150 km horizontally along a flight path (with a standard deviation of 250 km) with a large spatial and temporal variability (Gierens et al., 2000, Spichtinger et al., 2003).” This modification is related to our reply to the comment “p 3, l 61” of referee #3. We will also add the paper to References in the revised manuscript: on page 27, “Gierens, K., and Spichtinger, P.: On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere, Annales Geophysicae, vol. 18, No. 4, 499–504, 2000.”

(2) p3, final paragraph (L84 – 99). As I understand it, the aim of the study presented in the paper is to introduce, describe and validate the AirTraf model, not to investigate ‘how much the climate impact … can be reduced by aircraft routing’ – that is a separate study which would use AirTraf. This paragraph is therefore confusing to the reader, and there is extra detail here which is not all necessary to understand this paper. Please rephrase the aims of the study to be consistent with what is presented in the paper, remove unnecessary detail about future studies and I also suggest removing Figure 1 which is not needed here.

Reply: As the referee #1 noted, this paragraph is confusing. On the other hand, we think that the information of this paragraph is helpful for readers to understand the motivation and background for the AirTraf development. To improve the manuscript, we will remove Fig. 1 and rephrase the aims of this study: on page 3, final paragraph (line 84 – 99),

“This paper presents the new submodel AirTraf (version 1.0, Yamashita et al., 2015) that performs global air traffic simulations coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). This paper technically describes AirTraf and validates the various components for simple aircraft routings: great circle and time-optimal routings. Eventually, we are aiming at an optimal routing for climate impact reduction. The development described in this paper is a prerequisite for the investigation of climate-optimized routings. The research road map for our study is as follows (Grewe et al., 2014b):- the first step was to investigate…”. This modification is related to our reply to the comment “p 3, l 85–86” of referee #3.

(3) p4 L121, p5 L159 and caption of Figure 3 – “one-day flight plan”. It is not clear what you mean by this phrase (it sounds like you are referring to a single flight on a single day, rather than many flights on a single day). It would be helpful to give a short description the first time you use the phrase.

Reply: We will add the text in the revised manuscript: on page 4 line 121, “As shown in Fig. 3, the one-day flight plan, which includes many flight schedules of a single day, is decomposed for a number of processing elements (PEs).”

(4) p4 L126 – “AirTraf continuously treats overnight flights”. What does this mean?

Reply: Some international (long-distance) flights fly over two days. For example, NH215 departs at MUC on 21:35 and arrives at Tokyo on 15:50 + 1day. AirTraf can simulate the flight correctly. We will rewrite the text in the revised manuscript: on page 4 line 125, “Thus, naturally both short-term and long-term simulations consider can take into account the local weather conditions for every flight in EMAC (AirTraf continues to treat overnight flights with arrival on the next day).”

Further, from the referee #3 comment on “p 4, l 126 – 127”, the text of the sentence “(AirTraf continuously treats overnight flights with arrival on the next day)” will be moved from the current position to an appropriate position in the manuscript, which is related logically: finally, on page 4 line 125, “Thus, naturally both short-term and long-term simulations consider can take into account the local weather conditions for every
flight in EMAC (AirTraf continuously treats overnight flights with arrival on the next day); and on page 7 line 223, “…the Estimated Time Over (ETO, Table .2) (AirTraf continuously treats overnight flights with arrival on the next day).”

• (5) p7 L201 – “local weather conditions provided by EMAC”. Specifically, the wind field is used?

Reply: Specifically, temperature and wind fields are used here to calculate a flight trajectory. On pages 6 – 8 in section 2.4, we describe the overview of calculation procedures briefly. Thus, we describe on page 7 line 201 as, “For all routing options, local weather conditions provided by EMAC at t = 1 (i.e. at the departure day and time of the aircraft) are used to calculate the flight trajectory.”

In the following section, this trajectory calculation method is described in detail. For general circle routing option, on page 12 line 375 in section 3.1.1, “Temperature T_i and three dimensional wind components (u, v, w) of the i^{th} waypoint are available from the EMAC model fields at t = 1.” For the time-optimal routing option, on page 15 line 487, “… where d_i and V_{ground,i} are calculated by Eqs. (23) and (25), respectively (V_{TAS,i} and V_{wind,i} are calculated as described in Sect. 3.1.1).”

• (6) p8 L260 – You assume that the sum of the alternate, reserve and extra fuel is 3% of the total fuel. Is there any justification for this number? I acknowledge that this kind of data is almost impossible to get from airlines, but have other studies used a similar number, for instance?

Reply: According to general fuel planning regulations, e.g. JAR-OPS 1.255\(^{[1]}\), an additional 3% of the total fuel is considered as contingency fuel in the fuel planning assuming an en-route alternate aerodrome can be found on any mission whereas alternate, final reserve, additional and extra fuel are neglected as their contribution to the overall fuel amount is very small on long-haul flights. Although the fuel planning process of Air Traf, which is described on page 8 – 9 in section 2.5, is not exactly the same as JAR-OPS 1.255, the 3% as assumption (calculated by Eq. (2) on page 8) as the entire reserve fuel is not far from reality.

Further, we will delete the sentence related to this matter: on page 8 line 265, “A refined fuel estimation will be employed for calculating \(m_{opt} \) in future.” will be deleted in the revised manuscript, since the sentence is not necessary for our argument here.

\[^{[1]}\] The Joint Aviation Authorities Committee, “Joint Aviation Requirements: JAR-OPS 1, Commercial Air Transportation (Aeroplanes)”, 1-D-4.

• (7) p20 L647 – 656. The explanation of why the flight altitude profiles are optimal is that the flight changes altitude to benefit from changes to the true airspeed and to increase its tailwind or reduce its headwind. The argument is currently not well supported by the figures (Figure 16, and S5 and S6) which show the altitude distribution of the true airspeed and tailwind indicator. The variations in these quantities at flight altitude are hard to see, since the vertical scale on the plots is 0 – 15 km. The case might be made much clearer simply by re-plotting these figures with a limited altitude range (i.e. only plot the range of altitudes relevant to the aircraft), and re-scaling the colour bar.

Reply: We think that the referee’s suggestion is right. On this matter, we have a reason why we used the vertical scale on the plots as 0 – 15 km. In Figs. 16, S5 and S6, we would like to show clearly that we start with the trajectory at FL290 and concentrate on the cruise mission only. In fact, we optimize flight trajectories within the general cruise flight altitude of commercial aircraft in [FL290, FL410], as shown in Fig. 7 (top), and the altitude of the airports are located at FL290 (not ground at 0 ft). We have seen situations many times that people assumed the start/end point of the time-optimal flight trajectories (in Fig. 16) as “the ground at 0 ft,” when we plotted the same results in the range of altitude relevant to the aircraft. To avoid this situation, we plotted these figures in 0 – 15 km including the ground (just like Figs. 9, 14 and 18).

• (8) p22 L727 – 729 and Figure 22. “The maps show the time-optimal case has low values of the fuel use”
(compared to the great circle case). The great circle case at FL290 clearly has a lower fuel use, as shown in Table 11. However, I do not think this is clear from Figure 22; the flights in the time optimal case are spread over a larger area than in the great circle case therefore it is difficult to assess objectively whether the fuel use is higher or lower in the time-optimal case. I do not think that this figure adds any weight to your argument. I suggest removing it.

Reply: As the referee #1 suggested, we will remove Fig. 22 in the revised manuscript. In addition, we will remove the sentences related to Fig. 22: on page 22 line 726 – 729, “To confirm this intuitively, Fig. 22 shows the global distribution maps of the fuel use (in kg(fuel)/box – 1s – 1 hour averages) for these cases. The maps show that the time-optimal case has low values of the fuel use. On the other hand, Table 11 indicates that the fuel use decreased…”.

- (9) p25 L824. I cannot find AirTraf or any status information for it on the list of submodels on the MESSy website (accessed on 24/02/2016).

Reply: On the basis of the MESSy Consortium Steering Group Policy, a status information for a new submodel is generally provided on the MESSy website after its publication. Nevertheless, we have provided the status information for AirTraf on the website. In the revised manuscript, we will rephrase the sentence related to this matter: on page 25 line 824, “The status information for AirTraf including the licence conditions is will be available at the website.”

- (10) Figure 15, 16, S4 – S6 – Please add units to the colour bar and/or text.

Reply: Thank you very much. We will add units in the captions for Figs. 15, 16, S3 – S6. In Figs. 15, S3 and S4, we will add the unit in the captions as, “The contours show the zonal wind speed (u in ms\(^{-1}\)).” In Figs. 16, S5 and S6, we will add the unit in the captions as, “Altitude distributions of the true air speed \(V_{\text{TAS}}\) in ms\(^{-1}\) (a and b).” The wind indicator is dimensionless quantity.

- (11) Table 8. It is difficult to compare the flight time for the time-optimal with the great circle at different altitudes, since the mean flight altitude of the time-optimal flights is given in m and the altitude of the great circle flights in feet. Please add either the mean flight altitude in feet for the time-optimal flights, or the flight altitude in m for the great circle flights to aid the comparison.

Reply: Thank you very much. In the revised manuscript, we will add the mean flight altitude in feet for the time-optimal flights on column 6 in Table 8: “Mean flight altitude h, m (in ft); 8,841 (29,005); 8,839 (29,000); 8,839 (29,000); 10,002 (32,815); 10,829 (35,527); 9,311 (30,546).”

- (12) Table 11, Caption. ‘sum of flight time, fuel use, NO\(_x\) and H\(_2\)O emissions...’. This implies that the table shows the quantity flight time + fuel use + NO\(_x\) + H\(_2\)O, when in fact they are displayed separately. Please rephrase.

Reply: Thank you very much. In the revised manuscript, we will remove the word “Sum of” from the caption: on page 59 in Table 11, we will rewrite the caption as “Flight time, fuel use, NO\(_x\) and H\(_2\)O emissions for the time-optimal and the great circle cases...”.
We are most grateful to the referee #2 for the very helpful and encouraging comments on the original version of our manuscript. Here are our replies:

- This paper presents a development of “module” adapted to the climate chemistry model ECHAM5/MESSY in order to calculate the climate impact of aircraft routes. Only one part of the module needed has been included in the model and presented in this paper: the part generating the route and only in the case of great circle (simple) or time-optimal route (optimisation). From these two routing the module calculates fuel use, and some emissions (H_2O and NO_x only), these parameter are assessed with real data. The module is tested over one winter day data over the North Atlantic corridor. In its present form I unfortunately cannot recommend the publication of the paper in Geoscientific Model Development for several reasons that I will be listing. I would strongly recommend the editor to request a severe revision before publication. The time-optimal calculation module may be of interest for modellers. The optimisation module description as well as the size of the population to be included in the optimisation to converge toward optimal time may be presented in a revised paper.

Reply: We are grateful to the referee #2 for the critical comments and useful suggestions that have helped us to improve our manuscript. As indicated in the responses that follow, we have addressed all the comments and suggestions. We now state in the introduction that this development is a prerequisite for the investigation of climate-optimal routings. So that the motivation for this development is clear. And we are deleting this overall objective from other text passages, since we agree that they are misleading. We will reply to this point in the following (1). As the referee #2 noted, the descriptions of the time-optimal calculation module and the population sizing are included in the revised manuscript, as originally described.

- (1) My first problem is the presentation of the subject within most of the article (title, abstract and even structure of the manuscript). The focus seems to be in the “optimal routing for climate impact reduction” when you check the paper, however the reader is disappointed as the presented module is not doing that at all – only optimising for travel time. The manuscript needs to be reshaped completely to acknowledge that fact.

Reply: As the referee #2 pointed out, the subject of this paper seems to be confusing. We should make clear that this paper introduces AirTraf submodel in its basic version, technically describes and validates the various components for first, simple aircraft routings (great circle and time-optimal). Eventually, we are aiming at an optimal routing for climate impact reduction. This will be a separate study, which requires a couple of developments beforehand, amongst which the present study is one of them. Here, we would like to make clear that the final purpose of the AirTraf is not to find “fastest routes.” For this, an Earth System Model (ESM) is not necessary. There are even better tools to answer this question. However, to find climate-optimal routes, the global air traffic simulation model coupled to the ESM, i.e. AirTraf submodel, is needed. And of course it has to be described and validated. The validation refers to standard aircraft applications in this paper, such great circle and time-optimal calculations.

In the revised manuscript, we will revise the title, abstract, introduction and conclusion to be consistent with what is presented in the paper as follows: the title will be revised as, “Climate Assessment Platform of Different Aircraft Routing Strategies Air traffic simulation” in the Chemistry-Climate Model EMAC 2.41: AirTraf 1.0”.

On page 1, line 9 in Abstract, the text will be revised as, “This study introduces AirTraf (version 1.0) for climate impact evaluations that performs global air traffic simulations on long time scales, including effects of local weather conditions on the emissions.”

On page 3, final paragraph (line 84 – 87), “This study aims to investigate how much the climate impact of aircraft emissions can be reduced by aircraft routing. Here, we present a new assessment platform AirTraf (version 1.0, Yamashita et al., 2015) that is a global air traffic submodel coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). Figure 1 shows the research road map for this study (Grewe et al., 2014b). This paper presents the new submodel AirTraf (version 1.0, Yamashita et al., 2015) that performs
global air traffic simulations coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). This paper technically describes AirTraf and validates the various components for simple aircraft routings: great circle and time-optimal routings. Eventually, we are aiming at an optimal routing for climate impact reduction. The development described in this paper is a prerequisite for the investigation of climate-optimized routings. The research road map for our study is as follows (Grewe et al., 2014b):- The first step was to investigate...

On page 26, final paragraph (line 870 – 873), “The fundamental framework of AirTraf has been developed to perform fairly realistic air traffic simulations. AirTraf 1.0 is sufficient to investigate a reduction potential of aircraft routings on air traffic climate impacts is ready for more complex routing tasks. AirTraf is coupled with various submodels of EMAC to evaluate the impacts, and Objective functions corresponding to other routing options will be integrated soon, and AirTraf will be coupled with various submodels of EMAC to evaluate air traffic climate impacts.”

(2) I am also extremely disappointed in the fact that a part of the paper is dedicated in presenting and comparing “great circle routing” calculations. This is nothing new, and no advance in modelling or science presented. This part should be cut down and removed from the discussion. The more important difference could come from the fact the Earth is not a perfect sphere or maybe taking into account flight altitude. The table 4 is comparing calculation with decimal and no-decimal data when the difference is in the decimal value.

Reply: The referee is right that a “great circle calculation” is commonly used method. However, we are hesitating to remove the discussion on that part for the following three reasons.

First, the final purpose of the AirTraf is to investigate “optimal routing for climate impact reduction.” We will compare AirTraf simulation results among several aircraft routing options. As a climate-optimized route will be evaluated in the light of the detour that would be necessary to avoid “climate-sensitive” areas with respect to the reference (trade-off), i.e. great circle or time-optimal route. Thus, the great circle routing option is used as reference of our comparisons (note that the great circle is the optimal solution for “minimum flight distance”). In addition, we would like to refer to a future Air Traffic Management system, which aims at having aircraft fly more direct routes, so called user-preferred routes without being constrained to Air Traffic Services routes and waypoints any longer. These future user-preferred routes would be great circle segments in the ideal case (without wind). Hence, AirTraf is developed with the objective to evaluate routing options for the future and the great circle is still an important route in reality. We think that a thorough assessment of the great circle routing module should be made in this paper to demonstrate its ability to generate the routes and working well if coupled to the ESM. The “great circle calculation” is suitable for the validation of AirTraf, because it is the widely used method (the benchmark test of the great circle calculation is described on page 12 – 13, Sect. 3.1.2).

Second, the above-mentioned assessment of the great circle routing module is also indispensable to showing the correct implementation and applicability of the genetic algorithm (GA) approach. Because the validated great circle routing module provides the analytical solution \(f_{\text{true}} = 25,994.0 \, \text{s} \) for the benchmark test of flight trajectory optimization with GA (i.e. the single-objective optimization for minimization of flight time from MUC to JFK). This point is described on page 16 line 530, “…the \(f_{\text{true}} \) equals the flight time along the great circle from MUC to JFK at FL290: \(f_{\text{true}} = 25,994.0 \, \text{s} \) calculated by Eq. (23) with \(h = \text{FL290} \) for \(i = 1, 2, \cdots, 101. \)” That the GA reproduces the analytical solution is an important milestone towards other routing optimizations. The part of the great circle routing module supports the discussion of the flight trajectory optimization with GA. Hence, the description of the great circle routing module should be included in this paper.

Last, we would like to stress that AirTraf submodel, which contains the combination of a routing module (including GA) with an Earth System Model, is unique. That is, the great circle routing module described in the paper is a unique model, which works coupling with the ESM. For example, a flight trajectory consists of
waypoints arranged by the waypoint index \(i \) \((i = 1, 2, \cdots, n_{wp})\). The geographical and meteorological values, which are used regarding the great circle calculation (e.g. latitude, longitude, altitude, temperature, wind speeds), are provided by the ESM to individual waypoint \(i \). It is important to show correctly how the great circles are calculated through waypoints in the ESM. For this, Eqs. 21 – 27 (on page 11 – 12) include the terms with the index \(i \).

As the referee #2 noted, an influence of the asymmetric nature of the Earth is an interesting topic. However, we think that this is a separate study. On page 5 line 135, we describe the assumption for AirTraf (version 1.0) as, “a spherical Earth is assumed (radius is \(R_{e} = 6,371 \) km),” corresponding to the ESM. On page 11 in section 3.1, Eqs. 22 and 23 present in detail how to take into account the flight altitude in AirTraf. This part is included in the revised manuscript.

In addition, as the referee #2 pointed out, the decimal and no-decimal data are compared in Table 4. This is indeed a very important point, which we completely overlooked. We will revise Table 4: on column 4, \(d_{MTS, \text{km}} \); 6,481.1; 10,875.0; 16,312.1; 8,895.6; 13,343.4”. On column 6, \(\Delta d_{eq2, MTS, \%} \); –0.0005; –0.0028; –0.0036; –0.0008; –0.0019”. On column 7, \(\Delta d_{eq2, MTS, \%} \); 0.0000; 0.0000; 0.0000; 0.0000; 0.0000”. We will also revise the caption in Table 4 as, “...column 4 (\(d_{MTS} \)) shows the result calculated with the Movable Type scripts (MTS), which output only integer values using the Haversine formula with a spherical Earth radius of \(R_{e} = 6,371 \) km.”

Related to this matter, we will revise the manuscript as follows: on page 1 line 18, “The first test showed that the great circle calculations were accurate to within \(-0.004\) %...”. On page 11 line 354, we will revise the word “Harvesine formula” into “Haversine formula.” On page 11 line 354, “The results showed that both \(\Delta d_{eq2, MTS} \) and \(\Delta d_{eq2, MTS} \) varied between –0.0036 and –0.0008 %, and between –0.0435 and –0.0036 and 0.0054 –0.0005 %, respectively, while \(\Delta d_{eq2, MTS} \) showed 0.0 % and between –0.0463 and 0.0046 %.” On page 13 line 408, “The great circle distances calculated by Eqs. (22) and (23) were accurate to within \(-0.004\) %...”.

On page 25 line 832, “The accuracy of the results was within \(-0.004\) %.” On page 26 line 876, we will add the text as, “The authors thank Mr. Chris Veness for providing great circle distances that have been calculated with the Movable Type script.”

- (3) Concerning the “optimisation routing” for flying time the validation over the North Atlantic is interesting but what would happen with a case of congested space or restricted space (military)? Please do tests in different part of the world or at different season.

Reply: We think that the topics, which the referee #2 noted here, are important and interesting. However, we think that they are application studies which would probably use AirTraf, but which are beyond the scope of this technical documentation and first evaluation. The aim of this paper is to introduce, describe and validate the AirTraf submodel, as replied to the comment (1) above. We believe that this paper shows a substantial comparison of AirTraf simulation results to other studies to validate the model.

- (4) Moreover I am unsure of the complete philosophy of the inclusion of the “optimisation” module in the ECHAM5/MESSY model. I understand well the impact of local weather and composition on the impact the aircraft routing will have on climate change. However I am short in understanding the need of the online optimisation as I don’t see the effect of “climate optimal routing” on the climate model – would a simple offline calculation not enough to determine this potential “climate optimal routing” (the day the full module will be ready) as well as making the “optimisation” easier to be adapted to other climate-chemistry model output?

Reply: As replied to the comment (1) above, our final purpose is to investigate the mitigation gain of the climate impact by climate-optimal routing. We would like to make clear that it is not our final purpose only to find climate-optimal flight trajectories for a specific weather condition. This was achieved, e.g. in Grewe et al., 2014. We eventually want to go one step further and apply an optimization on a daily basis for daily changing weather situations. To investigate then the mitigation gain, multi-annual (long-term) simulations are
In the simulations over the ten years, each flight trajectory is optimized with respect to a selected aircraft routing option, considering local weather conditions, and emissions are released. AirTraf can perform such air traffic simulations with the inclusion of the on-line optimization module and the optimal routes will change day by day. We think that the inclusion of the optimization module in EMAC is an appropriate approach for our purpose.

· (5) Finally I am unhappy with the fact that the only simple “time optimal routing” (optimising only for one variable) the weather situation if fixed for the entire flight. What would happen in the case of multi optimisation when you have to trade-off between time, fuel use, and different emissions? Could you comment on the impact on contrail formation from long flights? “For all routing options, local weather conditions provided by EMAC at \(t = 1 \) (i.e. at the departure day and time of the aircraft) are used to calculate the flight trajectory. The conditions are assumed to be constant during the flight trajectory calculation,”-making the model as simple as an offline module but complicated as an inside module of an already complex model?

Reply: In this paper, we would like to confirm whether AirTraf works well and is fit for our purpose. Particularly, the ability of the optimization module (GA) to optimize flight routes must be confirmed. For this, we tested the simple “time-optimal routing.” The referee actually points at many interesting future investigations, which are far beyond the scope of this paper. As soon as we really start with climate optimized trajectories in EMAC/AirTraf, we will investigate whether it is necessary to re-optimize the trajectory during long flights. It is clear that a weather forecast, which would be required to optimize not only for time \(t = 1 \), is not feasible within the climate simulation. To cover all effects, such as NO\(_x\) effects, an offline calculation on the other hand is not feasible.

In addition, the contrail formation is one of the important factors on climate impacts. For example, Schumann, et al. 2011 noted in the literature: “…contrails are expected to cause the largest contribution to global radiative forcing of the Earth-atmosphere system, and hence, the largest contribution to aviation-induced global climate change…”, and “Contrails and thin cirrus in general warm the Earth atmosphere by reducing terrestrial (longwave, LW) radiation loss into space and may cool the Earth atmosphere by reflecting part of the solar (short-wave, SW) radiation back to space. During night, contrails are always warming. The largest climate impact by contrails comes from thick, wide, long and long-lasting contrails. Hence, with respect to climate, optimal routes during night are those which form contrails with minimum longwave warming. During day time, contrails may cool. This may be the case for thick contrails, over dark and cool surfaces, in particular in the morning and evening times when cirrus is more reflective than during mid day. Hence, with respect to minimum contrail warming impact, optimal routes may be those causing contrails with maximum shortwave cooling.”

Those contrail effects will be considered as one of the routing options in AirTraf, by coupling with another submodel of EMAC. AirTraf on-line simulation (coupled to the ESM) is a suited model for taking these complicated effects into account on long time scales and this is a difference from off-line models. In this context, as the referee #2 noted, local weather conditions are assumed to be constant during flight trajectory optimization. We think that this assumption is appropriate to perform such AirTraf on-line simulation for long-term to reduce the computational costs.

We are most grateful to the referee #3 for the very helpful and encouraging comments on the original version of our manuscript. Here are our replies:

1 Introduction:
- The manuscript is well structured, and different aspects of AirTraf are explained by a nice equilibrium of description and examples. The motivation of the work is reasonably well explained. Figures and tables are informative. There is a substantial comparison with results from other studies to give confidence in the results obtained here.

Implementing aircraft routing strategies in a general circulation model or a numerical weather prediction model is not an easy task. Arriving at the status as described here in the manuscript is already a considerable achievement. However, as the tool is not finished, one wonders whether it is useful to describe the tool in its current status (with only 2 of the 7 optimization options implemented, fuel consumption due to climbing not included, the meteorological fields in the optimization are the ones at the start of the flight,...).

Publishing the manuscript now shows the status of the work. It makes clear that for specific options the optimization works, and it can trigger discussion with other researchers/institutes on the approaches chosen (is the optimization working well, could other optimization routines be faster,...).

Reply: We thank the referee #3 for the positive comments. As the referee pointed out, this paper shows the current status of AirTraf. Nevertheless, we think that it is useful to publish AirTraf v.1.0, for several reasons:
- Our final purpose is to investigate an optimization strategy of aircraft routing for minimizing the climate impact of aircraft emissions and show its mitigation gain for future. We should make clear that this paper introduces the AirTraf submodel in its basic version, technically describes and validates the various components for first, simple aircraft routings (great circle and time-optimal). Eventually, we are aiming at an optimal routing for climate impact reduction. This will be a separate study, which requires a couple of developments beforehand, amongst which the present study documents one of them.
- The validation refers to standard aircraft applications in this paper, such as great circle and time-optimal calculations. These two options are appropriate to confirm whether AirTraf works well and is fit for the purpose. This is a big step for the AirTraf development.
- For our purpose, multi-annual (long-term) simulations are required in EMAC: computationally expensive simulations are required. Hence, in the current model we simplify AirTraf to reduce the computational costs, e.g. we concentrate on the cruise mission only.
- The related issue is discussed in the reply to “2 Principal remarks, Work in progress.”

I think the manuscript is worth publishing, but is should be considerably improved in several ways. A list of principal remarks is given below, followed by a list of more specific comments. I hope the authors will take them into consideration, and if not give a sound argumentation why they do not.

Reply: We are grateful to the referee #3 for the useful comments and suggestions that have helped us to improve our manuscript. As indicated in the responses that follow, we have addressed all the comments and suggestions.

2 Principal remarks
- Work in progress: The manuscript describes a submodel in MESSy which works, but is not finished yet (only 2 of the 7 optimization options are in place). Why not waiting until all the work is finished? One has to guarantee that this manuscript remains valid and worth all the work once the remaining parts come into place, and that this document is therefore worth publishing.

Reply: The major reasons are replied in “1 Introduction.” As replied in “1 Introduction”, the currently documented status is a prerequisite for the investigation of climate-optimal routings. Additional reasons are:
- The GA optimization module is an important part of AirTraf for our purpose. Therefore, we made a thorough assessment of the GA optimization and its performance using the time-optimal option in
this paper. If a new objective function corresponding to other routing options is developed, basically, only the objective function f (shown in Eq. (28), on page 15 line 485) is changed. The AirTraf framework validated in the paper is, thanks to its modular structure, unchanged. Therefore, the current status is a big step for AirTraf development.

- The manuscript is not only about the “routing options”, but an important and integral part describes the overall structure of the coupling between a “routing module” and a chemistry-climate model. This is a major achievement and unique.

- **Language:** There is a lot of improvement needed for the language. The use of articles (a/an/the/none) should be improved. Specific expressions (e.g., “trajectories as longitude vs altitude, trajectories as location” or ”number of n_p”, ...) should be modified.

Reply: Thank you so much. We will recheck and modify articles. Please see the revised manuscript. The modifications of the specific expressions are as follows:

["trajectories as longitude vs altitude, trajectories as location"]
We will change the expression “trajectories as longitude vs altitude, trajectories as location” into “trajectories in the vertical cross-section, trajectories projected on the Earth”:
- On page 14 line 449, “...the geographic location projection on the Earth (bottom) with three control points (CPs, black circles) and the longitude vs altitude vertical cross-section (top) with five CPs.”
- On page 15 line 475, “...B-spline curve with the five CPs as longitude vs altitude in the vertical cross-section (bold solid line, Fig. 7 top)...”.
- On page 17 line 553, “...the true-optimal solution as longitude vs altitude in the vertical cross-section are plotted...”.
- On page 34 in the caption of Figure 7, “Geometry definition of flight trajectory as longitude vs altitude in the vertical cross-section (top) and as geographic location projection on the Earth (bottom).”
- On page 36 in the caption of Figure 9, “...explored trajectories (solid line, black) from MUC to JFK as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom).”
- On page 41 in the caption of Figure 14, “...explored trajectories (black lines) between MSP and AMS as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom).”
- On page 45 in the caption of Figure 18, “...the trajectories as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom).”
- On page 1 (Supplementary material) in the caption of Figure S1, “...explored trajectories (black lines) between JFK and MUC as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom),...”.
- On page 2 (Supplementary material) in the caption of Figure S2, “...explored trajectories (black lines) between SEA and AMS as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom),...”.

["number of n_p”]
We will change the expression “number of n_p” into “value of n_p” in the revised manuscript. We also reply to this modification in the following sections: “p 17, l 569 and 570” and “p 19, l 618.”

- **CP in trajectories:** Concerning the treatment of CP points, I have several questions.

 1. As an example, 3 CPs have been used for the geographical location, and 5 for the altitude. Is this fixed? Do all flights use the same number of CPs?

Reply: Yes. All flights use 3 CPs for the geographical location and 5 for the altitude (as shown in Fig. 7 on page 34). This is now explicitly clarified in the revised text.

 2. For the 103 flights, which were primarily zonal, rectangles around the CPs could be described by using a
range in latitude and longitude. How is the choice around the CPs when flights cross the equator, e.g., at an angle of 45°? What if flights go from low to high latitudes and defining regions with fixed ranges in longitude makes them very different in size?

Reply: This is a very important issue for the AirTraf development. In AirTraf version 1.0, the domain size was determined by referring to the literature: Irvine, E. A., et al., “Characterizing North Atlantic weather patterns for climate-optimal aircraft routing,” Meteorological applications, 20, 80–93 (2013). They show the many types of flight trajectories between London and New York for different weather conditions. We focused on trans-Atlantic flights in this paper, therefore the current definition of domain size works very well for the trajectory optimizations.

As the referee pointed out, if flights cross the equator (at an angle of 45°) or if flights go from low to high latitudes with almost similar longitude values, the domains are variously shaped in size on the basis of the geometry definitions of the flight trajectory (as described in Sect. 3.2.2 on page 14). This probably increases the computational demand for the trajectory optimization. Nevertheless, the current treatment of the domains is applicable to those flights and trajectory optimization works well. In fact, we have confirmed this issue by test simulations using 1,840 global flight plans including such flights. To improve the computational efficiency of the optimization, we will work on an improvement of the definition of domain size for the next version.

We also reply to this issue in the answer to the referee comment of “p 17, l 554–555.”

(3) For a given trajectory (which is a B-spline curve), how are the waypoints found? Are they equally spaced along that trajectory between the CPs? I am wondering whether it is possible to find explicit expressions for equidistant waypoints on a B-spline curve?

Reply: The referee is right. In AirTraf, the 3rd order B-spline curve is used to generate the waypoints. If CPs are given, a parameter t, which is the parameter of the 3rd order B-spline basis functions, is assigned with values between 0 and 1 between the CPs. Here, t is equally spaced along the “basis functions” (i.e., equally spaced between $0 \leq t \leq 1$). After that, the coordinates of the waypoints of the trajectory are determined by summation of the basis functions, corresponding to the equidistant t. Therefore, this can not ensure that the waypoints are equally spaced along the trajectory. We reply to this issue in the answer to the referee comment of “p 14, l 464”.

(4) In the example used, 3 CPs were used for the geographical location, 5 CPs for the altitude, and 101 waypoints. However, the condition $(101 − 1)\text{mod}(5 + 1) = 0$ is not fulfilled. One also gets the impression that the waypoints for the altitude and longitude are not located at the same place (although the manuscript confirms it actually is). Could this be clarified?

Reply: As described on page 14 line 464, the condition is mod($n_{wp} − 1, n_{CPloc} + 1$) = 0. This is only used for the location. Here, $n_{wp} = 101$ and $n_{CPloc} = 3$. Therefore, mod($101 − 1, 3 + 1$) = 0 is fulfilled. In addition, to clarify the location of waypoints for the altitude and longitude, we will revise the text: on page 15 line 474–478, “A flight trajectory is also represented by a B-spline curve (3rd-order) with the five CPs as longitude vs altitude in the vertical cross-section (bold solid line, Fig. 7 top) and then waypoints are generated along the trajectory in such a way that the longitude of the waypoints is the same as that for the flight trajectory projected on the Earth. Note, GA creates trajectories represented by two B splines, one latitude vs longitude and one longitude vs altitude, where longitude coordinate of waypoints is the same for the two curves.” We also reply to this issue in the referee comment of “p 15, l 476–478.”

GA algorithm: This algorithm is explained to some detail, but I suggest that all terms used should be explained to some extent (e.g., mating pool). One should also be informed on how the final solution is derived from the population in the last generation. Finally, the abstract uses some terminology related to the optimization routine (e.g., population), which are too technical to be mentioned in the abstract.
Reply: We will add a section “Appendix; Glossary” after the section “7. Conclusions”, where we explain the optimization terminologies: on page 26, “Appendix; Glossary; Table A1 shows a glossary explaining several terminologies of the GA optimization. The terms from the glossary are written in italics in the text.” In Table A1, we will add the explanations, “Table A1. Glossary of terms. Population: A set of solutions. A Genetic Algorithm starts its search with an initial population (a random set of solutions); Generation: One iteration of a Genetic Algorithm; Rank: A ranking assigned to each solution to evaluate a relative merit in a population. A rank expresses the number of solutions that are superior to a solution; Fitness: A value assigned to each solution to emphasize superior solutions and eliminate inferior solutions in a population. Fitness = 1/rank.; Mating pool: A storage space for solutions.” We will refer to those terms in the text in italics. Many variables are modified. Therefore, we will show the modifications in the revised manuscript. Related to this, we will revise the text: on page 2 line 21 in Abstract, “The dependence of the optimal solutions on the initial populations set of solutions (called population) was analyzed.” On page 15 line 491, “A solution with a higher fitness value (i.e., a smaller rank value) has a higher probability of being copied into a mating pool.”

In addition, we will add the text to inform on how the final solution is obtained from the optimization: on page 16 line 517, “..., GA quits the optimization and an optimal solution showing the best f of the whole generation is output...”.

- Abstract, introduction, conclusion: The abstract is sometimes too much a summing up of what has been done, with vocabulary/terms which have no concrete meaning without a concrete context. There is also much more overlap between these three parts (abstract, introduction, and conclusion) than needed. The abstract should be written differently, and considerably improved.

Reply: By following the remarks and the list of specific comments of the referee #3, we revise the abstract, introduction and conclusion. Please see the revised manuscript.

- Sensitivity: In the approach followed here, quite some assumptions and simplifications are introduced. It would be useful to give the reader an idea of the impact of these assumptions on the results. A list of some of the assumptions is:

Reply: Firstly, we would like to make clear again that our final purpose of AirTraf is to investigate an “optimization strategy” of aircraft routing for minimizing the climate impact of aircraft emissions and to show its mitigation gain for the future. It is not our purpose to find detailed flight trajectories. The aim of this paper is to introduce the AirTraf submodel in its basic version, technically describe and validate the various components for first, simple aircraft routings (great circle and time-optimal), in order to confirm whether AirTraf works well and is fit for our purpose. Eventually, we are aiming at an optimal routing for climate impact reduction. This will be a separate study, which requires a couple of additional developments beforehand, amongst which the present study is one of them. In addition, multi-annual (long-term) simulations are required for our purpose (e.g. for ten years) coupled with the Earth System Model: computationally expensive simulations are required. We therefore think that our assumptions are appropriate to perform such AirTraf on-line simulations for long-term periods to reduce the computational costs.

As the referee pointed out, they are all interesting points and might be a future option. However, they are beyond the scope of this paper and we cannot explore all sensitivities. A couple of specific points are as follows:

- (1) line 274: \(\frac{dh}{dt} = 0 \) in Eq. (3).

Reply: Looking at the AirTraf trajectories, there is an altitude change visible, but it appears over a long distance and a long period of time. We evaluated \(\frac{dh}{dt} \) of the time-optimal flight trajectories for the three selected airport pairs (listed in Table 8 on page 57). The averages of \(\frac{dh}{dt} \) (absolute value, ms\(^{-1}\)) for the individual flights were: 0.0 (JFK to MUC); 0.0 (MUC to JFK); 0.0 (MSP to AMS); 0.32 (AMS to MSP); 0.24 (SEA to AMS); and 0.13 (AMS to SEA). We therefore conclude that the impact of the zero-assumption is not
a big issue, the more as in AirTraf 1.0, we use so far only a small number of vertical GA control points (shown in Fig. 7 on page 34). If the number of control points increases, the influence of climb/descent rates \((\frac{dh}{dt}) \) will increase. This could be an aspect for a next version of AirTraf.

To clarify our assumptions, we will revise the text: on page 9 line 273–275, “In AirTraf (version 1.0), \(\frac{dh}{dt} = 0 \) is assumed and \(\dot{V}_{\text{TAS}} \) is calculated at every waypoint (Table 2). For an aircraft in cruise, Eq. (3) becomes \(\dot{V}_{\text{TAS}} = D_i \) at waypoint \(i \). For a cruise flight phase, both altitude and speed changes are negligible. Hence, \(\frac{dh}{dt} = 0 \) as well as \(\frac{dV_{\text{TAS}}}{dt} = 0 \) is assumed in AirTraf (version 1.0) and Eq. (3) becomes the typical cruise equilibrium equation: \(\dot{V}_{\text{TAS}} = D_i \) at waypoint \(i \).”

- (2) \(M \) is set constant. Can this be varied slightly? Or have pilots only a very small envelope of allowed or possible speeds?

Reply: The constant Mach number, \(M = 0.82 \), is the officially published cruise Mach number of an A330-301 by Eurocontrol in 2011. It is appropriate for the aim of this paper to perform AirTraf simulations for simple conditions, including a constant \(M \). On page 5 line 136, we describe the assumption for AirTraf (version 1.0) as, “The aircraft performance model of Eurocontrol’s Base of Aircraft Data (BADA Revision 3.9, Eurocontrol, 2011) is used with a constant Mach number \(M \)...”. As the referee noted, a change of Mach number is an interesting topic. However, this will be a separate study. In addition, pilots are not allowed to change flight speed freely in the actual flight operations. The speed is indicated (controlled) from the air traffic management side.

- (3) What if weather not just from \(t = 1 \) is taken, but from the whole period of the flight?

Reply: The referee actually points out the important and interesting topic. However, this is a separate study, which would probably use AirTraf, but which is beyond the scope of this technical documentation and first evaluation. On page 7 line 201, we describe the assumption for AirTraf (version 1.0) as, “...local weather conditions provided by EMAC at \(t = 1 \) (i.e. at the departure day and time of the aircraft) are used to calculate the flight trajectory. The conditions are assumed to be constant during the flight trajectory calculation.” Note that a weather forecast, which would be required to optimize not only for time \(t = 1 \), is not feasible within a climate simulation.

- (4) Leaving out the ascent and descend phase of the flight: how does this impact the optimization?

Reply: For our final purpose described in the reply to “1 Introduction” and “Sensitivity”, it is appropriate to concentrate on the cruise mission only in AirTraf (version 1.0). On page 5 line 140, we describe the assumption for AirTraf (version 1.0) as, “Only the cruise flight phase is considered, while ground operations, take off, landing and any other flight phases are unconsidered.” It is maybe worth to mention that the cruise has a larger climatic impact than the other parts of the operation, since the cruise has a longer operation time. Moreover, there are other attempts to reduce emissions during ground operation (taxiing etc.), which are not connected to routing. In any case, there are not much “re-routing” options between ground operations and reaching the cruise altitude.

- Mathematical formulas: The mathematical expressions should be improved.

- (1) In mathematical formulas, variables longer than one letter should be written straight.

Reply: We will recheck all variables and modify them with straight letters. Many variables are modified; therefore, we will show the modifications in the revised manuscript.

- (2) A lot of indices should be straight letters : \(V_{\text{ground}}, V_{\text{wind}}, \ldots \)

Reply: We will recheck all indices and modify them with straight letters. Many indices are modified;
therefore, we will show the modifications in the revised manuscript.

* (3) After every equation, there should be a ”,” or ”.”, depending on the function of the equation in the sentence.

Reply: We will add a ”,” after Eqs. (1)–(8), Eqs. (11)–(22), Eqs. (24)–(27) and Eq. (29). We will show the modifications in the revised manuscript.

* (4) Names of trigonometric formulas should not be italic: sin, cos, ...

Reply: We will modify the all names of trigonometric formulas into normal straight letters: for “sin,” Eq. (21) is modified; for “cos,” Eqs. (4), (21) and (23) are modified; and for “arctan,” Eq. (21) is modified. We will show the modifications in the revised manuscript.

* **Climate model, long/short time scales:** Why is this tool implemented in a climate model? To my opinion, the tool could also have been build such that it uses off-line 3-hourly meteo fields over the range of time it has flights which should be optimized: one thinks of a range of 1 to 10 days. The meteo data might come from a NWP, or a climate model.

 Maybe the authors want to show that it is possible to have such a tool on-line in a NWP or GCM. However, in that case, I would have chosen for a NWP as that is the place where, if the tool is operationally used, might be most appropriate. What was the reason that the authors made the choice of implementing it in a climate model?

 A reason I can imagine is that one could do tests like: how would the optimal routing be in a year 2100 climate, when global climate is considerably different from nowadays?

Reply: Our final purpose is to investigate the mitigation gain of the climate impact by climate-optimal routing. We would like to make clear that it is not our purpose to find climate-optimal flight trajectories (or optimal flight trajectories corresponding to a selected routing option, e.g. fastest routes) for a specific weather condition. For this, an Earth System Modeling (ESM) is not necessary and this indeed has been achieved, e.g. by Grewe et al., 2014. We eventually want to go one step further and apply an optimization on a daily basis for daily changing weather situations. To investigate then the mitigation gain, multi-annual (long-term) simulations are required (e.g. for ten years). In the simulations over the ten years, each flight trajectory is optimized with respect to a selected aircraft routing option, considering local weather conditions. The released emissions directly (CO$_2$, H$_2$O) and indirectly (NO$_x$) modify the radiative forcing and therefore the climate. Off-line pre-calculated routes would be inconsistent in such an approach. AirTraf can perform these air traffic simulations with the inclusion of the on-line optimization module and the optimal routes will change day by day. In addition, AirTraf can use the framework of EMAC to assess routing options, e.g. surface temperature changes or changes in the background chemical conditions of the atmosphere ten years later corresponding to the selected routing option, by coupling with other submodels of EMAC. The main point is the interactive coupling, i.e. the on-line re-routing immediately affects the climate model (via air traffic emissions). An on-line feedback cannot be replaced by an off-line approach. We think that the implementation of AirTraf on-line in EMAC is appropriate approach for our purpose. This reply it related to the reply to “p4 l 115.”

* **Benchmarks:** Is proving that the great circle option works well worth publishing and/or mentioning in an abstract? In addition, I think that the word benchmark puts more importance on a test than it actually deserves.

Reply: We understand the referee comment. The “great circle calculation” is a commonly used method.
However, we are hesitating to remove the descriptions of the great circle for the following three reasons:

First, the final purpose of AirTraf is to investigate “optimal routing for climate impact reduction.” We will compare AirTraf simulation results among several aircraft routing options. As a climate-optimized route will be evaluated in the light of the detour that would be necessary to avoid “climate-sensitive” areas with respect to the reference (trade-off), i.e. “great circle” or time-optimal route. Thus, the great circle routing option is used as reference for our comparisons (note that the great circle is the optimal solution for “minimum flight distance”). In addition, we would like to refer to a future Air Traffic Management system, which aims at having aircraft fly more direct routes, so called user-preferred routes without being constrained to Air Traffic Services routes and waypoints any longer. These future user-preferred routes would be great circle segments in the ideal case (without wind). Hence, AirTraf is developed with the objective to evaluate routing options for the future and the great circle is still an important route in reality. We think that a thorough assessment of the great circle routing module should be made in this paper to demonstrate its ability to generate the routes and working well if coupled to the ESM. The “great circle calculation” is suitable for the validation of AirTraf, because it is a widely used method (the benchmark test of the great circle calculation is described on page 12–13, Sect. 3.1.2). We believe that the result of the assessment is worth publishing.

Second, the above-mentioned assessment of the great circle routing module is also indispensable to show the correct implementation and applicability of the genetic algorithm (GA) approach. Because the validated great circle routing module provides the analytical solution ($f_{\text{true}} = 25,994.0 \text{ s}$) for the benchmark test of flight trajectory optimization with GA (i.e. the single-objective optimization for minimization of flight time from MUC to JFK). This point is described on page 16 line 530, “...the f_{true} equals the flight time along the great circle from MUC to JFK at FL290: $f_{\text{true}} = 25,994.0 \text{ s}$ calculated by Eq. (23) with $h_{i} = \text{FL290}$ for $i = 1, 2, \ldots, 101.” The result that the GA reproduces the analytical solution is an important milestone towards other routing optimizations.

Last but not least, we would like to stress that the AirTraf submodel, which embeds a routing module (including GA) into an Earth System Model, is unique. The great circle routing module described in the paper is used to show that the coupled system works well. For example, a flight trajectory consists of waypoints arranged by the waypoint index i ($i = 1, 2, \ldots, n_{\text{wp}}$). The geographical and meteorological values, which are used for the great circle calculation (e.g. latitude, longitude, altitude, temperature, wind speed), are provided by the ESM at the individual waypoints i. It is important to show that the great circles are calculated correctly by waypoints through the ESM domain. For this, Eqs. (21)–(27) (on page 11–12) include the terms with the index i. Hence, the description of the great circle routing module should be included.

In addition, we understand the referee comment on the word “benchmark.” Nevertheless, we are hesitating to change the word. The tests are performed to confirm the correct performance of the code, which we believe is unique and new, and thus to measure the reliability of the code. We think that those tests are indeed important “benchmark tests.”

Size of the document: The files are so large (30 MB) that people will have problems printing the documents. To my opinion it is mainly related to the figures which show different flight trajectories. I assume that the figures contain all the information from all trajectories, while a large central part of the figure is just black. These figures should be made in such a way that they become much smaller in size, without loosing their precision.

Reply: As the referee pointed out, the file size is large. We will make those figures become much smaller in size with almost the current precision and replace them in the revised manuscript: Figs. 9, 14a, 14b, S1a, S1b, S2a and S2b are modified.

3 Comments on the text

Page 1

- **p 1, l 1–5**: The sequence of the first three sentences is a bit strange. I would even skip the first sentence (as it says the same as the first 7 words of sentence 3).

Reply: We will remove the first sentence: on page 1 line 1, “Aviation contributes to anthropogenic climate-impact through various emissions.” Concerning this, we will rephrase the text: on page 1 line 3, “Reducing
the anthropogenic climate impact from aviation emissions and...”.

- **p 1, l 3–6**: "building a climate-friendly", "for a sustainable development", "is an important approach". It makes me wonder whether this is not a too optimistic view on aviation.

 Reply: We agree. The sustainable development of commercial aviation might be optimistic. However, if we want to have a sustainable development of commercial aviation, we need to have a reduction of aviation emissions and a climate-friendly air transportation system.

- **p 1, l 9**: "stable" gas. This is not precise enough.

 Reply: We will delete the word “stable” in the sentence: on page 1 line 9, “CO₂ is a long-lived and stable gas, while...”.

- **p 1, l 9**: "vary regionally". I would rather use something like "inhomogeneous distribution".

 Reply: We will rephrase the text: on page 1 line 9, “...non-CO₂ emissions are short-lived and vary regionally are inhomogeneously distributed.”

- **p 1, l 11**: "on long time scales". I assume that the tool takes into account climate impacts on long time scale, via e.g. the CCFs. However, the tool itself is an optimization of only the flights planned within the next few days. There should be no confusion about these very different aspects.

 Reply: In this sentence, we just wanted to say that AirTraf can perform “long-term” simulations, i.e. not only a few days but also more than ten years (arbitrary duration of simulations). The word “on long time scales” seems to be confusing. We will revise the text: on page 1 line 9–11, “This study introduces AirTraf (version 1.0) for climate impact evaluations that performs global air traffic simulations on long time scales, including effects of local weather conditions on the emissions.” In AirTraf, we apply an optimization on a daily basis for daily changing weather situations. To investigate the mitigation gain of the climate impact by climate-optimal routing, multi-annual (long-term) simulations are required (e.g. for ten years). In the simulations over the ten years, each flight trajectory is optimized with respect to a selected aircraft routing option, considering local weather conditions. Along the optimized flight path, emissions are released. AirTraf can perform such long-term air traffic simulations with the inclusion of the on-line optimization module and the optimal routes will change day by day.

- **p 1, l 15**: were → are (because you describe the functioning of a tool).

 Reply: We will revise the text: on page 1 line 15, “Fuel use and emissions were are calculated by...”. In the same way, we will revise the text: on page 1 line 16, “The flight trajectory optimization was is performed by a Genetic Algorithm...”.

- **p 1, l 15**: DLR. This abbreviation should be explained.

 Reply: We will revise the text: on page 1 line 15, “...and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method.”

- **p 1, l 16–17**: "with respect to routing options" : vague.

 Reply: We will revise the text: on page 1 line 16, “...performed by a Genetic Algorithm (GA) with respect to a selected routing options.”

- **p 1, l 17–18**: "two benchmark tests ... for great circle and time routing options" : sounds a bit strange → "benchmark tests ... for the great circle and time routing options".
Reply: We will revise the text: on page 1 line 17, “..., two benchmark tests were performed for the great circle and flight time routing options.”

- p 1, l 19 : "by other published code" : vague, and inappropriate language for an abstract.

 Reply: We will revise the text: on page 1 line 19, “...calculated by other published code the Movable Type script.”

- p 1, l 20 : "optimal solution” → "optimal solution found by the algorithm” (distinguish whether it relates to the real optimal solution, or to the best estimate found by the optimization routine).

 Reply: We will revise the text: on page 1 line 20, “...the optimal solution found by the algorithm sufficiently converged to...”.

Page 2

- p 2, l 22 : "initial population” : as such, this is too technical for an abstract. I suggest to skip this from the abstract, or one could also choose to describe a bit better the optimization algorithm/methodology in the abstract.

 Reply: Please see the reply to the referee comment: “GA algorithm.”

- p 2, l 22–23 : "We found that the influence was small (around 0.01 %)” : I suggest to combine this into one sentence with the former sentence.

 Reply: We will revise the sentences: on page 2 line 21–23, “The dependence of the optimal solutions on the initial populations set of solutions (called population) was analyzed and we found that the influence was small (around 0.01 %).”

- p 2, l 24 : "function evaluations”, ”generation sizing” : too technical for an abstract.

 Reply: We will add explanations and revise the sentence: on page 2 line 23, “The trade-off between the accuracy of GA optimizations and the number of function evaluations computational costs is clarified and the appropriate population and generation (one iteration of GA) sizing is discussed.”

- p 2, l 27 ”one-day AirTraf simulations are demonstrated ...” : vague.

 Reply: We will remove the word “one-day” in the sentence: on page 2 line 26, “Finally, one-day AirTraf simulations are demonstrated with...”. Related to this, we will revise the text: on page 2 line 31, “The consistency check for the one-day AirTraf simulations...”. We will also revise the text: on page 4 line 106, “In Sect. 4, one-day AirTraf simulations are demonstrated for with the two options for a typical winter day (called one-day AirTraf simulations) and the results are discussed.”

- p 2, l 27 : specific winter day → typical winter day.

 Reply: We will revise the text: on page 2 line 27, “...with the great circle and the flight time routing options for a specific typical winter day.” In the same way, we will revise the text: on page 18 line 599, “The simulation was performed for one specific typical winter day...”; on page 25 line 844, “AirTraf simulations were demonstrated in EMAC (on-line) for a specific typical winter day...”.

- p 2, l 29 : "for the two options” : it is a long time ago that these were mentioned. So maybe express them explicitly again.
Reply: We are hesitating to express them explicitly again, because the corresponding word “the great circle and the flight time routing option” are mentioned on page 2 line 27. We think that this is not far from line 29. Nevertheless, we will add the text to express the word more clearly: on page 2 line 29, “…AirTraf simulates the air traffic properly for the two **routing** options.”

- **p 2, l 30**: for all airport pairs : too vague for an abstract.

 Reply: We will revise the text: on page 2 line 30, “…for all the **103** airport pairs…”.

- **p 2, l 30–31**: "reflecting” local weather → taking into account (?).

 Reply: We will revise the text: on page 2 line 30, “…airport pairs, reflecting **taking** local weather conditions into account.”

- **p 2, l 31**: verified → confirmed.

 Reply: We will revise the text: on page 2 line 31, “…the **one-day** AirTraf simulations verified confirmed that…”.

- **p 2, l 32**: "comparable to reference data” : too vague.

 Reply: We will revise the text: on page 2 line 31–32, “…calculated flight time, fuel consumption, NOx emission index and aircraft weights are comparable to show a good agreement with reference data.”

- **p 2, l 34**: ”with increasing the number ” → ”with the increasing number”.

 Reply: We will revise the text: on page 2 line 34, “…With the increasing number of aircraft, the air traffic’s contribution...”.

- **p 2, l 35**: ”a major problem” : too vague.

 Reply: We will revise the text: on page 2 line 35, “…the air traffic’s contribution to climate change becomes an **major important** problem.”

- **p 2, l 35**: ”At present” → Nowadays, currently, ...

 Reply: We will revise the text: on page 2 line 35, “At present **Nowadays**, aircraft emission...”.

- **p 2, l 35–37**: aircraft emission impacts contribute 4.9 % of total anthropogenic radiative forcing : skip ”impacts”, as radiative forcing is an impact; 4.9 → to 4.9 ; of total → ”of the total”.

 Reply: We will revise the text: on page 2 line 35–37, “…, aircraft emission impacts (this includes still uncertain aviation-induced cirrus cloud effects) contributes approximately to 4.9 % (with a range of 2-14 %, which is a 90 % likelihood range) of the total anthropogenic radiative forcing...”.

- **p 2, l 39**: will grow → might grow.

 Reply: We will revise the text: on page 2 line 38, “An Airbus forecast shows that the world air traffic will **might** grow...”.

- **p 2, l 40**: the value of 4.9 % → a value of 4.9 %.

 Reply: We will revise the text: on page 2 line 40, “…, while Boeing forecasts the **a** value of 4.9 % over the
same period.”

- **p 2, l 41**: indicates → implies.

 Reply: We will revise the text: on page 2 line 41, “This indicates implies a further increase of aircraft emissions...”.

- **p 2, l 41–42**: “and therefore environmental impacts from aviation increase” : try to avoid to have twice “increase” in this sentence.

 Reply: We will revise the text: on page 2 line 41–42, “This indicates implies a further increase of aircraft emissions and therefore environmental impacts from aviation increase rise.”

- **p 2, l 42–43**: This sentence sounds more positive than one can possibly defend.

 Reply: We will reply to the comment in the above section: “p 1, l 3–6”.

- **p 2, l 47**: contrail → contrails.

 Reply: We will revise the text: on page 2 line 47, “The emissions also induce cloudiness via the formation of contrails, contrail-cirrus...”.

- **p 2, l 49**: depends → depends partially.

 Reply: We will revise the text: on page 2 line 49, “The climate impact induced by aircraft emissions depends partially on...”.

- **p 2, l 49–51**: What follows behind the “:” is not an explanation from what is said before “:”.

 Reply: We will revise the sentences: on page 2 line 49–50, “The climate impact induced by aircraft emissions depends partially on local weather conditions. It That is, the impact depends on...”.

- **p 2, l 50**: geographic → geographical (both are possible).

 Reply: We will revise the word “geographic” into the “geographical” in the revised manuscript: on page 2 line 50, “...on geographical location (latitude and longitude) and...”.

- **p 2, l 51–p3, l 59**: “… and affect the atmosphere from minutes to centuries.” Minutes probably refers to the time scale for disappearance of some chemical perturbations. However, every appearance (even if it is only a few minutes) of a GHG, has a century-timescale effect. Although I think I understand what the authors want to say, I think that the whole paragraph is rather inaccurate, and should be rewritten more precisely.

 Reply: In this paragraph, we just wanted to focus on atmospheric composition changes, not on the climate changes, which the referee addressed. We will add the word “on the atmospheric composition” into the text to make clear what we want to say here: on page 2 line 51–53, “In addition, the impact on the atmospheric composition has different timescales: chemical effects induced by the aircraft emissions have a range of lifetimes and affect the atmosphere from minutes to centuries. CO₂ has a long perturbation life-times in the order of decades to centuries.”

Page 3

- **p 3, l 61**: ”150 km horizontally” : maybe distinguish two directions (is it perpendicular to the flight path, or along the flight path). Isn’t this 150 km much too specific? Isn’t there a very broad spectrum?
Reply: The mean length of 150 km is from Gierens and Spichtinger (2000). The study showed that: “The mean path length is about 150 km with a standard deviation of 250 km.” Therefore, we will refer the original reference in the text and revise the sentence to make clear that point: on page 3 line 61, “...extend a few 100 m vertically and around about 150 km horizontally along a flight path (with a standard deviation of 250 km) with a large spatial and temporal variability (Gierens et al., 2000, Spichtinger et al., 2003).” This modification is also related to our reply to the comment (1) of referee #1.

• p 3, l 63 : There ”are” two options ... : this sounds very optimistic.

Reply: We will revise the text: on page 3 line 63, “The measures to counteract the climate impact induced by aircraft emissions can be classified into two categories: technological and operational approaches measures,...”.

• p 3, l 64 : ”approaches” → measures.

Reply: We will revise the word “approaches” into “measures”: on page 3 line 64, “...: technological and operational approaches measures,...”. In the same way, we will revise the word “approach” into “measure” in the manuscript: on page 1 line 6, “...is an important approach measure for climate impact reduction...”.

• p 3, l 69 : "... are optimized with respect to time and economic costs.” : if both are taken into account, how are they weighted?

Reply: In this paper, we would like to show that AirTraf works well and is fit for our purpose. Particularly, the ability of the optimization module (GA) to optimize flight routes must be confirmed. For this, we tested the simple “time-optimal routing.” The referee actually points at the interesting future investigation, which is far beyond the scope of this paper. Generally, airlines have own evaluation functions, such as cost index, which uses weight factors on fuel, time, etc., in order to optimize the whole aircraft operating system. This kind of data is almost impossible to get from airlines and depends on their individual strategy.

• p 3, l 69 : "fuel, crew, operating costs" : isn’t fuel part of the operating costs?

Reply: We will revise the text: on page 3 line 69, “...economic costs (fuel, crew, other operating costs)...

• p 3, l 72 : "systematic routing changes” : reading this, one gets the impression that there are different options. However, later it is reduced to just ”i.e. flight altitude change”. I suggest to just say ”systematic flight altitude changes”.

Reply: We will revise the text: on page 3 line 72, “Earlier studies investigated the effect of systematic routing changes, i.e. flight altitude changes, on the climate impact...”.

• p 3, l 74 : has a strong effect on the reduction of the climate impact → has a strong impact on climate. (From the original formulation it is not clear whether the increase or the decrease in flight altitude leads to a reduction of the climate impact.)

Reply: We understand the referee comment. Nevertheless, we are hesitating to change the text. The four studies referred here showed clearly that the changed altitude has a strong effect on the reduction of the climate impact. However, the studies were performed with respect to different flight plans, different climate impact metrics and different duration of simulations (i.e. atmospheric conditions). We think that it is not appropriate to describe whether the increase or the decrease in flight altitude leads to a reduction of the climate impact. More studies are needed before generalizing that point.

• p 3, l 74–77 : ”the” climate-optimized routing → climate-optimized routing.
Reply: We will revise the text: on page 3 line 74–77, “A number of studies have investigated the potential of applying the \textit{climate-optimized routing} for real flight data. Matthes et al. (2012) and Sridhar et al. (2013) addressed weather-dependent trajectory optimization using real flight routes and showed a large potential of the \textit{climate-optimized routing}.”

- p 3, l 79 : ”the” climate sensitive regions → climate-sensitive regions.

Reply: We will revise the text: on page 3 line 79, “...by considering regions described as the \textit{climate-sensitive regions} and...”.

- p 3, l 80 : ”This study” → ”That study”.

Reply: We will revise the text: on page 3 line 80, “\textit{This That} study reported...”.

- p 3, l 81 : by only small increase → by only a small increase.

Reply: We will revise the text: on page 3 line 81, “...can be achieved by only a small increase in economic costs...”.

- p 3, l 80–81 : This study reported: "large reductions ...” → That study reported that large reductions ...

Reply: We will revise the text: on page 3 line 80–81, “\textit{This That} study reported that large reductions in the climate impact of up to 25 % can be achieved by only a small increase in economic costs of less than 0.5%.”

- p 3, l 82 : useful : is useful what one wants to express?

Reply: We just want to express that the climate-optimized routing is effective to reduce the climate impact. Therefore, we will revise the text: on page 3 line 82, “The climate-optimized routing therefore seems to be an \textit{effective} routing option for the climate impact reduction,...”.

- p 3, l 85–86 : The current study wants apparently to investigate something (how much the climate impact of aircraft emissions can be reduced) that already has been investigated before (see lines 80–81: large reductions in the climate impact of up to 25 % can be achieved). One should be more specific of what the current study will do extra with respect to the former study.

Reply: Our final purpose (yet beyond the scope of the present manuscript) is to investigate the mitigation gain of climate-optimal routing. We would like to stress that the mere construction of climate-optimal flight trajectories for a specific weather condition is not our goal. The latter has been achieved, e.g. by Grewe et al., 2014. We eventually want to go one step further and apply an optimization on a daily basis for daily changing weather situations. To investigate then the mitigation gain, multi-annual (long-term) simulations with full feedback from the re-routed air traffic emissions are required (e.g. for ten years). In such simulations over at least the ten years, each flight trajectory is optimized with respect to a selected aircraft routing option, considering local weather conditions. The air traffic emissions are released into the ESM atmosphere and modify its chemical composition. AirTraf can perform such air traffic simulations with the inclusion of the on-line optimization module and the optimal routes will change day by day. This is an important difference to former studies.

As the referee pointed out, the subject of this paper (line 84–85) seems to be confusing. We make clear that this paper introduces the AirTraf submodel in its basic version, and technically describes and validates the various components for first, simple aircraft routings (great circle and time-optimal). Eventually, we are aiming at an optimal routing for climate impact reduction. This will be a separate study, which requires a couple of additional developments beforehand, amongst which the present study is only one of them.
Here, we will revise the sentences: on page 3, final paragraph (line 84–87), “This study aims to investigate how much the climate impact of aircraft emissions can be reduced by aircraft routing. Here, we present a new assessment platform AirTraf (version 1.0, Yamashita et al., 2015) that is a global air traffic submodel coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). Figure 1 shows the research road map for this study (Grewe et al., 2014b). This paper presents the new submodel AirTraf (version 1.0, Yamashita et al., 2015) that performs global air traffic simulations coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). This paper technically describes AirTraf and validates the various components for simple aircraft routings: great circle and time-optimal routings. Eventually, we are aiming at an optimal routing for climate impact reduction. The development described in this paper is a prerequisite for the investigation of climate-optimized routings. The research road map for our study is as follows (Grewe et al., 2014b): the first step was to investigate...”.

- **p 3, l 84–87**: Do you mean by "this study" = "this manuscript"? Or is "this study" broader? After reading the manuscript, I have the impression that line 84–85 is not what is answered by this manuscript.

Reply: We agree. We will reply this point in the section above: “p 3, l 85–86.”

- **p 3, l 87**: The first step "is" → The first step "was".

Reply: We will revise the text: on page 3 line 87, “The first step was to investigate...”.

- **p 3, l 87–89**: The first step is to investigate specific past weather situations, in particular the climate impact of locally released aircraft emissions → The first step was to investigate the influence of specific weather situations on the climate impact of aircraft emissions.

Reply: As the referee described, this correction makes the sentence more clearly. Thank you very much. We will revise the text: on page 3 line 87–89, “…: the first step was to investigate the influence of specific weather situations on the climate impact of aircraft emissions (Matthes et al., 2012, Grewe et al., 2014b).”

- **p 3, l 89**: "The resulting data are ...” : too vague. Maybe one could say : "This results in climate cost functions ...".

Reply: Thank you very much. We will revise the text: on page 3 line 89, “The resulting data are called This results in climate cost functions (CCFs, Frömming et al., 2013, Grewe et al., 2014a, Grewe et al., 2014b) that identify...”.

- **p 3, l 91**: Why is CO₂ in this list? I can understand that the impact of adding CO₂ depends on the altitude, but this comes a bit unexpected after formulating earlier that CO₂ is well-mixed.

Reply: We will delete the word “CO₂” in the sentence: on page 3 line 91, “...climate sensitive regions with respect to O₃, CH₄, H₂O and contrails.”

- **p 3, l 91**: ”They are specific climate metrics, i.e. climate impact per unit of emission” → ”per unit amount of emission.”

Reply: We will revise the text: on page 3 line 91, “They are specific climate metrics, i.e. climate impacts per unit amount of emission,...”.

- **p 3, l 92**: ”and are used ...” → ”will/might be used”.

Reply: We will revise the text: on page 3 line 92, “...climate impacts per unit amount of emission, and are will be used for optimal aircraft routings.”
In a further step, weather proxies are identified for the specific weather situations. It is not clear whether this has been done.

Reply: This has not been done. To clarify this point, we will revise the text: on page 4 line 92, “In a further step, weather proxies will be identified for the specific weather situations,...”.

A benchmark test for the great circle routing option is performed and provides a comparison of resulting great circle distances with those calculated by other published code. The Movable Type script (MTS, Movable Type script, 2014).

“Another...” I suggest to skip one of these words.

Reply: We will remove the word “also” from the sentence. In addition, we will revise the text by considering the reply to the comment on “p 4, l 103–105”: “Another benchmark test is also performed for the flight time routing option: compares...”.

Another benchmark test is also performed for the flight time routing option: compares the optimal solution to the true-optimal solution.

This sentence is too technical with “population” and “generation sizing”.

Reply: We will add explanations to the words: on page 4 line 105, “The dependence of optimal solutions on the initial populations (a technical terminology set in italics is explained in the glossary in Appendix) is examined...”. On page 4 line 106, “...appropriate population and generation sizing is discussed.” This reply is related to the reply to “GA algorithm.”

“consistency” is too general. One has not enough background information at this point in the text to understand this.

Reply: We will rephrase the text: on page 4 line 107, “Section 5 verifies whether the consistency for the AirTraf simulations are consistent with reference data.”

“states” : I suggest to use another word.

Reply: We will revise the text: on page 4 line 108, “...and Sect. 6 states describes the code availability.”

This paragraph should be rewritten.

Reply: We will rephrase this paragraph (line 112–116): on page 4 line 112–116, “AirTraf was developed as a
submodel of EMAC (Jöckel et al., 2010). This is reasonable, because we perform global air traffic simulations on long time scales considering local weather conditions. Geographic location and altitude at which emissions are released should be also considered. In addition, various submodels of EMAC can be used to evaluate climate impacts. Therefore, EMAC is a well suited development environment for AirTraf. AirTraf was developed as a submodel of EMAC (Jöckel et al., 2010) to eventually assess routing options with respect to climate. This requires a framework, where we can optimize routings everyday and assess them with respect to climate changes. EMAC provides an ideal framework, since it includes various submodels, which actually evaluate climate impact, and it simulates local weather situations on long time scales. As stated above, we were focusing on the development of this model. A publication on the climate assessment of routing changes will be published as well.”

- **p 4, l 112**: "reasonable" : I think this is not enough as a motivation.

 Reply: We will rephrase this paragraph to make clear the motivation. Please see the reply to the comment: “p 4, l 112–116”.

- **p 4, l 113**: "because we perform global air traffic simulations on long time scales considering local weather conditions.” : I think this is a vague argumentation.

 Reply: We will rephrase this paragraph. Please see the reply to the comment: “p 4, l 112–116”.

- **p 4, l 114**: "geographic location and altitude at which emissions are released should be also considered” : vague.

 Reply: This part is already explained in Introduction: on page 2 line 49–50, “The climate impact induced by aircraft emissions depends on local weather conditions: it depends on geographic location (latitude and longitude) and altitude at which the emissions are released (except for CO$_2$) and time.” We will rephrase this paragraph. Please see the reply to the comment: “p 4, l 112–116”.

- **p 4, l 115**: This is maybe the main reason why the effort is done to implement AirTraf in a climate model, and not just in a NWP, or using off-line available weather forecasts. So make this more explicit, and give examples of which climate impacts can be evaluated.

 Reply: Yes. We need the framework of EMAC to assess routing options. By following the referee comment, we will rephrase this paragraph. Please see the reply to the comment: “p 4, l 112–116”.

- **p 4, l 117**: Explain what ”entries” are.

 Reply: We will rephrase the word “entries” into “parameters” to make clear the meaning of the word: on page 4 line 117, “…AirTraf entries parameters are read in messy_initialize,...” In addition, we will modify Fig. 2 and its caption: on page 30 in Fig. 2, “AirTraf entries parameters”; and in the caption, “…AirTraf entries parameters are input in the initialization phase.”

- **p 4, l 121–124**: This sentence should be improved. You have to put “here PE is synonym to MPI task” possibly between brackets. I am also not sure whether "while" is the most appropriate word to use here.

 Reply: As the referee noted, we will put "here PE is synonym to MPI task” between brackets. In addition, we will remove “while” and transform the sentence into two sentences: on page 4 line 121–124, “the one-day flight plan, which includes many flight schedules of a single day, is decomposed for a number of processing elements (PEs), here PE is synonym to MPI task), so that each PE has a similar work load,...while a whole flight trajectory between an airport pair is handled by the same PE.” Related to this modification, we will also modify the caption of Fig. 3: on page 31 in Fig. 3, “A one-day flight plan is distributed among many processing elements (PEs) in messy_init_memory (blue),...while a whole
trajectory of an airport pair is handled by the same PE...

- **p 4, l 125**: I think one should be more specific about what a "time loop" is: isn’t rather meant "time step"?

 Reply: We used the word "time loop" according to the following publication, which is one of the basic documents about on the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model: “Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433-444, doi:10.5194/acp-5-433-2005, 2005.” AirTraf is developed as a submodel of EMAC. Therefore, we think that the word “time loop” is helpful for readers (specifically EMAC users) to understand the flowchart of the AirTraf.

- **p 4, l 125–126**: Thus, naturally short-term and long-term simulations consider the local weather conditions for every flight in EMAC. I think this should be explained more clearly.

 Reply: We will revise the sentence: on page 4 line 125–126, “Thus, naturally both short-term and long-term simulations consider can take into account the local weather conditions for every flight in EMAC...”.

- **p 4, l 126–127**: "(AirTraf continuously treats overnight flights)"; this is not logically related to the sentence it is attached to. What is meant by this? Because the weather patterns used in AirTraf are the ones at the time of take-off, it seems to me that there is no large complexity about it. Is it therefore still worth mentioning?

 Reply: We agree. The one-day flight plan includes many flight schedules on a single day. Some international (long-distance) flights fly over two days. For example, NH215 departs at MUC on 21:35 and arrives at Tokyo on 15:50 + 1day. We wanted to say here that AirTraf simulates such flights correctly. Indeed, we have been asked about this issue many times so far. Therefore, we believe that it is still worth mentioning.

 Further, from the comment (4) of the referee #1, we will modify the text “(AirTraf continuously treats overnight flights)” into “(AirTraf continuously treats overnight flights with arrival on the next day).” After that, the modified text will be moved from the current position to an appropriate position in the manuscript, which is related logically: on page 4 line 125, “Thus, naturally both short-term and long-term simulations consider can take into account the local weather conditions for every flight in EMAC (AirTraf continuously treats overnight flights with arrival on the next day),”; and on page 7 line 223, “...the Estimated Time Over (ETO, Table 2) (AirTraf continuously treats overnight flights with arrival on the next day).”

Page 5

- **p 5, l 131–132**: What is meant by these "global fields”? Give examples.

 Reply: This means “three dimensional emission fields” and we call this “global fields” in the paper. We will add the text to make clear this point: on page 5 line 131–132, “...the calculated flight trajectories and global fields (three dimensional emission fields) are output (Fig. 2, rose red). The results are gathered from all PEs for output of global fields.”

- **p 5, l 132–134**: What is meant by the sentence "Other evaluation models ... on the climate impact”? I suggest to make this more concrete.

 Reply: We just wanted to say that other objective functions (or other evaluation models) will be integrated into AirTraf in order to assess routing options on climate impact reduction. However, this is not necessary for our argument here. Therefore, we will modify the sentence: on page 132–134, “Other evaluation models, e.g. climate metric models, can easily be integrated into AirTraf and hence the output is will be used to evaluate the reduction potential of the routing option on the climate impact.”

- **p 5, l 135–136**: "R_E = 6371 km" : I don’t know whether this level of detail should be mentioned in the manuscript.
Reply: We believe that this information is important, because great circle distances can vary considerably with differences of R_E. Concerning this issue, we will revise the caption of Table 4 from the comment (2) of the referee #2 as “...column 4 (d_{MTS}) shows the result calculated with the Movable Type scripts (MTS), which output only integer values using the Haversine formula with a spherical Earth radius of $R_E = 6,371$ km.”

- **p 5, l 137–138**: The Mach number is a (→ "the") velocity divided by a (→ "the") speed of sound.

Reply: We will revise the text: on page 5 line 137–138, “...the Mach number is a the velocity divided by a the speed of sound.”

- **p 5, l 138**: "true air speed" → "the true air speed". Maybe add to the sentence: "When an aircraft flies at a constant Mach number". Isn’t "vary along flight trajectories” enough? I don’t think that "latitude, longitude, altitude and time” should be added. If one really wants to be more specific, I would rather add temperature and wind speed as factors modifying the true air speed and ground speed.

Reply: By following the referee comment, we will revise the text: on page 5 line 138, “Therefore When an aircraft flies at a constant Mach number, the true air speed V_{TAS} and ground speed V_{ground} vary along the flight trajectories corresponding to a given latitude, longitude, altitude and time.”

- **p 5, l 142**: limits rates → limit rates.

Reply: We will correct the word: on page 5 line 142, “...and limits rates of aircraft climb...”.

- **p 5, l 142**: Explain "semi-circular rule", and "sector demand analysis".

Reply: We will modify the words to explain them clearly: on page 5 line 142, “...such as the semi-circular rule (the basic rule for flight level) and limits rates of aircraft climb and descent, are disregarded. However, a sector demand workload analysis of air traffic controllers can be performed on the basis of the output data.”

- **p 5, l 144**: "mention" : I do not think this is the appropriate wording.

Reply: We will revise the text: on page 5 line 144, “The following sections mention describe the used models briefly...”.

- **p 5, l 149**: What is meant by "interactions with human influences"?

Reply: This means the influence coming from anthropogenic emissions. AirTraf describes one of them. We will rephrase the text: on page 5 line 149, “...and their interaction with oceans, land and human influences coming from anthropogenic emissions (Jöckel et al., 2010).”

- **p 5, l 153**: T42L31ECMWF-resolution → T42L31ECMWF resolution

Reply: We will revise the word: on page 5 line 153, “...in the T42L31ECMWF resolution,...”. On page 18 line 599, “...in the T42L31ECMWF resolution.”

- **p 5, l 159**: Can it exist out of more than one day? On page 6, line 163 : "Any arbitrary number of flight plans is applicable to AirTraf”. So one can give flight plans for many days at once?

Reply: As the referee noted, this point is not clear what we mean by the phrase “one-day flight plan.” As shown in Fig. 3 on page 31, the one-day flight plan, which includes many flight schedules on a single day, is used in AirTraf. This flight plan is reused for simulations longer than two days, as described on page 8 line 240. To clarify this point, we will add a short description the first time we use the phrase “one-day flight
As shown in Fig. 3, the one-day flight plan, which includes many flight schedules of a single day, is decomposed for...

Reply:
- **p 5, l 160:** of A330-301 → of an A330-301 aircraft.

Reply: We will revise the word in the revised manuscript: on page 5 line 160, “...the primary data of an A330-301 aircraft used...”. The caption of Table 1 on page 51, “Primary data of Airbus A330-301 aircraft and...”.

- **p 5, l 162:** a departure time → the departure time.

Reply: We will revise the word: on page 5 line 162, “...latitude/longitude of the airports, and the departure time.”

- **p 5, l 162:** as values [-90,90] → as values in the range [-90,90].

Reply: We will add the text “in the range” in the revised manuscript: on page 5 line 162, “The latitude and longitude coordinates are given as values in the range [−90, 90] and...”.

Page 6

- **p 6, l 164:** the data are required → these data are required.

Reply: We will revise the word: on page 6 line 164, “...; the these data are required to calculate...”.

- **p 6, l 165:** "As for ..." → "Concerning ...".

Reply: We will revise the text: on page 6 line 165, “As for Concerning the engine performance data,...”.

- **p 6, l 166:** flows (plural) while index (singular).

Reply: Thank you so much. We will revise the text: on page 6 line 166, “...reference fuel flows f_{ref} (in kg(fuel)s$^{-1}$) and...”.

- **p 6, l 168:** What is meant by an “overall” weight factor?

Reply: The word “overall” means “passenger/freight/mail”. We will add this text: on page 6 line 168, “An overall (passenger/freight/mail) weight load factor is also provided...”. On page 51 at the line with OLF in Table 1, “ICAO overall (passenger/freight/mail) weight load factor in 2008”.

- **p 6, l 171:** are described "here" step by step.

Reply: We will add the word “here” in the revised manuscript: on page 6 line 171, “The calculation procedures in the AirTraf integration are described here step by step.”

- **p 6, l 172:** a flight status → the flight status.

Reply: We will revise the text: on page 6 line 172, “...a the flight status of all flights is initialized...”.

- **p 6, l 178:** moving aircraft position → aircraft position calculation.

Reply: We will revise the word “moving aircraft position” into “aircraft position calculation” in the revised manuscript: on page 6 line 178, “...fuel/emissions calculation, moving aircraft position aircraft position calculation and gathering global emissions.” Further, on page 30 in the Fig. 2 (bold-black box, light blue), “Move aircraft position Aircraft position calc.” On page 32 in the caption of Fig. 4, “(c) Moving aircraft p..."
aircraft position calculation.”

- **p 6, l 182–183**: differ to → differ from.
 Reply: We will revise the text: on page 6 line 182–183, “…fuel (might differ to/from H₂O, if alternative fuel options can be used), contrail and CCFs…”.

- **p 6, l 184**: can be used → can currently be used.
 Reply: We will add the word “currently” in the revised manuscript: on page 6 line 184, “…the great circle and the flight time routing options can currently be used.”

- **p 6, l 187**: for a selected option → for the selected option.
 Reply: We will revise the text: on page 6 line 187, “…a single-objective minimization problem is solved for the selected option...”.

- **p 6, l 191–194**: Why adding these sentences? It makes the text confusing. In addition, it is not well defined how an optimization might work when one optimizes according to two criteria (time and cost). One should also mention then how to weight or compare both (trade-off between them).
 Reply: We have a reason why we added the sentence. Here, we would like to show clearly that a time-optimal route is different from a wind-optimal route. In this paper, we optimize flight trajectories with respect to “time” by taking into account wind effects. These routes are the time-optimal routes, not the wind-optimal routes, because the objective function is different between the time-optimal and the wind-optimal routing options, as described on page 6 line 191–194. We have seen situations many times that people assumed the time-optimal route including wind effects as “the wind-optimal route.” To avoid this situation, we distinguish the routes clearly.
 To explain this better, we will revise the text: on page 6 line 191–196, “Generally, a wind-optimal route means an economically optimal flight route taking the most advantageous wind pattern into account. This route minimizes total costs with respect to time, fuel and other economic costs (fuel, crew and others), i.e. it has multiple objectives. On the other hand, AirTraf distinguishes will provide between the flight time and the fuel routing options separately to investigate trade-offs (conflicting scenarios) among different routing options. Thus, the time-optimal route is not always the same as the wind-optimal route.” This reply is related to the reply to “p 3, l 69”.

- **p 6, l 197**: The CCF is → The CCFs are.
 Reply: We will revise the text: on page 6 line 197, “The CCFs are provided by the...”. Related to this, we will modify Fig. 2: on page 30 in Fig. 2 (light green), “CCF → CCFs”.

- **p 6, l 199**: “total” climate impacts versus “some” aviation emissions : this sounds strange.
 Reply: We will remove the word “total” from the text: on page 6 line 199, “...and estimates total climate impacts due to some aviation emissions (see Sect. 1). Thus, the best trajectory for minimum CCFs will be calculated.”

Page 7

- **p 7, l 211**: \(n_{wp-1} \rightarrow n_{wp} - 1 \).
 Reply: Thank you so much. We will correct the text: on page 7 line 211, “...the flight segment index \(i = 1, 2, \ldots, n_{wp-1} \rightarrow n_{wp} - 1 \).”
• p 7, l 212–213 : calculation/calculation/calculate : try to vary the wording more.

Reply: We will revise the text: on page 7 line 212–215, “Next, the fuel/emissions calculation linked to the fuel/emissions calculation module (Fig. 2, light orange) calculates fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions by using a total energy model based on the BADA methodology (Schaefer, 2012) and the DLR fuel flow method (Deidewig et al., 1996, see Sects. 2.5 and 2.6 for more details). Next, fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions are calculated by the dedicated module (Fig. 2, light orange); this module comprises a total energy model based on the BADA methodology (Schaefer, 2012) and the DLR fuel flow method (Deidewig et al., 1996, see Sects. 2.5 and 2.6 for more details).”

• p 7, l 218–219 : corresponding to time steps → corresponding to ”the” time steps.

Reply: We will add the word “the” in the sentence: on page 7 line 218–219, “...along the flight trajectory corresponding to the time steps of EMAC (Fig. 4c).”

• p 7, l 219–220 : ”present” and ”previous” is a bit vague : isn’t it the position at the beginning of a time step of EMAC, and at the end of a time step?

Reply: Thank you so much. We will revise the text: on page 7 line 219–220, “...aircraft position parameters pos\text{new} and pos\text{old} are introduced to indicate the present position (at the end of the time step) and previous position (at the beginning of the time step) of the aircraft along the flight trajectory.”

• p 7, l 220 : ”a” present and previous position → ”the” present and previous position.

Reply: We will revise the text. Please see the reply to the comment above: “p 7, l 219–220”.

• p 7, l 221 : by real numbers of the waypoint index → by real numbers as a function of the waypoint index.

Reply: We will revise the text: on page 7 line 221, “They are expressed by real numbers as a function of the waypoint index...”.

• p 7, l 224 : I would rather say : ”This means that the aircraft moves 100% of the distance between i = 1 and i = 2, and 30 % of the distance between i = 2 and i = 3 in one time step.”

Reply: Thank you so much. We will revise the text: on page 7 line 224, “This means that the aircraft moves 100% of the distance between i = 1 and i = 2, and 30 % of the distance between i = 2 and i = 3 in one time step.”

• p 7, l 233 : is used → are used.

Reply: We will revise the text: on page 7 line 233, “...the coordinates of the (i+1)th waypoint is are used to find the...”.

• p 7, l 233 : This is a little bit inaccurate (see also Fig. 4). Assess the impact of this inaccuracy.

Reply: Unfortunately, we do not understand the referee comment. In this sentence, we describe how to gather the aircraft emissions for the case NO\textsubscript{x},\textsubscript{i} as example. This treatment is the same for the cases NO\textsubscript{x},\textsubscript{i-2} and NO\textsubscript{x},\textsubscript{i-1}: as shown in Fig. 4d on page 32, for the fraction of NO\textsubscript{x},\textsubscript{i-2}, the coordinates of the (i–1)th waypoint is used to find the nearest grid point. Nevertheless, we improve the caption of Fig. 4: on page 32 in the caption of Fig. 4, “...(d) Gathering global emissions; the fraction of NO\textsubscript{x},\textsubscript{i} corresponding to the EMAC grid box flight segment i is mapped onto the nearest grid box.”
• **p 8, l 237**: "If \(t \geq 2 \) of the day": express this better.

Reply: We will revise the text: on page 8 line 237, “If \(t \geq 2 \) of the day (i.e., once the status becomes ‘in-flight’), the departure check is false in subsequent time steps \(t \geq 2 \) and...”.

• **p 8, l 239**: without recalculating flight trajectory and fuel emissions → without recalculating the flight trajectory or fuel emissions.

Reply: Thank you so much. We will revise the text: on page 8 line 239, “...the aircraft moves to the new aircraft position without recalculating the flight trajectory and or fuel/emissions.”

• **p 8, l 240–241**: “For more than two consecutive days simulations” → “For simulations longer than two days”.

Reply: Thank you so much. We will revise the text: on page 8 line 240–241, “For simulations more longer than two consecutive days simulations, the same flight plan...”.

• **p 8, l 243**: Twice "calculation".

Reply: We will remove the first “calculation” in the sentence: on page 8 line 243, “The calculation methodologies of the fuel/emissions calculation module (Fig. 2, light orange) are described.”

• **p 8, l 246**: are used → is used.

Reply: Thank you so much. We will revise the word “are” into “is” in the revised manuscript: on page 8 line 246, “A total energy model based on the BADA methodology and the DLR fuel flow method are is used.”

• **p 8, l 246–247**: the first trip fuel estimation → a first trip fuel estimation.

Reply: We will correct the text: on page 8 line 246–247, “The fuel use calculation consists of the following two steps: the a first rough trip fuel estimation and...”.

• **p 8, l 247**: the second fuel calculation : a bit vague. Maybe mention that it is more detailed.

Reply: We will add the word “detailed” in the text: on page 8 line 247, “...the a first rough trip fuel estimation and the second detailed fuel calculation...”. Related to this issue, we will add the word “detailed” into the text in Fig. 2 (dashed box, light orange): on page 30, “2nd detailed fuel calc.”.

• **p 8, l 256**: mean flight altitude of the flight → mean altitude of the flight.

Reply: We will remove the first “flight” from the sentence: on page 8 line 256, “\(F_{\text{BADA}} \) is calculated by interpolating the BADA data (assuming nominal weight) to the mean flight altitude of the flight...”.

• **p 8, l 260**: it is assumed as → it is assumed to be.

Reply: Thank you so much. We will revise the text: on page 8 line 260, “It is assumed as to be 3 % of the \(\text{FUEL}_{\text{tip}} \)....”.

Page 9

• **p 9, l 274–275**: "For an aircraft in cruise ...” : express this better.

Reply: Please see the reply to the referee comment: “Sensitivity (1).”
• **p 9, line 276–278**: One should have a “,” or a “.” after most of the formula.

Reply: As the referee pointed out, we will recheck the all equations and add “,” or “.” after most of them. We will reply to this issue in the section of “Mathematical formulas (3).”

• **p 9, line 280**: The numerical value of \(\rho_i \) is not given in Table (2) (as for \(S, C_{D0} \) and \(C_{D1} \) in Table 1).

Reply: The referee is right. We will revise and add the text: on page 9 line 280, “The performance parameters \(S, C_{D0} \) and \(C_{D1} \) are given in Table 1, and the air density \(\rho_i \) is the air density (Table 2) are given in Tables 1 and 2, and \(V_{TAS,i} \) is calculated at every waypoint (Table 2).”

• **p 9, l 281**: a fuel flow → the fuel flow.

Reply: We will revise the text: on page 9 line 281, “…and the fuel flow of the aircraft...”.

• **p 9, l 282**: I suggest to skip "for jet aircraft".

Reply: We will skip the text “for jet aircraft” in the sentence: on page 9 line 282, “...calculated assuming a cruise flight for jet aircraft.”.

• **p 9, l 283–284**: ”,” after the equations.

Reply: We will add “,” after Eqs. (7) and (8). We will reply to this issue in the section of “Mathematical formulas (3).”

• **p 9, l 287**: I do not think this last sentence gives new information. Or formulate it nicer.

Reply: Thank you so much. We will revise the text: on page 9 line 289, “The \(FUEL_i \) reflects incorporates the tail/head winds effect...”.

• **p 9, l 290**: \((m) \rightarrow (m_i)\).

Reply: We will revise the text: on page 9 line 290, “The relation between the \(FUEL_i \) and the aircraft weight \((m)\) is...”.

• **p 9, l 294**: next to the last → at the one but last.

Reply: Thank you so much. We will revise the text: on page 9 line 294, “…the aircraft weight next to the last at the one but last waypoint...”.

• **p 9, l 296–297**: I do not think this last sentence gives new information. Or formulate it nicer.
Reply: We agree. We will remove the last sentence in the revised manuscript: on page 9 line 296–297, “As the aircraft weight is pre-calculated in this module, it reduces during the flight as fuel is burnt, corresponding to the time steps of EMAC.”.

Page 10

• **p 10, l 302**: first → First.

 Reply: We will revise the text: on page 10 line 302, “The calculation procedure follows four steps: First, the reference fuel flow...”.

• **p 10, l 310–311**: corresponding sea level values → corresponding values at sea level.

 Reply: Thank you so much. We will revise the text: on page 10 line 310–311, “P_0 and T_0 are the corresponding sea level values at sea level...”.

• **p 10, l 314–315**: “,” after equations.

 Reply: We will add “,” after Eqs. (14) and (15). We will reply to this issue in the section of “Mathematical formulas (3).”

• **p 10, l 327**: “… and q_i is the specific humidity at h_i” : mention units of q_i (kg kg$^{-1}$, g kg$^{-1}$, ...).

 Reply: We will add the unit in the sentence: on page 10 line 327, “…and q_i (in kg(H$_2$O)(kg(air))$^{-1}$) is the specific humidity at h_i...”.

• **p 10, l 329**: pre-calculated → calculated.

 Reply: We will modify the word: on page 10 line 329, “...using the pre-calculated FUEL,...”.

• **p 10, l 330–331**: “,” after equations. I do not think it is a good idea to have variables whit names as NO\times,i and H$_2$O\times,i. I would rather use names like m_{NOx}.

 Reply: We will add “,” after Eqs. (19) and (20). We will reply to this issue in the section of “Mathematical formulas (3).” Further, we understand the referee comment. Nevertheless, we are hesitating to change the variable names, because “m” is already used for the aircraft weight, as described on page 9 line 290. Maybe the names are not the best ones, however, we think that the “NO\times,i” and “H$_2$O\times,i” show clearly that these emissions are calculated for the ith flight segment.

Page 11

• **p 11, l 339**: one-day → one day of.

 Reply: From the reply to the referee comment on “p2, line 27,” we will define the word “one-day AirTraf simulation”: on page 4 line 106, “In Sect. 4, one-day AirTraf simulations are demonstrated for with the two options for a typical winter day (called one-day AirTraf simulations) and the results are discussed.” Therefore, we will also use the word here.

• **p 11, l 343**: works → works only.

 Reply: We will add the word “only” in the sentence: on page 11 line 343, “The current aircraft routing module (Fig. 2, light green) works only with respect to the great circle and...”.

• **p 11, l 351**: arctan, sin, cos, ... should not be italic.
Reply: We will modify the all names of trigonometric formulas into normal straight letters in the revised manuscript. We will reply to this issue in the section of “Mathematical formulas (4).”

- **p 11, l 351** : ”,” after equation.

 Reply: We will add “,” after Eq. (21). We will reply to this issue in the section of “Mathematical formulas (3).”

- **p 11, l 362** : Why mentioning ”km” here? Better to write on line 355: \(d_i \) (km).

 Reply: The “km” is described here for the flight altitude “\(h_i \)” (not for the great circle distance \(d_i \)), because Table 2 shows the unit of \(h \) is “m”. To clarify this, we will add the text in the sentence: on page 11 line 362, “...(\(h_i \) is used in km in Eqs. (22) and (23)) and...”.

- **p 11, l 363** : i.e. the → i.e.

 Reply: We will remove the word “the” in the sentence: on page 11 line 363, “...hence the great circle distance between airports, i.e. the...”.

- **p 11, l 365** : ”based on Polar coordinates”? Explain this better.

 Reply: We think that the word “based on” seems to be confusing. We will revise the text: on page 11 line 365, “...by linear interpolation based on in Polar coordinates.”

- **p 11, l 365** : therefore → in that case.

 Reply: We will revise the word “therefore” into “in that case” in the revised manuscript: on page 11 line 365, “...based on in Polar coordinates. Therefore In that case,...”.

Page 12

- **p 12, l 370** : of the \(i^{th} \) waypoint → at the \(i^{th} \) waypoint.

 Reply: We will change the word “of” into “at” in the revised manuscript: on page 12 line 370, “...the true air speed \(V_{TAS} \) and the ground speed \(V_{ground} \) at the \(i^{th} \) waypoint are calculated...”.

 Reply: We will add “,” after Eqs. (24) and (25). We will reply to this issue in the section of “Mathematical formulas (3).”

- **p 12, l 374** : where \(M \) is ”the” Mach number.

 Reply: We will add the word “the” in the sentence: on page 12 line 374, “...where \(M \) is the Mach number,...”.

- **p 12, l 378–379** : Although it is mentioned that \(V_{TAS} \), \(V_{wind} \) and \(V_{ground} \) are scalars, Eq. (25) on line 372 is actually a vector equation.

 Reply: As described on page 12 line 377–379, the flight direction is firstly calculated for every flight segment. Thereafter, the values of \(V_{TAS,i} \), \(V_{wind,i} \) and \(V_{ground,i} \) “corresponding to the flight direction” are calculated. For example, \(V_{ground,i} \) is a component of the wind vector along the flight direction (i.e. scalar value). Therefore, Eq. (25) on line 372 is a scalar equation.

- **p 12, l 386** : ”reflects” : this is not the only aspect which is reflected. I suggest to use ”incorporates”.

Reply: Thank you so much. We will revise the text: on page 12 line 386, “...and ETO, reflects incorporates the influence of tail/head winds...”. In the same way, we will revise the text: on page 21 line 700, “..., which reflects incorporates the influences of both V_{TAS} and winds...”.

- p 12, l 390: for the five → for five.

Reply: We will revise the text: on page 12 line 390, “Great circles were calculated for the five representative routes...”.

- p 12, l 393–395: 180 → 180° (while “deg” on line 397).

Reply: We will revise the sentence: on page 12 line 393–395, “…the difference in longitude between them was $\Delta \lambda_{airport} < 180°$ (in deg); R2 consisted of an airport pair in the northern hemisphere (HND-JFK) with $\Delta \lambda_{airport} > 180°$ (discontinuous longitude values...”).

- p 12, l 398: Missing deg?

Reply: Thank you so much. We will revise the sentence: on page 12 line 397–398, “…where $\Delta \lambda_{airport} = 0°$ and the difference in latitude was $\Delta \phi_{airport} = 0°$ deg; and R5 was another special route with $\Delta \lambda_{airport} = 0°$ and $\Delta \phi_{airport} = 0°$.”

- p 12, l 399: ”;” → ”,”.

Reply: We will modify the text: on page 12 line 399, “...as follows: $M = 0.82$; $h_i = 0$,...”.

Page 13

- p 13, l 403: varying n_{wp} in ”the range” [2, 100].

Reply: We will add the text “the range” in the revised manuscript: on page 13 line 403, “...n_{wp} was analyzed varying n_{wp} in the range [2, 100].”

- p 13, l 404: and the MTS → and MTS.

Reply: We will delete the word “the” in the sentence: on page 13 line 404, “...by Eqs. (22) and (23) and the MTS.”

- p 13, l 406: I do not think that $\Delta d_{eq23,eq22}$ etc. are appropriate choices for variable names. As these are difference, I think they should not not have a specific variable name attributed.

Reply: We understand the referee comment. Nevertheless, we are hesitating to change those variable names. We define the variable name for a flight distance as “d”, as shown in Table 2, and we use the variable “d” consistently in the manuscript: on page 11 Eqs. (22) and (23), on page 15 Eq. (28), etc. We think that the current expressions make sense. This reply is related to the reply to “5 Comments on tables, Table 4.”

- p 13, l 409–410: ”shows” versus ”showed”.

Reply: We will revise the text: on page 13 line 409–410, “Figure 6 shows the result of the sensitivity analysis of n_{wp} on the great circle distance. The results showed that the distance...”.

- p 13, l 413: I would not call it linear interpolation : one goes straight whereas the other follows an arc. Shouldn’t you also add that n_{wp} maybe should depend on the length of the flight?
Reply: We will remove the word “linear interpolation” in the sentence. This is not necessary for our argument here: on page 13 line 413, “...when using fewer n_{op} as a result of the linear interpolation.” The referee actually points out the important issue. However, we think that it is more important for readers (specifically AirTraf users) to show a criteria to use Eq. (23). For this, we describe as: on page 13 line 414, “Therefore, $n_{op} \geq 20$ is practically desired for the use of Eq. (23).”

- p 13, l 417: with respect to the flight time routing option → with respect to the flight time.

Reply: We will revise the text: on page 13 line 417, “The flight trajectory optimization with respect to the flight time routing option...”.

- p 13, l 418: algorithms → algorithm.

Reply: We will correct the word: on page 13 line 418, “…, which is a stochastic optimization algorithm.”

- p 13, l 422: The ARMOGA → ARMOGA.

Reply: We will revise the text: on page 13 line 422, “The ARMOGA will be implemented...”.

- p 13, l 424–425: With a routing option → For each routing option (except ...). I also suggest to skip “on the selected routing” in the second part of the sentence.

Reply: We will revise the sentence: on page 13 line 424–425, “With a For each routing option (except for the great circle routing option), a single-objective optimization problem on the selected routing option is solved.”

- p 13, l 427: Explain what an objective function in this context is.

Reply: The word “objective function” means “evaluation function.” The word “objective function” is the technical term (commonly used in GA-optimization terminology). Therefore, we will revise the sentence: on page 13 line 427, “Therefore, various objective evaluation functions (called objective functions) can easily be adapted...”.

- p 13, l 432–433: ”Is called ”an” optimal solution” and ”is called ”the” true-optimal solution”.

Reply: We will revise the sentence: on page 13 line 432–433, “A solution found in GA is called an optimal solution, whereas a solution having the theoretical-optimum of the objective function is called the true-optimal solution.”

- p 13, l 434: Say what is meant by converge: larger initial population, or just more generations?

Reply: The word “converge” means “becomes close to” in this context. As described on page 13 line 432–433, there are two solutions: an optimal solution and the true-optimal solution. When we solve an optimization problem, we expect that the optimal solution (our solution) “converges” to the true-optimal solution by optimization algorithms. This is what we wanted to say here.

- p 13, l 435: Will every flight have the same size for its initial population, and the same number of generations? Is that independent of the length of the flight?

Reply: This paper aims to confirm the ability of the optimization module (GA) to optimize flight routes. Therefore, we solved the simple time-optimal optimization problem using the common optimization setup (the same size for initial populations and the same number of generations for every flight). We understand that the referee pointed out an important issue. However, this is beyond the scope of this paper. If we could choose the setup individually for every flight, the computational requirements for the trajectory optimization
could probably be decreased. However, it is difficult to find an appropriate GA setup for every flight before solving the optimization problem. As the referee noted, the flight length can be used to adjust the population size and the number of generations for a flight. On the other hand, if a day shows complicated weather situations, GA needs a larger population size and more generations to converge. This issue will be one of our future investigations.

Page 14

- **p 14, l 440–441**: I do not think that "definitions" is the appropriate word to be used here.

 Reply: We believe that the word “definitions” is appropriate here. To solve an optimization problem, firstly, one has to define the optimization problem itself concerning variables, ranges of variables, evaluation functions, constraints, etc. Thereafter, one can solve the problem. On page 14, Sect. 3.2.2 describes the definitions of the flight trajectory optimization, which we solve here.

- **p 14, l 441**: of objective functions → of the objective function.

 Reply: We will revise the text: on page 14 line 441, “..., the definition of the objective function and the genetic operators.”

- **p 14, l 444**: used interchangeably to mean a flight trajectory → used interchangeably to flight trajectory.

 Reply: We will revise the text: on page 14 line 444, “...the term is used interchangeably to mean a flight trajectory...”.

- **p 14, l 445**: $n_{dv} = 11$ should not be here.

 Reply: We will remove the word “$n_{dv} = 11$” in the sentence and modify the text: on page 14 line 445, “...the design variable index $j (j = 1, 2, \ldots, n_{dv}=11)$...”. On page 15 line 487, “...where $n_{dv} = 11$, d_i and $V_{\text{ground}, i}$ are calculated...”.

- **p 14, l 456**: centering → centered.

 Reply: We will revise the text: on page 14 line 456, “...domains centered around the central points...”.

- **p 14, l 463–464**: how are these waypoints calculated? Will the arc lengths be equal?

 Reply: We reply to this issue in the section of “CP in trajectories (3).”

- **p 14, l 458–459 and 470–471**: "GA provided the values" : Do you mean already the final optimal values?

 Reply: Here, we just want to say that the values of the eleven design variables are provided by the GA optimization process. In other words, one does not have to determine the values. In fact, the sentence on page 15 line 479–480 says, “The initial population operator (Fig. 2, dark green) provides initial values of the eleven design variables as random numbers...”. Naturally, GA provides not only initial values, but also the final optimal values regarding the design variables.

- **p 14, l 462**: Explain a little bit more a B-spline curve.

 Reply: We will add the text to specify the curve: on page 14 line 462, “...trajectory is represented by a B-spline curve (3rd-order) with the three CPs...”. On page 15 line 474, “...trajectory is also represented by a B-spline curve (3rd-order) with...”.
- **p 14, l 464**: Are the waypoints on the B-spline curve still equidistant?

 Reply: No. The referee is right. We explain this issue in the sections of “CP in trajectories (3) and (4).” Here we will modify the text: on page 14 line 464, “To generate the waypoints at even intervals same number of waypoints between the CPs, \(n_{wp} \) was calculated...”. Related to this issue, we will delete the text: on page 7 line 206, “...the trajectory consists of waypoints generated at even intervals along the trajectory, and flight segments...”.

- **p 14, l 461 and 472**: "Here \(x_1, \ldots \) indicate longitudes/latitudes/altitude values”. Shouldn’t this be mentioned earlier in the paragraphs, i.e. on lines 452 and 466?

 Reply: The referee is right. We will revise the manuscript: on page 14 line 461, “Here \(x_1, x_3 \) and \(x_5 \) indicate longitudes, while \(x_2, x_4 \) and \(x_6 \) indicate latitudes.”, and on line 452, “...as shown in Fig. 7 (bottom). \(x_1, x_3 \) and \(x_5 \) indicate longitudes, while \(x_2, x_4 \) and \(x_6 \) indicate latitudes.” On page 14 line 472, “Here \(x_7 \) to \(x_{11} \) indicate altitude values.”

Page 15

- **p 15, l 477**: where longitude-coordinate of waypoints → where “the” longitude of the waypoints.

 Reply: We will modify the sentence in the revised manuscript. Please see the reply to the referee comment on the “CP in trajectories (4).”

- **p 15, l 476–478**: "where longitude-coordinate of waypoints is the same for the two curves.” Is this true in the example here? The lon-lat curve contains 3 CPs and thus 4 intervals. The the lon-altitude curve contains 5 CPs and 6 intervals. The number of waypoints is 101, so 100 intervals. This is however not a multiple of 6, so I don’t see that the longitude of the waypoints for both B-spline curves are automatically identical.

 Reply: This is true. The longitude of the waypoints for both B-spline curves are identical. A flight trajectory is also represented by a B-spline curve (the lon-altitude curve) and waypoints are generated along the curve. These waypoints are tentative points (\(> n_{wp} \)). And then, we create actual waypoints on the lon-altitude curve, by interpolating the lon-altitude curve to the longitude-coordinate of the lon-lat curve. We modify the related sentences in the section of “CP in trajectories (4).”

- **p 15, l 479**: "provides initial values by random numbers” : this is too cryptic.

 Reply: As described on page 13 line 418, GA is a stochastic optimization algorithm. Thus, the optimization proceeds using random numbers. Maybe the current sentence is a little bit unclear, therefore we will modify the sentence in the revised manuscript: on page 15 line 479, “The initial population operator (Fig. 2, dark green) provides initial values of the eleven design variables by random numbers at random within the lower/upper bounds described above...”.

- **p 15, l 481**: "The operator creates divers solutions defined by a fixed population size \(n_p \).” : This is a complicated way to say: "The operator creates \(n_p \) different solutions (where \(n_p \) is the population size)."

 Reply: We agree. We will revise the text: on page 15 line 480–481, “The operator creates diverse solutions defined by a fixed population size \(n_p \), different solutions (where \(n_p \) is the population size)...”.

- **p 15, l 481**: "a random set” : do you mean the random set which is just described (then I suggest to use "the"), or is it even another random set? I would put the sentence "GA starts its search with a random set of solutions (population approach)” at the beginning of the paragraph.

 Reply: “a random set” means the random set which is already described. We will move the sentence at the beginning of the paragraph (in this case, the word “a random set” is used). Finally, we will revise the
GA starts its search with a random set of solutions (population approach). The initial population operator...

- p 15, l 483: By summing the flight time for flight segments → by summing the flight time over all flight segments.

 Reply: We will revise the text: on page 15 line 482, “...for each of the solutions by summing the flight time for over all flight segments...”.

- p 15, l 483–484: ”The .. optimization solved here” : too cryptic and vague.

 Reply: We will revise the text: on page 483–484, “The single-objective optimization problem on the flight time solved here is can be written as follows:”.

- p 15, l 485: ”Minimize” and ”Subject to” should not be italic.

 Reply: We will modify the words ”Minimize” and ”Subject to” with straight letters in the revised manuscript: on page 15 line 485, “Minimize Minimize” and ”Subject to Subject to”.

- p 15, l 490: What is meant by ”solutions that dominate it”?

 Reply: This expression shows an inferior-to-superior relationship among solutions, and is commonly used in GA optimization terminology. In optimization problems, for example, if a solution A is superior to a solution B on an objective function, we can say that the solution A dominates the solution B.

- p 15, l 489–491: Why is ”rank” written in italic, but ”fitness” not?

 Reply: We will add the glossary in Appendix and refer the word “rank” in italics in the revised manuscript: on page 15 line 489–492, “A rank of a...was computed by 1/rank. A solution...smaller rank value...”. This reply is related to the reply to the referee comment on the “GA algorithm”.

- p 15, l 493: made → makes (because ”are identified” on line 488).

 Reply: We will revise the text: on page 15 line 493, “...Sampling Selection (Baker, 1985) made makes duplicates...”.

- p 15, l 492: What is meant by a ”mating pool”?

 Reply: We will add the glossary in the revised manuscript to explain the technical term “mating pool”. Please see the reply to the referee comment on the “GA algorithm.”

- p 15, l 500: ”This operator was applied to each design value.” : Isn’t this said already in the sentence before?

 Reply: By following the referee comment, we will delete the sentence and add the word “n_v = 11” into the previous sentence: on page 15 line 500–501, “...with γ = (1 + 2α)u_i − α and j varies in [1, n_v] (n_v = 11). This operator was applied to each design variable; n_v = 11.”

- p 15, l 504: ”added a disturbance to the child solution.” : It does if for both child solutions I presume.

 Reply: The referee comment is correct. We will correct the word “the child solution” into “the child solutions”: on page 15 line 504, “...added a disturbance to the child solutions by...”.

Page 16
• **p 16, l 515**: the population of "the" solutions → the population of solutions.

Reply: We will remove the word “the” in the revised manuscript: on page 16 line 515, “...it is expected that the population of the solutions is...”.

• **p 16, l 517**: ”an optimal solution is output.” : How is that solution found based on the last generation?

Reply: We will add the text to inform on how the final solution is obtained from the optimization. Please see the reply to the referee comment on the “GA algorithm.”

• **p 16, l 518**: ”corresponding to the routing option”: I don’t think this has to be repeated here.

Reply: We will remove the word "corresponding to the routing option" in the revised manuscript: on page 16 line 517−518, "...GA quits the optimization and an optimal solution showing the best f of the whole generation is output corresponding to the routing option.”

• **p 16, l 518**: ”the best”: one cannot guarantee that it is the best I think.

Reply: By following the referee comment, we will change the word "the best" into "the superior" in the revised manuscript: on page 16 line 518, “The optimal solution has the best superior combination of the...”.

• **p 16, l 519**: "naturally" : is this the appropriate wording?

Reply: We will revise the sentence: on page 16 line 519, “Naturally, the flight properties of the optimal solution are also available...”.

• **p 16, l 521–522**: can be applied to any routing option (I thought that was not possible yet in version 1.0?) → could.

Reply: We agree. We will correct the word “can” into the "could" in the revised manuscript: on page 16 line 521–522, “The flight trajectory optimization methodology described here can could be applied to any routing option...”.

• **p 16, l 529**: "As V_{TAS} and V_{ground} were set to 898.8 km h$^{-1}$": Isn’t it better to mention first explicitly that we have set $V_{wind} = 0$, and from that it follows that V_{TAS} and V_{ground} are 898.8 km h$^{-1}$ (and not set).

Reply: By following the referee comment, we will revise the sentence: on page 16 line 529, “V_{wind} was set to 0 km h$^{-1}$ (no-wind conditions); As V_{TAS} and V_{ground} were set to 898.8 km h$^{-1}$ (constant) under no-wind conditions. Hence, the f_{true} equals the flight time along the great circle from MUC to JFK at FL290:...”.

• **p 16, l 531**: Maybe one should say why flying at FL290 will be faster than at other altitudes. I assume that this depends on the value of T. Are the initial and final points at FL290? Mention that $M = 0.82$.

Reply: To show clearly why flying at FL290 will be faster than at other altitudes, we will add the text in the revised manuscript: on page 16 line 530–531, “...f_{true} equals the flight time along the great circle from MUC to JFK at FL290 (having its minimum d in the range of [FL290, FL410]): $f_{true} = 25,994.0$ s...”.

In this benchmark test (off-line), $V_{wind} = 0$ km h$^{-1}$ and $V_{TAS} = V_{ground} = 898.8$ km h$^{-1}$ were set, as described on page 16 line 529. Hence, the results do not depend on the values of T and M (see Eqs. (24) and (25)).

In addition, the initial and final points were at FL290. Table 5 summarizes the calculation conditions for the test. In Table 5, the altitudes of departure (MUC) and arrival airport (JFK) are described as, “alt. = FL290.”
• **p 16, l 537**: total 1000 independent → a total of 1000 independent.

Reply: We will revise the text: on page 16 line 537, “…i.e. a total of 1,000 independent GA simulations...”.

• **p 16, l 532–538**: Isn’t the first experiment also included in the second setup?

Reply: Yes. To clarify this point, we will modify the text: on page 16 line 532−538, "With regard to the dependence of the optimal solutions on initial populations, 10 independent GA simulations from different initial populations were performed. In these simulations, both \(n_p \) and \(n_g \) were set to 100, while other calculation conditions were set as shown in Table 5. In the same way, to discuss an appropriate \(n_p \) and \(n_g \) sizing, 10 independent GA simulations from different initial populations were performed for each combination of \(n_p \) (10, 20, ..., 100) and \(n_g \) (10, 20, ..., 100), i.e. total 1,000 independent GA simulations were performed. Other calculation conditions were also set as shown in Table 5.” Related to this modification, we will add the text: on page 17 line 559, "...the 10 independent GA simulations from different initial populations with \(n_p = 100 \) and \(n_g = 100 \)."

Page 17

• **p 17, l 540**: generation number \(n_g \) → number of generations \(n_g \).

Reply: We will revise the text: on page 17 line 540, “The influence of the population size \(n_p \) and the number of generations \(n_g \)...”. In the same way, we will revise the manuscript as follows: on page 16 line 517, “...computed for a fixed number of generations \(n_g \)...”. On page 35 in the caption of Fig. 8, “...and the number of generations \(n_g \)...”. On page 35 in the x-axis label of Fig. 8, “generation number \(n_g \)...”. On page 36 in the caption of Fig. 9, “...and the number of generations \(n_g \) is 100.” On page 38 in the caption of Fig. 11, “...and the number of generations \(n_g \) is 100.” On page 39 in the x-axis label of Figs. 12a and 12b, “generation number \(n_g \)...”. On page 39 in the caption of Fig. 12, “...and the number of generations \(n_g \)...”. On page 44 in the caption of Fig. 17, “...and the number of generations \(n_g = 100 \) \(n_g \) is 100.” On page 55 in Table 5, “Generation number Number of generations”. On page 56 in Table 7, “Generation number Number of generations”. On page 8 (Supplementary material) in the caption of Table S1, “...and the number of generations \(n_g = 100 \)” On page 9 (Supplementary material) in the caption of Table S2, “...and number of generations \(n_g \)...”. On page 9 (Supplementary material) in Table S2, “Generation number \(n_g \) Number of generations \(n_g \)”.

• **p 17, l 541**: Is "confirmed" the appropriate wording?

Reply: We will modify the word: on page 17 line 540–541, “...the convergence properties of GA was confirmed examined.”

• **p 17, l 542**: sufficiently come close → come sufficiently close.

Reply: We will revise the text: on page 17 line 542, “...the optimal solutions sufficiently come sufficiently close to the \(f_{true} \)...”.

• **p 17, l 542, 543, 545**: the \(f_{true} \) → \(f_{true} \).

Reply: We will revise the word: on page 17 line 542, “...close to the \(f_{true} \) with increasing...”; on page 17 line 543, “...closest flight time to the \(f_{true} \) was...”; and on page 17 line 545, “...between the \(f_{best} \) and the \(f_{true} \) was...”.

In the same way, we will correct the word “the \(f_{true} \)” in the revised manuscript: on page 16 line 530, “...the \(f_{true} \) equals the flight time...”; on page 17 line 565, “0.01 % of the \(f_{true} \)”; and on page 17 line 566, “0.001 % of the \(f_{true} \)”.

• **p 17, l 545**: \(\Delta f \): you do not need an extra variable name for something you express only once.
Reply: We understand the referee comment. Nevertheless, we are hesitating to remove the variable name. We use the variable “Δf” consistently in the manuscript to express the difference in flight time: on page 17 line 564–565; on page 18 line 575, 581, 588–590; on page 39 in the caption of Fig. 12; on page 8 (Supplementary material) in the caption of Table S1, etc. We think that this variable name is reasonable.

• p 17, l 547: What is meant by ”diversity” of GA optimization?

Reply: This word “diversity” is one of the performance indices of an optimization algorithm and is used to show whether the algorithm explores solutions widely or not. It is important to confirm the diversity of the algorithm. On page 17 line 549, we confirmed it for our optimization results as, “It is clear that GA explored diverse solutions from MUC to JFK...”.

• p 17, l 547–548: we focus on the optimization results, which found the best solution → we focus on the optimization setup which gave the best solution.

Reply: We believe that the word “optimization results” is appropriate here. We performed the optimizations for each combination of \(n_p \) (10, 20, ⋯, 100) and \(n_g \) (10, 20, ⋯, 100). Here, we say that we focus on the optimization case of \(n_p = 100 \) and \(n_g = 100 \); this case includes the best solution \(f_{best} \). In fact, Fig. 9 shows the results obtained from this optimization case, which includes all solutions (10,000 trajectories, black lines) and the best solution (red line) explored by GA. Nevertheless, we modify the sentence by following the referee comment: on page 17 line 547–548, “To confirm the diversity of GA optimization, we focus on the optimization results, which found yielding the best solution...”.

• p 17, l 548: “all the solutions” : Are these the 100 × 100 = 10000?

Reply: Yes. Figure 9 shows the 10,000 trajectories explored by GA. Related to this, we will correct the text “1,000” into “10,000” in the revised manuscript: in the captions of Figs. 9 (p 36), 14 (p 41), S1 (Supplementary material, p 1) and S2 (Supplementary material, p 2), “1,000 10,000 explored trajectories (solid line, black)...”.

• p 17, l 548–549: solutions explored by GA as longitude vs altitude (top) and as location. This should be worded correctly.

Reply: We will modify the sentence in the revised manuscript: on page 17 line 548–549, “Figure 9 shows all the solutions explored by GA as longitude vs altitude (top) and as location (bottom).”

• p 17, l 552: ”To confirm the difference” : I don’t think confirm is appropriate to be used here.

Reply: We will revise the text: on page 17 line 552, “To confirm investigate the difference between the solutions,...”.

• p 17, l 554–555: Isn’t this conclusion too fast? What if the trajectory is not so zonal, but the trajectory crosses the equator at an angle of 45°: how would the CPs and regions around be defined?

Reply: We will reply to this issue in the section of “CP in trajectories (2).” We will add the text into the sentence to confine this conclusion with more precision: on page 17 line 554–555, “Therefore, GA is adequate for finding an optimal solution with sufficient accuracy (in a strict sense, this conclusion is confined to the benchmark test).”

• p 17, l 552: ”confirm” is not appropriate here.

Reply: (The “p 17, line 552” means probably “p 17, line 557”) We will change the word “confirm” into “analyze”: on page 17 line 557, “To confirm analyze the dependence of...”.
• p 17, l 552: To confirm the dependence of optimal solutions on initial populations → To "analyze" the dependence of "the" optimal solution on "the" initial population, ...

Reply: (The “p 17, line 552” means probably “p 17, line 557”) We will revise the text: on page 17 line 557, “To confirm analyze the dependence of the optimal solutions on the initial populations,...”.

• p 17, l 552–553: I don’t think one should use words like "best-of-generation".

Reply: (The “p 17, line 552–553” means probably “p 17, line 557–558”) We will remove the word “best-of-generation” in the sentence: on page 17 line 557–558, “...Fig. 11 shows the best-of-generation flight time vs the number of objective function evaluations...”. In the same way, we will remove the word “best-of-generation”: on page 20 line 664, “...Fig. 17 shows the best-of-generation flight time vs the number of objective function evaluations...”.

• p 17, l 558–559: corresponding to → for.

Reply: We will modify the text: on page 17 line 558–559, “function evaluations (= \(n_p \times n_g \)) corresponding to for the 10 independent GA simulations...”.

• p 17, l 653: "there is a small degree of variation in the objective function". Stated like this, it gives the impression that a different objective function is used. Probably, what is meant is that the value of the objective function for the final flight is different.

Reply: (The “p 17, line 653” means probably “p 17, line 563”) By following the referee comment, we will revise the text: on page 17 line 563, “As indicated in Table S1, there is a small degree of variation in the objective function \(f (= \text{flight time}) \) the value of the objective function \(f (= \text{flight time}) \) is slightly different.”

• p 17, l 564: Writing \(f - f_{\text{true}} \) is a bit strange. For me, \(f \) and \(f_{\text{true}} \) are solutions, i.e. flights defined by \(x_1, ..., x_{11} \). Here, \(f \) and \(f_{\text{true}} \) seem to indicate the value of the flight time.

Reply: \(f \) (and also \(f_{\text{true}} \)) means the objective function value for a solution (i.e. a flight trajectory), which is defined by the eleven design variables \(x_1, x_2, ..., x_{11} \). As Eq. (28) defines, \(f \) (also \(f_{\text{true}} \)) actually indicates the value of the flight time here.

• p 17, l 569 and 570: "number of \(n_p \) and \(n_g \) " and "size of \(n_p \) and \(n_g \) ". One should use : "the value of \(n_p \) ”, or "the size of the population”, not something hybrid like "the number of \(n_p \) ".

Reply: We will modify the expression: on page 17 line 569, “With an increased in number of \(n_p \) and \(n_g \), GA can discover tends to find an improved solution.”

• p 17, l 569: "discover” : I suggest to use a different word.

Reply: We will change the word “discover” into “find” in the revised manuscript. In addition, we will modify the word “can” into “tends to” to show exactly the meaning of the sentence: on page 17 line 569, “With an increased in number of \(n_p \) and \(n_g \), GA can tends to find an improved solution.” As shown in Fig. 11, the optimal solution finally converges with increasing \(n_p \) and \(n_g \). The word “can” seems to mean that the solution is improved unlimitedly. Therefore, we think that the word “tend to” is appropriate.

• p 17, l 570: "is problem dependent, e.g. weather situations” : this should be formulated properly.

Reply: This sentence on line 570–571 seems to be confusing. We will modify the sentence: on page 17 line
...the required size of \(n_p \) and \(n_g \) is problem-dependent, e.g., weather situations, and therefore estimating appropriate \(n_p \) and \(n_g \) could be different. However, following a simple initial guess for \(n_p \) and \(n_g \) is a good starting point for their sizing.

- p 17, l 571: "estimating appropriate \(n_p \) and \(n_g \) could be different" : I suggest to formulate this differently.

Reply: We will reply to the comment in the above section: “p 17, l 570”.

Page 18

- p 18, l 573–574: unclear sentence. What is, e.g., the difference between accuracy of GA optimizations and variation in the optimal solutions? I also had the impression that the impact of the initial population was already studied in Sect. 3.2.5.

Reply: The word “accuracy of GA optimizations” shows how close a solution converges to the true-optimal solution. On the other hand, a variation in optimal solutions is caused by different initial populations. Because GA is a stochastic optimization algorithm (not a deterministic optimization method, such as the gradient-based method). In addition, the impact of the initial population was studied in Sect. 3.2.5 regarding the results with “\(n_p = 100 \) and \(n_g = 100 \).” The impact also depends on \(n_p \) and \(n_g \) and is investigated in Sect. 3.2.6 in detail. Those results are necessary for the population and generation sizing.

- p 18, l 574: Skip "calculated".

Reply: We will remove the word “calculated” in the sentence: on page 18 line 574, “Figure 12 shows the calculated \(\Delta f \) and...”.

- p 18, l 581: the \(\Delta f \) and the \(s_{\Delta f} \) → Skip "the".

Reply: We will remove the word “the” in the sentence: on page 18 line 581, “Figure 13 shows the variation of the \(\Delta f \) and the \(s_{\Delta f} \) for all...”.

- p 18, l 582: the \(\Delta f \) → Skip "the".

Reply: We will remove the word “the” in the sentence: on page 18 line 582, “The symbols and error bars in the figure correspond to the \(\Delta f \) and \(s_{\Delta f} \),...”.

- p 18, l 589: that reduction → a reduction.

Reply: We will correct the text: on page 18 line 589, “Similarly, a reduction of 97 % can be achieved...”.

- p 18, l 591: ”by selecting \(n_p \) and \(n_g \) for different purposes.” This should be formulated differently.

Reply: Values of \(\Delta f \) and \(s_{\Delta f} \) are the basis for selecting \(n_p \) and \(n_g \). As described on page 18 line 586, the enlarged drawing in Fig. 13 shows that if one selects the number of function evaluations (\(= n_p \times n_g \)) of 800, the large reduction of computational costs of 92 % can be achieved, keeping \(\Delta f \) less than 0.05 % (\(s_{\Delta f} \approx 0.02 \% \)), compared to the optimal solution by 10,000 function evaluations. For \(n_p \times n_g = 800 \), one can select any combination of \(n_p \) and \(n_g \): for example, \(n_p = 10 \) and \(n_g = 80 \); \(n_p = 20 \) and \(n_g = 40 \) etc. A user makes his/her own choice on \(n_p \) and \(n_g \) by referring the values of \(\Delta f \) and \(s_{\Delta f} \), as shown in Fig. 13. The formulae of \(\Delta f \) and \(s_{\Delta f} \) are described clearly in the caption of Fig. 13.

We will add this explanation to the revised manuscript: on page 18 line 586–589, “As shown in the enlarged drawing in Fig. 13, The enlarged drawing in Fig. 13 shows that if one selects the number of function evaluations (\(= n_p \times n_g \)) of 800, the large reduction of computational costs of 92 % can be achieved, keeping \(\Delta f \) less than 0.05 % (\(s_{\Delta f} \approx 0.02 \% \)), compared to the optimal solution obtained by 10,000 function evaluations (\(n_p = 100 \) and \(n_g = 100 \)). For \(n_p \times n_g = 800 \), one can...”
select any combination of n_p and n_g: $n_p = 10$ and $n_g = 80$; $n_p = 20$ and $n_g = 40$ etc. A user makes his/her own choice on n_p and n_g by referring the values of Δf and s_f shown in Fig. 13.”

- **p 18, l 595**: for demonstrations → for demonstration.

 Reply: We will correct the text: on page 18 line 595, “...one-day AirTraf simulations were performed in EMAC (on-line) with the respective routing options for demonstrations.”

- **p 18, l 596, 598**: Calculation conditions : too vague.

 Reply: We will change the word “Calculation conditions” into “Simulation setup” in the revised manuscript: on page 18 line 596, “4.1 Calculation conditions Simulation setup”. On page 18 line 598, “Table 7 lists the calculation conditions setup for the one-day simulations.” On page 56 in the caption of Table 7, “Table 7. Calculation conditions Setup for AirTraf one-day simulations.”

- **p 18, l 598–599**: simulation”s” and simulation.

 Reply: We will correct the text: on page 18 line 598–599, “Table 7 lists the calculation conditions setup for the one-day simulations. The simulations was were performed for...”.

- **p 18, l 605**: “On the other hand” → ”In addition”.

 Reply: We will change the word “On the other hand” into “In addition”: on page 18 line 605, “On the other hand In addition, a single one-day simulation was...”.

- **p 18, l 606–p19, l 607**: in [FL290, FL410] → in the range of..

 Reply: (The “p 19, line 607” means probably “p 18, line 607”) We will add the text “the range of” in the revised manuscript: on page 18 line 606, “...altitude changes in the range of [FL290, FL410].”

- **p 18, l 607**: ”and therefore” : I think V_{ground} also varies for other reasons, e.g., due to varying wind speed and direction.

 Reply: We just wanted to say here that the values of V_{TAS} and V_{ground} are different at every waypoint. We will modify the sentence: on page 18 line 607, “For the two options, the Mach number was set to $M = 0.82$ and therefore V_{TAS} and V_{ground} varied along the waypoints the values of V_{TAS} and V_{ground} were different at every waypoint (Eqs. (24) and (25)).”

Page 19

- **p 19, l 615**: Does "case" refers to just one flight, or to all 103 flights together?

 Reply: The “case” means the one-day simulation including all 103 flights. We will revise the sentence: on page 19 line 614–615, “The one-day simulation required approximately 15 min for a the great circle case routing option, while it took approximately 20 hours for a the time-optimal case flight time routing option.”

- **p 19, l 616**: It is initially unclear what "it" refers to.

 Reply: The word “it” means “the computational time.” We will change the word “it” into “this time” in the sentence: on page 19 line 616, “...the computational time is consumed by the trajectory optimizations. Therefore it this time can be reduced by...”.

- **p 19, l 617**: ”right” : This is maybe not the most appropriate wording.
Reply: We will change the word “right” into “properly”: on page 19 line 617, “...choosing properly all GA parameters right, using more PEs,...”.

• p 19, l 618 : by a small → by “using” a small.

Reply: We will add the “using” in the text: on page 19 line 618, “...a large reduction in computing time of roughly 90 % can be achieved by using a small number of n_p...”.

• p 19, l 618 : ”a small number of n_p” → ”a small value of n_p”, or ”a small population size”

Reply: We will modify the text: on page 19 line 618, “...a large reduction in computing time of roughly 90 % can be achieved by using a small number of n_p...”.

• p 19, l 619 : with sufficient accuracy → with ”still” sufficient accuracy.

Reply: We will add the word “still” in the text: on page 19 line 619, “...and n_p with still sufficient accuracy of the optimizations.”

• p 19, l 620 : I think the title of Sect. 4.2 does not describe well the content : only one airport pair is discussed (Amsterdam - Minneapolis) really in depth. I suggest something more general.

Reply: In Sect. 4.2, we have focused on the results of three airport pairs and discussed the one. The rest is in the Supplementary material. To make the title more general, we will delete the word “three” in the title: on page 19 line 620, “4.2 Optimal solutions for three selected airport pairs.”

• p 19, l 623 : trajectories : Is meant the final trajectories?

Reply: Yes. The “trajectories” mean the optimized flight trajectories (final solutions). We will modify the sentence: on page 19 line 623, “...we classified the those optimized flight trajectories according to their altitude changes into three categories.”

• p 19, l 627 : we have selected ”the” three airport pairs → we have selected three airport pairs.

Reply: We will remove the word “the” in the sentence: on page 19 line 627, “We have selected the three airport pairs of...”

• p 19, l 633 : in [FL290,FL410] → in the range of [FL290,FL410].

Reply: We will add the text “the range of” in the revised manuscript: on page 19 line 633, “...altitude changes in the range of [FL290, FL410].”

• p 19, l 633–634 : ”when calculating for the selected solutions” : This should be formulated better.

Reply: This text seems to be confusing. We will revise the text: on page 19 line 633–634, “Similar results were obtained when calculating for the selected solutions of Type I and III,...”.

• p 19, l 634 : in the supplements → in the supplementary material.

Reply: We will change the text “in the supplements” into “in the supplementary material” in the revised manuscript: on page 19 line 634, “..., as shown in Figs. S1 and S2 in the Supplementary material.” In the same way, we will modify the text: on page 17 line 562, “Table S1 in the Supplementary material shows a summary of...”. On page 18 line 583, “...Table S2 in the Supplementary material shows a summary of...”.

In the same way, we will modify the text: on page 17 line 562, “Table S1 in the Supplementary material shows a summary of...”.

On page 18 line 583, “...Table S2 in the Supplementary material shows a summary of...”.

In the same way, we will modify the text: on page 17 line 562, “Table S1 in the Supplementary material shows a summary of...”.

On page 18 line 583, “...Table S2 in the Supplementary material shows a summary of...”.

In the same way, we will modify the text: on page 17 line 562, “Table S1 in the Supplementary material shows a summary of...”.

On page 18 line 583, “...Table S2 in the Supplementary material shows a summary of...”.

In the same way, we will modify the text: on page 17 line 562, “Table S1 in the Supplementary material shows a summary of...”.

On page 18 line 583, “...Table S2 in the Supplementary material shows a summary of...”.
Supplementary material...”. On page 20 line 657, “see Supplements Supplementary materials”. On page 22 line 719, “are shown in the Supplementary material.”

- **p 19, l 638–639**: east and west direction → eastern and western directions.

Reply: We will revise the text: on page 638–639, “To calculate tail/head winds in east eastern and west western directions,...”.

- **p 19, l 639**: major wind component: What is meant by this?

Reply: We just wanted to express the wind component, which has a dominant influence on the flight trajectory, to show the relation clearly between the wind fields and optimal flight trajectories. In fact, the contours in Fig. 15 show the zonal wind speed u; they do not include v and w.

- **p 19, l 640–641**: at the h → at h.

Reply: We will modify the text: on page 19 line 640−641, “...direction at the departure time at the h.”

Page 20

- **p 20, l 646**: Supplements → Supplementary material.

Reply: We will modify the text: on page 20 line 646, “...take advantages of the wind fields (see Supplements Supplementary materials, Figs. S3 and S4).”

- **p 20, l 647**: the behaviour of altitude changes → the behaviour of the altitude changes.

Reply: We will revise the text: on page 20 line 647, “To understand the behavior of the altitude changes of the optimal flight...”.

- **p 20, l 647**: Fig. 16 plots → Fig. 16 shows.

Reply: We will revise the text: on page 20 line 647, “Fig. 16 plots shows the altitude distribution of the true air speed...”.

- **p 20, l 650–651**: this means tail winds (≥ 1.0) and head winds (< 1.0) to the flight direction: Formulate better.

Reply: We will add the text to the sentence: on page 20 line 650–651, “...; this means tail winds ($V_{\text{ground}}/V_{\text{TAS}} \geq 1.0$) and head winds ($V_{\text{ground}}/V_{\text{TAS}} < 1.0$) to the flight direction.”

- **p 20, l 655, 662**: ”reflects” → ”takes into account”, or ”accounts for”.

Reply: We will revise the word: on page 20 line 655, “...GA correctly reflects takes into account the weather conditions and...”. On page 20 line 662, “...GA correctly reflects takes into account weather conditions for the...”.

- **p 20, l 658**: confirmed → compared. Skip ”quantitatively”.

Reply: We will revise the text: on page 20 line 658, “Next, we confirmed compared the resulting flight times quantitatively for the selected solutions.”

- **p 20, l 659**: as indicated → as shown.
Reply: We will revise the text: on page 20 line 659, “As indicated shown in Table 8...”.

- **p 20, l 659–662**: decreased → is lower.

Reply: We will revise the sentences: on page 20 line 659−662, “As indicated shown in Table 8, the flight time decreased is lower for the time-optimal case compared to the great circle cases. In addition, the flight time decreased is lower for the eastbound time-optimal flight trajectories compared to that for the westbound time-optimal flight trajectories.”

- **p 20, l 664**: ”sufficiently” : I think this is a bit vague.

Reply: (The “p 20, line 664” means probably “p 20, line 666”) We will delete the word: on page 20 line 666, “...the solutions sufficiently converged to each optimal solution.”

- **p 20, l 667**: that the reduction → a reduction.

Reply: We will revise the text: on page 20 line 667, “It is also clear from Fig. 17 that the a reduction in...”.

- **p 20, l 668**: ”sizing” → ”reducing” or ”choosing properly”.

Reply: We will revise the text: on page 20 line 668, “...the a reduction in computing time can be achieved by sizing choosing properly a and b...”.

- **p 20, l 671**: This is not a nice first sentence for a paragraph.

Reply: We will modify the sentence: on page 20 line 671, “Next, the one-day AirTraf simulations results for 103 trans-Atlantic flights are discussed analyzed.”

- **p 20, l 673–674**: trans-Atlantic Ocean → Atlantic ocean.

Reply: We will remove the word “trans-” in the text: on page 20 line 673–674, “...flight trajectories congregated around 50° N over the trans-Atlantic Ocean to take advantage...”.

- **p 20, l 675**: of ”the” region → of ”that” region.

Reply: We will revise the text: on page 20 line 675, “...the westbound time-optimal flight trajectories were located to the north and south of the that region...”.

Page 21

- **p 21, l 681**: plot → show.

Reply: We will revise the text: on page 21 line 681, “Figures 19a and 19b plot show the...”.

- **p 21, l 683**: with linear fitted lines : be more precise.

Reply: We will modify the text: on page 21 line 683, “...with linear fitted lines fitted by the Least Squares algorithm.” Related to this issue, we will also modify the text: on page 18 line 586, “...least-squares Least Squares algorithm...”.

- **p 21, l 683**: increased → is higher.

Reply: We will revise the text: on page 21 line 683, “Figure 19a shows that V_{TAS} increased is higher at low altitudes.”
• **p 21, l 688–689**: which had high V_{TAS} values → with high V_{TAS} values.

 Reply: We will revise the text: on page 21 line 688–689, “GA successfully found the flight trajectories, which had **with** high V_{TAS} values, as time-optimal flights.”

• **p 21, l 691**: increases → is larger.

 Reply: We will revise the text: on page 21 line 691, “…time-optimal case (solid line, red) increases **is larger** between...”.

• **p 21, l 696**: increases → is larger.

 Reply: We will revise the text: on page 21 line 696, “…time-optimal case (solid line, blue) is distributed widely in altitude and increases **is larger** between”.

• **p 21, l 700**: Supplement → Supplementary material.

 Reply: We will modify the text: on page 21 line 700, “…is shown in the **Supplementary material** (Fig. S7)...”.

• **p 21, l 703**: correctly selected the airspace : improve this formulation.

 Reply: We will modify the sentence: on page 21 line 703, “Therefore, GA correctly selected the airspace by altitude changes, where V_{ground} values increased the trajectories found by GA through altitude changes passed areas, which correctly lead to larger V_{ground}.”

• **p 21, l 705**: This behaviour of altitude changes → These altitude changes.

 Reply: We will revise the text: on page 21 line 705, “This **behavior of These** altitude changes affects the...”.

• **p 21, l 705**: affects the variation in fuel consumptions → affects the fuel consumption.

 Reply: We will revise the text: on page 21 line 705, “**These** altitude changes affects the variation in fuel consumptions...”.

• **p 21, l 705**: the terms are used interchangeably to mean fuel flows : improve the formulation.

 Reply: We will improve the text: on page 21 line 705, “…affects the variation in fuel consumptions (the terms are **is** used interchangeably to mean fuel flows).”

• **p 21, l 708**: increases → is higher.

 Reply: We will revise the text: on page 21 line 708, “The results show that the fuel consumption **increases is higher** at low altitudes...”.

• **p 21, l 708**: the mean value → the mean value of the fuel consumption.

 Reply: We will revise the text: on page 21 line 709, “In addition, the mean value of the **fuel consumption** for the time-optimal case is high...”.

• **p 21, l 714**: increases → is higher.
Reply: We will revise the text: on page 21 line 714, “...the mean value for the eastbound time-optimal case increases is higher owing to its low mean flight altitude...”.

Page 22
- p 22, l 718: corresponding to “the 103” individual flights.
 Reply: We will revise the text: on page 22 line 718, “Figure 21 shows the flight time corresponding to the 103 individual flights...”.

- p 22, l 718–719: the similar figures → similar figures.
 Reply: We will revise the text: on page 22 line 718–719, “...(the similar figures for the fuel use, NOx and H2O emissions are shown...”.

- p 22, l 720: showed → show.
 Reply: We will revise the text: on page 22 line 720, “The results showed that all symbols...”.

- p 22, l 720: in the right-hand domain: choose a better expression.
 Reply: We will rephrase the text: on page 22 line 720, “...all symbols lay in the right-hand domain on the right side of the 1:1 solid line.”

- p 22, l 721: decreases → is lower. Put ”for all airport pairs” at the end of the sentence.
 Reply: We will revise the sentence: on page 22 line 720, “...the flight time for the time-optimal flights decreased is lower for all airport pairs compared to that for the great circle flights for all airport pairs.”

- p 22, l 723 and 725: increased → increases.
 Reply: We will revise the sentences: on page 22 line 722–725, “The total value was is certainly minimal for the time-optimal case, while in relative terms the value increased increases by +1.5 %, +2.5 %, +2.9 % and +2.9 % for the great circle cases at FL290, FL330, FL370 and FL410, respectively. Regarding the total value of fuel use, Table 11 indicates that the value increased increases by +5.4%...”.

- p 22, l 740–741: ”Consistency” : just by reading the section title, it is not clear what is meant by this.
 Reply: We will change the section title: on page 22 line 740, “5 Consistency check for Verification of the AirTraf simulations.”

- p 22, l 742: were → are.
 Reply: We will revise the text: on page 22 line 742, “...the one-day simulation results described in Sect. 4 were are compared to reference data...”.

- p 22, l 742–743: The data → Data.
 Reply: We will revise the text: on page 22 line 742–743, “The data obtained under similar conditions...”.

- p 22, l 744: ”they” is ambiguous.
 Reply: We will revise the text: on page 22 line 742–744, “The data obtained under similar conditions (air-
craft/engine types, flight conditions, weather situations, etc.) were selected for the comparison, although they are not completely the same as the calculation conditions for the one-day simulations.”

Page 23

- **p 23, l 723**: I would not say explicitly that the table shows "a comparison".

 Reply: (The “p 23, line 723” means probably “p 23, line 749”) We will revise the text: on page 23 line 749, “...Table 12 shows a comparison of the flight time between for the seven time-optimal flight trajectories simulated by AirTraf and three reference data...”.

- **p 23, l 758 and 764**: literature → write the correct reference.

 Reply: We will revise the text: on page 23 line 758, “...(see Fig. 3 in the literature Irvine et al. (2013)).” On page 23 line 764, “...(see Tables 2 and 3 in the literature Grewe et al. (2014a)).”

- **p 23, l 758**: indicated → indicates.

 Reply: This part will be deleted. Please see the reply to the comment below: “p 23, l 758–759 / 764–765”.

- **p 23, l 758–759 / 764–765**: Is it worth mentioning this?

 Reply: As the referee pointed out, those sentences are not necessary here. Therefore, we will revise the sentences: on page 23 line 758–759, “This indicated that the flight time increased for westbound flights on the trans-Atlantic region in winter due to westerly jet streams...”. On page 23 line 764–765, “This also indicated the increased flight time for westbound trans-Atlantic flights in winter due to westerly jets streams...”. Related to this issue, we will modify the text: on page 23 line 765–767, “The magnitude in flight times between the seven airport pairs is are close to the reference data and the variation shows a good agreement with the trend of the increased flight times for westbound trans-Atlantic flights in winter due to westerly jet streams, as indicated from the reference data.”

- **p 23, l 764**: "indicate" : I don’t think this is the appropriate word.

 Reply: This part will be deleted. Please see the reply to the comment above: “p 23, l 758–759 / 764–765”.

- **p 23, l 765**: ”close” → ”close to”.

 Reply: We will revise the text: on page 23 line 765, “The magnitude in flight times between the seven airport pairs is are close to the reference data and the variation shows...”.

- **p 23, l 769**: reference data → the reference data.

 Reply: We will revise the text: on page 23 line 768, “...using the mean fuel consumption value of 103 flights and the reference data,...”.

- **p 23, l 774**: indication : shouldn’t one use a different word?

 Reply: We will remove the word “indication” and revise the text: on page 23 line 774, “...the overall load factor of the worldwide air traffic indication in 2008 was used (Table 1).”

- **p 23, l 778**: decreased → is lower.

 Reply: We will revise the text: on page 23 line 778, “Table 13 shows that the obtained mean EINO, value decreased is lower at high altitudes...”.
• p 23, l 783 : installed → contains.
 Reply: We will revise the text: on page 23 line 783, “The 2GE051 installed utilizes the new 1862M39 combustor,...”.

Page 24
 • p 24, l 787 : ”duplicates” : What is meant by this?
 Reply: We just wanted to say here as, “estimates” or “simulates.” We will revise the text: on page 24 line 787, “AirTraf duplicates real simulates realistic fuel consumptions...”.
 • p 24, l 790 : for 103 flights → for ”the” 103 flights.
 Reply: We will revise the text: on page 24 line 790, “Here the obtained m_1 and m_{nwp} for the 103 flights were compared...”.
 • p 24, l 792 : safety flight operations → flight operations safety.
 Reply: We will revise the text: on page 24 line 791, “…to provide safety flight operations safety, and...”.
 • p 24, l 794 : constrains to → constraints
 Reply: We will revise the text: on page 24 line 794, “…no model that constrains to the structural limit weights limits was included in AirTraf.”
 • p 24, l 800–801 : This sentence should be improved.
 Reply: We will improve the sentence: on page 24 line 800–801, “For these 15 flights, actual flight planning data probably indicate altitude changes (generally higher flight altitudes) to increase the fuel mileage, which decreases leading to the decrease in m_1.”
 • p 24, l 802 : to prevent ”the” structural damage → to prevent structural damage.
 Reply: We will revise the text: on page 24 line 802, “To prevent the structural damage to the landing gear...”.
 • p 24, l 803 : ”aircraft has” → ”aircraft have” or ”an aircraft has”.
 Reply: We will revise the text: on page 24 line 803, “…an aircraft has to reduce the total weight...”.
 • p 24, l 803 : ”to reduce below” → ”to reduce until” or ”to bring below”.
 Reply: We will revise the text: on page 24 line 803, “…an aircraft has to reduce the total weight until MLW prior to landing.”
 • p 24, l 808 : Why not using ≤?
 Reply: We will revise the text: on page 24 line 807, “This always satisfies the third constraint $ZFW \leq MZFW$.”
 • p 24, l 806, 810 : of A330-301 → of an A330-301 aircraft.
Reply: We will revise the word in the revised manuscript: on page 24 line 806, “The MZFW of an A330-301 aircraft is...”. On page 24 line 810, “...minimum operational weight of an A330-301 aircraft in the...”.

- **p 24, l 812**: more → higher.

Reply: We will revise the text: on page 24 line 812, “...all the \(m_{\text{nop}} \) (open circle) were more higher than the MLOW.”

- **p 24, l 814**: Skip "calculations”.

Reply: We will remove the word “calculations”: on page 24 line 814, “...AirTraf simulates fairly good fuel use calculations.”

- **p 24, l 816**: an submodel → a submodel.

Reply: We will revise the text: on page 24 line 816, “AirTraf is published for the first time as an a submodel of the Modular Earth Submodel System...”.

- **p 24, l 817**: ”applied” : shouldn’t it be "used"?

Reply: We will revise the text: on page 24 line 817, “The MESSy is continuously further developed and applied used by a consortium of institutions.”

Page 25

- **p 25, l 823–824**: What is meant by this sentence?

Reply: This sentence is not necessary for our argument here. Therefore, we will delete the sentence: on page 25 line 822–825, “Some improvements will be performed and AirTraf 1.0 will be updated for the latest version of the code. For example, evaluation functions corresponding to the \(\text{NO}_x \), \(\text{H}_2 \text{O} \), fuel, contrail and CCF routing options will be added. The status information for AirTraf including the licence conditions is available at the website.”

- **p 25, l 829**: the benchmark test → a benchmark test.

Reply: We will revise the text: on page 25 line 829, “First, the a benchmark test was performed...”.

- **p 25, l 831–832**: by other published code : this is too vague.

Reply: We will revise the text: on page 25 line 831–832, “...calculated by other published code MTS.”

- **p 25, l 832**: the benchmark test → a benchmark test.

Reply: We will revise the text: on page 25 line 832, “Second, the a benchmark test was performed...”.

- **p 25, l 836**: dependence on the initial population.

Reply: We will revise the text: on page 25 line 836, “The dependence of the optimal solution on the initial populations was investigated...”.

- **p 25, l 835 and 838**: The fact that both values are 0.01 % is maybe not a good sign. I would think that you want the second one to be much smaller than the first one.

Reply: The referee pointed out a very important issue. However, these values are sufficiently small and the
performance of GA is well enough to find an optimal solution. In fact, we showed in Fig. 21 that GA found
the trajectories for all airport pairs; the trajectories could decrease flight time compared to the great circle
flights. This performance is sufficient for our purpose. In fact, the second “0.01 %” is actually smaller than
what we expected. As replied to the referee comment in the section of “p 18, l 573–574”, GA is a stochastic
optimization algorithm. Hence, optimal solutions calculated from different initial populations are not always
the same.

Regarding the performance of GA, Deb, K., (1991) reported that “the welded beam structure is a
practical design problem (minimization of the total cost f) that is often used as a bench-mark problem in
testing different optimization techniques.” Rekliatis, G. V., et al., (1983) studied this test and reported the
optimal solution of $f^* = 2.38$. Deb, K., (1991) performed 3 independent GA calculations with different initial
populations to this problem: the obtained (optimal) solution was $f = 2.43$ (the best among the three solutions),
of $f = 2.59$ and $f = 2.49$. The difference in the total cost between the f (the best solution: 2.43) and f^* was $\Delta f = f – f^* = 0.05$ (2.1 % of f^*). Δf also ranged from 0.05 to 0.21 (2.1 to 8.8 % of f^*). This shows that both values
“0.01 %” are indeed small. Of course, the performance of GA largely depends on the optimization problem
and GA parameters. Therefore, we analyzed the performance on our trajectory optimization problem with our
setting in Sects. 3.2.4 and 3.2.5.

[Reference]

Page 26

- p 26, l 860 and 866 : Please be more specific about what ”reference data” is.

Reply: We will revise the text: on page 26 line 860, “The consistency of the one-day simulations was verified
with reference data (published in earlier studies and BADA) of flight time...”. On page 26 line 865, “The
mean EINO values were in the same range as the reference data values of earlier studies.”

- p 26, l 862 : close → (very) similar.

Reply: We will revise the text: on page 26 line 862, “...the reference data showed that the values were close
similar and...”.

- p 26, l 869 : fuel use calculation model → fuel use model.

Reply: We will revise the text: on page 26 line 869, “Thus, AirTraf comprises a sufficiently good fuel use
calculation model.”

- p 26, l 871 : ”is sufficient” : But some things do not work yet?

Reply: We will revise the sentence: on page 26 line 871, “AirTraf 1.0 is sufficient to investigate a reduction
potential of aircraft routings on air traffic climate impacts is ready for more complex routing tasks.”

- p 26, l 871 : ”a” reduction potential → ”the” reduction potential.

Reply: This part will be deleted. Please see the reply to the comment above: “p 26, l 871”.

4 Remarks on figures

- Figure 1 : I presume parts of this are already done in other optimized studies. Mention what is already done,
what is part of this manuscript, and what shall be done in the future.

Reply: By following the comment (2) of the referee #1, we will remove Fig. 1 (on page 29).
• **Figure 7**: Bizarre first sentence in caption. Consisting of → determined by. $\Delta \lambda_{\text{airport}} \rightarrow \Delta \lambda_{\text{airport}}$.

 Reply: We will revise the caption: on page 34 in the caption of Fig. 7, “Geometry definition of flight trajectory as longitude vs altitude in the vertical cross-section (top) and as geographic location projection on the Earth (bottom). The bold solid line indicates a trajectory from MUC to JFK. *: control points consisting of determined by design variables...which divide the $\Delta \lambda_{\text{airport}}$ into four equal parts...the coordinates divide the $\Delta \lambda_{\text{airport}}$ into six equal parts.”

• **Figure 8**: Conclusions/observations/interpretations should not be written in figure captions. I would not use the word “discovers”.

 Reply: We will revise the caption: on page 35 in the caption of Fig. 8, “Figure 8. Optimal solutions are shown varying with the population size n_p and the number of generations number n_g. Δf means the difference in flight time between the optimal solution f and the true-optimal solution $f_{\text{true}} (= 25,994.0 \text{ s})$. The Δf (in %) is calculated as $(\Delta f / f_{\text{true}}) \times 100$. GA discovers the solutions as close to the $f_{\text{true}} (= 25,994.0 \text{ s})$ with increasing n_p and n_g. For each n_p, the optimal solution shows minimum flight time for $n_g = 100$. For each n_g, the optimal solution shows minimum flight time for $n_p = 100$. The flight time of the best solution is $f_{\text{best}} = 25,996.6 \text{ s}$ (for $n_p = 100$ and $n_g = 100$, $\Delta f < 3.0 \text{ s}$ (less than 0.01 %)).”

• **Figure 9**: Change the first sentence. ”The population size $n_p = 100 ...” : This is not a good sentence. Replace ’=” by ”is”.

 Reply: We will revise the caption: on page 36 in the caption of Fig. 9, “4,000,100,000 explored trajectories (solid line, black) from MUC to JFK as longitude vs altitude in the vertical cross-section (top) and as geographic location projection on the Earth (bottom). The population size $n_p = 100$, $n_g = 100$. For each n_p, the optimal solution shows minimum flight time for $n_g = 100$. For each n_g, the optimal solution shows minimum flight time for $n_p = 100$. On page 44 in the caption of Fig. 17, “The population size $n_p = 100$, $n_g = 100$.”

• **Figure 10**: Skip ”Comparison of”.

 Reply: We will remove the word “Comparison of” in the caption: on page 37 in the caption of Fig. 10, “Figure 10. Comparison of trajectories for the best solution (red line) and the true-optimal solution (dashed line, black).”

• **Figure 11**: Don’t use expressions like ”Best-of-generation”. ”vs function evaluations” → ”vs number of function evaluations”. $f_{\text{true}} \rightarrow f_{\text{true}}$. Change “On the ... and ...”.

 Reply: We will revise the caption: on page 38 in the caption of Fig. 11, “Best of generation flight time vs number of function evaluations...and the true-optimal solution f_{true}...is calculated as $(\Delta f / f_{\text{true}})$."

• **Figure 17**: Don’t use expressions like ”Best-of-generation”.

 Reply: We will revise the caption: on page 44 in the caption of Fig. 17, “Best of generation flight time (in %) vs number of function evaluations...”.

• **Figure 22**: Shouldn’t one have as unit for the emissions : kg(fuel) m3s$^{-1}$? The figures are 2-hourly averages. However, the ranges are not clear from just mentioning 14:00:00, 16:00:00, 18:00:00, 20:00:00. Is it 14:00:00–16:00:00, 16:00:00–18:00:00, ..., or rather 12:00:00–14:00:00, 14:00:00–16:00:00, ...

 Reply: By following the comment (8) of the referee #1, we will remove Fig. 22 (on page 49).
5 Comments on tables

- **Table 1** 101.325 → 101,325. Why is there “(jet)” at the end of the line with C_f? There should be a small space between "kg" and "min". I would not give a variable the name "Oneday". P_0 and T_0 are not total pressure or temperature, but reference pressure and temperature.

Reply: Thank you so much. We will correct the value: on page 51 at the line with P_0 in Table 1, "101.325 → 101,325." Eurocontrol, 2011 publishes the thrust specific fuel consumption coefficient for jet, turboprop and piston engines. The word "jet" means "jet engines". We will modify the line: at the end of the line with C_f, "...(jet engines)". As the referee pointed out, we will add a space between "kg" and "min": at the line with C_f, "kg min$^{-1}$kN$^{-1}$." Regarding the variable name "Oneday", please see the reply to the referee comment on "p 9, l 287." In addition, we will correct the word on P_0 and T_0: at the line with P_0 and T_0 “Total Reference pressure” and “Total Reference temperature”.

- **Table 2** : $n_{wp-1} → n_{wp} − 1$.

Reply: Thank you so much. We will correct the text: on page 52 in the caption of Table 2, “..., flight segments $(i = 1, 2, ..., n_{wp} - 1)$.”

- **Table 4** : I think it makes no sense to introduce all these new variable names. Put in the heading (first row) of the table just : "Eq. (22)", "Eq. (23)", ...

Reply: We understand the referee comment. Nevertheless, we are hesitating to change those variable names. We define the variable name for a flight distance as "d", as shown in Table 2, and we use the variable "d" consistently in the manuscript: on page 11 Eqs. (22) and (23), on page 15 Eq. (28), etc. We think that the current expressions are reasonable.

- **Table 5** : For population size and generation number : "· · ·” → “...”.

Reply: We will modify and add the variable names “n_p” and “n_g” in the Table: on page 55 in Table 5, “Population size, $n_p, 10,20,...,100$” and “Generation number Number of generations, $n_g, 10,20,...,100$”. This reply is related to the reply to "p 17, l 540." In addition, we will add the text at the lines with “parameter” and “design variable”: on page 55 in Table 5, “Parameter; Description”; and “Design variable, n_{dv}, 11 (6 locations and 5 altitudes).” Related to this, we will modify the text: on page 56 in Table 7, “Design variable, n_{dv}, 11 (6 locations and 5 altitudes).”

- **Table 9** : "that of" → "average of". Why "medium"?

Reply: We will modify the caption of Table 9: on page 58 in the caption of Table 9, “Eastbound: mean value average of 52 eastbound flights; Westbound: that average of 51 westbound flights; and Total: that average of 103 flights.” In the same way, we will modify the caption of Table 10: on page 58 in the caption of Table 10, “Eastbound: mean value average of 52 eastbound flights; Westbound: that average of 51 westbound flights; and Total: that average of 103 flights.” Similarly, we will modify the caption of Table 11: on page 59 in the caption of Table 11, “Eastbound: sum of 52 eastbound flights; Westbound: that sum of 51 westbound flights; and Total: that sum of 103 flights.”

(The “Why "medium"?” is probably the comment for Table 10) We will delete the word “medium” in the caption of Table 10: on page 58 in the caption of Table 10 “..., which is the medium value between...”.

- **Table 12** : Skip "Comparison of".

Reply: We will remove the word “Comparison of” in the caption: on page 60 in the caption of Table 12, “Comparison of The flight time for time-optimal flight trajectories from one-day AirTraf simulations...”.

- **Table 14** : "Constraints on” → "Constraints from". Why not just using ≥ and ≤? Why have on all the four
lines A330-301 after some "," at the end of the line?

Reply: We will revise Table 14: on page 62 in the caption of Table 14, “Constraints on from the structural limit weight limits (MTOW, MLW and MZFW) and one specified limit weight limit (MLOW)...”. In column 1, “\(m_1 \leq MTOW; m_{\text{mwp}} \leq MLW; \) Zero fuel weight \(\leq MZFW; \) and \(m_{\text{mwp}} \geq MLOW. \) In column 3, “Maximum take-off weight, A330-301; Maximum landing weight, A330-301; Maximum zero fuel weight, MZFW = OEW + MPL, A330-301; and Planned minimum operational weight in the international standard atmosphere.\(^b\) MLOW = 1.2 \times OEW. A330-301.”

Related to this, we will change the word “limit weights” into “weight limits” in the revised manuscript: on page 24 line 791, “three structural limit weights limits...”; on page 24 line 792, “...and one specified limit weight limit...”; on page 24 line 793, “...and the four limit weights limits...”; on page 24 line 794, “...constrains to the structural limit weights limits...”; on page 24 line 797, “...with the limit weights limit limits...”); on page 26 line 867, “...the three structural limit weights limits and one specified limit weight limit of...”; on page 26 line 868, “...the values satisfied the four limit weights limits and...”; on page 50 in the caption of Fig. 23, “Comparison of aircraft weights with structural limit weights limits (MTOW and MLW) and one specified limit weight limit (MLOW)”); on page 62 in column 2 of Table 14, “Limit weight limit, kg”.

6 Supplementary material

- Fig. S1 and S2: including “the” time-optimal flight trajectories.

Reply: We will add the word “the” in the caption: on page 1 (Supplementary material) in the caption of Fig. S1, “...(bottom), including the time-optimal flight trajectories...”. On page 2 (Supplementary material) in the caption of Fig. S2, “...(bottom), including the time-optimal flight trajectories...”. In the same way, we will add the word: on page 41 in the caption of Fig. 14, “...(bottom), including the time-optimal flight trajectories...”.

- Fig. S3 and S4: Skip “Comparison of”.

Reply: We will remove the word “Comparison of” in the caption: on page 3 (Supplementary material) in the caption of Fig. S3, “Comparison of trajectories for the time-optimal...”. On page 3 (Supplementary material) in the caption of Fig. S4, “Comparison of trajectories for the time-optimal...”. In the same way, we will remove the word: on page 42 in the caption of Fig. 15, “Comparison of trajectories for the time-optimal...”.

- Fig. S7: Skip “that”.

Reply: We will remove the word “that” in the caption: on page 6 (Supplementary material) in the caption of Fig. S7, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”. In the same way, we will remove the word: on page 46 in the caption of Fig. 19, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”.

Fig. S1 and S2: including “the” time-optimal flight trajectories.

Reply: We will add the word “the” in the caption: on page 1 (Supplementary material) in the caption of Fig. S1, “...(bottom), including the time-optimal flight trajectories...”. On page 2 (Supplementary material) in the caption of Fig. S2, “...(bottom), including the time-optimal flight trajectories...”. In the same way, we will add the word: on page 41 in the caption of Fig. 14, “...(bottom), including the time-optimal flight trajectories...”.

- Fig. S3 and S4: Skip “Comparison of”.

Reply: We will remove the word “Comparison of” in the caption: on page 3 (Supplementary material) in the caption of Fig. S3, “Comparison of trajectories for the time-optimal...”. On page 3 (Supplementary material) in the caption of Fig. S4, “Comparison of trajectories for the time-optimal...”. In the same way, we will remove the word: on page 42 in the caption of Fig. 15, “Comparison of trajectories for the time-optimal...”.

- Fig. S7: Skip “that”.

Reply: We will remove the word “that” in the caption: on page 6 (Supplementary material) in the caption of Fig. S7, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”. In the same way, we will remove the word: on page 46 in the caption of Fig. 19, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”.

Fig. S1 and S2: including “the” time-optimal flight trajectories.

Reply: We will add the word “the” in the caption: on page 1 (Supplementary material) in the caption of Fig. S1, “...(bottom), including the time-optimal flight trajectories...”. On page 2 (Supplementary material) in the caption of Fig. S2, “...(bottom), including the time-optimal flight trajectories...”. In the same way, we will add the word: on page 41 in the caption of Fig. 14, “...(bottom), including the time-optimal flight trajectories...”.

- Fig. S3 and S4: Skip “Comparison of”.

Reply: We will remove the word “Comparison of” in the caption: on page 3 (Supplementary material) in the caption of Fig. S3, “Comparison of trajectories for the time-optimal...”. On page 3 (Supplementary material) in the caption of Fig. S4, “Comparison of trajectories for the time-optimal...”. In the same way, we will remove the word: on page 42 in the caption of Fig. 15, “Comparison of trajectories for the time-optimal...”.

- Fig. S7: Skip “that”.

Reply: We will remove the word “that” in the caption: on page 6 (Supplementary material) in the caption of Fig. S7, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”. In the same way, we will remove the word: on page 46 in the caption of Fig. 19, “Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and of the great circle...”.

Climate Assessment Platform of Different Aircraft Routing Strategies—Air Traffic Simulation in the Chemistry-Climate Model EMAC 2.41: AirTraf 1.0

Hiroshi Yamashita¹, Volker Grewe¹,², Patrick Jöckel¹, Florian Linke³, Martin Schaefer⁴, and Daisuke Sasaki⁵

¹Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
²also at: Delft University of Technology, Aerospace Engineering, Delft, The Netherlands
³Deutsches Zentrum für Luft- und Raumfahrt, Institut für Lufttransportsysteme, Hamburg, Germany
⁴Deutsches Zentrum für Luft- und Raumfahrt, Institut für Antriebstechnik, Köln, Germany, present affiliation: Bundesministerium für Verkehr und digitale Infrastruktur
⁵Kanazawa Institute of Technology, Department of Aeronautics, Hakusan, Japan

Correspondence to: H. Yamashita (hiroshi.yamashita@dlr.de)

Abstract. Aviation contributes to anthropogenic climate impact through various emissions. Mobility becomes more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing the anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO₂ but also non-CO₂ emissions must be considered. CO₂ is a long-lived and stable gas, while non-CO₂ emissions are short-lived and vary regionally inhomogeneously distributed. This study introduces AirTraf (version 1.0) for climate impact evaluations that performs global air traffic simulations on long time scales, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol’s Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and DLR Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a Genetic Algorithm (GA) with respect to routing options. A selected routing option. In the model development phase, two benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to within ±0.05 – 0.004.
%, compared to those calculated by other published code. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of the optimal solutions on initial populations was analyzed. We found that the initial set of solutions (called population) was analyzed and the influence was small (around 0.01 %). The trade-off between the accuracy of GA optimizations and the number of function evaluations computational costs is clarified and the appropriate population and generation (one iteration of GA) sizing is discussed. The results showed that a large reduction in number of function evaluations of around 90 % can be achieved with only a small decrease in the accuracy of less than 0.1 %. Finally, one-day AirTraf simulations are demonstrated with the great circle and the flight time routing options for a specific typical winter day. 103 trans-Atlantic flight plans were used, assuming an Airbus A330-301 aircraft. The results confirmed that AirTraf simulates the air traffic properly for the two routing options. In addition, the GA successfully found the time-optimal flight trajectories for all the 103 airport pairs, reflecting taking local weather conditions into account. The consistency check for the one-day AirTraf simulations verified that calculated flight time, fuel consumption, NOx emission index and aircraft weights are comparable to show a good agreement with reference data.

1 Introduction

World air traffic has grown significantly over the past 20 years. With increasing the increasing number of aircraft, the air traffic’s contribution to climate change becomes a major problem. At present an important problem, Nowadays, aircraft emission impacts (this includes still uncertain aviation-induced cirrus cloud effects) contribute approximately contributes approximately to 4.9 % (with a range of 2-14 %, which is a 90 % likelihood range) of the total anthropogenic radiative forcing (Lee et al., 2009, Lee et al., 2010, Burkhardt and Kärcher, 2011). An Airbus forecast shows that the world air traffic will might grow at an average annual rate of 4.6 % over the next 20 years (2015-2034, Airbus, 2015), while Boeing forecasts the a value of 4.9 % over the same period (Boeing, 2015). This indicates implies a further increase of aircraft emissions and therefore environmental impacts from aviation increase rise. Reducing the impacts and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. The emissions induced by air traffic primarily comprise carbon dioxide (CO2), nitrogen oxides (NOx), water vapor (H2O), carbon monoxide, unburned hydrocarbons and soot. They lead to changes in the atmospheric composition, thereby changing the greenhouse gas concentrations of CO2, ozone (O3), H2O and methane (CH4). The emissions also induce cloudiness via the formation of contrail contrails, contrail-cirrus and soot cirrus (Penner et al., 1999).
The climate impact induced by aircraft emissions depends partially on local weather conditions: it depends on geographical location (latitude and longitude) and altitude at which the emissions are released (except for CO$_2$) and time. In addition, the impact on the atmospheric composition has different timescales: chemical effects induced by the aircraft emissions have a range of life-times and affect the atmosphere from minutes to centuries. CO$_2$ has a long perturbation life-time in the order of decades to centuries. The atmosphere-ocean system responds to the change in the radiation fluxes in the order of 30 years. NO$_x$, released in the upper troposphere and lower stratosphere, has a different life-time ranging from a few days to several weeks, depending on atmospheric transport and chemical background conditions. In some regions, which experience a downward motion, e.g. ahead of a high pressure system, NO$_x$ has short life-times and is converted to HNO$_3$ and then rapidly washed out (Matthes et al., 2012, Grewe et al., 2014b). The most localized and short-lived effect is contrail formation with typical life-times from minutes to hours. Persistent contrails only form in ice supersaturated regions (Schumann, 1996) and extend a few 100 m vertically and around about 150 km horizontally along a flight path (with a standard deviation of 250 km) with a large spatial and temporal variability (Gierens and Spichtinger, 2000, Spichtinger et al., 2003).

There are two approaches to counteract the climate impact induced by aircraft emissions. They can be classified into two categories: technological and operational measures, as summarized by Irvine et al. (2013). The former includes aerodynamic improvements of aircraft (Blended-Wing-Body aircraft, laminar flow control, etc.), more efficient engines and alternative fuels (liquid hydrogen, bio-fuels). The latter includes efficient air traffic control (reduced holding time, more direct flights, etc.), efficient flight-profiles (continuous descent approach) and climate-optimized routing. Nowadays, flight trajectories are optimized with respect to time and economic costs (fuel, crew, other operating costs) primarily by taking advantage of tail winds, e.g. jet streams, while the climate-optimized routing should optimize flight trajectories such that released aircraft emissions lead to a minimum climate impact. Earlier studies investigated the effect of systematic perturbation changes, i.e. flight altitude changes, on the climate impact (Koch et al., 2011, Schumann et al., 2011, Frömming et al., 2012 and Søvde et al., 2014). They confirmed that the changed altitude has a strong effect on the reduction of climate impact. A number of studies have investigated the potential of applying the climate-optimized routing for real flight data. Matthes et al. (2012) and Sridhar et al. (2013) addressed weather-dependent trajectory optimization using real flight routes and showed a large potential of the climate-optimized routing. As the climate impact of aircraft emissions depends on local weather conditions, Grewe et al. (2014a) optimized flight trajectories by considering regions described as climate-sensitive regions and showed a trade-off between climate impact and economic costs. This study reported that large reductions in the climate impact of up to 25% can be achieved by only a small increase in economic costs of less than 0.5%. The climate-optimized routing therefore seems to be a useful routing method.
option an effective routing option for the climate impact reduction, however, this option is unused in today’s flight planning yet.

This study aims to investigate how much the climate impact of aircraft emissions can be reduced by aircraft routing. Here, we present a new assessment platform: paper presents the new submodel AirTraf (version 1.0, Yamashita et al., 2015) that is a global air traffic submodel performs global air traffic simulations coupled to the Chemistry-Climate model EMAC (Jöckel et al., 2010). Figure 22 shows the This paper technically describes AirTraf and validates the various components for simple aircraft routings: great circle and time-optimal routings. Eventually, we are aiming at an optimal routing for climate impact reduction. The development described in this paper is a prerequisite for the investigation of climate-optimized routings. The research road map for this study our study is as follows (Grewe et al., 2014b). The first step is to investigate specific past weather situations, in particular: the first step was to investigate the influence of specific weather situations on the climate impact of locally released aircraft emissions (Matthes et al., 2012, Grewe et al., 2014b). The resulting data are called This results in climate cost functions (CCFs, Frömming et al., 2013, Grewe et al., 2014a, Grewe et al., 2014b) that identify climate sensitive regions with respect to CO₂, O₃, CH₄, H₂O and contrails. They are specific climate metrics, i.e. climate impacts per unit amount of emission, and are will be used for optimal aircraft routings. In a further step, weather proxies are will be identified for the specific weather situations, which correlate the intensity of the climate sensitive regions with meteorological data. The proxies will be available from numerical weather forecasts, like temperature, precipitation, ice supersaturated regions, vertical motions or weather patterns in general. These proxies are then used to optimize air traffic with respect to the climate impact expressed by the CCFs. An assessment platform is required to validate the optimization strategy based on the proxies in multi-annual (long-term) simulations and to evaluate the total mitigation gain of the climate impact — one important objective of the AirTraf development.

This paper is organized as follows. Section 2 presents the model description and calculation procedures of AirTraf. Section 3 describes aircraft routing methodologies for great circle and flight time routing options. A benchmark test for the great circle routing option is performed and provides a comparison of resulting great circle distances are compared to with those calculated by other published code the Movable Type script (MTS, Movable Type script, 2014). Another benchmark test is also performed for the flight time routing option. The optimal solution is compared the optimal solution to the true-optimal solution. The dependence of optimal solutions on initial populations is populations (a technical terminology set in italics is explained in Table A1 in Appendix) is examined and the appropriate population and generation population and generation sizing is discussed. In Sect. 4, one-day AirTraf simulations are demonstrated for with the two options for a typical winter day (called one-day AirTraf simulations) and the results are discussed. Section 5 verifies the consistency for the AirTraf simulations whether the AirTraf simulations are consistent with reference data and Sect. 6 states describes the code availability. Finally, Sect. 7 concludes the study.
2 AirTraf: air traffic in a climate model

2.1 Overview

AirTraf was developed as a submodel of EMAC (Jöckel et al., 2010). This is reasonable, because we perform global air traffic simulations on long time scales considering local weather conditions. Geographic location and altitude at which emissions are released should be also considered. In addition, various submodels of EMAC can be used to evaluate climate impacts. Therefore, EMAC is a well-suit development environment for AirTraf, to eventually assess routing options with respect to climate. This requires a framework, where we can optimize routings everyday and assess them with respect to climate changes. EMAC provides an ideal framework, since it includes various submodels, which actually evaluate climate impact, and it simulates local weather situations on long time scales. As stated above, we were focusing on the development of this model. A publication on the climate assessment of routing changes will be published as well.

Figure 1 shows the flowchart of the AirTraf submodel. First, air traffic data and AirTraf entries parameters are read in messy__initialize, which is one of the main entry points of the Modular Earth Submodel System (MESSy, Fig. 1, dark blue). Second, all entries are distributed in parallel following a distributed memory approach (messy_init_memory, Fig. 1, blue): AirTraf is parallelized using the message passing interface (MPI) standard. As shown in Fig. 2, the one-day flight plan, which includes many flight schedules of a single day, is decomposed for a number of processing elements (PEs), here PE is synonym to MPI task, so that each PE has a similar workload. A whole flight trajectory between an airport pair is handled by the same PE. Third, a global air traffic simulation (AirTraf integration, Fig. 1, light blue) is performed in messy_global_end, i.e. at the end of the time loop of EMAC. Thus, naturally both short-term and long-term simulations consider can take into account the local weather conditions for every flight in EMAC (AirTraf continuously treats overnight flights). This AirTraf integration is linked to several modules: the aircraft routing module (Fig. 1, light green) and the fuel/emissions calculation module (Fig. 1, light orange). The former is also linked to the flight trajectory optimization module (Fig. 1, dark green) to calculate flight trajectories corresponding to a selected routing option. The latter calculates fuel use and emissions on the calculated trajectories. Finally, the calculated flight trajectories and global fields (three dimensional emission fields) are output (Fig. 1, rose red). The results are gathered from all PEs for output of global fields. Other evaluation models, e.g. climate metric models, can easily be integrated into AirTraf and hence the output is. The output will be used to evaluate the reduction potential of the routing option on the climate impact.

The following assumptions are made in AirTraf (version 1.0): a spherical Earth is assumed (radius is $R_E = 6,371$ km). The aircraft performance model of Eurocontrol’s Base of Aircraft Data (BADA Revision 3.9, Eurocontrol, 2011) is used with a constant Mach number M (the Mach number is the velocity divided by the speed of sound). Therefore, When an aircraft flies at a constant Mach
number. The true air speed \(V_{TAS} \) and ground speed \(V_{ground} \) vary along flight trajectories corresponding to a given latitude, longitude, altitude and time. Only the cruise flight phase is considered, while ground operations, take off, landing and any other flight phases are unconsidered. Potential conflicts of flight trajectories and operational constraints from air traffic control, such as the semi-circular rule and limits (the basic rule for flight level) and limit rates of aircraft climb and descent, are disregarded. However, a sector demand analysis and workload analysis of air traffic controllers can be performed on the basis of the output data. The following sections mention and describe the used models briefly, while characteristic procedures of AirTraf are described in detail.

2.2 Chemistry-climate model EMAC

The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is a numerical chemistry and climate simulation system that includes submodels describing tropospheric and middle atmosphere processes and their interaction with oceans, land and human influences coming from anthropogenic emissions (Jöckel et al., 2010). It uses the second version of the MESSy (i.e. MESSy2) to link multi-institutional computer codes. The core atmospheric model is the 5th generation European Centre Hamburg general circulation model (ECHAM5, Roeckner et al., 2006). For the present study we applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.41) in the T42L31ECMWF resolution, i.e. with a spherical truncation of T42 (corresponding to a quadratic Gaussian grid of approximately 2.8 by 2.8 degrees in latitude and longitude) with 31 vertical hybrid pressure levels up to 10 hPa (middle of uppermost layer). MESSy provides interfaces (Fig. 1, yellow) to couple various submodels. Further information about MESSy, including the EMAC model system, is available from http://www.messy-interface.org.

2.3 Air traffic data

The air traffic data (Fig. 1, dark blue) consist of a one-day flight plan, aircraft and engine performance data. Table 1 lists the primary data of an A330-301 aircraft used for this study. The flight plan includes flight connection information consisting of departure/arrival airport codes, latitude/longitude of the airports, and the departure time. The latitude and longitude coordinates are given as values in the range \([-90, 90]\) and \([-180, 180]\), respectively. Any arbitrary number of flight plans is applicable to AirTraf. The aircraft performance data are provided by BADA Revision 3.9 (Eurocontrol, 2011); these data are required to calculate the aircraft’s fuel flow. Concerning the engine performance data, four data pairs of reference fuel flows \(f_{ref} \) and corresponding NO\(_x\) emission index \(EINO_x;ref \) at take off, climb out, approach and idle conditions are taken from the ICAO engine emissions databank (ICAO, 2005). An overall (passenger/freight/mail) weight load factor is also provided by ICAO (Anthony, 2009).
2.4 Calculation procedures of the AirTraf submodel

The calculation procedures in the AirTraf integration are described here step by step. As shown in Fig. 1 (light blue), the flight status of all flights is initialized as ‘non-flight’ at the first time step of EMAC. The departure check is then performed at the beginning of every time step. When a flight gets to the time for departure in the time loop of EMAC, its flight status changes into ‘in-flight.’ The time step index of EMAC t is introduced here. The index is assigned $t = 1$ to the flight at the departure time. Thereafter the flight moves to flying process (dashed box in Fig. 1, light blue), which mainly comprises four steps (bold-black boxes in Fig. 1, light blue): flight trajectory calculation, fuel/emissions calculation, moving aircraft position calculation and gathering global emissions. The following parts of this section describe these four steps and Figs. 3a to 3d illustrate the respective steps.

The flight trajectory calculation linked to the aircraft routing module (Fig. 1, light green) calculates a flight trajectory corresponding to a routing option. AirTraf will provide seven routing options: great circle (minimum flight distance), flight time (time-optimal), NO$_x$, H$_2$O, fuel (might differ from H$_2$O, if alternative fuel options can be used), contrail and CCFs (Frömming et al., 2013, Grewe et al., 2014b). In AirTraf (version 1.0), the great circle and the flight time routing options can currently be used. The great circle option is a basis for the other routing options and the module calculates a great circle by analytical formulae, assuming constant flight altitude. In contrast to this, for the other six options, a single-objective minimization problem is solved for the selected option by the linked flight trajectory optimization module (Fig. 1, dark green); this module comprises the Genetic Algorithm (GA, Holland, 1975, Goldberg, 1989) and finds an optimal flight trajectory including altitude changes. For example, if the flight time routing option is selected, the flight trajectory optimization is applied to all flights taking into account the individual departure times. Generally, a wind-optimal route means an economically optimal flight route taking the most advantageous wind pattern into account. This route minimizes total costs with respect to time and economic costs (fuel, crew and others), i.e. it has multiple objectives. On the other hand, AirTraf distinguishes between the flight time and the fuel routing options to investigate trade-offs (conflicting scenarios) among different routing options. Thus, the time-optimal route is not always the same as the wind-optimal route. With the contrail option, the best trajectory for contrail avoidance will be found. The CCFs are provided by the EU FP7 Project RE-ACT4C (Reducing Emissions from Aviation by Changing Trajectories for the benefit of Climate, REACT4C, 2014) and estimate climate impacts due to some aviation emissions (see Sect. 1). Thus, the best trajectory for minimum CCFs will be calculated.

For all routing options, local weather conditions provided by EMAC at $t = 1$ (i.e. at the departure day and time of the aircraft) are used to calculate the flight trajectory. The conditions are assumed to be constant during the flight trajectory calculation. No weather forecasts (or weather archives) are used. Once an optimal flight trajectory is calculated, it is not re-optimized in subsequent time
steps (\(t \geq 2\)). The detailed flight trajectory calculation methodologies for the great circle and the flight time routing options are described in Sect. 3. After the flight trajectory calculation, the trajectory consists of waypoints generated at even intervals along the trajectory, and flight segments (Fig. 3a). In addition, a number of flight properties are available corresponding to the waypoints, flight segments and the whole trajectory, as listed in Table 2. Here, the waypoint index \(i\) is introduced \((i = 1, 2, \ldots, n_{wp})\); \(n_{wp}(i = 1, 2, \ldots, n_{wp})\); \(n_{wp}\) is the number of waypoints arranged from the departure airport \((i = 1)\) to the arrival airport \((i = n_{wp})(\geq n_{wp})\). \(i\) is also used as the flight segment index \((i = 1, 2, \ldots, n_{wp} - 1)\).

Next, the fuel/emissions calculation linked to the fuel/emissions calculation use, \(\text{NO}_x\) and \(\text{H}_2\text{O}\) emissions are calculated by the dedicated module (Fig. 1, light orange) calculates fuel use, \(\text{NO}_x\) and \(\text{H}_2\text{O}\) emissions by using this module comprises a total energy model based on the BADA methodology (Schaefer, 2012) and the DLR fuel flow method (Deidewig et al., 1996, see Sects. 2.5 and 2.6 for more details). After this calculation, additional flight properties are newly available (see Fig. 3b and Table 2). Note, the flight trajectory calculation described above and this fuel/emissions calculation are performed only once at \(t = 1\).

The next step is advancing the aircraft positions along the flight trajectory corresponding to the time steps of EMAC (Fig. 3c). Here, aircraft position parameters \(\text{pos}_{\text{new}}\) and \(\text{pos}_{\text{old}}\), \(\text{pos}_{\text{new}}\), \(\text{pos}_{\text{old}}\) are introduced to indicate a present, the present position (at the end of the time step) and previous position of the (at the beginning of the time step) of the aircraft along the flight trajectory. They are expressed by real numbers as a function of the waypoint index \(i\) (integers), i.e.

\[\text{real}(1, 2, \ldots, n_{wp}) = \text{real}(1, 2, \ldots, n_{wp})\]. At \(t = 1\), the aircraft is set at the first waypoint \((\text{pos}_{\text{new}} = \text{pos}_{\text{old}} = 1.0, \text{pos}_{\text{new}} = \text{pos}_{\text{old}} = 1.0)\).

As the time loop of EMAC progresses, the aircraft moves along the trajectory referring to the Estimated Time Over (ETO, Table 2) (AirTraf continuously treats overnight flights with arrival on the next day). For example, Fig. 3c shows \(\text{pos}_{\text{new}} = 2.3\) and \(\text{pos}_{\text{old}} = 1.0, \text{pos}_{\text{new}} = 2.3\) and \(\text{pos}_{\text{old}} = 1.0\) at \(t = 2\). This means that the aircraft moves \(100\%\) of the distance between \(i = 1\) and \(i = 2\), and \(30\%\) of the distance between \(i = 2\) and \(i = 3\) in one time step. \(\text{pos}_{\text{new}}\) and \(\text{pos}_{\text{old}}\) \(\text{pos}_{\text{new}}\) and \(\text{pos}_{\text{old}}\) are stored in the memory and the aircraft continues the flight from \(\text{pos}_{\text{new}} = 2.3\) \(\text{pos}_{\text{old}} = 2.3\) at the next step. After the aircraft moves to a new position, the arrival check is performed (dashed box in Fig. 1, light blue). If \(\text{pos}_{\text{new}} \geq \text{real}(n_{wp})\) \(\text{pos}_{\text{new}} \geq \text{real}(n_{wp})\), the flight status changes into ‘arrived.’

Finally, the individual aircraft’s emissions corresponding to the flight path in one time step are gathered into a global field (three-dimensional Gaussian grid). This step is applied for all flights with ‘in-flight’ or ‘arrived’ status. As shown in Fig. 3d, for example, the released \(\text{NO}_x\) emission along a flight segment \(i\) \((\text{NO}_x \text{ emission or the fraction of it})\) is mapped onto the nearest grid point of the global field. For this \(\text{NO}_x\text{ emission, the coordinates of the } (i+1)^{\text{th}} \text{ waypoint in } i^{\text{th}} \text{ waypoint are used to find the nearest grid point. In this way, AirTraf calculates the global fields of } \text{NO}_x\text{ and } \text{H}_2\text{O emission, fuel use and flight distance for output. After this step, the flight status check is performed at the end of each time step. }\)
of the flying process. If the status is 'arrived,' the flight quits the flying process and its status is reset into 'non-flight.' Therefore, the flight status becomes either 'in-flight' or 'non-flight' after the flying process. If \(t \geq 2 \) of the day (i.e., once the flight status becomes 'in-flight'), the departure check is false in subsequent time steps \(t \geq 2 \) and the aircraft moves to the new aircraft position without re-calculating flight trajectory and fuel/emissions (Fig. 1, light blue). For more than two consecutive days simulations longer than two days, the same flight plan is reused: the departure time is automatically updated to the next day and the calculation procedures start from the departure check.

2.5 Fuel calculation

The calculation methodologies of the fuel/emissions calculation module (Fig. 1, light orange) are described. Fuel use, NO\(_x\) and H\(_2\)O emissions are calculated along the flight trajectory obtained from the flight trajectory calculation. A total energy model based on the BADA methodology and the DLR fuel flow method is used. The fuel use calculation consists of the following two steps: the first rough trip fuel estimation and the second detailed fuel calculation (dashed boxes in Fig. 1, light orange). The former estimates an aircraft weight at the last waypoint \(m_{\text{wp}} \), while the latter calculates fuel use for every flight segment and aircraft weights at any waypoint by backward calculation along the flight trajectory, using the \(m_{\text{wp}} \) as initial condition.

First, a trip fuel \(\text{FUEL}_{\text{trip}} \) required for a flight between a given airport pair is roughly estimated:

\[
\text{FUEL}_{\text{trip}} = F_{\text{BADA}} \times \text{FT},
\]

where \(\text{FT} \) is the estimated flight time (Table 2) and \(F_{\text{BADA}} \) is the fuel flow. The BADA performance table provides cruise fuel flow data at specified flight altitudes for three different weights (low, nominal and high) under international standard atmosphere conditions. Hence, \(F_{\text{BADA}} \) is calculated by interpolating the BADA data (assuming nominal weight) to the mean flight altitude of the flight (\(\bar{h} \), Table 2). Next, \(m_{\text{wp}} \) is estimated by

\[
m_{\text{wp}} = OEW \times \text{MPL} \times \text{OLF} + r_{\text{fuel}} \times \text{FUEL}_{\text{trip}},
\]

where OEW, MPL and OLF are given in Table 1. The last term represents the sum of an alternate fuel, reserve fuel and extra fuel. It is assumed to be 3% of the \(\text{FUEL}_{\text{trip}} \). \(r_{\text{fuel}} = 0.03 \). The burn-off fuel required to fly from \(i = 1 \) to \(i = n_{\text{wp}} \) and contingency fuel are assumed to be consumed during the flight and hence they are not included in \(m_{\text{wp}} \). While the 3% estimation is probably not far from reality for long-range flights, it is worth noting that typical reserve fuel quantities may amount to higher values depending on the exact flight route. Airlines have their own fuel strategy and information about actual onboard fuel quantities are generally unavailable. A refined fuel estimation will be employed for calculating \(m_{\text{wp}} \) in future.
Second, the burn-off fuel is calculated for every flight segment and the aircraft weights are estimated at all waypoints (the contingency fuel is disregarded in AirTraf (version 1.0)). With the BADA total energy model (Revision 3.9), the rate of work done by forces acting on the aircraft is equated to the rate of increase in potential and kinetic energy:

\[
(Thr - D)V_{Thr - D}V_{TAS} = mg \frac{dh}{dt} + mV_{TAS} \frac{dV_{TAS}}{dt} dV_{TAS},
\]

where Thr and D are thrust and drag forces, respectively. m is the aircraft weight, g is the gravity acceleration, h is the flight altitude and \(\frac{dh}{dt} \) is the rate-of-climb (or descent). In AirTraf (version 1.0), for a cruise flight phase, both altitude and speed changes are negligible. Hence, \(\frac{dh}{dt} = 0 \) is assumed as well as \(dV_{TAS}/dt = 0 \) is assumed in AirTraf (version 1.0) and \(V_{TAS} \) is calculated at every waypoint (Table 2). For an aircraft in cruise, Eq. (3) becomes the typical cruise equilibrium equation: Thr - D = the typical cruise fuel flow of the density.

\[
C_{D,i} = 1 = 2m_i g \rho_i V_{TAS,i}^2 \cos \varphi_i \rho_i V_{TAS,i}^2 \cos \varphi_i
\]

\[
C_{D,i} = C_{D,i} \rho_i + C_{D,i} \rho_i C_{L,i} C_{D,i}
\]

\[
D_i = \frac{C_{D,i}}{2} \rho_i V_{TAS,i}^2 \rho_i C_{D,i}
\]

where \(C_{D,i} \) and \(C_{D,i} \) are lift and drag coefficients, respectively. The performance parameters (\(S_0, C_{D,0}, \) and \(C_{D,2} \)) and the air density \(\rho_i \) (\(C_{D,0} \) and \(C_{D,2} \)) are given in Tables 1 and 2. Table 1. \(\rho_i \) is the air density (Table 2) and \(V_{TAS,i} \) is calculated at every waypoint (Table 2). The bank angle \(\varphi_i \) is assumed to be zero. The thrust specific fuel consumption (TSFC) \(\eta_i \) and the fuel flow of the aircraft \(\mathcal{F}_{\text{fuel}} \) are then calculated assuming a cruise flight for jet aircraft:

\[
\eta_i = C_{T,i} \rho_i \frac{1 + V_{TAS,i}^2 V_{TAS,i}}{C_{T,i}^2 C_{T,i}}
\]

\[
\mathcal{F}_{\text{fuel}} = \eta_i \rho_i \frac{1}{C_{T,i}^2} V_{TAS,i}^2 C_{D,0} C_{D,2}
\]

where \(C_{T,i}, C_{T,i}^2, C_{T,i} C_{D,0}, C_{T,i} C_{D,2} \) and \(C_{T,i} C_{D,0} C_{D,2} \) are given in Table 1. The fuel use in the \(i \)-th flight segment \(\mathcal{F}_{\text{fuel}} \) is calculated as

\[
\mathcal{F}_{\text{fuel}} = \frac{\mathcal{F}_{\text{fuel}}}{(ETO_i ETO_{i+1} - ETO_i) OneDay ETO_i) Speed_i}
\]

where ETO_i at the \(i \)-th waypoint (in Julian date) is converted into seconds by multiplying OneDay i with Seconds Per Day (SPD, Table 1). The \(\mathcal{F}_{\text{fuel}} \) reflects \(\mathcal{F}_{\text{fuel}} \) incorporates the tail/head winds effect on \(V_{\text{ground}} \) through ETO. The relation between the \(\mathcal{F}_{\text{fuel}}, \mathcal{F}_{\text{fuel}} \) and the aircraft weight \(m_{wp,i} \) is obtained regarding the \(i \)-th and \(i+1 \)-th waypoints:

\[
m_{wp,i+1} = m_i - \mathcal{F}_{\text{fuel}}
\]

Given \(m_{wp,i} \) by Eq. (2), the fuel use for the last flight segment \(\mathcal{F}_{\text{fuel}} \) can be calculated, and the aircraft weight next to the last waypoint \(m_{wp,i+1} \). at the last waypoint \(m_{wp,i} \) can be
calculated. This calculation is performed iteratively in reverse order from the last to the first waypoint using Eqs. (3) to (10). Finally, the aircraft weight at the first waypoint \(m_1 \) is obtained. As the aircraft weight is pre-calculated in this module, it reduces during the flight as fuel is burnt, corresponding to the time steps of EMAC.

2.6 Emission calculation

\(\text{NO}_x \) and \(\text{H}_2\text{O} \) emissions are calculated after the fuel calculations. \(\text{NO}_x \) emission under the actual flight conditions is calculated by the DLR fuel flow method (Deidewig et al., 1996). It depends on the engine type, the power setting of the engine and atmospheric conditions. The calculation procedure follows four steps: first, the reference fuel flow of an engine under sea level conditions, \(f_{\text{ref},i} \), is calculated from the actual fuel flow at altitude, \(f_{i} \) (Eq. (12), (13)), and \(f_{\text{ref},i} \) (number of engines), see Eq. (8):

\[
f_{\text{ref},i} = \frac{f_{a,i}}{\sqrt{\theta_{\text{total},i}/\theta_{\text{total},i}}},
\]

(11)

\[
\delta_{\text{total},i/\text{total},i} = \frac{\theta_{\text{total},i}/\theta_{\text{total},i}}{\theta_{\text{total},i}/\theta_{\text{total},i}},
\]

(12)

\[
\delta_{\text{total},i/\text{total},i} = \frac{\theta_{\text{total},i}/\theta_{\text{total},i}}{\theta_{\text{total},i}/\theta_{\text{total},i}},
\]

(13)

where \(\delta_{\text{total},i/\text{total},i} \) and \(\theta_{\text{total},i/\text{total},i} \) are correction factors. \(P_{\text{total},i}/P_{\text{total},i} \) (in Pa) and \(T_{\text{total},i}/T_{\text{total},i} \) (in K) are the total pressure and total temperature at the engine air intake, respectively, and \(P_0 \) and \(T_0 \) are the corresponding sea level values at sea level (Table 1). \(P_{\text{total},i}/P_{\text{total},i} \) and \(T_{\text{total},i}/T_{\text{total},i} \) are calculated as

\[
P_{\text{total},i/\text{total},i} = P_{\text{a.i},i}/(1 + 0.2M^2)^{3.5},
\]

(14)

\[
T_{\text{total},i/\text{total},i} = T_{\text{a.i},i}/(1 + 0.2M^2),
\]

(15)

where \(P_{\text{a.i},i}/P_{\text{a.i},i} \) (in Pa) and \(T_{\text{a.i},i}/T_{\text{a.i},i} \) (in K) are the static pressure and temperature under actual flight conditions at the altitude \(h_i \) (Table 2). Here, \(h_i \) is the altitude of the \(i^{th} \) waypoint above the sea level (the geopotential altitude is used to calculate \(h_i \)). The cruise Mach number \(M \) is given in Table 1.

Second, the reference emission index under sea level conditions, \(\text{EINO}_{i/\text{ref},i} \), is calculated using the ICAO engine emissions databank (ICAO, 2005) and the calculated reference fuel flow, \(f_{\text{ref},i} \) (Eq. 11). Four data pairs of reference fuel flows \(f_{\text{ref},i} \) and corresponding EINO \(\times \text{ref},i \) values are tabulated in the ICAO databank for a specific engine under sea level conditions. Therefore, EINO \(\times \text{ref},i \) values, corresponding to \(f_{\text{ref},i} \), are calculated by a Least Squares interpolation (2\text{nd}-order).
Third, the emission index under actual flight conditions, \(\text{EINO}_{x,a;i} \), is calculated from the

\[
\text{EINO}_{x,a;i} = \frac{\text{EINO}_{x,ref;i}}{\text{EINO}_{x,a;i} \cdot \delta_{\text{total},i}^{0.4} \cdot \theta_{\text{total},i}^3 \cdot H_{c;i}};
\]

\[
H_{c;i} = e^{(-19.0(q_i - 0.00634))},
\]

\[
q_i = 10^{-3} e^{(-0.0001426(h_i - 12,900))},
\]

where \(\delta_{\text{total},i} \) and \(\theta_{\text{total},i} \) are defined by Eqs. (12) and (13), respectively. \(H_{c;i} \) is the humidity correction factor (dimensionless number) and \(q_i \) (in kg(H\(_2\)O)/(kg(air))\(^{-1}\)) is the specific humidity at \(h_i \) (the unit ft is used here).

Finally, NO\(_x\) and H\(_2\)O emissions under actual flight conditions are calculated for the \(i^{th} \) flight segment using the pre-calculated FUEL\(_i\) (Eq. (9)):

\[
\text{NO}_{x;i} = \frac{\text{FUEL}_i \cdot \text{EINO}_{x,a;i}}{\text{EINO}_{x,a;i}},
\]

\[
\text{H}_2\text{O} = \frac{\text{FUEL}_i \cdot \text{EIH}_{2\text{O}}}{\text{EIH}_{2\text{O}}},
\]

where the H\(_2\)O emission index is EIH\(_{2\text{O}}\) = 1,230 g(H\(_2\)O)/(kg(fuel))\(^{-1}\) (Penner et al., 1999). The H\(_2\)O emission is proportional to the fuel use, assuming an ideal combustion of jet fuel. The NO\(_x\) and H\(_2\)O emissions are included in the flight properties (Table 2).

With regard to the reliability of the fuel/emissions calculation using these methods, Schulte et al. (1997) showed a comparison of measured and calculated EINO\(_x\) for some aircraft/engine combinations (Schulte et al., 1997). The study gave some confidence in the prediction abilities of the DLR method, although it showed that the calculated values from the DLR method underestimated the measured values on average by 12%. In Section 5 we verify the methods, using one-day AirTraf simulation results. Detailed descriptions of the total energy model and the DLR fuel flow method can be found elsewhere (Eurocontrol, 2011, Deidewig et al., 1996).

3 Aircraft routing methodologies

The current aircraft routing module (Fig. 1, light green) works only with respect to the great circle and flight time routing options. These routing methodologies are described in Sects. 3.1 and 3.2. Benchmark tests are performed off-line (without EMAC) to verify the accuracy of the methodologies.

3.1 Great circle routing option

3.1.1 Formulation of great circles

AirTraf calculates a great circle at any arbitrary flight altitude with the great circle routing option. First, the coordinates of the waypoints are calculated. For the \(i^{th} \) and \((i + 1)^{th} \) waypoints,
the central angle \(\Delta \sigma_i (i = 1, 2, \ldots, n_{wp} - 1) \) is calculated by the Vincenty formula (Vincenty, 1975):

\[
\Delta \sigma_i = \arctan \left(\frac{\cos \phi_i \sin \phi_{i+1} + \cos \phi_{i+1} \cos \phi_i \sin \Delta \lambda_i}{\cos \phi_i \cos \phi_{i+1}} \right)
\]

(21)

where \(\phi_i \) (in rad) is the latitude of the \(\text{ith} \) waypoint and \(\Delta \lambda_i \) (in rad) is the difference in longitude between the \(\text{ith} \) and \((i+1) \text{th} \) waypoints. The Vincenty formula was set as the default method, while optionally the spherical law of cosines or the Haversine formula can be used in AirTraf to calculate \(\Delta \sigma \) (unshown). With Eq. (21), the great circle distance for the \(\text{ith} \) flight segment \(d_i \) is calculated:

\[
d_i = (R_E + h_i) \Delta \sigma_i,
\]

(22)

or

\[
d_i = \sqrt{(R_E + h_i)^2 + (R_E + h_{i+1})^2 - 2(R_E + h_i)(R_E + h_{i+1}) \cos(\Delta \sigma_i)}.
\]

(23)

For the great circle routing option, flight altitudes at all waypoints are set as \(h_i = \text{constant for } i = 1, 2, \ldots, n_{wp} \), \(h_i \text{ is used in } \text{km} \) in Eqs. (22) and (23) and either Eq. (22) or Eq. (23) is used to calculate \(d_i \). Equation (22) calculates \(d_i \) by an arc and hence the great circle distance between airports, i.e. the \(\sum_{i=1}^{n_{wp}-1} d_i \) is independent of \(n_{wp} \). On the other hand, Eq. (23) calculates \(d_i \) by linear interpolation based on \(h_i \) in Polar coordinates. Therefore, \(\sum_{i=1}^{n_{wp}-1} d_i \) depends on \(n_{wp} \). In that case, \(\sum_{i=1}^{n_{wp}-1} d_i \) is close to that calculated from Eq. (22) with increasing \(n_{wp} \). If AirTraf simulation results with the great circle option are compared to those with other routing options, Eq. (23) should be used for the comparison with the same \(n_{wp} \). In addition, Eq. (23) is used for the flight trajectory optimization (see Sect. 3.2), because it is necessary to calculate \(d_i \) including altitude changes.

Next, the true air speed \(V_{TAS,i} \) and the ground speed \(V_{ground,i} \) of the \(\text{ith} \) at the \(\text{ith} \) waypoint are calculated:

\[
V_{TAS,i} = Ma_i = M \sqrt{\gamma RT_i},
\]

(24)

\[
V_{ground,i} = V_{TAS,i} + V_{wind,i}.
\]

(25)

where \(M \) is the Mach number, \(\gamma \) is the adiabatic gas constant and \(R \) is the gas constant for dry air (Table 1). Temperature \(T_i \) and three dimensional wind components \((u_i, v_i, w_i) \) of the \(\text{ith} \) waypoint are available from the EMAC model fields at \(t = 1 \); the local speed of sound \(a_i \) is then calculated (Table 2). The flight direction is calculated for every flight segment by using the three dimensional coordinates of the \(\text{ith} \) and \((i+1) \text{th} \) waypoints. Therefore, \(V_{TAS} \), \(V_{ground} \), and \(V_{TAS,i} \), \(V_{ground,i} \), \(V_{TAS,i} \), \(V_{ground,i} \) are...
$V_{\text{wind},i}$ and $V_{\text{ground},i}$ (scalar values) corresponding to the flight direction are calculated. As shown in Eq. (25), the influence of tail/head winds on ground speed is considered. In AirTraf, M was set constant as default. It is also possible to perform AirTraf simulations with different options, such as $V_{\text{TAS},i} = \text{constant and } V_{\text{wind},i} = 0; V_{\text{TAS},i} = \text{constant and } V_{\text{wind},i} = \text{0}$. Finally, ETO$_i$ (in Julian date) and FT_{FT} (in s) are calculated as

$$ETO_{TO_i} = ETO_{TO_{i-1}} + \frac{d_{i-1}}{V_{\text{ground},i-1} \times \text{Oneday}} \times \frac{d_{i-1}}{V_{\text{ground},i-1} \times \text{SPD}} \times (i = 2, 3, \cdots, n_{\text{wp}} - n_{\text{wp}});$$

$$FT_{\text{FT}} = (ETO_{n_{\text{wp}}} - ETO_{TO_1}) \times \text{Oneday} \times \text{SPD},$$

where ETO$_1$ is the departure time of the flight and ETO$_i$ reflects incorporates the influence of tail/head winds on the flight.

3.1.2 Benchmark test on great circle calculations

A benchmark test of the great circle routing option was performed to confirm the accuracy of the great circle distance calculation. Great circles were calculated for the five representative routes without EMAC (off-line). Table 3 shows the information for the five routes (the locations are shown in Fig. 4). The characteristics of the routes were as follows: R1 consisted of an airport pair in the northern hemisphere (MUC-JFK) and the difference in longitude between them was $\Delta \lambda_{\text{airport}} < 180^\circ$; R2 consisted of an airport pair in the northern hemisphere (HND-JFK) with $\Delta \lambda_{\text{airport}} > 180^\circ$; R3 consisted of an airport pair in the northern hemisphere (HND-JFK) with $\Delta \lambda_{\text{airport}} < 180^\circ$; R4 was a special route, where $\Delta \phi_{\text{airport}} = 0$; and R5 was another special route with $\Delta \phi_{\text{airport}} = 0$. Other calculation conditions were set as follows: $M = 0.82$, $h_i = 0$, $a_i = 304.5 \text{ ms}^{-1}$ and $V_{\text{TAS},i} = V_{\text{ground},i} = 249.7 \text{ ms}^{-1}$ (no-wind conditions, i.e. $V_{\text{wind},i} = 0$) for $i = 1, 2, \cdots, n_{\text{wp}}$, $V_{\text{wind},i} = 0$ for $i = 1, 2, \cdots, n_{\text{wp}}$. The great circle distances $\sum_{i=1}^{n_{\text{wp}}} d_i$ were each calculated by Eqs. (22) and (23), and were compared to that calculated with the Movable type script [MTS, 2014] MTS. In addition, the sensitivity of the great circle distance with respect to α_{wp}, τ_{wp}, was analyzed varying α_{wp}, τ_{wp}. Table 4 shows the calculated great circle distances by Eqs. (22) and (23) and the MTS. The columns 5 to 7 show the difference in the distance among them (see caption of Table 4 for more details). The results showed that $\Delta d_{\text{eq23,eq22}}$, $\Delta d_{\text{eq23,MTS}}$, and $\Delta d_{\text{eq22,MTS}}$ both $\Delta d_{\text{eq23,eq22}}$ and $\Delta d_{\text{eq23,MTS}}$ varied between -0.0036 and $-0.0008-0.0005\%$, between -0.0135 and -0.0054%; $\Delta d_{\text{eq22,MTS}}$ showed 0.0%; and between -0.0163 and 0.0016%, respectively. The great circle dis-
tances calculated by Eqs. (22) and (23) were accurate to within ±0.05–0.004 % and hence this routing option works properly. Figure 5 shows the result of the sensitivity analysis of \(n_{\text{wp}} \) on the great circle distance. The results showed that the distance calculated by Eq. (22) (open circle) has no dependence on \(n_{\text{wp}} \) as noted in Sect. 3.1.1, whereas that by Eq. (23) (closed circle) depends on \(n_{\text{wp}} \) and converged with increasing \(n_{\text{wp}} \). The accuracy of the results by Eq. (23) decreased when using fewer \(n_{\text{wp}} \), as a result of the linear interpolation. For \(n_{\text{wp}} \geq 20 \), the results of Eqs. (22) and (23) were almost the same. Therefore, \(n_{\text{wp}} \geq 20 \) is practically desired for the use of Eq. (23).

3.2 Flight time routing option

3.2.1 Overview of the Genetic Algorithm

The flight trajectory optimization with respect to the flight time routing option was performed using GA (Holand, 1975; Goldberg, 1989), which is a stochastic optimization algorithm. The Aircraft routing module (Fig. 1, light green) is linked to the flight trajectory optimization module (Fig. 1, dark green); this optimization module consists of the Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA version 1.2.0) developed by D. Sasaki and S. Obayashi (Sasaki et al., 2002, Sasaki and Obayashi, 2004, Sasaki and Obayashi, 2005). The ARMOGA will be implemented as part of the MESSy infrastructure in the next version of MESSy so that it can be used for optimization problems by other submodels as well. With each routing option, a single-objective optimization problem on the selected routing option is solved. The main advantage of GA is that GA requires neither the computation of derivatives or gradients of functions, nor the continuity of functions. Therefore, various objective functions (called objective functions) can easily be adapted to GA. As for the working principle of GA, a random initial population is created and the population evolves over generations to adapt to an environment by the genetic operators: evaluation, selection, crossover and mutation. When this biological evolutionary concept is applied for design optimizations, fitness, individuals and genes correspond to an objective function, solutions and design variables, respectively. A solution found in GA is called an optimal solution, whereas a solution having the theoretical-optimum of the objective function is called the true-optimal solution. If GA works properly, it is expected that the optimal solution converges to the true-optimal solution. On the other hand, the main disadvantage of GA is that GA is computationally expensive. The flight trajectory optimization is applied for all flights and therefore a user has to choose appropriate GA parameter settings to reduce computational costs (or find a compromise for the settings, which sometimes depend on the computing environment).
3.2.2 Formulation of flight trajectory optimization

The flight trajectory optimization is described focusing on geometry definitions of the flight trajectory, the definition of the objective function and the genetic operators. There exists a number of selection, crossover and mutation operators in ARMOGA. Therefore, the genetic operators employed in this study are described here.

A solution \(\mathbf{x} \) (the term is used interchangeably to mean a flight trajectory) is a vector of \(n_{dv} \) design variables:

\[
\mathbf{x} = (x_1, x_2, \ldots, x_{n_{dv}})^T = (x_1, x_2, \ldots, x_{n_{dv}})^T.
\]

Using the design variable index \(j (j = 1, 2, \ldots, n_{dv}; n_{dv} = 11) \), the \(j^{th} \) design variable varies in lower/upper bounds \([x_j^l, x_j^u] \). GA searches for the optimal solution, corresponding to the routing option, around the great circle of an airport pair including altitude changes. Figure 6 shows the geometry definition of a flight trajectory from MUC to JFK as an example: the geographic location projection on the Earth (bottom) with three control points (CPs, black circles) and the longitude vs altitude vertical cross-section (top) with five CPs. The coordinates of the airports were given from a flight plan (Fig. 1, dark blue) and were fixed (the coordinates of MUC and JFK are shown in Table 5).

Six design variables \(x_j (j = 1, 2, \cdots , 6) \) were used for location, as shown in Fig. 6 (bottom).

\(x_1, x_3 \) and \(x_5 \) indicate longitudes, while \(x_2, x_4 \) and \(x_6 \) indicate latitudes. To create three rectangular domains for the design variables (dashed boxes), central points of the domains (diamond symbols) were calculated. The points are located on the great circle, dividing the longitude distance between MUC and JFK (\(\Delta \lambda_{airport} \)) into four equal parts. After that, the three domains centering around the central points were created. The domain size was set to \(0.1 \times \Delta \lambda_{airport} \) (short-side) and \(0.3 \times \Delta \lambda_{airport} \) (long-side). This procedure calculates the lower/upper bounds of the six design variables, i.e. \([x_j^l, x_j^u] (j = 1, 2, \cdots , 6) \), and Table 6 lists these values. GA provided the values for \(x_1 \) to \(x_6 \) within the respective bounds (i.e. the values were generated within the rectangular domains) and the coordinates of the three CPs were determined: CP1 \((x_1, x_2) \), CP2 \((x_3, x_4) \) and CP3 \((x_5, x_6) \). Here \(x_1, x_3 \) and \(x_5 \) indicate longitudes, while \(x_2, x_4 \) and \(x_6 \) indicate latitudes. A flight trajectory is represented by a B-spline curve \((3^{rd}\text{-order})\) with the three CPs as location (bold solid line, Fig. 6 bottom) and then any arbitrary number of waypoints is generated along the trajectory. To generate the waypoints at even intervals, the same number of waypoints between the CPs, \(n_{wp} \) was calculated as \(\text{mod}(n_{wp} - 1, n_{CP} + 1) = 0 \), where the number of CPs was \(n_{CP} = 3 \).

For the altitude direction, five design variables \(x_j (j = 7, 8, \cdots , 11) \) were used (Fig. 6, top). Here \(x_7 \) to \(x_{11} \) indicate altitude values. With the lower \(h^l \) and the upper \(h^u \) variable bound parameters, the bounds of the five design variables were determined by \(x_j^l = h^l \) and \(x_j^u = h^u \) for \(j = 7, 8, \cdots , 11 \).

In this study, \(h^l = \text{FL290} \) and \(h^u = \text{FL410} \), as listed in Table 6 (‘FL290’ stands for a flight level at 29,000 ft). These altitudes correspond to a general cruise flight altitude range of commercial aircraft (Sridhar et al., 2013). GA provided the values of \(x_7 \) to \(x_{11} \) in [FL290, FL410] and the coordinates...
of the five CPs were determined: CP4 \((x_7)\), CP5 \((x_8)\), CP6 \((x_9)\), CP7 \((x_{10})\) and CP8 \((x_{11})\). Here \(x_7\) to \(x_{11}\) indicate altitude values. Note that these values vary freely between FL290 and FL410 to explore widely the possibility of minimizing climate impact by aircraft routing. The longitude-coordinates of the five CPs were pre-calculated to divide the \(\Delta \lambda_{airport}\) \(\Delta \lambda_{airport}\) into six equal parts. The altitude of the airports were fixed at \(h^1\) (= FL290). A flight trajectory is also represented by a B-spline curve \((3^{rd}\text{-order})\) with the five CPs as longitude vs altitude in the vertical cross-section (bold solid line, Fig. 6 top) and then waypoints are generated along the trajectory. Note, GA creates trajectories represented by two B-splines, one latitude vs longitude and one longitude vs altitude, where longitude coordinate of in such a way that the longitude of the waypoints is the same for the two curves as that for the flight trajectory projected on the Earth.

The initial population GA starts its search with a random set of solutions \((population\text{-approach})\). The initial population operator (Fig. 1, dark green) provides initial values of the eleven design variables by random numbers at random within the lower/upper bounds described above, thereby creating solutions. The operator creates diverse solutions defined by a fixed population size \(n_p\) and GA starts its search with a random set of solutions \((population\text{-approach})\) \((differ\text{ent}\text{\ solutions\ (where}n_p\text{\ is\ the \population\ size)}\). To evaluate the solutions, the objective function \(f\) was calculated for each of the solutions by summing the flight time for all flight segments (Fig. 1, dark green). The single-objective optimization solved here is problem on the flight time can be written as follows:

\[
\text{Minimize} \quad f = \sum_{i=1}^{n_{pop}^{-1}} \frac{d_i}{V_{ground,i}} \frac{d_i}{V_{ground,i}}
\]

Subject to \(x_j^l \leq x_j \leq x_j^u\), \(j = 1,2,\cdots,n_{duy}\) \((28)\), where \(n_{duy} = 11\), \(d_i\) and \(V_{ground,i}\) \(V_{ground,i}\) are calculated by Eqs. (23) and (25), respectively \((V_{TAS,i}\text{ and}V_{wind,i}\text{ are calculated as described in Sect. 3.1.1})\). No constraint function is used in AirTraf (version 1.0). Good solutions are identified in the population by the Fonseca and Fleming’s pareto ranking method (Fonseca et al., 1993), although the single-objective optimization is solved here. A rank of a solution was assigned proportional to the number of solutions that dominate it, and a fitness value of a solution was computed by \(1/rank\) (no fitness sharing was used). A solution with higher fitness has a higher probability of being copied into a mating pool. The Single Universal Sampling Selection (Baker, 1985) makes duplicates of good solutions in the mating pool (28) at the expense of bad solutions based on cumulative probability values, while keeping the size of \(n_p\).

To create a new solution, the Blend crossover (BLX-\(\alpha\)) operator (Eshelman, 1993) was applied to the population in the mating pool \((population\text{-in the mating pool})\). Two solutions (parent solutions) were picked from the mating pool \((mating\text{-pool})\) at random and the operator created two new...
solutions (child solutions):

\[
\begin{align*}
 x_{j;c1} & = \gamma x_{j;p1} + (1 - \gamma)x_{j;p2}, \\
 x_{j;c2} & = (1 - \gamma)x_{j;p1} + \gamma x_{j;p2},
\end{align*}
\]

(29)

with \(\gamma = (1 + 2a)u_1 - a\) and \(j\) varies in \([1, n_d]\). This operator was applied to each design variable; \(n_dv = 11\). \(x_{j;c1}\) and \(x_{j;c2}\) denote the \(j\)th design variable of the child solutions, and \(x_{j;p1}\) and \(x_{j;p2}\) denote the \(j\)th design variables of the parent solutions (the mated pair of the old generation). \(\alpha\) is an user-specified crossover parameter and \(u_1\) is a random number between zero and one.

Thereafter, the mutation operator added a disturbance to the child solution by the revised polynomial mutation operator (Deb and Agrawal, 1999) with a mutation rate \(r_m\). A polynomial probability distribution was used and the mutated design variable was created. The parameter \(\delta_q\) is first calculated as

\[
\delta_q = \begin{cases}
 [2u_2 + (1 - 2u_2)(1 - \delta)^{\eta_{m}+1}]^\frac{1}{\eta_{m}+1} - 1, & \text{if } u_2 \leq 0.5, \\
 1 - [2(1 - u_2) + 2(u_2 - 0.5)(1 - \delta)^{\eta_{m}+1}]^\frac{1}{\eta_{m}+1}, & \text{if } u_2 > 0.5,
\end{cases}
\]

(30)

where \(\delta = \min([x_{j;c} - x_j], [x_j - x_{j;c}])/(x_j - x_{j;c})\). The \(j\)th \(\delta = \min([x_{j,c} - x_j], [x_j - x_{j,c}])/(x_j - x_{j,c})\). The \(j\)th design variable varies in \([x_j^l, x_j^u]\). \(u_2\) is a random number between zero and one, and \(\eta_{m}\) is an external parameter controlling the shape of the probability distribution. The mutated design variable (mutated child solution) \(x_{j,mc} = x_{j,c} + \delta_q(x_j^u - x_j^l)\) is calculated as follows:

\[
x_{j,mc} = x_{j,c} + \delta_q(x_j^u - x_j^l), \quad j = 1, 2, \ldots, n_dv.
\]

(31)

Using the genetic operators above, it is expected that the population of the population of solutions is improved and a new and better population is created in subsequent generations. When the evolution is computed for a fixed number of generations \(n_g\), GA quits

the optimization and an optimal solution is output corresponding to the routing option. The best \(f\) of the whole generation is output. The optimal solution has the best properties of the optimal solution are also available (ETO, \(\vec{F}\), \(\vec{T}\), etc. listed in the first and the second groups (divided by rows) of Table 2). The flight trajectory optimization methodology described here can be applied to any routing option (except for the great circle routing option). In that case, the objective function \(f\) given by Eq. (28) needs to be reformulated corresponding to the selected routing option.

3.2.3 Benchmark test on flight trajectory optimization with flight time routing option

To quantify the performance of GA, there is a need to choose an appropriate benchmark test of the flight trajectory optimization, where the true-optimal solution \(f_{true} = f_{true}\) of the test is known.
Here, the single-objective optimization for minimization of flight time from MUC to JFK was solved without EMAC (off-line), that is, the optimization problem defined in Sect. 3.2.2 was solved. Calculation conditions for the test are summarized in Table 5. As V_{TAS} and V_{ground} were set to 0 km h$^{-1}$ (no-wind conditions); V_{TAS} and V_{ground} were set to 898.8 km h$^{-1}$ (constant under no-wind conditions, the f_{true}. Hence, f_{true} equals the flight time along the great circle from MUC to JFK at FL290: $f_{\text{true}} = 25,994.0$ s calculated by Eq. (23) with $h_i = \text{FL290}$ for $i = 1, 2, \cdots, 101$. With regard to the dependence of the optimal solutions on initial populations, 10 independent GA simulations from different initial populations were performed. In these simulations, both n_p and n_g were set to 100, while other calculation conditions were set as shown in Table 5. In the same way, to discuss an appropriate n_p and n_g sizing, 10 independent GA simulations from different initial populations were performed populations were performed for each combination of n_p (10, 20, \cdots, 100) and n_g (10, 20, \cdots, 100), i.e. total a total of 1,000 independent GA simulations were performed. Other calculation conditions were also set as shown in Table 5.

3.2.4 Optimization results

The influence of the population size n_p and the generation number number of generations n_g on the convergence properties of GA was confirmed. Figure 7 shows the optimal solutions varying with n_g for a number of fixed n_p. The results confirmed that the optimal solutions sufficiently come close to the f_{true} with increasing n_p and n_g. The optimal solution showing the closest flight time to the f_{true} was obtained for $n_p = 100$ and $n_g = 100$. This solution is called best solution in this study and its flight time was $f_{\text{best}} = 25,996.6$ s. The difference in flight time between the f_{best} and the f_{true} was $\Delta f < 3.0$ s (less than 0.01 %).

To confirm the diversity of GA optimization, we focus on the optimization results, which found yielding the best solution ($n_p = 100$ and $n_g = 100$). Figure 8 shows all the solutions explored by GA as longitude vs altitude (top) and as location (bottom). It is clear that GA explored diverse solutions from MUC to JFK including altitude changes and found the best solution. As shown in Fig. 8, the best solution (red line) overlapped with the true-optimal solution, i.e. great circle at FL290 (dashed line, black). To confirm investigate the difference between the solutions, the comparison of trajectories for the best solution and the true-optimal solution in the vertical cross-section are plotted in Fig. 9. The maximum difference in altitude is less than 1 m. Therefore, GA is adequate for finding an optimal solution with sufficient accuracy (in a strict sense, this conclusion is confined to the benchmark test).
3.2.5 Dependence of initial populations

To confirm analyze the dependence of optimal solutions on initial population, the optimal solution on the initial population. Fig. 10 shows the best of generation flight time vs the number of objective function evaluations \((= n_p \times n_g) \) corresponding to for the 10 independent GA simulations from different initial populations with \(n_p = 100 \) and \(n_g = 100 \). Figure 10 shows that the 10 solutions converged in early generations and gradually continued to converge to \(f_{true} \) for the increasing number of function evaluations. The convergence behavior is similar among the 10 simulations, regardless of the initial populations. Table S1 in the Supplement shows a summary of the 10 optimal solutions. As indicated in Table S1, there is a small degree of variation in the value of the objective function \(f \) (= flight time) \(\Delta f = f - f_{true} \) is slightly different. \(\Delta f = f - f_{true} \) ranged from 2.5 to 3.7 s, which is approximately 0.01 % of \(f_{true} \). In addition, the mean value of the 10 objective functions was \(\overline{f} = 2.9 \) s (0.01 % of the \(f_{true} \)) and the standard deviation was \(s_{\Delta f} = 0.4 \) s (0.001 % of the \(f_{true} \)). Therefore, the variation in the objective function with different initial populations is small.

3.2.6 Population and generation sizing

With an increase in number of increased \(n_p \) and \(n_g \), GA can discover tends to find an improved solution. It is important to note that the required size of \(n_p \) and \(n_g \) is problem-dependent, e.g., weather situations, and therefore estimating appropriate \(n_p \) and \(n_g \) could be different. However, following a simple initial guess for \(n_p \) and \(n_g \) is a good starting point for their sizing.

The influence of \(n_p \) and \(n_g \) on the accuracy of GA optimizations and on the variation in the optimal solution due to different initial populations were analyzed. Figure 11 shows the calculated \(\Delta f \) and \(s_{\Delta f} \) for all the combinations of \(n_p \) and \(n_g \). The results confirm that \(\Delta f \) and \(s_{\Delta f} \) decrease with an increase of \(n_p \) and \(n_g \). That is, the optimal solution converges to the true-optimal solution (the accuracy increases) and the variation in the optimal solution due to different initial populations decreases (the dependency decreases).

On the other hand, computational costs also should be kept as low as possible for practical use of EMAC/AirTraf (on-line) applied to long-term global air traffic simulations. Figure 12 shows the variation of the \(\Delta f \) and \(s_{\Delta f} \) for all combinations of \(n_p \) and \(n_g \) with respect to the number of function evaluations. The symbols and error bars in the figure correspond to the \(\Delta f \) and \(s_{\Delta f} \), respectively (Table S2 in the Supplement lists these values). The results showed that there is a trade-off between the accuracy of GA optimizations and the number of function evaluations (i.e., computing time). The figure also shows the power function (red line) fitted to the results by using the standard least-squares algorithm (see caption in Fig. 12 for more details).

As shown in the enlarged drawing in Fig. 12, the large reduction in shows that if one selects the number of function evaluations \(= n_p \times n_g \) of 800, the large reduction of computational
costs of 92% can be achieved, keeping Δf less than 0.05% ($s_{\Delta f} \approx 0.02\%$), compared to the optimal solution obtained by 10,000 function evaluations ($n_p = 100$ and $n_g = 100$). Similarly, that for $n_p \times n_g = 800$, one can select any combination of n_p and n_g: $n_p = 10$ and $n_g = 80$; $n_p = 20$ and $n_g = 40$ etc. A user makes his/her own choice on n_p and n_g by referring the values of Δf and $s_{\Delta f}$ shown in Fig. 12. Similarly, a reduction of 97% can be achieved, keeping Δf less than 0.1% ($s_{\Delta f} \approx 0.04\%$). Therefore, computational costs can be reduced drastically by selecting n_p and n_g for different purposes.

4 Demonstration of a one-day AirTraf simulation

The aircraft routing methodologies corresponding to the great circle and flight time routing options were verified in Sect. 3. Here, one-day AirTraf simulations were performed in EMAC (on-line) with the respective routing options for demonstration.

4.1 Calculation conditions: Simulation setup

We focus on the trans-Atlantic region for the demonstration, because the optimization potential is possibly large for this region. Table 7 lists the calculation conditions setup for the one-day simulations. The simulation was simulations were performed for one specific typical winter day in the T42L31ECMWF resolution. The weather situation on that day showed a typical weather pattern for winter characterized by westerly jet streams in the North-Atlantic region. The number of trans-Atlantic flights in the region was 103 (52 eastbound flights and 51 westbound flights). We assumed that all flights were operated by A330-301 aircraft with CF6-80E1A2 (2GE051) engines. Thus, the data shown in Table 1 were used. Four one-day simulations were separately performed for the great circle routing option at fixed altitudes FL290, FL330, FL370 and FL410 (see Sect. 3.1.1). On the other hand, In addition, a single one-day simulation was performed for the flight time routing option including altitude changes in the range of [FL290, FL410] (see Sect. 3.2.2). For the two options, the Mach number was set to $M = 0.82$ and therefore V_{TAS}, the values of V_{TAS} and V_{ground}, varied along the waypoints. V_{ground} were different at every waypoint (Eqs. (24) and (25)). The number of waypoints was set to $n_{\text{wp}} = 101$, $n_{\text{wp}} = 101$. As described in Sect. 3.1.1, the flight distance was calculated by Eq. (23) for the two routing options. The optimization parameters were set as follows: $n_p = 100$, $n_g = 100$ and other GA parameters were the same as those used in the benchmark test in Sect. 3.2.3.

The one-day simulation was parallelized on 4 PEs of Fujitsu Esprimo P900 (Intel Core i5-2500CPU with 3.30 GHz; 4 GB of memory; peak performance of 105.6×4 GFLOPS) at the Institute of Atmospheric Physics, German Aerospace Center. The one-day simulation required approximately 15 min for a great circle case the great circle routing option, while it took approximately 20 hours for a time optimal case the flight time routing option. Most of the computational time is consumed by the
trajectory optimizations. Therefore, this time can be reduced by choosing properly all GA parameters, using more PEs, or decreasing \(n_p \) and \(n_g \). As discussed in Sect. 3.2.6, a large reduction in computing time of roughly 90\% can be achieved by a small number of using a small \(n_p \) and \(n_g \) with still sufficient accuracy of the optimizations.

4.2 Optimal solutions for three selected airport pairs

The one-day simulation results for the flight time routing option confirmed that the optimized flight trajectories showed a large altitude variation. To give an overview of the optimizations, we classified the those optimized flight trajectories according to their altitude changes into three categories. Type I: east- and westbound time-optimal flight trajectories showed little altitude changes, Type II: east-bound time-optimal flight trajectory showed little altitude changes, while westbound time-optimal flight trajectory showed distinct altitude changes, and Type III: east- and westbound time-optimal flight trajectories showed distinct altitude changes. We have selected the three airport pairs of each type and Table 8 shows the details of them. Here, we mainly discuss the selected solution of Type II, which were east- and westbound flights between Minneapolis (MSP) and Amsterdam (AMS).

We examined first the optimal flight trajectories between MSP and AMS. Figure 13 shows all trajectories explored by GA (black lines) and the time-optimal flight trajectories for east- and west-bound flights (red and blue lines). Figures 13a and 13b show that GA explored diverse trajectories properly considering altitude changes in the range of [FL290, FL410]. Similar results were obtained when calculating for the selected solutions of Type I and III, as shown in Figs. S1 and S2 in the Supplementary material. In addition, the eastbound time-optimal flight trajectory was located at FL290, while that for westbound showed large altitude changes, i.e. it climbed, descended, climbed, and then descended again. The mean flight altitude of these trajectories were \(h = 8,839 \) m and \(h = 10,002 \) m. These time-optimal flight trajectories were compared to the prevailing wind fields. To calculate tail/head winds in east and western directions, the major wind component is shown in Fig. 14. The contours represent the zonal wind speed \(u \); black arrows show the wind speed \(\sqrt{u^2 + v^2} \) and direction at the departure time at the \(\eta \). Figures 14a and 14b show that the eastbound time-optimal flight trajectory (red line) was located to the south of the great circle (black line) to take advantage from the tail winds of the westerly jet stream (red region), while the westbound time-optimal flight trajectory (blue line) was located to the north of the great circle to avoid the head winds (red region). Similar comparisons for the selected solutions of Type I and III showed that the obtained optimal flight trajectories effectively take advantages of the wind fields (see Supplementary materials, Figs. S3 and S4).

To understand the behavior of the altitude changes of the optimal flight trajectories, Fig. 15 shows the altitude distribution of the true air speed \(V_{TAS} \) and the tail wind indicator \(\frac{V_{ground}}{V_{TAS}} \) along the time-optimal flight trajectories. The indicator was calculated by Eq. (25) transformed into \(\frac{V_{ground}}{V_{TAS}} = 1 + \frac{V_{wind}}{V_{TAS}} \)
this means tail winds \((\geq 1.0) \cdot (\frac{V_{\text{ground}}}{V_{\text{TAS}}} \geq 1.0)\) and head winds \((< 1.0) \cdot (\frac{V_{\text{ground}}}{V_{\text{TAS}}} < 1.0)\) to the flight direction. Figure 15c shows that the core tail winds region was located at 8.5 km and the tail winds were most beneficial for the eastbound flight trajectory. On the other hand, the westbound flight trajectory went through the regions where \(\frac{V_{\text{TAS}}}{V_{\text{TAS}}}\) was high, as shown in Fig. 15d. In addition, Fig. 15d shows that the descent at a flight time of 16,000 s was effective to counteract the head winds. These results confirm that GA correctly reflects the weather conditions and finds the appropriate flight trajectories corresponding to the flight direction. Similar results were obtained for the solutions of Type I and III (see Supplementary materials, Figs. S5 and S6).

Next, we confirmed compared the resulting flight time quantitatively times for the selected solutions. Table 8 shows the obtained flight times for the time-optimal and the great circle cases. As indicated shown in Table 8, the flight time decreased is lower for the time-optimal case compared to the great circle cases. In addition, the flight time decreased is lower for the eastbound time-optimal flight trajectories compared to that for the westbound time-optimal flight trajectories. This supports the observation that GA correctly reflects weather conditions for the trajectory optimization. With regard to the convergence behavior of the optimization, Fig. 16 shows the best of generation flight time vs the number of objective function evaluations corresponding to the GA simulations for the three selected airport pairs. As expected, the solutions sufficiently converged to each optimal solution. Thus, GA successfully found the time-optimal flight trajectories for the three airport pairs. It is also clear from Fig. 16 that the reduction in computing time can be achieved by choosing properly \(n_p\) and \(n_g\), although the solutions converged more slowly under the wind conditions than those under no-wind conditions (Fig. 12).

4.3 One-day simulation results for all flights

The Next, the one-day AirTraf simulations simulation results for 103 trans-Atlantic flights are discussed analyzed. Figure 17 shows the obtained flight trajectories for the flight time and great circle routing options. Figures 17a and 17c show that many eastbound time-optimal flight trajectories congregated around 50°N over the trans-Atlantic Atlantic Ocean to take advantage from the tail winds in the westerly jet stream. On the other hand, the westbound time-optimal flight trajectories were located to the north and south of the region to avoid head winds (as shown in Figs. 17b and 17d). In addition, Figs. 17a and 17b show that only 5 of 52 eastbound time-optimal flight trajectories showed large altitude changes, in comparison to 35 of 51 westbound time-optimal flight trajectories. The mean flight altitude for the 52 eastbound, 51 westbound and total 103 flights were \(\bar{h} = 9,029\) m, 9,517 m and 9,271 m, respectively.

As shown in Fig. 15, altitude changes were due to variations of \(\frac{V_{\text{TAS}}}{V_{\text{TAS}}}\) and prevailing winds. We now confirm this behavior, focusing on the results for all flights. Figures 18a and 18b plot show the values of \(\frac{V_{\text{TAS}}}{V_{\text{TAS}}}\) and \(\frac{V_{\text{ground}}}{V_{\text{TAS}}}\) at waypoints for the time-optimal
and the great circle flights, with linear fitted lines lines fitted by the Least Squares algorithm. Figure 18a shows that V_{TAS} increased V_{TAS} is higher at low altitudes. From Eq. (25), high V_{TAS} values increase V_{ground} V_{TAS} values increase V_{ground} values, thereby minimizing flight time. The mean V_{TAS} V_{TAS} for the time-optimal and the great circle cases are shown in Table 9. The mean V_{TAS} V_{TAS} value (column 4) for the time-optimal case is 245.1 ms$^{-1}$, while that for the great circle cases ranges from 241.2 to 244.9 ms$^{-1}$, although the mean flight altitude for the time-optimal case is $\bar{h} = 9,271$ m, which is higher than FL290 (= 8,839 m). GA successfully found the flight trajectories which had high V_{TAS} values, with high V_{TAS} values as time-optimal flights.

With regard to the wind effects, Fig. 18b shows that the fitted line for the eastbound time-optimal case (solid line, red) increases is larger between FL290 (= 8,839 m) and 9,500 m compared to that for the eastbound great circle case (dashed line, red). These altitude bounds are effective under the present weather condition to take advantage of tail winds for the eastbound flights. Thus, almost all the eastbound time-optimal flight trajectories were located at FL290, as shown in Fig. 17a (top). On the other hand, the fitted line for the westbound time-optimal case (solid line, blue) is distributed widely in altitude and increases is larger between FL290 (= 8,839 m) and 12,000 m compared to that for the westbound great circle case (dashed line, blue). The westbound time-optimal flight trajectories certainly mitigated the head winds effect. Thus, many westbound time-optimal flight trajectories showed large altitude changes, as shown in Fig. 17b (top). The similar plot of V_{ground} V_{ground} is shown in the Supplement Supplementary material (Fig. S7), which reflects incorporates the influences of both V_{TAS} V_{TAS} and winds; the plot indicates similar trends as shown in Fig. 18b.

Table 9 also shows that the mean V_{ground} V_{ground} value (column 7) for the time-optimal case is 250.2 ms$^{-1}$, while that for the great circle cases ranges from 241.1 to 244.7 ms$^{-1}$. Therefore, GA correctly selected the airspace by altitude changes, where V_{ground} values increased the trajectories found by GA through altitude changes passed areas, which correctly lead to larger V_{ground}.

This behavior of altitude changes affects the variation in fuel consumptions (the terms are These altitude changes affect the fuel consumption (the term is used interchangeably to mean fuel flow fuel flow). Figure 19 shows the mean fuel consumption (in kg(fuel)min$^{-1}$) vs altitude for the time-optimal and the great circle flights. The results show that the fuel consumption increases is higher at low altitudes due to the increased aerodynamic drag (i.e. increased air density). In addition, the mean value of the fuel consumption for the time-optimal case is high, due to its low mean flight altitude ($\bar{h} = 9,271$ m, which is between FL290 (= 8,839 m) and FL330 (= 10,058 m)). Table 10 lists the mean fuel consumptions for the different cases. In the great circle cases, the mean value for the eastbound cases is lower than that for the westbound cases (columns 2 and 3 of Table 10), because the eastbound flights benefit from the tail winds of the westerly jet stream. On the other hand, the mean value for the eastbound time-optimal case increases is higher owing to its low mean flight altitude ($\bar{h} = 9,029$ m) compared to that for the westbound case ($\bar{h} = 9,517$ m). Note, the fuel consumption was not regarded as the objective function (Eq. (28)).
We also compared the total flight time, fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions for the time-optimal and the great circle cases. Figure 20 shows the flight time corresponding to the 103 individual flights (the similar figures for the fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions are shown in the Supplementary material (Fig. S8)). The results showed that all symbols lay in the right-hand domain on the right side of the 1:1 solid line. That is, the flight time for the time-optimal flights decreased for all airport pairs is lower compared to that for the great circle flights for all airport pairs. Table 11 shows the total flight time simulated by AirTraf for eastbound, westbound and total flights. The total value was certainly minimal for the time-optimal case, while in relative terms the value increased by +1.5 %, +2.5 %, +2.9 % and +2.9 % for the great circle cases at FL290, FL330, FL370 and FL410, respectively.

Regarding the total value of fuel use, Table 11 indicates that the value increased by +5.4 % for the great circle case at FL290 when compared with the value of the time-optimal case. To confirm this intuitively, Fig. ?? shows the global distribution maps of the fuel use (in 2 hour averages) for these cases. The maps show that the time-optimal case has low values of the fuel use. On the other hand, Table 11 indicates that the fuel use decreased by −5.8 %, −14.9 % and −20.8 % for the great circle cases at FL330, FL370 and FL410, respectively. The total values of NO\textsubscript{x} and H\textsubscript{2}O emissions show a similar trend: the total value of NO\textsubscript{x} emission increased by +5.2 % for the great circle at FL290, while it decreased by −12.9 %, −24.9 % and −29.4 % for the great circle cases at FL330, FL370 and FL410, respectively. The changes in total H\textsubscript{2}O emission were the same as those of the total fuel use, because EI\textsubscript{H\textsubscript{2}O} = 1,230 g(H\textsubscript{2}O)/(kg(fuel))−1 was used. Figure 19 already shows that the mean fuel consumption for the time-optimal case is high, owing to the low mean flight altitude. Thus, the total amount of fuel use increased for this case, which increased total NO\textsubscript{x} and H\textsubscript{2}O emissions. It is important to note that the variations in the flight time, fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions are not representative for all seasons and the whole world’s air traffic, because they have been obtained under the specific winter conditions using the trans-Atlantic flight plans.

5 Consistency check for Verification of the AirTraf simulations

To verify the consistency for AirTraf simulations, the one-day simulation results described in Sect. 4 were compared to reference data of flight time, fuel consumption, EINO\textsubscript{x} and aircraft weight. The data obtained under similar conditions (aircraft/engine types, flight conditions, weather situations, etc.) were selected for the comparison, although the conditions are not completely the same as the calculation conditions for the one-day simulations. Note, the verification of the aircraft weight is related to that of the fuel use calculations, because the aircraft weight was calculated by adding the amount of fuel use (Eq. (10)). In addition, H\textsubscript{2}O emission is proportional to the fuel use assuming ideal combustion. Thus, its verification would be redundant.

First, Table 12 shows a comparison of the flight time between for the seven time-optimal flight trajectories simulated by AirTraf and three reference data (the seven airport pairs are geographi-
cally close to those of the reference data). Sridhar et al. (2014) simulated the wind-optimal flight trajectory from Newark (EWR) to Frankfurt (FRA) using a specific winter day and the flight time was 22,980 s. The flight time of the time-optimal flight trajectory from JFK to FRA simulated by AirTraf was 22,955 s. This agrees well with the value reported by Sridhar et al. (2014). Irvine et al. (2013) analyzed the variation in flight time of time-optimal flight trajectories between JFK and London (LHR) using weather data for three winters. The results showed that the flight time for east- and westbound flights ranged from approximately 18,000 to 22,200 s, and from 21,600 to 27,000 s, respectively (see Fig. 3 in the literature). This indicated that the flight time increased for westbound flights on the trans-Atlantic region in winter due to westerly jet streams. In addition, Grewe et al. (2014a) optimized the trans-Atlantic one-day air traffic (for winter) with respect to air traffic climate impacts and economic costs to investigate routing options for minimizing the impacts. The results showed that the mean flight time of the air traffic ranged from 26,136 to 27,792 s (eastbound), while it ranged from 29,664 to 31,788 s (westbound), depending on the degree of climate impact reduction (see Tables 2 and 3 in the literature). This also indicated the increased flight time for westbound trans-Atlantic flights in winter due to westerly jet streams. The magnitude in flight times of Grewe et al. (2014a). The flight times between the seven airport pairs are close are close to the reference data and the variation shows a good agreement with the trend of the flight time for westbound increased flight times for westbound trans-Atlantic flights in winter due to westerly jet streams, as indicated from the reference data.

Second, the fuel consumption was verified using the mean fuel consumption value of 103 flights and the reference data, as shown in columns 4 to 7 of Table 10. Note, the AirTraf simulations were performed under the specific winter conditions (Table 7), while the reference data show the estimated values under international standard atmosphere conditions. Table 10 shows that the mean fuel consumption values for the time-optimal and the great circle cases (column 4) were comparable to those of the reference data corresponding to low and nominal weights (columns 5 and 6). In the AirTraf simulations, the overall load factor of the worldwide air traffic indication in 2008 was used (Table 1). If a specific load factor of A330-301 for international flights is available, the value is possibly higher than 0.62 and the corresponding mean fuel consumption values are expected to increase.

Third, the mean EINO$_x$ (in g(NO$_x$)/(kg(fuel))$^{-1}$) simulated by AirTraf were compared to the six reference data. Table 13 shows that the obtained mean EINO$_x$ value decreased is lower at high altitudes and it ranged from 10.8 to 12.2 g(NO$_x$)/(kg(fuel))$^{-1}$. These values are in the same range as the reference data. Note, the reference data provided by Sutkus et al. (2001) show higher EINO$_x$ values. They correspond to the values for the CF6-80E1A2 (1GE033) engine instead of the CF6-80E1A2 (2GE051) engine used in our simulations. NO$_x$ of aircraft engines, in general, decrease owing to an installation of a new combustor. The 2GE051 utilizes the new 1862M39 combustor, which is known as a low-emissions combustor. Thus, the reference EINO$_x$ value of 2GE051 will be lower than that of the 1GE033.
Finally, the aircraft weights simulated by AirTraf were verified to make sure whether the fuel use calculations were performed properly. AirTraf duplicates realistic fuel consumptions under cruising flight, i.e. the aircraft weight reduces from the first waypoint \((m_{1}) \) to the last waypoint \((m_{n_{wp}}) \) as fuel is burnt (as described in Sect. 2.5). Thus, \(m_{1} \) and \(m_{n_{wp}} \) correspond to the maximum and minimum aircraft weights, respectively. Here the obtained \(m_{1} \) and \(m_{n_{wp}} \) for \(n_{wp} \) for the 103 flights were compared with three structural limit weight limits (MTOW, MLW and MZFW), which are commonly used to provide safety flight operations. Flight operations safety, and one specified limit weight (MLOW) of the A330-301 aircraft. Table 14 shows the designated constraints among the \(m_{1}, m_{n_{wp}}, m_{ZFW}, m_{MZFW}, \) and the four limit weight limits. Note, no model that constrains the structural limit weights the structural weight limits was included in AirTraf.

As indicated in Table 14, the first constraint is on Maximum Take-off Weight (MTOW). The MTOW is limited for the aircraft not to cause structural damage to the airframe during take off. Figure 21 shows a comparison of \(m_{1} \) and \(m_{n_{wp}} \) with the limits \(m_{ZFW}, m_{MZFW} \) with the weight limits (MTOW, MLW and MLOW). The results showed that almost all the \(m_{1} \) (closed circle) were less than the MTOW. The only 15 of 515 flights (total of the time-optimal and the great circle cases: 5 cases × 103 flights) exceeded the MTOW. For these 15 flights, actual flight planning data probably indicate altitude changes (generally indicate higher flight altitudes) to increase a to increase the fuel mileage, which decreases leading to the decrease in \(m_{1} \). The second constraint is on Maximum Landing Weight (MLW). To prevent the structural damage to the landing gear and the fuselage, an aircraft has to reduce the total weight below until MLW prior to landing. Figure 21 shows that all the \(m_{n_{wp}} \) (open circle) were certainly less than MLW. The third constraint is on Maximum Zero Fuel Weight (MZFW), which corresponds to the maximum operational weight of the aircraft without usable fuel. The MZFW of an A330-301 aircraft is 164,000 kg (EASA, 2013), while the calculated zero fuel weight (ZFW) was 154,798 kg for all flights. This always satisfies the third constraint ZFW \(\leq \) MZFW. Note, the ZFW is calculated as ZFW = OEW + MPL × OLF and hence it depends only on the aircraft type and the load factor (Table 1). In addition, the fourth constraint is on the approximately minimum operational weight of an A330-301 aircraft in the international standard atmosphere (MLOW). The MLOW is used here as a measure of validity of fuel use calculations and is not a strict constraint. As shown in Fig. 21, all the \(m_{n_{wp}} \) (open circle) were more higher than the MLOW. As a result, almost all the \(m_{1} \) and \(m_{n_{wp}} \) simulated by AirTraf satisfied the four constraints. Thus, AirTraf simulates fairly good fuel use calculations.

6 Code availability

AirTraf is published for the first time as a submodel of Modular Earth Submodel System (MESSy). The MESSy is continuously further developed and applied by a consortium of institutions. The
usage of MESSy and access to the source code is licenced to all affiliates of institutions which are members of the MESSy Consortium. Institutions can become a member of the MESSy Consortium by signing the MESSy Memorandum of Understanding. More information can be found on the MESSy Consortium Website (http://www.messy-interface.org). The version presented here corresponds to AirTraf 1.0. Some improvements will be performed and AirTraf 1.0 will be updated for the latest version of the code. For example, evaluation functions corresponding to the NO\textsubscript{x}, H\textsubscript{2}O, fuel, contrail and CCF routing options will be added. The status information for AirTraf including the licence conditions will be available at the website.

7 Conclusions

This study presents the global air traffic submodel AirTraf (version 1.0) of EMAC. The great circle and flight time routing options can be used in AirTraf 1.0. Two benchmark tests were performed without EMAC (off-line). First, a benchmark test was performed for the great circle routing option using five representative routes. The results showed that the routing methodology works properly and the great circle distances showed quantitatively good agreement with those calculated by other published code MTS. The accuracy of the results was within ±0.05–0.004\% . Second, a benchmark test was performed for the flight time routing option by GA, focusing on a flight from MUC to JFK. The results showed that GA explored diverse solutions and successfully found the time-optimal solution. The difference in flight time between the solution and its true-optimal solution was less than 0.01\%. The dependence of the optimal solutions on initial populations on the initial population was investigated by 10 independent GA simulations from different initial populations. The obtained 10 optimal solutions slightly varied, however the variability was sufficiently small (approximately 0.01\%). In addition, the population and generation sizing for the trajectory optimization was examined by 1,000 independent GA simulations. The results show that there is a clear trade-off between the accuracy of GA optimizations and the number of function evaluations (i.e. computational costs). The present results indicate that a large reduction in number of function evaluations of around 92\%-97\% can be achieved with only a small decrease in the accuracy of optimizations of around 0.05\%-0.1\%

AirTraf simulations were demonstrated in EMAC (on-line) for a specific typical winter day by using 103 trans-Atlantic flight plans of an A330 aircraft. Four one-day simulations were separately performed with the great circle routing option at FL290, FL330, FL370 and FL410, while a single one-day simulation was performed with the flight time routing option allowing altitude changes. The results confirmed that AirTraf correctly works on-line for the two options. Specifically, we verified that GA successfully found time-optimal flight trajectories for all airport pairs. A comparison of the simulations showed that the total flight time was minimal for the time-optimal case, while it increased ranging from +1.5\% to +2.9\% for the great circle cases. On the other hand, the total
fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions increased for the time-optimal case compared to the great circle cases at FL330, FL370 and FL410. Compared to the time-optimal case, the total fuel use and H\textsubscript{2}O emission increased by +5.4 \% for the great circle case at FL290, while they decreased by −5.8 \%, −14.9 \% and −20.8 \% for the great circle cases at FL330, FL370 and FL410, respectively. Similarly, the total NO\textsubscript{x} emission increased by +5.2 \% for the great circle case at FL290, while it decreased by −12.9 \%, −24.9 \% and −29.4 \% for the great circle cases at FL330, FL370 and FL410, respectively. Note, the changes are confined to the specific weather conditions and the changes can vary on longer time scales.

The consistency of the one-day simulations was verified with reference data (published in earlier studies and BADA) of flight time, fuel consumption, EINO\textsubscript{x} and aircraft weight (i.e. fuel use). Comparison of the flight time between the selected trajectories and the reference data showed that the values were close-similar and indicated the similar trend: an increased flight time for westbound flights on the trans-Atlantic region in winter. The mean fuel consumption values simulated by AirTraf were comparable to the reference values of BADA corresponding to low and nominal weights. The mean EINO\textsubscript{x} values were in the same range as the reference data values of earlier studies. Finally, obtained maximum and minimum aircraft weights were compared to the three structural weight limits and one specified limit weight limit of the A330-301 aircraft. Almost all the values satisfied the four limit weights weight limits and only 15 of 515 flights exceeded the Maximum Take-off Weight. Thus, AirTraf comprises a sufficiently good fuel use calculation-model.

The fundamental framework of AirTraf has been developed to perform fairly realistic air traffic simulations. AirTraf 1.0 is sufficient to investigate a reduction potential of aircraft routings on air traffic climate impacts. AirTraf is coupled with various submodels of EMAC to evaluate the impacts, and objective ready for more complex routing tasks. Objective functions corresponding to other routing options will be integrated soon, and AirTraf will be coupled with various submodels of EMAC to evaluate air traffic climate impacts.

Appendix A: Glossary

Table A1 shows a glossary explaining several terminologies of the GA optimization. The terms from the glossary are written in italics in the text.

Acknowledgements. This work was supported by the DLR Project WeCare. The authors wish to thank Prof. Dr. Shigeru Obayashi of the Institute of Fluid Science, Tohoku University for his invaluable comments on this work. The authors thank Mr. Chris Veness for providing great circle distances that have been calculated with the Movable Type script. The authors wish to acknowledge our colleagues, especially Prof. Dr. Robert Sausen for his support of this project. The authors also wish to thank an internal reviewer for helpful reviews of and comments on this work. The authors would like to express their gratitude to anonymous reviewers for their helpful comments and discussions.
References

EASA: Type Certificate Data Sheet for A330, 2013.

ICAO: ICAO Engine Exhaust Emissions Data, Tech. rep., Doc 9646-AN/943 (Issue 18 is used for this study), 2005.

Movable Type script: Calculate distance, bearing and more between Latitude/Longitude points, available at: http://www.movable-type.co.uk/scripts/latlong.html (last access: January 2015), 2014.

Road map for climate-optimized routing.
Figure 1. Flowchart of EMAC/AirTraf. MESSy as part of EMAC provides interfaces (yellow) to couple various submodels for data exchange, run control and data input/output. Air traffic data and AirTraf entries parameters are input in the initialization phase (messy_initialize, dark blue). AirTraf includes the flying process in messy_global_end (dashed box, light blue), which comprises four main computation procedures (bold-black boxes). The detailed procedures are described in Sect. 2.4 and are illustrated in Fig. 3. AirTraf is linked to three modules: the aircraft routing module (light green), the flight trajectory optimization module (dark green), and the fuel/emissions calculation module (light orange). Resulting flight trajectories and global fields are calculated for output (rose red). Various submodels of EMAC can be linked to evaluate climate impacts on the basis of the output.
Figure 2. Decomposition of global flight plans in a parallel environment of EMAC/AirTraf. A one-day flight plan is distributed among many processing elements (PEs) in `messy_init_memory` (blue), while a whole trajectory of an airport pair is handled by the same PE in the time loop of EMAC (`messy_global_end`, light blue). Finally, results are gathered from all the PEs for output (rose red).
Figure 3. Illustration of the flying process of AirTraf (dashed box in Fig. 1, light blue). (a) Flight trajectory calculation. (b) Fuel/emissions calculation. (c) Aircraft position calculation. (d) Gathering global emissions; the fraction of NOx corresponding to the EMAC grid box flight segment i is mapped onto the nearest grid point (closed circle) relative to the $(i + 1)$th waypoint (open circle). ETO: Estimated Time Over; F_{cr}: fuel flow of an aircraft; m: aircraft weight; t: time step index of EMAC. The detailed calculation procedures are described in Sect. 2.4.
Figure 4. Five representative routes for the great circle benchmark test. The details of locations are listed in Table 3.

Figure 5. Comparison of the flight distance for the five representative routes. •: great circle distance calculated by Eq. (22), ○: great circle distance calculated by Eq. (23).
Figure 6. Geometry definition of flight trajectory as longitude vs altitude in the vertical cross-section (top) and as geographic location projection on the Earth (bottom). The bold solid line indicates a trajectory from MUC to JFK. ⋄: control points consisting of determined by design variables \(x = (x_1, x_2, \ldots, x_{11})^T \). The lower/upper bounds of the eleven design variables are shown in Table 6. Bottom: the dashed boxes show rectangular domains of three control points. ♦: central points of the domains are calculated on the great circle (thin solid line), which divide the \(\Delta \lambda_{\text{airport}} \) into four equal parts. Top: the dashed lines show the lower/upper variable bounds in altitude. 'FL290' stands for a flight level at 29,000 ft. Longitude-coordinates for \(x_7, x_8, \ldots, x_{11} \) are pre-calculated; the coordinates divide the \(\Delta \lambda_{\text{airport}} \) into six equal parts.
Figure 7. Optimal solutions are shown varying with the population size n_p and generation number n_g. Δf means the difference in flight time between the optimal solution $f_{\text{true}} = 25.994.0$ s. The Δf (in %) is calculated as $(\Delta f/f_{\text{true}}) \times 100$. GA discovers the solutions as close to the $f_{\text{true}} = 25.994.0$ s with increasing n_p and n_g. For each n_p, the optimal solution shows minimum flight time for $n_g = 100$. For each n_g, the optimal solution shows minimum flight time for $n_p = 100$. The flight time of the best solution is $f_{\text{best}} = 25.996.6$, $f_{\text{best}} = 25.996.6$ s (for $n_p = 100$ and $n_g = 100$, $\Delta f < 3.0$ s (less than 0.01 %)).
Figure 8. 10,000 explored trajectories (solid line, black) from MUC to JFK as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom). The population size $n_p = 100$, n_g is 100 and the generation number $n_g = 100$ of generations n_g is 100. The best solution (red line) overlaps with the true-optimal solution (dashed line, black), i.e. the great circle at FL290. The flight time of the best solution is 25,996.6 s, while that of the true-optimal solution is 25,994.0 s.
Figure 9. Comparison of trajectories for the best solution (red line) and the true-optimal solution (dashed line, black). This shows the enlarged drawing of Fig. 8 (top). The maximum difference in altitude is 0.83 m.
Figure 10. Best of generation flight time vs number of function evaluations ($= n_p \times n_g$), including the enlarged drawing in the early 1,000 evaluations. The population size $n_p = 100$ and the generation number $n_g = 100$. Δf means the difference in flight time between the solution f and the true-optimal solution f_{true} ($= 25,994.0$ s). The Δf (in %) is calculated as $(\Delta f / f_{\text{true}}) \times 100$. The solution shown as red line corresponds to the best solution in Figs. 7 to 9. Table S1 summarizes the 10 optimal solutions in detail.
Figure 11. Variation of the mean value of the difference in flight time between the true-optimal solution ($f_{true} = 25,994.0$ s and $f_{true} = 25,994.0$ s) and the optimal solution Δf (a), and the standard deviation of Δf ($s_{\Delta f}$, b) are shown varying with the population size n_p and the generation number n_g. The variation was calculated by 10 independent GA simulations from different initial populations for each combination of n_p and n_g: totally 1,000 independent simulations. On the Δf and $s_{\Delta f}$: $\Delta f = \frac{1}{n} \sum_{i=1}^{n} \Delta f_i$, $s_{\Delta f} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta f_i - \Delta f)^2}$, where $n = 10$. Δf and $s_{\Delta f}$ (in %) relative to the true-optimal solution are calculated as $\left(\frac{\Delta f}{f_{true}}\right) \times 100$ and $\left(\frac{s_{\Delta f}}{f_{true}}\right) \times 100$, respectively.
Figure 12. Chart for finding the appropriate number of function evaluations \((n_p \times n_g)\), including the enlarged drawing in the early 1,500 evaluations. The symbols with error bars correspond to \(\overline{\Delta f} \pm s_{\Delta f}\) (in %); their definitions are given in the caption in Fig. 11. The fitted curve (power function, red line) to \(\overline{\Delta f}\) is \(y = e^{0.92 - 0.59 x}\), where \(x\) are the function evaluations and \(y\) is \(\overline{\Delta f}\) (in %); \(R^2 = 0.89\). The fitted curve to \(s_{\Delta f}\) is calculated similarly: \(y = e^{0.67 - 0.73 x}\), where \(R^2 = 0.71\) (unshown).
Figure 13. 10,000 explored trajectories (black lines) between MSP and AMS as longitude vs. altitude in the vertical cross-section (top) and as location projection on the Earth (bottom), including the time-optimal flight trajectories (red and blue lines). (a) The eastbound flight from MSP to AMS. (b) The westbound flight from AMS to MSP.
Figure 14. Comparison of trajectories for the time-optimal (red and blue lines) and the great circle cases (black lines) between MSP and AMS. The contours show the zonal wind speed (u in ms$^{-1}$); arrows (black) show the wind speed ($\sqrt{u^2 + v^2}$) and direction. (a) The eastbound flight from MSP to AMS with the wind field at $h = 8,839$ m at 21:35:00 UTC. (b) The westbound flight from AMS to MSP with the wind field at $h = 10,002$ m at 12:50:00 UTC.
Figure 15. Altitude distributions of the true air speed $\frac{V_{TAS}}{V_{TAS}}$ in m$^{-1}$ (a and b) and the tail wind indicator $\frac{V_{ground}}{V_{TAS}}$ (c and d) along the time-optimal flight trajectories (black line) between MSP and AMS. Note, $(\frac{V_{ground}}{V_{TAS}}) \geq 1.0$ $(\frac{V_{ground}}{V_{TAS}}) \geq 1.0$ means tail winds (TW, red), while $(\frac{V_{ground}}{V_{TAS}}) < 1.0$ $(\frac{V_{ground}}{V_{TAS}}) < 1.0$ means head winds (HW, blue) to the flight direction. The contours were obtained at the departure time: 21:35:00 UTC (eastbound, a and c); 12:50:00 UTC (westbound, b and d).
Figure 16. Best-of-generation flight time (in %) vs number of function evaluations ($= n_p \times n_g$) for three selected airport pairs, including the enlarged drawing in the early 1,500 evaluations. Population size $n_p = 100$ and generation number $n_g = 100$. Δf^* means the difference in flight time between the solution f and the obtained optimal solution f_{opt}, which was finally obtained after 10,000 function evaluations. This was chosen because f_{true} for the six flights are unknown. The f_{opt} for each flight corresponds to the flight time for the time-optimal case (column 7, Table 8). The Δf^* (in %) is calculated as $(\Delta f^*/f_{true}) \times 100$. $\Delta f^*/f_{opt}$.
Figure 17. Obtained flight trajectories from one-day AirTraf simulations corresponding to the time-optimal case including altitude changes in [FL290, FL410] (a and b) and the great circle cases at FL290, FL330, FL370 and FL410 (c and d). For each figure, the trajectories as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom). The one-day flights comprise 52 eastbound (red lines) and 51 westbound flights (blue lines).
Figure 18. Values of the true air speed V_{TAS} (a) and the tail wind indicator V_{ground}/V_{TAS} (b) at waypoints for the time-optimal and the great circle flights. Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and that of the great circle cases (dashed line, red (eastbound) and blue (westbound)) are included. V_{TAS} of the international standard atmosphere (ISA) is given in (a) (solid line, black) provided by the BADA atmosphere table (Eurocontrol, 2010).
Figure 19. Mean fuel consumption (in kg(fuel)min$^{-1}$) vs altitude for the time-optimal and the great circle flights. ♦: mean value of all 103 flights; these values are shown in column 4 of Table 10.
Figure 20. Comparison of the flight time for individual flights. A symbol indicates the value for one airport pair, corresponding to the time-optimal and the great circle flight. If the value for the time-optimal flight is the same as that of the great circle flight, the symbol lies on the 1:1 solid line.

Global, vertically integrated, distribution of the fuel use (in $-$): 2 hour averages simulated by EMAC/AirTraf from 1 January 1978 00:00:00 to 2 January 1978 00:00:00 UTC. Left: great circle case at FL290. Right: time-optimal case. The maps, beginning at the top, correspond to the results at 14:00:00; 16:00:00; 18:00:00; and 20:00:00 UTC.
Figure 21. Comparison of aircraft weights with structural limit weights (MTOW and MLW) and one specified limit weight (MLOW). The aircraft weights of the 103 flights for the time-optimal and the great circle cases are plotted. ◦: aircraft weight at the last waypoint (m_{wp}). •: aircraft weight at the first waypoint (m_1). The description of the limits is shown in Table 14.
Table 1. Primary data of Airbus A330-301 aircraft and constant parameters used in AirTraf simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEW</td>
<td>125,100</td>
<td>kg</td>
<td>Operational empty weight(^a)</td>
</tr>
<tr>
<td>MPL</td>
<td>47,900</td>
<td>kg</td>
<td>Maximum payload(^a)</td>
</tr>
<tr>
<td>(S)</td>
<td>361.6</td>
<td>m(^2)</td>
<td>Reference wing surface area(^a)</td>
</tr>
<tr>
<td>(C_{D0})</td>
<td>0.019805</td>
<td>–</td>
<td>Parasitic drag coefficient (cruise)(^a)</td>
</tr>
<tr>
<td>(C_{D2})</td>
<td>0.031875</td>
<td>–</td>
<td>Induced drag coefficient (cruise)(^a)</td>
</tr>
<tr>
<td>(C_{D1})</td>
<td>0.61503</td>
<td>kg min(^{-1})kN(^{-1})</td>
<td>First thrust specific fuel consumption (TSFC) coefficient (jet engines)(^a)</td>
</tr>
<tr>
<td>(C_{D2})</td>
<td>919.03</td>
<td>kt</td>
<td>Second TSFC coefficient(^a)</td>
</tr>
<tr>
<td>(f_{ref})</td>
<td>0.93655</td>
<td>–</td>
<td>Cruise fuel flow correction coefficient(^a)</td>
</tr>
<tr>
<td>(M)</td>
<td>0.82</td>
<td>–</td>
<td>Cruise Mach number(^a)</td>
</tr>
<tr>
<td>(L_{stl})</td>
<td>0.228; 0.724; 2.245; 2.767</td>
<td>kg(fuel)s(^{-1})</td>
<td>Reference fuel flow at take off, climb out, approach and idle conditions (sea level). CF6-80E1A2 (2GE051)(^b)</td>
</tr>
<tr>
<td>(EINOx_{stl})</td>
<td>4.88; 12.66; 22.01; 28.72</td>
<td>g(NO(_x))(kg(fuel))(^{-1})</td>
<td>Reference NO(_x) emission index at take off, climb out, approach and idle conditions (sea level). CF6-80E1A2 (2GE051)(^b)</td>
</tr>
<tr>
<td>(EIH_2O)</td>
<td>1.230</td>
<td>g(H(_2)O)(kg(fuel))(^{-1})</td>
<td>H(_2)O emission index(^c)</td>
</tr>
<tr>
<td>OLF</td>
<td>0.62</td>
<td>–</td>
<td>ICAO overall ((passenger/freight/mail)) weight load factor in 2006(^d)</td>
</tr>
<tr>
<td>(Oneday\ SP)</td>
<td>86,400</td>
<td>sday(^{-1})</td>
<td>60 \times 60 \times 24 = 86,400 seconds in a day. Time (Julian date) \times (Oneday\ \times \ SP) \times Time (s)</td>
</tr>
<tr>
<td>(g)</td>
<td>9.8</td>
<td>ms(^{-2})</td>
<td>Gravity acceleration</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1.4</td>
<td>–</td>
<td>Adiabatic gas constant</td>
</tr>
<tr>
<td>(P_0)</td>
<td>101.325 (101.325)</td>
<td>Pa</td>
<td>Total Reference pressure (sea level)</td>
</tr>
<tr>
<td>(R)</td>
<td>287.05</td>
<td>JK(^{-1})kg(^{-1})</td>
<td>Gas constant for dry air</td>
</tr>
<tr>
<td>(T_0)</td>
<td>288.15</td>
<td>K</td>
<td>Total Reference temperature (sea level)</td>
</tr>
</tbody>
</table>

\(^a\) Eurocontrol, 2011; \(^b\) ICAO, 2005; \(^c\) Penner et al., 1999; \(^d\) Anthony, 2009.
Table 2. Properties assigned to a flight trajectory. The properties of the three groups (divided by rows) are obtained from the nearest grid point of EMAC, the flight trajectory calculation (Fig. 3a), and the fuel/emissions calculation (Fig. 3b), respectively. The attribute type indicates where the values of properties are allocated. "W", "S" and "T" stand for waypoints \((i = 1,2,\ldots,n_{wp})\), flight segments \((i = 1,2,\ldots,n_{wp} - 1)\) and a whole flight trajectory in column 3, respectively.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Attribute type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>Pa</td>
<td>W</td>
<td>Pressure</td>
</tr>
<tr>
<td>(T)</td>
<td>K</td>
<td>W</td>
<td>Temperature</td>
</tr>
<tr>
<td>(\rho)</td>
<td>kg m(^{-3})</td>
<td>W</td>
<td>Air density</td>
</tr>
<tr>
<td>(u, v, w)</td>
<td>ms(^{-1})</td>
<td>W</td>
<td>Three dimensional wind components</td>
</tr>
<tr>
<td>(\phi)</td>
<td>deg</td>
<td>W</td>
<td>Latitude</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>deg</td>
<td>W</td>
<td>Longitude</td>
</tr>
<tr>
<td>(h)</td>
<td>m</td>
<td>W</td>
<td>Altitude</td>
</tr>
<tr>
<td>ETO</td>
<td>Julian date</td>
<td>W</td>
<td>Estimated time over</td>
</tr>
<tr>
<td>(a)</td>
<td>ms(^{-1})</td>
<td>W</td>
<td>Speed of sound</td>
</tr>
<tr>
<td>(V_{TAS})</td>
<td>ms(^{-1})</td>
<td>W</td>
<td>True air speed</td>
</tr>
<tr>
<td>(V_{ground})</td>
<td>ms(^{-1})</td>
<td>W</td>
<td>Ground speed</td>
</tr>
<tr>
<td>(d)</td>
<td>m</td>
<td>S</td>
<td>Flight distance</td>
</tr>
<tr>
<td>(\overline{h})</td>
<td>m</td>
<td>T</td>
<td>Mean flight altitude, (\overline{h} = 1/n_{wp}\sum_{i=1}^{n_{wp}} h_i) with waypoint number (n_{wp}).</td>
</tr>
<tr>
<td>(FT)</td>
<td>s</td>
<td>T</td>
<td>Flight time, (FT = (ETO_{wp} - ETO_1) \times \text{Oneday}), (FT = (ETO_{wp} - ETO_1) \times \text{SPD}).</td>
</tr>
<tr>
<td>(F_{cr})</td>
<td>kg(fuel)s(^{-1})</td>
<td>W</td>
<td>Fuel flow of an aircraft (cruise)</td>
</tr>
<tr>
<td>(m)</td>
<td>kg</td>
<td>W</td>
<td>Aircraft weight</td>
</tr>
<tr>
<td>EINO(_{x;a})</td>
<td>g(NO(_x))(kg(fuel))(^{-1})</td>
<td>W</td>
<td>NO(_x) emission index</td>
</tr>
<tr>
<td>FUEL(_{FUEL})</td>
<td>kg</td>
<td>S</td>
<td>Fuel use</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>g(NO(_x))(kg(fuel))(^{-1})</td>
<td>S</td>
<td>NO(_x) emission</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>g(H(_2)O)(kg(fuel))(^{-1})</td>
<td>S</td>
<td>H(_2)O emission</td>
</tr>
</tbody>
</table>
Table 3. Information for the five representative routes of the great circle benchmark test.

<table>
<thead>
<tr>
<th>Route</th>
<th>Departure airport</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Arrival airport</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Munich (MUC)</td>
<td>48.35°N</td>
<td>11.79°E</td>
<td>New York (JFK)</td>
<td>40.64°N</td>
<td>73.78°W</td>
</tr>
<tr>
<td>R2</td>
<td>Tokyo Haneda (HND)</td>
<td>35.55°N</td>
<td>139.78°E</td>
<td>New York (JFK)</td>
<td>40.64°N</td>
<td>73.78°W</td>
</tr>
<tr>
<td>R3</td>
<td>Munich (MUC)</td>
<td>48.35°N</td>
<td>11.79°E</td>
<td>Sydney (SYD)</td>
<td>33.95°S</td>
<td>151.18°E</td>
</tr>
<tr>
<td>R4</td>
<td>–</td>
<td>40.0°S</td>
<td>0</td>
<td>–</td>
<td>40.0°N</td>
<td>0</td>
</tr>
<tr>
<td>R5</td>
<td>–</td>
<td>0</td>
<td>60.0°E</td>
<td>–</td>
<td>0</td>
<td>60.0°W</td>
</tr>
</tbody>
</table>
Table 4. Great circle distance \((d)\) of the five representative routes calculated with different calculation methods. Column 2 \((d_{eq22})\) corresponds to the result calculated by Eq. (22); column 3 \((d_{eq23})\) corresponds to the result calculated by Eq. (23) with \(n_{wp} = 100\); column 4 \((d_{MTS})\) shows the result calculated with the Movable Type scripts (MTS), which output only integer values using the Haversine formula with a spherical Earth radius of \(R_E = 6,371\) km. On columns 5 to 7: \(\Delta d_{eq23, eq22} = \frac{(d_{eq23} - d_{eq22})}{d_{eq22}} \times 100\), \(\Delta d_{eq23, MTS} = \frac{(d_{eq23} - d_{MTS})}{d_{MTS}} \times 100\), \(\Delta d_{eq22, MTS} = \frac{(d_{eq22} - d_{MTS})}{d_{MTS}} \times 100\).

<table>
<thead>
<tr>
<th>Route</th>
<th>(d_{eq22},) km</th>
<th>(d_{eq23},) km</th>
<th>(d_{MTS},) km</th>
<th>(\Delta d_{eq23, eq22},) %</th>
<th>(\Delta d_{eq23, MTS},) %</th>
<th>(\Delta d_{eq22, MTS},) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>6,481.1</td>
<td>6,481.0</td>
<td>6,481.1</td>
<td>-0.0005</td>
<td>-0.0005</td>
<td>-0.0005</td>
</tr>
<tr>
<td>R2</td>
<td>10,875.0</td>
<td>10,874.7</td>
<td>10,875.0</td>
<td>-0.0028</td>
<td>-0.0028</td>
<td>-0.0028</td>
</tr>
<tr>
<td>R3</td>
<td>16,312.1</td>
<td>16,311.5</td>
<td>16,312.1</td>
<td>-0.0036</td>
<td>-0.0036</td>
<td>-0.0036</td>
</tr>
<tr>
<td>R4</td>
<td>8,895.6</td>
<td>8,896.5</td>
<td>8,895.6</td>
<td>-0.0008</td>
<td>0.0054</td>
<td>-0.0008</td>
</tr>
<tr>
<td>R5</td>
<td>13,343.4</td>
<td>13,343.1</td>
<td>13,343.4</td>
<td>-0.0019</td>
<td>0.0226</td>
<td>0.0019</td>
</tr>
</tbody>
</table>
Table 5. Calculation conditions for the benchmark test on flight trajectory optimizations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function</td>
<td>Minimize flight time</td>
</tr>
<tr>
<td>Design variable, (n_{dv})</td>
<td>11 (6 locations and 5 altitudes)</td>
</tr>
<tr>
<td>Number of waypoints, (n_{wp})</td>
<td>101</td>
</tr>
<tr>
<td>Departure airport</td>
<td>MUC (lat. = 48.35°N, lon. = 11.79°E, alt. = FL290)</td>
</tr>
<tr>
<td>Arrival airport</td>
<td>JFK (lat. = 40.64°N, lon. = 73.78°W, alt. = FL290)</td>
</tr>
<tr>
<td>(V_{TAS}, V_{ground})</td>
<td>(V_{TAS}, V_{ground}): 898.8 kmh(^{-1}) (constant)</td>
</tr>
<tr>
<td>(V_{wind})</td>
<td>0 (no-wind)</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Real-coded GA(^a)</td>
</tr>
<tr>
<td>Population size, (n_{p})</td>
<td>10, 20, ..., 100</td>
</tr>
<tr>
<td>Generation number</td>
<td>Number of generations, (n_{g}): 10, 20, ..., 100</td>
</tr>
<tr>
<td>Selection</td>
<td>Stochastic universal sampling</td>
</tr>
<tr>
<td>Crossover</td>
<td>Blend crossover BLX-0.2 ((\alpha = 0.2))</td>
</tr>
<tr>
<td>Mutation</td>
<td>Revised polynomial mutation ((r_{m} = 0.1); (\eta_{m} = 5.0))</td>
</tr>
</tbody>
</table>

\(^a\) Sasaki et al., 2002 and Sasaki and Obayashi, 2004.

Table 6. Lower/Upper bounds of the eleven design variables.

<table>
<thead>
<tr>
<th>Design variable</th>
<th>Dimension</th>
<th>Unit</th>
<th>Lower value</th>
<th>Upper value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{1})</td>
<td>Longitude</td>
<td>°W</td>
<td>14.6</td>
<td>4.6</td>
</tr>
<tr>
<td>(x_{2})</td>
<td>Latitude</td>
<td>°N</td>
<td>38.0</td>
<td>68.0</td>
</tr>
<tr>
<td>(x_{3})</td>
<td>Longitude</td>
<td>°W</td>
<td>36.0</td>
<td>26.0</td>
</tr>
<tr>
<td>(x_{4})</td>
<td>Latitude</td>
<td>°N</td>
<td>38.5</td>
<td>68.5</td>
</tr>
<tr>
<td>(x_{5})</td>
<td>Longitude</td>
<td>°W</td>
<td>57.4</td>
<td>47.4</td>
</tr>
<tr>
<td>(x_{6})</td>
<td>Latitude</td>
<td>°N</td>
<td>34.9</td>
<td>64.9</td>
</tr>
<tr>
<td>(x_{7}, x_{8}, \ldots, x_{11})</td>
<td>Altitude</td>
<td>ft</td>
<td>FL290</td>
<td>FL410</td>
</tr>
</tbody>
</table>
Table 7. Calculation conditions. **Setup** for AirTraf one-day simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Great circle</th>
<th>Flight time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHAM5 resolution</td>
<td>T42L31ECMWF (2.8° by 2.8°)</td>
<td></td>
</tr>
<tr>
<td>Duration of simulation</td>
<td>1 January 1978 00:00:00 - 2 January 1978 00:00:00 UTC</td>
<td></td>
</tr>
<tr>
<td>Time step of EMAC</td>
<td>12 min</td>
<td></td>
</tr>
<tr>
<td>Flight plan</td>
<td>103 trans-Atlantic flights (eastbound 52/westbound 51)¹</td>
<td></td>
</tr>
<tr>
<td>Aircraft type</td>
<td>A330-301</td>
<td></td>
</tr>
<tr>
<td>Engine type</td>
<td>CF6-80E1A2, 2GE051 (with 1862M39 combustor)</td>
<td></td>
</tr>
<tr>
<td>Flight altitude changes</td>
<td>Fixed FL290, FL330, FL370, FL410</td>
<td>[FL290, FL410]</td>
</tr>
<tr>
<td>Mach number</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Wind effect</td>
<td>Three-dimensional components (u, v, w)</td>
<td></td>
</tr>
<tr>
<td>Number of waypoints, n_{wp}</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Optimization</td>
<td>−</td>
<td>Minimize flight time</td>
</tr>
<tr>
<td>Design variable, n_{dv}</td>
<td>−</td>
<td>11 (location 6 altitude locations and 5 altitudes)</td>
</tr>
<tr>
<td>Population size, n_p</td>
<td>−</td>
<td>100</td>
</tr>
<tr>
<td>Generation number n_g</td>
<td>−</td>
<td>Stochastic universal sampling</td>
</tr>
<tr>
<td>Selection</td>
<td>−</td>
<td>Blend crossover BLX-0.2 ($\alpha = 0.2$)</td>
</tr>
<tr>
<td>Crossover</td>
<td>−</td>
<td>Revised polynomial mutation ($r_m = 0.1; \eta_m = 5.0$)</td>
</tr>
<tr>
<td>Mutation</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>

¹ REACT4C, 2014.
Table 8. Information for the trajectories of the three selected airport pairs; they were extracted from the one-day AirTraf simulations. Columns 7 to 11 show the obtained flight times for the flight time and the great circle routing options. GC FL290: great circle at 29,000 ft.

<table>
<thead>
<tr>
<th>Type</th>
<th>Departure airport</th>
<th>Arrival airport</th>
<th>Flight direction</th>
<th>Departure time, UTC</th>
<th>Mean flight altitude h, m (in ft)</th>
<th>Time-optimal</th>
<th>GC FL290</th>
<th>GC FL330</th>
<th>GC FL370</th>
<th>GC FL410</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>New York (JFK)</td>
<td>Munich (MUC)</td>
<td>Eastbound</td>
<td>01:30:00</td>
<td>8,841 (29,005)</td>
<td>23,986.2</td>
<td>24,100.1</td>
<td>24,472.1</td>
<td>24,772.6</td>
<td>24,931.9</td>
</tr>
<tr>
<td></td>
<td>Munich (MUC)</td>
<td>New York (JFK)</td>
<td>Westbound</td>
<td>14:27:00</td>
<td>8,839 (29,000)</td>
<td>28,429.0</td>
<td>29,417.3</td>
<td>29,856.7</td>
<td>29,899.0</td>
<td>29,538.5</td>
</tr>
<tr>
<td>II</td>
<td>Minneapolis (MSP)</td>
<td>Amsterdam (AMS)</td>
<td>Eastbound</td>
<td>21:35:00</td>
<td>8,839 (29,000)</td>
<td>25,335.6</td>
<td>25,958.4</td>
<td>25,989.3</td>
<td>26,043.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amsterdam (AMS)</td>
<td>Minneapolis (MSP)</td>
<td>Westbound</td>
<td>12:50:00</td>
<td>10,002 (32,815)</td>
<td>28,869.5</td>
<td>29,117.0</td>
<td>29,211.7</td>
<td>29,292.6</td>
<td>29,219.1</td>
</tr>
<tr>
<td>III</td>
<td>Seattle (SEA)</td>
<td>Amsterdam (AMS)</td>
<td>Eastbound</td>
<td>21:05:00</td>
<td>10,829 (35,527)</td>
<td>31,784.6</td>
<td>31,962.9</td>
<td>31,943.5</td>
<td>31,841.9</td>
<td>31,825.4</td>
</tr>
<tr>
<td></td>
<td>Amsterdam (AMS)</td>
<td>Seattle (SEA)</td>
<td>Westbound</td>
<td>12:30:00</td>
<td>9,311 (30,546)</td>
<td>33,010.5</td>
<td>33,026.2</td>
<td>33,230.5</td>
<td>33,342.6</td>
<td>33,354.1</td>
</tr>
</tbody>
</table>
Table 9. The mean value of V_{TAS}, V_{TAS} and V_{ground}, for the time-optimal and the great circle cases. The mean values were calculated using V_{TAS} and V_{ground} values at all waypoints. Eastbound: mean value average of 52 eastbound flights; Westbound: that average of 51 westbound flights; and Total: that average of 103 flights.

<table>
<thead>
<tr>
<th>Case</th>
<th>V_{TAS}, m/s$^{-1}$</th>
<th>V_{ground}, m/s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
</tr>
<tr>
<td>Time-optimal</td>
<td>245.1</td>
<td>245.1</td>
</tr>
<tr>
<td>GC FL290</td>
<td>245.0</td>
<td>244.8</td>
</tr>
<tr>
<td>GC FL330</td>
<td>242.8</td>
<td>242.6</td>
</tr>
<tr>
<td>GC FL370</td>
<td>241.3</td>
<td>241.1</td>
</tr>
<tr>
<td>GC FL410</td>
<td>241.2</td>
<td>241.1</td>
</tr>
</tbody>
</table>

Table 10. The mean fuel consumption (in kg(fuel)min$^{-1}$) for the time-optimal and the great circle cases. East-bound: mean value average of 52 eastbound flights; Westbound: that average of 51 westbound flights; and Total: that average of 103 flights. Columns 5 to 7 show the reference cruise fuel consumption (in kg(fuel)min$^{-1}$) for three different weights (low, nominal and high) in the international standard atmosphere. BADA provides the reference data at specific flight altitudes. Therefore, the reference values for the time-optimal case in parentheses were estimated from the reference data at FL290 and FL330 by linear interpolation (the mean flight altitude of the time-optimal case was $h = 9,271$ m, which is the medium value between FL290 (= 8,839 m) and FL330 (= 10,058 m)).

<table>
<thead>
<tr>
<th>Case</th>
<th>Simulation</th>
<th>Reference dataa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
</tr>
<tr>
<td>Time-optimal</td>
<td>103.6</td>
<td>98.2</td>
</tr>
<tr>
<td>GC FL290</td>
<td>104.1</td>
<td>104.9</td>
</tr>
<tr>
<td>GC FL330</td>
<td>92.1</td>
<td>92.9</td>
</tr>
<tr>
<td>GC FL370</td>
<td>82.8</td>
<td>83.6</td>
</tr>
<tr>
<td>GC FL410</td>
<td>77.1</td>
<td>77.8</td>
</tr>
</tbody>
</table>

a Eurocontrol, 2011.
Table 11. Sum of flight time, fuel use, NO\textsubscript{x} and H\textsubscript{2}O emissions for the time-optimal and the great circle cases obtained from one-day AirTraf simulations. Eastbound: sum of 52 eastbound flights; Westbound: that sum of 51 westbound flights; and Total: that sum of 103 flights. Changes (in \%) relative to the time-optimal case are given in parentheses.

<table>
<thead>
<tr>
<th>Case</th>
<th>Flight time, h</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Time-optimal</td>
<td>348.2</td>
<td>395.9</td>
<td>744.1</td>
<td></td>
</tr>
<tr>
<td>GC FL290</td>
<td>351.2 (+0.9)</td>
<td>404.4 (+2.2)</td>
<td>755.6 (+1.5)</td>
<td></td>
</tr>
<tr>
<td>GC FL330</td>
<td>354.4 (+1.8)</td>
<td>408.0 (+3.1)</td>
<td>762.4 (+2.5)</td>
<td></td>
</tr>
<tr>
<td>GC FL370</td>
<td>357.4 (+2.7)</td>
<td>408.5 (+3.2)</td>
<td>765.9 (+2.9)</td>
<td></td>
</tr>
<tr>
<td>GC FL410</td>
<td>359.7 (+3.3)</td>
<td>405.6 (+2.5)</td>
<td>765.3 (+2.9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>Fuel use, ton</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Time-optimal</td>
<td>2,155.4</td>
<td>2,339.1</td>
<td>4,494.5</td>
<td></td>
</tr>
<tr>
<td>GC FL290</td>
<td>2,190.1 (+1.6)</td>
<td>2,545.1 (+8.8)</td>
<td>4,735.2 (+5.4)</td>
<td></td>
</tr>
<tr>
<td>GC FL330</td>
<td>1,958.4 (-9.1)</td>
<td>2,275.7 (-2.7)</td>
<td>4,234.1 (-5.8)</td>
<td></td>
</tr>
<tr>
<td>GC FL370</td>
<td>1,776.4 (-17.6)</td>
<td>2,049.9 (-12.4)</td>
<td>3,826.3 (-14.9)</td>
<td></td>
</tr>
<tr>
<td>GC FL410</td>
<td>1,665.5 (-22.7)</td>
<td>1,894.7 (-19.0)</td>
<td>3,560.2 (-20.8)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>NO\textsubscript{x} emission, ton</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Time-optimal</td>
<td>26.5</td>
<td>28.7</td>
<td>55.2</td>
<td></td>
</tr>
<tr>
<td>GC FL290</td>
<td>26.8 (+1.4)</td>
<td>31.2 (+8.8)</td>
<td>58.1 (+5.2)</td>
<td></td>
</tr>
<tr>
<td>GC FL330</td>
<td>22.2 (-16.0)</td>
<td>25.8 (-10.1)</td>
<td>48.1 (-12.9)</td>
<td></td>
</tr>
<tr>
<td>GC FL370</td>
<td>19.3 (-27.1)</td>
<td>22.2 (-22.8)</td>
<td>41.5 (-24.9)</td>
<td></td>
</tr>
<tr>
<td>GC FL410</td>
<td>18.3 (-31.0)</td>
<td>20.7 (-28.0)</td>
<td>39.0 (-29.4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>H\textsubscript{2}O emission, ton</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Time-optimal</td>
<td>2,651.1</td>
<td>2,877.0</td>
<td>5,528.2</td>
<td></td>
</tr>
<tr>
<td>GC FL290</td>
<td>2,693.8 (+1.6)</td>
<td>3,130.5 (+8.8)</td>
<td>5,824.3 (+5.4)</td>
<td></td>
</tr>
<tr>
<td>GC FL330</td>
<td>2,408.9 (-9.1)</td>
<td>2,799.1 (-2.7)</td>
<td>5,208.0 (-5.8)</td>
<td></td>
</tr>
<tr>
<td>GC FL370</td>
<td>2,185.0 (-17.6)</td>
<td>2,521.4 (-12.4)</td>
<td>4,706.4 (-14.9)</td>
<td></td>
</tr>
<tr>
<td>GC FL410</td>
<td>2,048.5 (-22.7)</td>
<td>2,330.5 (-19.0)</td>
<td>4,379.0 (-20.8)</td>
<td></td>
</tr>
</tbody>
</table>
Table 12. Comparison of the flight time for time-optimal flight trajectories from one-day AirTraf simulations and optimal trajectories from earlier studies. The original units of the flight time of the studies are converted into seconds.

<table>
<thead>
<tr>
<th>Airport pair</th>
<th>Flight time, s</th>
<th>Detailed information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
</tr>
<tr>
<td>New York (JFK) - Shannon (SNN)</td>
<td>18,187.4</td>
<td>22,389.1</td>
</tr>
<tr>
<td>New York (JFK) - Dublin (DUB)</td>
<td>18,853.2</td>
<td>23,150.6</td>
</tr>
<tr>
<td>Newark (EWR) - Amsterdam (AMS)</td>
<td>21,705.9</td>
<td>26,512.3</td>
</tr>
<tr>
<td>Newark (EWR) - Paris (CDG)</td>
<td>21,790.9</td>
<td>25,668.3</td>
</tr>
<tr>
<td>New York (JFK) - Frankfurt (FRA)</td>
<td>22,955.2</td>
<td>27,261.5</td>
</tr>
<tr>
<td>New York (JFK) - Zurich (ZRH)</td>
<td>23,450.9</td>
<td>27,246.7</td>
</tr>
<tr>
<td>New York (JFK) - Munich (MUC)</td>
<td>23,966.2</td>
<td>28,429.0</td>
</tr>
<tr>
<td>Newark (EWR) - Frankfurt (FRA)a</td>
<td>22,980</td>
<td>–</td>
</tr>
<tr>
<td>New York (JFK) - London (LHR)b</td>
<td>18,000 - 22,200</td>
<td>21,600 - 27,000</td>
</tr>
<tr>
<td>Trans-Atlantic air trafficc</td>
<td>26,136 - 27,792</td>
<td>29,664 - 31,788</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Sridhar et al., 2014; b Irvine et al., 2013; c Grewe et al., 2014a.
Table 13. The mean value of EINO_x (in $\text{g(NO}_x)/(\text{kg(fuel)})^{-1}$) for 103 flights. Some reference data of EINO_x are provided by the literature in the table.

<table>
<thead>
<tr>
<th>Case</th>
<th>EINO_x, $\text{g(NO}_x)/(\text{kg(fuel)})^{-1}$</th>
<th>Detailed information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-optimal</td>
<td>12.2</td>
<td>These values in this first group (divided by rows) were simulated by AirTraf.</td>
</tr>
<tr>
<td>GC FL290</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>GC FL330</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>GC FL370</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>GC FL410</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Sutkus Jr et al., 2001</td>
<td>21.8</td>
<td>Airbus A330-301 CF6-80E1A2, 1GE033 (1-9 km altitude band)</td>
</tr>
<tr>
<td></td>
<td>13.9</td>
<td>(10-13 km altitude band)</td>
</tr>
<tr>
<td>Jelinek et al., 2004</td>
<td>11.33</td>
<td>A330 (mean of 1318 flights, no profile completion option)</td>
</tr>
<tr>
<td></td>
<td>11.53</td>
<td>A330 (mean of 1318 flights, complete all operations option)</td>
</tr>
<tr>
<td>Penner et al., 1999</td>
<td>7.9 - 11.9</td>
<td>Typical emission for short haul</td>
</tr>
<tr>
<td></td>
<td>11.1 - 15.4</td>
<td>Typical emission for long haul</td>
</tr>
</tbody>
</table>
Table 14. Constraints from the structural weight limits (MTOW, MLW and MZFW) and one specified limit weight (MLOW) of A330-301 aircraft. \(m_1 \) and \(m_{\text{nwp}} \) correspond to the aircraft weight at the first and the last waypoints, respectively. OEW and MPL are given in Table 1.

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Limit-weight weight limit, kg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_1) (\leq) MTOW</td>
<td>212,000</td>
<td>Maximum take-off weight (\text{A330-301}) (weight variant 000 BASIC)(^a)</td>
</tr>
<tr>
<td>(m_{\text{nwp}}) (\leq) MLW</td>
<td>174,000</td>
<td>Maximum landing weight (\text{A330-301}) (weight variant 000 BASIC)(^a)</td>
</tr>
<tr>
<td>Zero fuel weight (\leq) MZFW</td>
<td>164,000</td>
<td>Maximum zero fuel weight. MZFW = OEW + MPL. (\text{A330-301}) (weight variant 000 BASIC)(^a)</td>
</tr>
<tr>
<td>(m_{\text{nwp}} \geq m_{\text{nwp}}) (\geq) MLOW</td>
<td>150,120</td>
<td>Planned minimum operational weight in the international standard atmosphere. MLOW = (1.2 \times \text{OEW}). (\text{A330-301}) (^b) MLOW = (1.2 \times \text{OEW}).</td>
</tr>
</tbody>
</table>

\(^a\) EASA, 2013; \(^b\) Eurocontrol, 2011.
Table A1. Glossary of terms.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>One iteration of a Genetic Algorithm.</td>
</tr>
<tr>
<td>Rank</td>
<td>A ranking assigned to each solution to evaluate a relative merit in a population. A rank expresses the number of solutions that are superior to a solution.</td>
</tr>
<tr>
<td>Fitness</td>
<td>A value assigned to each solution to emphasize superior solutions and eliminate inferior solutions in a population. Fitness = 1/rank.</td>
</tr>
<tr>
<td>Mating pool</td>
<td>A storage space for solutions.</td>
</tr>
</tbody>
</table>
Supplementary Materials
Figure S1. 10,000 explored trajectories (black lines) between JFK and MUC as longitude vs altitude in the vertical cross-section (top) and as location projection on the Earth (bottom), including the time-optimal flight trajectories (red and blue lines). (a) The eastbound flight from JFK to MUC. (b) The westbound flight from MUC to JFK.
Figure S2. **10,000 explored trajectories (black lines) between SEA and AMS as longitude vs altitude in the vertical cross-section** (top) and as location projection on the Earth (bottom), including the time-optimal flight trajectories (red and blue lines). (a) The eastbound flight from SEA to AMS. (b) The westbound flight from AMS to SEA.
Figure S3. Comparison of trajectories (Trajectories) for the time-optimal (red and blue lines) and the great circle cases (black lines) between JFK and MUC. The contours show the zonal wind speed (u in m s$^{-1}$); arrows (black) show the wind speed ($\sqrt{u^2 + v^2}$) and direction. (a) The eastbound flight from JFK to MUC with the wind field at $\bar{h} = 8,841$ m at 01:30:00 UTC. (b) The westbound flight from MUC to JFK with the wind field at $\bar{h} = 8,839$ m at 14:27:00 UTC.

Figure S4. Comparison of trajectories (Trajectories) for the time-optimal (red and blue lines) and the great circle cases (black lines) between SEA and AMS. The contours show the zonal wind speed (u in m s$^{-1}$); arrows (black) show the wind speed ($\sqrt{u^2 + v^2}$) and direction. (a) The eastbound flight from SEA to AMS with the wind field at $\bar{h} = 10,829$ m at 21:05:00 UTC. (b) The westbound flight from AMS to SEA with the wind field at $\bar{h} = 9,311$ m at 12:30:00 UTC.
Figure S5. Altitude distributions of the true air speed $\frac{V_{\text{true}}}{V_{\text{TAS}}} [\text{ms}^{-1}]$ (a and b) and the tail wind indicator $\frac{V_{\text{ground}}}{V_{\text{TAS}}}$ (c and d) along the time-optimal flight trajectories (black line) between JFK and MUC. Note, $\frac{V_{\text{ground}}}{V_{\text{TAS}}} \geq 1.0$ means tail winds (TW, red), while $\frac{V_{\text{ground}}}{V_{\text{TAS}}} < 1.0$ means head winds (HW, blue) to the flight direction. The contours were obtained at the departure time: 01:30:00 UTC (eastbound, a and c); 14:27:00 UTC (westbound, b and d).
Figure S6. Altitude distributions of the true air speed V_{TAS} in ms$^{-1}$ (a and b) and the tail wind indicator V_{ground}/V_{TAS} (c and d) along the time-optimal flight trajectories (black line) between SEA and AMS. Note, $(V_{ground}/V_{TAS}) \geq 1.0$ means tail winds (TW, red), while $(V_{ground}/V_{TAS}) < 1.0$ means head winds (HW, blue) to the flight direction. The contours were obtained at the departure time: 21:05:00 UTC (eastbound, a and c); 12:30:00 UTC (westbound, b and d).
Figure S7. Values of the ground speed V_{ground} at waypoints for the time-optimal and the great circle flights. Linear fits of the time-optimal (solid line, red (eastbound) and blue (westbound)) and that of the great circle cases (dashed line, red (eastbound) and blue (westbound)) are included. V_{TAS} of the international standard atmosphere (ISA) is given (solid line, black) provided by the BADA atmosphere table (Eurocontrol, 2010).
Figure S8. Comparison of the fuel use (a), NO\textsubscript{x} (b) and H\textsubscript{2}O (c) emissions for individual flights. A symbol indicates the value for one airport pair, corresponding to the time-optimal and the great circle flight. If the value for the time-optimal flight is the same as that of the great circle flight, the symbol lies on the 1:1 solid line.
Table S1. Obtained design variables \(x_j \ (j = 1, 2, \cdots, 11)\) and objective function \(f\) (= flight time) for 10 optimal solutions. The solutions were calculated with different initial populations, population size \(n_p = 100\) and the generation number of generations \(n_g = 100\). The difference in flight time between the optimal solution \(f\) and the true-optimal solution \(f_{true}\) is calculated as \(\Delta f = f - f_{true}\) \((f_{true} = 25,994.0 \text{s})\). The flight time is minimal for the Solution 9, which corresponds to the best solution shown in Figs. 8 to 11. The mean value and the standard deviation of the 10 objective functions are expressed by \(\bar{\Delta f}\) and \(s_{\Delta f}\), respectively (see caption in Fig. 11 for more details).

<table>
<thead>
<tr>
<th>Solution</th>
<th>(x_1) (^{\circ}W)</th>
<th>(x_2) (^{\circ}N)</th>
<th>(x_3) (^{\circ}W)</th>
<th>(x_4) (^{\circ}N)</th>
<th>(x_5) (^{\circ}W)</th>
<th>(x_6) (^{\circ}N)</th>
<th>(x_7) m</th>
<th>(x_8) m</th>
<th>(x_9) m</th>
<th>(x_{10}) m</th>
<th>(x_{11}) m</th>
<th>(f), s</th>
<th>(\Delta f), s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.18</td>
<td>53.48</td>
<td>31.72</td>
<td>54.41</td>
<td>57.38</td>
<td>49.60</td>
<td>8,840.1</td>
<td>8,840.1</td>
<td>8,840.2</td>
<td>8,839.4</td>
<td>8,841.9</td>
<td>25,996.8</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>5.11</td>
<td>53.47</td>
<td>31.94</td>
<td>54.36</td>
<td>57.38</td>
<td>49.56</td>
<td>8,844.8</td>
<td>8,841.0</td>
<td>8,840.2</td>
<td>8,839.5</td>
<td>8,847.4</td>
<td>25,996.8</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>5.10</td>
<td>53.45</td>
<td>31.86</td>
<td>54.37</td>
<td>57.39</td>
<td>49.54</td>
<td>8,839.3</td>
<td>8,839.4</td>
<td>8,839.9</td>
<td>8,839.9</td>
<td>8,839.4</td>
<td>25,996.7</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>4.61</td>
<td>53.25</td>
<td>29.83</td>
<td>54.52</td>
<td>56.83</td>
<td>49.86</td>
<td>8,841.7</td>
<td>8,840.8</td>
<td>8,839.3</td>
<td>8,841.0</td>
<td>8,839.2</td>
<td>25,996.8</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>4.61</td>
<td>53.26</td>
<td>30.41</td>
<td>54.53</td>
<td>57.20</td>
<td>49.77</td>
<td>8,839.3</td>
<td>8,839.6</td>
<td>8,839.8</td>
<td>8,839.5</td>
<td>8,840.2</td>
<td>25,996.6</td>
<td>2.6</td>
</tr>
<tr>
<td>6</td>
<td>5.88</td>
<td>53.57</td>
<td>32.74</td>
<td>54.29</td>
<td>57.39</td>
<td>49.50</td>
<td>8,840.5</td>
<td>8,839.4</td>
<td>8,839.2</td>
<td>8,839.4</td>
<td>8,839.3</td>
<td>25,997.2</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>5.27</td>
<td>53.43</td>
<td>31.20</td>
<td>54.36</td>
<td>56.85</td>
<td>49.78</td>
<td>8,846.7</td>
<td>8,847.8</td>
<td>8,847.7</td>
<td>8,841.7</td>
<td>8,845.8</td>
<td>25,997.2</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>5.55</td>
<td>53.33</td>
<td>29.90</td>
<td>54.41</td>
<td>56.53</td>
<td>50.04</td>
<td>8,844.1</td>
<td>8,840.1</td>
<td>8,840.0</td>
<td>8,840.5</td>
<td>8,839.2</td>
<td>25,997.8</td>
<td>3.7</td>
</tr>
<tr>
<td>9 (Best solution)</td>
<td>4.84</td>
<td>53.31</td>
<td>31.60</td>
<td>54.38</td>
<td>57.39</td>
<td>49.54</td>
<td>8,839.6</td>
<td>8,839.4</td>
<td>8,839.4</td>
<td>8,839.2</td>
<td>8,840.4</td>
<td>25,996.6</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>4.88</td>
<td>53.33</td>
<td>31.53</td>
<td>54.40</td>
<td>57.38</td>
<td>49.59</td>
<td>8,841.9</td>
<td>8,840.1</td>
<td>8,840.1</td>
<td>8,839.5</td>
<td>8,840.3</td>
<td>25,996.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Mean \((\bar{\Delta f})\) 25,996.9 2.9
Standard deviation \((s_{\Delta f})\) 0.4 0.4
Table S2. Values of Δf (in %) and $s_{\Delta f}$ (in %, in parentheses) for all the combinations of population size n_p (10, 20, …, 100) and generation number of generations n_g (10, 20, …, 100). The definitions of Δf and $s_{\Delta f}$ are given in the caption in Fig. 11.

<table>
<thead>
<tr>
<th>Population size n_p</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.25 (0.112)</td>
<td>0.12 (0.032)</td>
<td>0.08 (0.022)</td>
<td>0.07 (0.020)</td>
<td>0.06 (0.019)</td>
<td>0.05 (0.015)</td>
<td>0.04 (0.013)</td>
<td>0.04 (0.013)</td>
<td>0.04 (0.012)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.14 (0.097)</td>
<td>0.06 (0.016)</td>
<td>0.05 (0.014)</td>
<td>0.05 (0.012)</td>
<td>0.04 (0.012)</td>
<td>0.04 (0.012)</td>
<td>0.03 (0.011)</td>
<td>0.03 (0.010)</td>
<td>0.03 (0.008)</td>
<td>0.03 (0.006)</td>
</tr>
<tr>
<td>30</td>
<td>0.09 (0.043)</td>
<td>0.06 (0.021)</td>
<td>0.04 (0.020)</td>
<td>0.04 (0.018)</td>
<td>0.03 (0.017)</td>
<td>0.03 (0.014)</td>
<td>0.02 (0.013)</td>
<td>0.02 (0.011)</td>
<td>0.02 (0.010)</td>
<td>0.02 (0.009)</td>
</tr>
<tr>
<td>40</td>
<td>0.06 (0.011)</td>
<td>0.04 (0.010)</td>
<td>0.04 (0.007)</td>
<td>0.03 (0.007)</td>
<td>0.03 (0.006)</td>
<td>0.02 (0.006)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.005)</td>
<td>0.01 (0.004)</td>
<td>0.01 (0.004)</td>
</tr>
<tr>
<td>50</td>
<td>0.06 (0.016)</td>
<td>0.04 (0.008)</td>
<td>0.03 (0.007)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.004)</td>
<td>0.02 (0.004)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
</tr>
<tr>
<td>60</td>
<td>0.06 (0.012)</td>
<td>0.04 (0.014)</td>
<td>0.03 (0.011)</td>
<td>0.03 (0.009)</td>
<td>0.02 (0.007)</td>
<td>0.02 (0.006)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.004)</td>
<td>0.02 (0.004)</td>
<td>0.01 (0.003)</td>
</tr>
<tr>
<td>70</td>
<td>0.06 (0.016)</td>
<td>0.04 (0.008)</td>
<td>0.03 (0.007)</td>
<td>0.02 (0.006)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.005)</td>
<td>0.01 (0.004)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
</tr>
<tr>
<td>80</td>
<td>0.06 (0.009)</td>
<td>0.04 (0.007)</td>
<td>0.03 (0.006)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.004)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.003)</td>
</tr>
<tr>
<td>90</td>
<td>0.05 (0.008)</td>
<td>0.04 (0.007)</td>
<td>0.03 (0.006)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.004)</td>
<td>0.02 (0.003)</td>
<td>0.01 (0.002)</td>
<td>0.01 (0.002)</td>
<td>0.01 (0.002)</td>
<td>0.01 (0.002)</td>
</tr>
<tr>
<td>100</td>
<td>0.05 (0.011)</td>
<td>0.04 (0.010)</td>
<td>0.03 (0.007)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.005)</td>
<td>0.02 (0.003)</td>
<td>0.01 (0.003)</td>
<td>0.01 (0.002)</td>
<td>0.01 (0.002)</td>
<td>0.01 (0.001)</td>
</tr>
</tbody>
</table>