Dear Dr. Elvidge (Referee, Geoscientific Model Development),

thank you for your reviewer report from 3 August 2016. We have accounted for the comments and suggestions in the revised manuscript version. Please find our replies to the particular comments in the following.

Sincerely,

Konrad Deetz and Bernhard Vogel

Referee comments:

1) The VIIRS Night Fire (VNF) "flares only" dataset is not suitable for scientific applications. It is generated by stripping out VNF detections with either no temperature or temperatures under 1400K. This eliminates most biomass burning and ambiguous detections. The purpose of this is to provide a quick daily overview of global gas flaring activity. There are many times when a flare was detected in a single spectral band (usually M10 at 1.6 um), in which case the Planck curve cannot be fit and a temperature cannot be calculated. These detections have been lost in the dataset used by the authors. In addition, some flares are known to fluctuate in temperature and dip below 1400 K. These low temperature flaring events are also lost in the "flares only" daily summaries. The produce a more thorough analysis, the authors should work from the original daily VNF files. At best the "flares-only" version of the data provides a 'quick-and-dirty" depiction of global gas flaring.

For our work in the project Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) we wanted to have a consideration of gas flaring in our regional atmospheric model which includes the up-to-date characteristics of southern West Africa (SWA). The DACCIWA measurement campaign took place in June/July 2016 and for this time we need the flaring information for our model. Emission estimates for 2012/2013/2014 are not meaningful in our case, because the emissions are not constant from year to year. Also your new estimation http://ngdc.noaa.gov/eog/viirs/download_global_flare.html shows a decrease in flaring for Nigeria. To use older data would lead to overestimations.

The SWA emission inventory for flaring was not available when we started our research. The presented method is therefore our first approach to tackle the problem with the missing flaring emissions in our atmospheric chemistry simulations. Instead of using just constant emissions factors for flaring, we now have very regional information available.

We are concentrating on the description of the air pollution in our modelling system COSMO-ART and try to include all relevant emission sources. We are no experts in extracting the flaring sources from the general combustion sources detected by VIIRS Nightfire. Therefore we have relied on the “flares only” product published at http://ngdc.noaa.gov/eog/viirs/download_viirs_flares_only.html. Even if the data basis for our study is not perfect regarding VNF, there is a strong progress compared to the state before. We have changed our manuscript according to this problem. We have remarked, that the use of the “flares only” product is just a first approach and that this data contains greater uncertainties compared to the original VNF product. Future users of this parameterization can change the VNP input. The general method of the parameterization will not be affected by that.
2) The authors do not account for variations in cloud cover. This can be done based on the VIIRS Cloud product suite.

I see your point but our study focus is located to the creation of an emission dataset based on a VNF climatology rather than taking the VNF data day by day. In section 3.3.1 we describe the problem of flares that are masked by clouds (and the overall question whether the flare below the cloud is active or not) in detail and assess the uncertainty by using remote sensing cloud data from MSG and Aqua/AIRS. By deriving a flaring climatology (over two month), we are able to identify all flares (even if there are sometimes covered by clouds). With this climatological approach we get the mean emission strength of every flare (more precisely for every flare box). Therefore it is not necessary to account for the variations in cloud cover. Even if we would know, that a certain flare is masked by clouds at a certain day we don’t know whether this flare is currently active and how large the radiant heat is. When we use our flaring climatology in our regional atmospheric model, all available flares are active at once with their mean emission strength.

3) The text should reference the following paper: Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data (http://www.mdpi.com/1996-1073/9/1/14). We agree on that and have referenced the publication.

4) NOAA has global flaring data spanning 2012-2014 available at: http://ngdc.noaa.gov/eog/viirs/download_global_flare.html. There is a csv that contains locations and annual summaries of temperatures and radiant heat output of individual flares, normalized for cloud cover. The flared gas volume estimates are derived from an empirical calibration with CEDIGAZ reported flaring. It would be interesting to compare the NOAA results with those from the methods described in this paper.

From the xlsx file VIIRS_Global_flaring_d.7_slope_0.331_web.xlsx we have selected the 193 available Nigerian upstream flares and selected the flares which have a detection frequency greater than zero for 2014. We assume that “Avg. K” mean source temperature in K and “Ellipticity” means the radiant heat in MW. This data we have used as input for the parameterization presented in this study (with the same configuration). Finally we have integrated the volume stream of all Nigerian flare boxes from m-3 s-1 to m-2 y-1 and finally transformed it to bcm. The result is 8.55 bcm (271.0391 m-3 s-1). In the xlsx file the flared volume is estimated as 8.442995283 bcm for Nigeria in 2014. So if we use the same source temperature and radiant heat input as Elvidge et al. (2015) for Nigeria in 2014, we can reproduce the estimated flared volume with our method with a deviation below 1.3%.

Within our VNP data set for 2014 we estimate the flaring to 29.8 bcm. Regarding the uncertainty range of this estimation, the value is approx. by a factor of two higher than the other inventory. The uncertainty might result from the uncertainties in the estimation of the gauge pressure p_g and the fraction of the total reaction energy that is emitted as radiation f. In our flaring climatology we assume that all available flares are active at once with their mean emission strength, so this could lead to the higher values of the flared volume.

5) In the last sentence of the first paragraph, the text references the World Bank for a set of national flared gas volume estimates. The text should make it clear that these estimates were produced by NOAA using DMSP satellite data. There is a new set of estimates derived from VIIRS data at http://ngdc.noaa.gov/eog/viirs/download_global_flare.html.
We agree on that and have changed the manuscript accordingly. A remark to the availability of updated global flaring estimates for 2013 and 2014 at http://ngdc.noaa.gov/eog/viirs/download_global_flare.html are mentioned in the manuscript.
Dear Dr. Elvidge (Referee, Geoscientific Model Development),

thank you for your reviewer report from 5 August 2016. We have accounted for the comments and suggestions in the revised manuscript version. Please find our replies to the particular comments in the following.

Sincerely,

Konrad Deetz and Bernhard Vogel

Referee comments:

1.) Being fully familiar with the flares only version of the VIIR Nightfire product I can certify that this product is not suitable for use in a scientific study. If the authors had contacted my team at the start of their study we could have explained this to them and directed them to the full VNF data files, which are suitable for use in scientific studies.

2.) NOAA does provide cloud state for each VNF detection - from the VIIRS cloud product suite. There are four states: confidently cloudy, probably cloudy, probably clear, confidently clear. But what is not recorded in the VNF files are the number of clear observations where the flare was not detected. The NOAA annual gas flaring data takes this into account. I dispute the authors contention that "it is not necessary to account for the variations in cloud cover."

3.) My overall impression is that these authors are willing to use data that are known to be flawed and ignore the effects of cloud cover variations in order to get a paper published without doing any addition work. If this journal is willing to publish papers with flaws like this disclosed - heaven help them.

The authors are puzzled about the different tenor in the two reviews we have achieved from you. We regret that you have the impression we are not willing to invest additional work for this study. Under point 4 of our reply from 3 August 2016 we followed your idea to compare your dataset with our study. Maybe one of your team can give us information on how to use the full VNF data files correctly and how to separate the flaring sources from other combustion sources (e.g. forest fires). With this data set, under consideration of the cloud correction, we will repeat our study.

M. Zhizhin provided us with the full VNF data for the relevant SWA countries in the time period of interest. The study has been repeated based on the new data and including the VIIRS cloud product.
Dear Mikhail Zhizhin (Referee, Geoscientific Model Development),

thank you for your reviewer report from 14 October 2016. We have accounted for the comments and suggestions in the revised manuscript version. Please find our replies to the particular comments in the following.

We have uploaded a revised manuscript which also includes the revision regarding the comments and suggestions of the first reviewer.

Sincerely

Konrad Deetz and Bernhard Vogel

Referee comments:

In the paper a new method to model emissions from gas flaring is developed and validated on oil fields in Western Africa. The paper is a substantial contribution to the modeling science, and the approach is valid and motivating for further research. I have some comments on the presentation and details of the method which could be considered by the Authors before it is published.

0. I would recommend changing abbreviation VNP (VIIRS Nightfire Product) to commonly used VNF (simply VIIRS Nightfire) in the manuscript.

We agree on that and have changed the manuscript accordingly. For the general VIIRS Nightfire (including all combustion sources) we use the abbreviation “VNF” and for the extracted flaring information from VNF we use the abbreviation “VNFflare”.

1. Formula (1) derives gas flow rate from flare radiative heat and temperature measured from satellite. It is a basis of the proposed model. However, it is taken from Appendix of regulating document by the German Environmental protection agency. This is technical, not scientific source. The derivation of the formula is not provided neither in the paper under review, nor in the cited document. The cited document has no source for the formula either. It is important to derive the formula (1) or to provide a scientific reference.

We agree on that. TA-Luft is a technical document and the equation is not well introduced there. Equation 1 of the manuscript originates from VDI 3782, 1985: Dispersion of Air Pollutants in the Atmosphere, Determination of Plume rise, Verein Deutscher Ingenieure, VDI-Richtlinien 3782 Part 3, Equation 24, https://www.vdi.de/richtlinie/vdi_3782_blatt_3-ausbreitung_von Luftverunreinigungen_in_der_atmosphaere_berechnung_der_abgasfahnenueberhoehung/ (accessed: October 17, 2016). We have changed the citation accordingly. Although VDI 3782 (1985) is also a technical document, the derivation of the equation becomes clear. The heat flow M in MW is given by equation 1

$$M = c_p F (T_S - T_A),$$

where F is the flow rate in m3 s$^{-1}$, c_p the mean specific heat capacity of the emissions, T_S the source temperature and T_A the ambient temperature. VDI 3782 (1985) provides a value of the mean specific heat capacity of

$$c_p = 1.36 \times 10^{-3} \text{ MW s m}^{-3} \text{ K}^{-1}$$

which is derived for a pit coal firing but VDI 3782 (1985) denotes, that this can be used for other flue gases as well since potential deviations are negligible. (An explicit c_p value for gas flaring is not provided in the literature.) For the ambient temperature T_A we use 298.15K as a fixed value, representative for the tropical region. Within a sensitivity study regarding the influence of T_A on F we have used the mean heat flow and the mean source temperature of all flares in TP15 and varied the ambient temperature between 293K and 303K, as
a reasonable temperature range in the tropical regions. The resulting maximum difference in the heat flow is 0.0036 m³ s⁻¹. Therefore we assume the errors using a fixed climatological value for the ambient temperature are negligible, but of course the user has to adapt the ambient temperature to the region he wants to apply the inventory. We have emphasized this in the manuscript. By using equation 1, the value for \(c_p \) and for \(T_A \), the flow rate \(F \) in MW is given by:

\[
F = \frac{M}{1.36 \cdot 10^{-3} (T_5 - 298.15)}.
\]

2. Flare temperature used in the formula (1) is taken from instantaneous satellite measurement (VNF). It has a large variance depending on atmospheric conditions etc. I would recommend using mean flare temperature averaged over all cloud-free detections.

We see your point. This leads to a further source of uncertainty, because we cannot decide whether the spatial source temperature variations really results from the sources or from the atmospheric conditions. We think that this problem does not affect the climatological approach \(E_{\text{clim}} \) in the revised manuscript because for every detected flare the source temperature already is averaged over the two-month period of TP14 or TP15 before we calculate the emissions. We assume that this is a compromise between robustness and keeping the spatial variability of the flaring. To allow for consistency we now also use these temporal averages of source temperature and radiant heat for the daily resolved inventories \(E_{\text{obs}} \) and \(E_{\text{com}} \) in the revised manuscript. Therefore all three inventories have the same underlying emission field and the difference is just related to number of flares that are active at a certain day. For \(E_{\text{clim}} \) all flares are active at once, for \(E_{\text{obs}} \) only the actual observed flares are active and for \(E_{\text{com}} \) the actual observed flares + the cloud covered flares (taken as active) are considered (com=combination). Nevertheless we have also included a further inventory in Tab. 5 that uses instantaneous input data to derive \(E_{\text{clim}} \) (first calculating the emissions for every single observation and then averaging the emissions temporally). This is given as “\(E_{\text{clim, instant. input}} \)” and should allow further insight in the sensitivity/uncertainty.

3. The number 283 used in the formula (1) I believe stands for ambient air temperature at night? Is it a proper climatological value for Wester Africa?

Yes, the 283 refers to the ambient temperature. We agree that this value is not appropriate for the tropics. We have changed this value in the manuscript to 25°C (298.15K, also described in Comment 1 of this document). Owing to the change of the ambient temperature we have repeated our analysis to be consistent with this new value. The change from \(T_A = 283K \) to 298.15K lead to a slight increase in the emissions (e.g. for Fig. 9b the spatially integrated SWA emissions of TP14 increase from 651 to 658 t h⁻¹).

4. Comments 1-3 may result in a wider variance of the proposed model output, and the model sensitivity analysis should be presented.

Regarding the ambient temperature (Comment 3) we have presented the maximum uncertainty in the heat flow as 0.0036 m³ s⁻¹, which is also described in the manuscript. For the mean heat capacity of the emission \(c_p \) we do not have further information to assess the uncertainty. For considering the uncertainty in using temporal averages of source temperature and radiant heat instead of the instantaneous satellite observations, we have added a further emission inventory in Tab. 5 (“\(E_{\text{clim, instant. input}} \)”, for TP14 and TP15).

5. The Authors have made a considerable effort to take into account cloud conditions which can mask flare observations from space. Why not to use only cloud-free observation days, and to count detected/not detected flare cases to derive mean radiative heat?

By using the postprocessed flaring data (VNF\text{flare} in the revised manuscript which includes also a cloud mask) instead of the “Flaring only” product, it is straightforward to separate the flares into the categories (a) “cloud-covered”, (b) “cloud-free and inactive” and (c) “cloud-free and active”. By assuming that the cloud-covered flares are active with their mean emission strength, we can estimate the daily emissions via the sum of (a) and (c). To use only the cloud-free observation days would be problematic because SWA is a region with very extensive cloud cover (on average approx. 70% in the flaring area).
I would like to acknowledge that the Authors provide software sources and input data used in the study as the paper supplement. It is helpful for reproduction and reuse of their science and model.
List of relevant changes

1. Use flaring information from “VIIRS Nightfire Nighttime Detection and Characterization of Combustion Sources” instead of the quick-look data from “VIIRS Nightfire (Flares Only version). The study has been repeated with this data.

3. Add missing references.

4. Based on the availability of the VIIRS cloud product, the strategy of assessing the uncertainty of flares masked by clouds has been changed. Three categories were defined: (1) cloud-free and active, (2) cloud-free and inactive, (3) cloud-covered and assumed to be active. This leads to different emission inventories. We have defined two inventories in addition to the climatology (E_{clim}): (a) E_{obs} which only consider the daily observations and (b) E_{com} which is a combination of E_{obs} and the emission from the cloud-covered flares.

5. Assessment of a further source of uncertainty regarding instantaneous VIIRS observations vs. averaged VIIRS observations. This assessment lead to a further emission inventory: $E_{\text{clim, instantaneous input}}$.

6. Additionally, the sensitivity of the flow rate calculation in Eq. 1 towards the ambient temperature has been assessed.

7. Correction of the ambient temperature in Eq. 1 to consider tropical conditions. For consistency the study has been repeated.

8. Update of Tab. 5 based on the revised analysis.
Development of a new gas flaring emission data set for southern West Africa

Konrad Deetz, Bernhard Vogel

Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research – Troposphere Research (IMK-TRO), Hermann-von-Helmholtz 1, 76344 Eggenstein-Leopoldshafen

HIGHLIGHTS

- Development of a new gas flaring emission parameterization for air pollution modeling.
- Combination of remote sensing observation and physical based combustion calculation.
- Application to the significant gas flaring region southern West Africa.
- Comprehensive assessing of the parameterization uncertainties.
- Comparison with existing gas flaring emission inventories.

Keywords:
Gas flaring
Emission parameterization
Emission uncertainty
Pollution modeling
Carbon dioxide

ABSTRACT

A new gas flaring emission parameterization has been developed which combines remote sensing observations using VIIRS nighttime data with combustion equations. The parameterization has been applied to southern West Africa, including the Niger Delta as a region which is highly exposed to gas flaring. Two two-month datasets for June-July 2014 and 2015 were created. The parameterization delivers emissions of CO, CO$_2$, NO and NO$_2$. A flaring climatology for both time periods has been derived. The uncertainties owing to cloud cover, parameter selection, natural gas composition and the interannual differences are assessed. Largest uncertainties in the emission estimation are linked to the parameter selection. By using remote sensing cloud cover observations, a correction factor for the climatology was established to consider the effect of flares masked by clouds. It can be shown that the flaring emissions in SWANigeria have significantly decreased by 3025% from 2014 to 2015. Existing emission inventories were used for validation. CO$_2$ emissions with the estimated uncertainty in brackets of $8.1^{+2.7/2.0}_{-2.0/2.7}$ (3.6/0.6) Tg y$^{-1}$ for 2014 and $5.2^{+2.0/2.7}_{-2.7/0.4}$ Tg y$^{-1}$ for 2015 were derived. The flaring Regarding the uncertainty range, the emission estimation within this study for June-July 2014 estimate is in the same order of magnitude compared to existing emission inventories. For the same period in 2015 the emission estimation is one order of magnitude smaller in comparison to existing inventories, with a tendency for underestimation. The deviations might be attributed to uncertainties in a shortage in information about the derived flare gas flow rate combustion efficiency within southern West Africa, the decreasing trend in gas flaring or inconsistent emission sector definitions. The parameterization source code is available as a package of R scripts.

1. Introduction
Gas flaring is a globally used method to dispose flammable, toxic or corrosive vapors to less reactive compounds at oil production sites and refineries. In regions of insufficient transportation infrastructure or missing consumers, flaring is also commonly applied.

CDIAC (2015a) estimated the global gas flaring emission of carbon dioxide to 267.7 million tons (0.83% of total emissions) in 2008. Flaring and venting of gas significantly contributes to the greenhouse gas emissions and therefore to the global climate change. The five countries with the highest flaring amount in billion cubic meters (bcm) are Russia (35), Nigeria (15), Iran (10), Iraq (10) and USA (5) (World Bank, 2012). These estimates were produced by National Oceanic and Atmospheric Administration (NOAA) using Defense Meteorological Satellite Program (DMSP) remote sensing data. Preliminary updates in global flaring estimates from NOAA for 2013 and 2014 are available at http://ngdc.noaa.gov/eog/viirs/download_global_flare.html.

In recent time, especially with the development of remote sensing observation techniques (e.g. Elvidge et al. (1997, 2013)), emissions from gas flaring moved in the focus of atmospheric research involving the efforts in reducing the pollution and the waste of resources. The World Bank led the initiatives “Global Gas Flaring Reduction Partnership” (GGFR) and “Zero Routine Flaring by 2030” to promote the efficient use of flare gas.

Instead of relying on national statistics of gas production and consumption for estimating the flaring amount, remote sensing techniques can estimate the flaring amount directly via multispectral data (Elvidge et al., 2013). Elvidge et al. (2009) developed a 15 year dataset of global and national gas flaring efficiency from 1994 to 2008 by using data from DMSP. Elvidge et al. (2015) presented methods to derive global surveys of natural gas flaring using DMSP. For 2012 they have identified 7467 flares globally, with an estimated volume of flared gas of 143 (±13.6) bcm. Doumbia et al. (2014) combined DMSP with emission factors for flaring, to estimate the flaring emissions for SWA.

The satellite product Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire (Elvidge et al., 2013), which is free available as “VIIRS Nightfire Pre-run V2.1 Flares only Nighttime Detection and Characterization of Combustion Sources” (VIIRS, 2015) (VNP2015a) (VNF hereafter), is now the most widely used product to derive flaring emissions from satellite imagery. By using VNPVNF, Zhang et al. (2015) estimated the methane consumption and the release of CO$_2$ from gas flaring for the northern U.S. which agree with field data within an uncertainty range of ±50%.

Also in the second largest flaring country Nigeria, the awareness of gas flaring increases. Nigeria shows the fourth highest number of flare sites (approx. 300) worldwide after USA, Russia and Canada (Elvidge et al., 2015). On gasflaretracker.ng the attention of the government, industry and society is called to the flaring problem by interactive maps of flare infrastructure, amounts and costs. The implications of gas flaring in Nigeria are far-reaching. It influences the environment by noise and deterioration of the air quality (Osuji and Avwiri, 2005). Nwankwo and Ogagarue (2011) have measured higher concentrations of heavy metals in surface water of a gas flared environment in Delta State Nigeria. Adverse ecological and bacterial spectrum modifications by gas flaring are indicated by Nwaugo et al. (2006). Gas flaring also causes acid rain which causes economic burden via rapid corrosion of zinc roofs (Ekpoh and Obia, 2010) and causes retardation in crop growth owing to high temperatures (Dung et al., 2008).

The project DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa, Knippertz et al. (2015)) investigates the influence of anthropogenic and natural emissions on the atmospheric composition over SWA, including the flaring hotspot Nigeria, to examine quantify the meteorological and socio-economic effects on meteorology and cloud characteristics. To consider the SWA gas flaring emissions (e.g. in an atmospheric model), this study presents a method to derive emission fluxes by combining the state of the art flaring detection VNPVNF and the combustion equations of...
Ismail and Umukoro (2014) which does not use emission factors. The new parameterization is robust and easy to apply to new research questions according flexibility in the spatiotemporal resolution. The parameterization is presented in Section 2. Results of the application to SWA, including the spatial distribution of gas flaring, the emission estimation and the uncertainty assessment are investigated in Section 3. Section 4 places the emission estimates in the context of existing inventories. The results are summarized and discussed in Section 5.

2. Parameterization of gas flaring emissions

The new parameterization for gas flaring presented here, is based on VNP (VIIRS Nightfire Prerun V2.1-Flares only Nighttime Detection and Characterization of Combustion Sources (VNF hereafter) and the combustion equations of Ismail and Umukoro (2014) (IU14 hereafter).

2.1 Remote sensing identification of gas flares

VIIRS (Visible Infrared Imaging Radiometer Suite) is a scanning radiometer for visible and infrared light on board the sun-synchronous Suomi National Polar-orbiting Partnership weather satellite (Suomi-NPP) (NASA, 2016). It can detect combustion sources at night (e.g. bush fires or gas flares) by spectral band M10. To confirm these sources and to eliminate noise, the Day/Night Band (DNB), M7, M8 and M12 are used in addition. By fitting these measured spectra to the Planck radiation curve, background and source temperatures can be deduced. VNP is filtered to include only detections with temperatures between 1600 K and 2000 K, which is believed to be an adequate estimation for average gas flares. Up to now no atmospheric correction is done (VIIRS, 2015 (VIIRS, 2015a)). The data is freely available as daily cloud corrected data from March 2014 to present. The files include among others the location of the flares combustion sources, source temperature \(T_s \), radiant heat \(H \) and time of observation.

VNF does not distinguish between the different combustion sources (e.g. wild fires or flaring). To extract the flaring information from VNF a postprocessing is necessary. For this study we have decided for a two month period of observation. This allows a compilation of a flaring climatology in terms of the locations and emissions and a robust estimation of uncertainty owing to cloud coverage and other parameters that have to be prescribed for IU14. We have selected the month June and July because the gas flaring emission dataset will be used within the regional online-coupled chemistry model COSMO-ART (Vogel et al., 2009) during the measurement campaign of the project DACCiWA, which took place in June/July 2016. This campaign includes airborne, ground based and remote sensing observations of meteorological conditions and air pollution characteristics. COSMO-ART is one of the forecasting models of the DACCiWA campaign and delivers spatiotemporal aerosol/chemistry distributions. The data for June/July 2014 and June/July 2015 are used to allow also for an interannual comparison, and to assess the uncertainty owing to changes in flare processes (e.g. built-up or dismantling, increase or decrease in combustion). The dataset includes the countries which can affect SWA with their flaring emissions, in particular Ivory Coast, Ghana, Nigeria, Cameroon, Gabon, Congo, the Democratic Republic of the Congo and Angola. The extraction of the flaring information from the VNF data (VNF_{flare} hereafter) was realized by the Earth Observation Group of NOAA. Within VNF_{flare} a csv file for every SWA flare is available, containing the flaring history in June/July 2014 and 2015. For this study we use the location, source temperature and radiant heat.
For this study we use location, source temperature and radiant heat for days with sufficient satellite coverage over the research domain SWA with a focus on the Niger Delta. The authors want to point out that VNP delivers only a quick daily overview of global gas flaring activity and is linked to uncertainties (e.g. flares in a single spectral band or with a source temperature below 1400K cannot be detected). Instead of VNP, the original VIIRS files (available at http://ngdc.noaa.gov/eog/viirs/download_viirs_fire.html) can be used as input for the parameterization presented in this study but this requires a preprocessing to separate the flaring sources from other combustion sources (e.g. wild fires).

2.2 Emission estimation method

The principle emission estimation methodology used in this study follows IU14. The gas flaring emissions are estimated based on combustion equations for incomplete combustion including six flaring conditions given in Tab. 1. The equations are introduced in detail in IU14 and are therefore not presented here. This section concentrates on the application of the method of IU14 to the VNPVNF data and the research domain in SWA.

<table>
<thead>
<tr>
<th>Reaction type</th>
<th>Sulfur in flared gas</th>
<th>Source temperature (K)</th>
<th>NOx formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>< 1200</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>< 1200</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>1200 ≤ Ts ≤ 1600</td>
<td>only NO</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>1200 ≤ Ts ≤ 1600</td>
<td>only NO</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>> 1600</td>
<td>NO and NO2</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>> 1600</td>
<td>NO and NO2</td>
</tr>
</tbody>
</table>

As input, IU14 needs the natural gas composition C of the fuel input of the flare, the source temperature Ts (temperature in the combustion zone), and the flare characteristics including combustion efficiency η (1 is complete combustion without Carbon monoxide formation) and availability of combustion air δ (above 1 is means excess and below 1 is means deficiency). In addition we need the flow rate F, the gauge pressure of the fuel gas in the flare pg, and the fraction of total reaction energy that is radiated f. The value for f is estimated by averaging a table of literature values for f given in Guigard et al. (2000). The IU14 input is summarized in Tab. 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Reference</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Natural gas composition</td>
<td>Sonibare and Akeredolu (2004)</td>
<td>%</td>
</tr>
<tr>
<td>Ts</td>
<td>Source temperature</td>
<td>VNPVNFflare (VIIRS, 20152015a)</td>
<td>K</td>
</tr>
<tr>
<td>η</td>
<td>Combustion efficiency</td>
<td>0.8 (IU14)</td>
<td>-</td>
</tr>
<tr>
<td>δ</td>
<td>Availability of combustion air</td>
<td>0.95 (IU14)</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>Radiant heat</td>
<td>VNPVNFflare (VIIRS, 20152015a)</td>
<td>MW</td>
</tr>
<tr>
<td>F</td>
<td>Flow rate</td>
<td>VNPVNFflare (VIIRS, 2015), TA-Luft (19862015a), (VDI 3782, 1985)</td>
<td>m³ s⁻¹</td>
</tr>
<tr>
<td>pg</td>
<td>Gauge pressure</td>
<td>34.475 (API, 2007)</td>
<td>kPa</td>
</tr>
<tr>
<td>f</td>
<td>Fraction of radiated heat</td>
<td>0.27 (Guigard et al., 2000)</td>
<td>-</td>
</tr>
</tbody>
</table>
The natural gas composition is taken from Sonibare and Akeredolu (2004). They have measured the molar composition of Nigerian natural gas in the Niger Delta area for ten gas flow stations. For this study we have calculated the average over these stations and merged the data according their number of carbon atoms (Tab. 3). H$_2$S fraction is rather low because it was detected only in two out of the ten flow stations.

Tab. 3. Molar composition of natural gas in Niger Delta (Nigeria) based on the measurements of Sonibare and Akeredolu (2004), averaged over ten flow station. The hydrocarbons are merged according to the number of C atoms.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane (CH_4)</td>
<td>78.47</td>
</tr>
<tr>
<td>Ethane (C_2H_6)</td>
<td>6.16</td>
</tr>
<tr>
<td>Propane (C_3H_8)</td>
<td>5.50</td>
</tr>
<tr>
<td>Butane $(\text{C}4\text{H}{10})$</td>
<td>5.19</td>
</tr>
<tr>
<td>Pentane $(\text{C}5\text{H}{12})$</td>
<td>3.95</td>
</tr>
<tr>
<td>Hexane $(\text{C}6\text{H}{14})$</td>
<td>0.36</td>
</tr>
<tr>
<td>Carbon dioxide (CO_2)</td>
<td>0.305</td>
</tr>
<tr>
<td>Nitrogen (N_2)</td>
<td>0.06</td>
</tr>
<tr>
<td>Hydrogen sulfide (H_2S)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

The source Temperature T_s is taken from VNPVNF flare. The combustion efficiency η was set to 0.8 and the availability of combustion air δ to 0.95. IU14 remarked, that the reaction condition for flaring of $\eta \gg 0.5$ and $\delta \geq 0.9$ should be the norm in regions, where the effective utilization of this gas is not available or not economically. Strosher (2000) indicates a combustion efficiency of solution gas at oil-field battery sites between 0.62 and 0.82, and 0.96 for flaring of natural gas in the open atmosphere under turbulent conditions. EPA (1985) shows combustion efficiencies between 0.982 and 1 for measurements on a flare screening facility. Section 3.3.2 will shed light on the uncertainty which arises from η and δ via a parameter sensitivity study. The authors strongly recommend a careful selection of η and δ since unrealistic combinations (e.g. higher combustion efficiencies with rather low availability of combustion air) can lead to negative NO and NO$_2$ emissions.

The flow rate, gauge pressure and fraction of radiated heat are not included in the parameterization of IU14 but are necessary to derive the mass emission rates which can be used as emission data for an atmospheric dispersion model.

The flow rate F ($m^3 \text{s}^{-1}$) is estimated by derived from Eq. 1 (TA-Luft, 1986; VDI 3782, 1985)

$$F = M/(1.36 \cdot 10^{-2} (T_s - 283)), \quad (1)$$

where M is the heat flow in MW, c_p the mean specific heat capacity of the emissions, T_s the source temperature and T_A the ambient temperature. VDI 3782 (1985) provides a value of the mean specific heat capacity of

$$c_p = 1.36 \cdot 10^{-3} \text{MW s m}^{-3} \text{K}^{-1} \quad (2)$$

which is derived for a pit coal firing but VDI 3782 (1985) denotes, that this can be used for other flue gases as well since potential deviations are negligible. For the ambient temperature T_A we use 298.15K as a fixed value, representative for the tropical region. Within a sensitivity study regarding the influence of T_A on the heat flow, we have used the averaged heat flow and source temperature
of all flares within the time period June/July 2015 and varied the ambient temperature between 293K and 303K, as a reasonable temperature range in the tropical regions. The resulting maximum difference in the heat flow is 0.0036 m3 s$^{-1}$. Therefore we assume that the uncertainties using a fixed climatological value for the ambient temperature are negligible. For the application of this inventory to other regions the ambient temperature might be adapted. By using Eq. 1 and 2 the heat flow F can be derived as

$$F = \frac{M}{\left(1.36 \cdot 10^{-3} \left(T_S - 298.15\right)\right)}$$

with T_S in K.

We assume that the emitted heat flow M is equal to the total reaction energy of the flare. VNP only detects the energy fraction that is radiated H and not the total energy M. By using the radiant heat H (observed by VNP) and the factor f (fraction of H to the total reaction energy, Guigard et al., 2000), we estimate M as $H \cdot 1/f$. For the source temperature T_S we use the

The estimation of the fuel gas density, which is necessary to transform the flow rate F into an emission, is problematic due to the lack of data concerning the technical setup of the SWA flares. We assume that the dominating flare type is a low-pressure single point flare. Bader et al. (2011) pointed out that these flares are the most common flare type for onshore facilities that operate at low pressure (below 10 psi (69 kPa) above ambient pressure) and API (2007) remarks that most subsonic-flare seal drums operate in the range from 0 psi to 5 psi (34 kPa). Therefore we have decided for a gauge pressure p_g of 5 psi (34 kPa) above ambient pressure. Via Eq. 2 we can calculate the fuel gas density ρ_f

$$\rho_f = \frac{p_f}{(R/(M_f T_A))} \cdot \frac{R/(M_f T_A)}{\rho_f}$$

where p_f is the fuel gas pressure as the sum of ambient pressure (10.1325 kPa, taken as const) and gauge pressure p_g, R is the universal gas constant, M_f the molar mass of the fuel gas and $T_A = T_A$ the ambient temperature (293.15 K, taken as const). Finally, the emission E (kg s$^{-1}$) of a species i is given by

$$E_i = \frac{m_i}{m_{total}} \rho_f F,$$

where m_i is the mass of the species i and m_{total} the total mass of the fuel gas, both delivered by the parameterization of IU14.

The combustion calculations within IU14 provide the species water, hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen oxide and nitrogen dioxide. In the following only CO, SO$_2$, NO and NO$_2$, the latter five are considered. However, no black carbon or volatile organic compounds (VOCs) are considered by IU14, although they are not negligible. Johnson et al. (2011) estimated the mean black carbon emission for a large-scale flare at a gas plant in Uzbekistan to be 7400 g h$^{-1}$ and Strosher (1996) measured the concentration of predominant VOCs 5 m above the gas flare in Alberta with 458.6 mg m$^{-3}$. However, owing to the missing representation of black carbon and VOCs in IU14, these compounds are not considered in this study.
A flaring emission comparison between several days or averaging over a certain period is problematic due to small variances in the VNP locations of the flares. This means even the same flare can be detected on a slightly different position the next day, which makes an emission averaging for every single flare difficult, especially in intensive flare areas. We bypass the problem by predefining a grid and allocating the flares to this grid. By using the source code written in R (R Core Team, 2013) delivered by this study, the user can define the grid size independently. For calculating the average over several days, the emissions for every single flare per day are calculated and summed up according to their belonging to a certain grid box. This leads to one big point source per grid box. The corresponding emissions are then averaged over the time period of interest for every grid box (flare box hereafter). Considering this approach within an atmospheric model, by selecting the same grid configuration for the flaring emission data and the model, no loss of information occurs.

By using the source code written in R (R Core Team, 2013) delivered by this study, the user can define the grid size independently (e.g. model grid) on which the flaring point sources are allocated.

3. Results

3.1 Spatial distribution of gas flaring in SWA

We have selected the two time periods June/July 2014 (TP14) and June/July 2015 (TP15) and omitted all days without observations or with insufficient data coverage for VNP over SWA. This leads to 58 (48) observations for TP14 (TP15) of VNFflare over SWA (61 observations respectively). In the preparation of this work we have compared the estimated mean locations of the flares of TP14 with the Google Earth imagery (Google Earth, 2014) (not shown). Only the onshore flares are visible in Google Earth. This visual verification reveals that 72% of the VNFflare detected onshore flares are visible in Google Earth. It is very likely that the hit rate is much higher since it is often the case that the Google Earth image quality is not good enough for verification or the images are not up to date. This comparison indicates that VNFflare is a valid and effective method to identify the flares in SWA.

For the following analysis we have calculated the emissions for both time periods on allocated the flares to a grid with a mesh size of 0.25° (28 km) from 108°S to 107°N and from 105°W to 1513°E. and calculated the emissions for both time periods. A grid box with flaring is denoted as flare box hereafter. Fig. 1 emphasizes the areas in which VNFflare detects flares only in TP14 (TP15) in red (green) color and in grey the areas with flaring in both periods.
Remarkable are the dominating flaring areas in the Niger Delta and the adjacent offshore regions in the Gulf of Guinea. Also in the coastal region of Gabon, Republic of the Congo, Angola and sporadically along the coast in Ghana and offshore of Ivory Coast, Ghana and Benin, flaring occurs. By comparing TP14 and TP15 more red than green areas are visible, especially in southern Nigeria, which indicates a reduction in the flaring area from 2014 to 2015. The red areas contribute 12% to the total CO$_2$ emissions of TP14. VNF$_{flare}$ detects 335 flares in 2014 and 312 flares in 2015 which means a reduction of about 7% (counted are those which deliver at least once a value for T_s and H in the time period). 61% of that reduction is related to Nigeria. A decrease in CO$_2$ from 1994 to 2010, particularly in the onshore platforms is indicated by Doumbia et al. (2014).

Fig. 2 shows the density of flares (a) and the flaring activity (b) per flare box for TP15. The results are similar to TP14, therefore only the TP15 is displayed here.
The highest flare density can be found offshore in the border area of Nigeria and Cameroon with 17 flares per flare box. The offshore flaring density is smaller than onshore (Fig. 2a) whereas the highest flaring activity can be found offshore (Fig. 2b). The mean active flare density, as the sum over all detected flares in a box averaged over the time period, is shown in Fig. 2b. This could be linked to the increased masking of flares by clouds over land. The large onshore flaring area of the Niger Delta shows a comparable low flaring activity of 10-30%. Highest values can be found offshore of the Democratic Republic of the Congo and Angola of 50-90%. How the interannual variability of flaring reflects in the amount of flaring emissions is analyzed in section 3.3.4.

Fig. 2 for (a) TP14 and (b) TP15.

Fig. 2: Mean active flare density (number of active flares per box) averaged over (a) TP14 and (b) TP15 in logarithmic scale.

Fig. 2 shows a reduction in the active flare density in TP15 compared to TP14. 72% of the flaring area which TP14 and TP15 have in common, shows a reduction in TP15 about 48% on average. 28% of the common flaring area shows an increase in TP15 about 124%. Therefore it seems that the flaring intensity decreases in TP15 over large areas but simultaneously some flaring hotspots occurred, which are distributed along the SWA coast (not shown). Fig. 2, together with the variation of flaring emissions from TP14 to TP15 in Section 3.3.3, indicates the high year to year variations. This makes the use of past averaged conditions questionable, especially when certain episodes are studied.

3.2 Emission estimation

For the emission estimation we have used a climatological approach (E_{clim}). For every day with valid data in TP14 and TP15 the emissions for all detected flares are calculated separately and allocated to the predefined grid. The emissions are summed up in every flare box to have one joined flare per grid box. Finally, the temporal average for every grid box is calculated. Averages of source temperature and radiant heat over TP14 and TP15 respectively were used to calculate the emissions. Therefore in this approach, all flares, detected in the time period, are active at once with their mean emission strength. This method has the advantage that most likely all flares in the domain are captured even if a fraction of them is covered by clouds at certain days. However, this could lead to an emission overestimation because not all available flares are active at once. This problem of separating between flares which are not active and flares which are active but covered by clouds and therefore not visible for VNPVNF$_{\text{flare}}$ is picked up again in Section 3.3.1. Fig. 3 shows the emissions of CO$_2$, CO, SO$_2$, NO and NO$_2$ in t h$^{-1}$ for TP15.
Highest emissions are calculated derived for carbon monoxide, followed by carbon monoxide, nitrogen dioxide and nitrogen dioxide. Sulfur dioxide shows lowest emissions since these emissions do not depend on combustion processes but only on the natural gas composition (see Tab. 3) and the amount of flared gas (IU14). Due to the use of the averaged measurements of Sonibare...
and Akedolu (2004), local variations of hydrogen sulfide concentrations in the natural gas cannot be taken into account. Hydrogen sulfide is the only source of sulfur in the flared gas and therefore determines the emission of sulfur dioxide. To assess this uncertainty, a sensitivity study with different hydrogen sulfide concentrations is given in Section 3.3.5.

3.3 Estimation of uncertainties

In the following section the most relevant uncertainties are presented, together with approaches for their assessment. This includes the uncertainty concerning the flare detection in the presence of cloud cover, the uncertainty in the determination of the emitted heat flow H via the fraction of radiated heat f, the uncertainty in the choice of the IU14 parameters and the changes in flare operation from one year to another as well as the influence of the spatial variability of hydrogen sulfide in the natural gas on the sulfur dioxide emissions. Apart from Section 3.3.4 all uncertainty estimations are confined to TP15.

3.3.1 Uncertainty due to cloud cover

In this section we want to estimate the emission error due to cloud-covered flares and present a method to derive daily emissions by considering the contribution of these masked flares. In Section 3.2 a climatological data set of flaring emissions (E_{clim}) was derived. When using this data set we, in which all available flares are losing the inactive with their mean emission strength. This dataset therefore does not include a day to day variation of the flaring emissions that. If an emission dataset with a daily variability is delivered by VNP. Although daily satellite observations are available, the problem arises that usually parts of the scene observed by the satellite are covered by clouds. In and therefore the following we will describe a method of how to derive daily flaring emissions based on an active with their mean emission strength. This dataset includes the climatological emissions (E_{clim}), a threshold of cloud coverage (N_{th}), and locations of all flares independent whether there are active or not. This entity is illustrated by the actual detected flares closed dark grey pie in Fig. 4A and 4B. By comparing the flares which are observed/active at a certain day. This is illustrated schematically by Fig. 4, and the total.

The closed grey pie in the lower layer of Fig. 4A gives the climatological number of flaring boxes in flares, a separation between observed (green pie in Fig. 4A) and not observed (light grey pie in Fig. 4A) is possible. In addition VNFF_{flare} delivers a cloud mask for all of the research domain. At a certain day only within flare detections. Therefore it is possible to separate the green flaring boxes active flares are detected by VNP. The flaring boxes that are indicated in grey are those at which no active flares were detected by VNP, either because they are light grey pie of the not observed flares in (a) cloud-free and inactive or obscured by clouds. We now further separate this grey area by introducing an empirical threshold value N_{th} of cloud cover. In areas that belong to the grey fraction in Fig 4A, where the cloud cover is above N_{th} we assume that the flares boxes are active and emit with their climatological emission values (since there are no current observations available). Those flare boxes are indicated by the dark blue color in Fig 4B. The light blue area indicates flare boxes where the cloud cover is below N_{th} and where no flares are detected by VNP. For this area we postulate that all flare boxes are inactive and consequently have zero emissions. Finally we calculate the total emissions at a certain day for N_{th}=50% (E_{50}), 75% (E_{75}) and 90% (E_{90}) as the sum of the climatological emissions in the dark blue area and the directly detected flares in the green area. (light blue pie in Fig. 4B) and (b) cloud-covered and unknown flaring status (blue pie in Fig. 4B).
To estimate the error due to active but cloud-covered flares, we assume that all of these flares are active with their mean emission strength observed in June/July 2015.

Fig. 4. Pie charts illustrating the flaring emission uncertainty assessment due to cloud cover for TP15. The entirety of the flare boxes within the emission climatology (E_{clim}) is given as closed grey pie in the bottom of A and B. A distinguishes between flare boxes in which flares which are detected/active at a certain day (green) and the complement of undetected flare boxes (light grey). In B the light grey slice of A is separated in a cloud-covered (above cloud cover threshold N_{th}, dark blue) and cloud-free (below N_{th}, light blue) part by using remote sensing observations. Flare boxes the cloud mask of VNF Flare. Flares which are not detected by VNP and simultaneously show a cloud cover above N_{th}, covered by clouds are taken as active. Flare boxes Flares which are not detected by VNP and simultaneously show a cloud cover below N_{th}, not covered by clouds are taken as inactive. For N_{th}, the values 50%, 75% and 90% are used. The higher N_{th}, the smaller the dark blue slice in B.

Fig. To separate the light grey slice in Fig. 4A in covered and uncovered flare boxes, we used instantaneous cloud fractional cover (CFC) from the geostationary Meteosat Second Generation 3 (MSG3) (CM SAF, 2015, copyright (2015) EUMETSAT) for every day of TP15 around the time of VNP observation (Suomi-NPP overflight approx. at 1 UTC). This method is applied to all days of TP15 for every flare box, and (b) the sun-synchronous Aqua/AIRS (Mirador, 2016).

To ensure a consistent timing between cloud observation and VNP observation, the spatial domain was reduced with a focus on the Niger Delta area (see Fig. 5a) and the flares were allocated according to the cloud data grid with a mesh size of 0.03°.
Fig. 5. Fractional cloud cover (%) observed from (a) the geostationary MSG3 and (b) the sun-synchronous Aqua/AIRS, averaged over TP15 around the time of VNP/VNF observation (approx. 1 UTC).

Fig. 5a shows that the onshore flaring area for TP15 is in mean covered with clouds by 50-70%. For the offshore flaring area it is even higher with 70-90%. Therefore it is very likely that flares are frequently masked by clouds and therefore not detected by VNP/VNF. However, we suspect that the MSG3 cloud product underestimates (overestimates) the onshore (offshore) cloud cover when comparing with the findings of van der Linden et al. (2015). The high offshore coverage and the distinct land-water separation might be caused by overestimating low clouds in the presence of a warm and moist tropical ocean.

Fig. 5b shows a cloud climatology using Aqua/AIRS Nighttime data (Mirador, 2016). The Aqua/AIRS climatology shows higher cloud cover over land and no distinct separation between water and land surface. Both products identify the highest onshore cloud cover in the northeast of Port Harcourt (4.8°N, 7.0°E) and have similar values in the Nigerian offshore region (containing the offshore flares) of about 70-80%. The major difference in the climatologies appears onshore between 4.5°N and 6°N. This area includes the majority of the Nigerian onshore flares. Although it is not the aim of this study to identify the most reliable cloud climatology for SWA, it has to be considered that MSG3 likely underestimates the mean cloud cover over the Nigerian onshore flares up to 30%. This reveals a relatively high uncertainty in the estimation of nocturnal low cloud coverage from remote sensing. However, in the following the cloud climatology derived from MSG3 (Fig. 5a) is used since Aqua/AIRS cannot provide the full spatial coverage for every day (due to the sun-synchronous orbit of Aqua/AIRS).

Fig. 6. Number of boxes with detected flares per day (blue bars) and the mean fractional cloud cover for the boxes with (without) detected flares as black solid (blue dotted) line (using MSG3, compare Fig. 5a). For the calculation of the latter, the cloud cover of the non-active flare boxes within E_{clim} are averaged (compare Niger Delta area in Fig. 2b). The grey shaded areas are omitted due to lack of VNP observation.
Fig. 6 shows the number of grid boxes with active flares per day in TP15 as separated in the categories: cloud-free/active (green), cloud-free/inactive (red) and cloud-covered (blue bars). The grey areas indicate. Flares with no or incomplete data gaps are coded in VNP black. E_clim includes 185 flare boxes according to the domain in Fig 5a. For TP15 not more than 51 flare boxes are detected at once in 312 flares which are at least once active in TP15. On average only 82% of the total flaring area is active at once. As expected the temporal evolution of the flare boxes and the 9% is verifiable inactive and 63% is cloud-cover for these boxes (black solid line in Fig. 6) shows an anticorrelation. The highest number of flare boxes at day 36 is reached in a period of a comparatively low cloud cover. The mean cloud cover for the non-active flare boxes of E_clim (blue dotted line in Fig. 6), is in general higher than for the active flare boxes which implies that the cloud cover reduces the VNP detections. Fig. 6 also reveals that it is not suitable to use the strict cloud-free condition for the separation in Fig. 4B because nearly all of the boxes would be assigned to the dark blue cloud covered fraction and the resulting emissions would be nearly the same as E_clim. However, it has to be considered that the light points of flares are extremely small-scale signals (1/5000 of the VNP pixel, Zhang et al. (2015)) and even for an almost completely closed cloud deck VNP detections are possible. The climatology E_clim is the reference for this study. In addition we define E_obs which only considers the actually observed flares per day. E_50 is defined as the combination of actually observed flares and cloud-covered flares (see Fig. 4) with a. By taking into account only the cloud-cover threshold-free information instead of 50%, E_75 (E_90) is equal to E_50 but uses a cloud-cover threshold the climatological approach of 75% (90%). To emphasize the difference between the different emission estimates, Fig. 7 shows the daily emissions of CO_2 for TP15 as a spatial sum over the Niger Delta area (see Fig. 4a). In contrast to E_clim (black dashed line), E_obs, E_50, E_75 and E_90 (solid lines) have a temporal variation within TP15.

![Image](image.png)

Fig.7. Daily CO_2 emissions (kg h⁻¹) within TP15 from flaring summed up over the Niger Delta area defined in Fig. 4a for the five emission estimates: E_clim (climatology, black dashed line), E_obs (VNP observations, black solid line), E_50 (combination of VNP observations and the climatology for a cloud cover threshold of 50%, red solid line), E_75 (as E_50 but for a cloud cover threshold of 75%, green solid line), E_90 (as E_50 but for a cloud cover threshold of 90%, blue solid line). The dotted lines denote the spatiotemporal average of E_obs, E_50, E_75 and E_90. The numbers on the right hand side show the ratios of the spatiotemporal averages E_50, E_75, E_90 and E_90 towards E_clim. The grey shaded areas are omitted due to lack of VNP observation.
E_clim delivers a daily CO$_2$ emission of about 1250 t h$^{-1}$ within the Niger Delta area. The pure daily VNP observations within E_cloud (black solid line) show only 14% of E_clim emissions (numbers on left hand side of Fig. 7) on average (black dotted line). The emissions from VNP observations together with the climatology for the cloud threshold of 50% within E_clim (red solid line) is closest to the climatology (89% of E_clim, red dotted line). The high overall cloud cover within the domain (compare with blue dotted line in Fig. 6) together with the relative low cloud cover threshold leads to the result, that nearly the complete climatology is used for E_clim and therefore the difference to E_clim is small. The emissions from VNP observations together with the climatology for the cloud threshold of 75% and 90% within E_clim and E_clim (green and blue solid line) shows only small deviations but are significantly reduced in comparison to E_clim (55% and 51% of E_clim, green and blue dotted line). Day 36 of TP 15 shows highest emissions in E_clim, E_clim and E_clim owing to the combination of low cloud cover and high flaring activity (compare with Fig. 6). Regarding the uncertainty in the cloud cover climatology (compare Fig. 5a and Fig. 5b), the emissions of E_clim, E_clim and E_clim might be underestimated. The 63% of the flares are not considered at a certain day. By assuming that all of these cloud-covered flares are active, a remarkable underestimation of the cloud cover in the onshore flaring area could lead to an unjustified increase in flare boxes below N_{th} and therefore to a reduced number of active flares per day can be expected.

In addition to E_clim, two further emission inventories are introduced: E_obs only considers the actual daily observed flares (linked to the green flares in Fig. 6). To consider also the contribution of active but cloud-covered flares, E_com combines the green and the blue flares of Fig. 6. To allow for consistency, all three inventories use the emissions derived from the flare specific temporal averages of the source temperature and the radiant heat over TP14 and TP15 respectively. We avoid calculating the emissions from instantaneous source temperatures because this is linked to high uncertainty depending on the atmospheric conditions (Mikhail Zhizhin, personal communication). The temporal averages allow for robustness. Therefore the three inventories only differ in the selection of the active flares per day but not in the underlying emissions. E_clim uses all flares at a certain day, E_obs considers only the flares which are cloud-free and active and E_com
considers \(E_{\text{obs}} \) plus the cloud-covered flares, by assuming that all of the cloud-covered flares are active. Nevertheless we have included a further inventory in Tab. 5 which uses instantaneous source temperature and radiant for the emission derivation (\(E_{\text{clim}, \text{instant. input}} \)) to assess the differences towards the averaged input. Fig. 7 shows the total CO\(_2\) emissions of the SWA area from \(E_{\text{clim}} \) in black, from \(E_{\text{obs}} \) in green and from \(E_{\text{com}} \) in blue.

![Fig. 7. Daily CO\(_2\) emission estimations (t h\(^{-1}\)) within TP15 from flaring, summed up over the SWA area as denoted in Fig. 1 for the three emission inventories: \(E_{\text{clim}} \) (climatology, black solid line), \(E_{\text{obs}} \) (daily VNF flare observations, green solid line and temporal average as green dashed line) and \(E_{\text{com}} \) (sum of daily VNF flare observations and emissions from cloud-covered flares, blue solid line and temporal average as blue dashed line). The periodical drop of the blue line is linked to reduced data coverage (compare with black bars in Fig. 6).](image)

The dashed lines denote the temporal averages of \(E_{\text{obs}} \) and \(E_{\text{com}} \). On average \(E_{\text{com}} \) is only 9% smaller than \(E_{\text{clim}} \) which is assumed to be in the range of uncertainty. Therefore both inventories are equitable in this study. The user can decide whether a temporal resolved or a climatological approach fits best to their research question.

The emissions of \(E_{\text{obs}} \) are strongly reduced (64%) compared to \(E_{\text{clim}} \) as expected. The use of \(E_{\text{obs}} \) would significantly underestimate the emissions and is therefore not appropriate for an application. Since \(E_{\text{obs}} \) does not take into account cloud-covered flares at all and \(E_{\text{com}} \) in contrast sees all cloud-covered flares as active, the difference between these inventories can be used to assess the uncertainty arising from flares masked by clouds. Fig. 7 shows a mean difference between \(E_{\text{obs}} \) and \(E_{\text{com}} \) of about 61%. Therefore while using \(E_{\text{obs}} \) as a flaring emission inventory in an application, an underestimation of the emissions of 61% has to be considered.

These emission estimations contain different information. \(E_{\text{clim}} \) includes all flares of the domain despite cloud cover invariant but can overestimate the emissions. \(E_{\text{obs}} \) shows the \(\text{VNP/VNF}_{\text{flare}} \) reality, including a temporal development, but cannot consider the cloud-covered flares. \(E_{\text{com}} \) combines \(E_{\text{obs}} \) with the flare location climatological information of \(E_{\text{clim}} \) for flares which are not observable at a certain time and the full temporal resolution of \(\text{VNP/VNF}_{\text{flare}} \) in \(E_{\text{obs}} \) by using cloud observations. However this approach is based on the assumption that all cloud-covered flare boxes are active, which is also linked to high uncertainty. Additionally \(E_{\text{com}} \) depends on the
availability of a longer VNP observational dataset. The ratios of the spatiotemporal means of E_{obs}, E_{50}, E_{75} and E_{90} to the spatial mean of E_{clim} (as denoted by the numbers in Fig. 7) are used as correction factors (CF) for E_{clim} in the following (see Tab. 4). E_{clim} is taken as the reference (CF=1).

<table>
<thead>
<tr>
<th>Name</th>
<th>Emission estimate</th>
<th>CF for E_{clim}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{clim}</td>
<td>Climatology (reference)</td>
<td>1</td>
</tr>
<tr>
<td>E_{obs}</td>
<td>Observed flares</td>
<td>0.14</td>
</tr>
<tr>
<td>E_{50}</td>
<td>Observed flares + climatology ($N_{\text{th}}=50%$)</td>
<td>0.89</td>
</tr>
<tr>
<td>E_{75}</td>
<td>Observed flares + climatology ($N_{\text{th}}=75%$)</td>
<td>0.55</td>
</tr>
<tr>
<td>E_{90}</td>
<td>Observed flares + climatology ($N_{\text{th}}=90%$)</td>
<td>0.51</td>
</tr>
</tbody>
</table>

These CF are a simple method to include the information of E_{obs}, E_{50}, E_{75} and E_{90} into E_{clim} by multiplying E_{clim} with the corresponding correction factor. In this case the same 185 flare boxes of E_{clim} are used but with an emission strength reduced to the averaged conditions of E_{obs}, E_{50}, E_{75} and E_{90}. This approach is based on the assumption that the correction factor, deduced for the Niger Delta area, is valid for the whole domain specified in Section 3.1. This assumption seems to cover flares that are active, which can be justified since the Niger Delta area contains as an estimation upwards. Therefore the most of the gas flares in the domain likely amount of emissions is expected between E_{obs} and E_{com}.

3.3.2 Uncertainty due to IU14 input parameters

To assess the uncertainty which arises from the combustion efficiency η and the availability of combustion air δ, a sensitivity study has been carried out. The exact values for the SWA flares are unknown and very likely highly variable from one flare to another, depending on the flare type and operation. Fig. 8a shows the flaring emissions averaged over SWA and TP15 for CO, CO$_2$, NO and NO$_2$. The parameters η and δ are varied referring to IU14. A complete combustion ($\eta = 1$) does not produce CO emissions since all carbon is transformed to CO$_2$ (not shown). With decreasing η and δ, the CO and CO$_2$ emissions increase. Concerning CO we assume the lower limit for $\eta = 0.9$ and $\delta = 1.3$ (left of Fig. 8a) and the upper limit for $\eta = 0.5$ and $\delta = 0.76$ (right of Fig. 8a). The values used for this study are located in the center of Fig. 8a (printed in bold). By taking the latter as reference, the lower (upper) limit leads to a decrease (increase) in CO emission of -63% (+210208%)

For CO$_2$, we derived an lower (upper) limit of -38% (+72-53% (+12%.

A higher combustion efficiency or a higher availability of combustion air allows an enhanced formation of NO and NO$_2$. Therefore NO emission increase (decrease) with decreasing η and δ. In contrast these emissions decrease with an increase in the combustion efficiency (δ). The higher the efficiency the more oxygen is forming CO$_2$ instead of NO$_2$. We assume the lower limit for $\eta = 0.9$ and $\delta = 0.95$ and the upper limit for $\eta = 0.5$ and $\delta = 1.30$. Taking again the central parameter set of Fig. 8a as reference, the lower (upper) limit leads to a decrease (increase) in NO emission of -77% (+44176% (+420%).
Fig. 8. Flaring emissions (kg·h⁻¹) spatiotemporally averaged over SWA and TP15 depending on (a) combustion efficiency \(\eta \) and availability of combustion air \(\delta \) for a gauge pressure of 5 psi and (b) gauge pressure (psi) for the setup of \(\eta = 0.8 \) and \(\delta = 0.95 \) which is used for this study (emphasized in bold). \(\mathrm{SO}_2 \) is not shown because it does not depend on \(\eta \) or \(\delta \).

The emissions of \(\mathrm{NO}_2 \) are comparatively low owing to the source temperature which is in general lower than the \(\mathrm{NO}_2 \)-formation threshold of 1600 K.

For \(\mathrm{NO}_2 \), the emission decrease (increase) is -76% (+417%).

In addition, Fig. 8b shows the emissions depending on the gauge pressure for 1 (lower limit), 5 and 10 psi (upper limit) (7, 34 and 69 kPa respectively) for \(\eta = 0.8 \) and \(\delta = 0.95 \). Regarding using 5 psi as the reference, the lower (upper) limit leads to a decrease (increase) in CO emissions of -21% (+2620% (+25%)).

Fig. 8 emphasizes that the technical conditions of flaring crucially influence the emission strength and that the emissions are more sensitive towards \(\eta \) and \(\delta \) than towards the gauge pressure.

3.3.3 Uncertainty due to the fraction of radiated heat

To estimate the uncertainty in the fraction of radiated heat \(f \) (see Tab. 2), we have used the standard deviation of the literature values given in the appendix of Guigard et al. (2000) in addition to the mean value of \(f = 0.27 \). This leads to a domain of uncertainty for the value \(f \) of \((0.38/0.16) \). Therefore the \(\text{VNPVNF}_{\text{Flare}} \) observed radiant heat is multiplied with the factor \(1/f \) of 3.7 \((5.2/2.6) \).

3.3.4 Interannual variability
The differences in flaring between TP14 and TP15, indicated in Fig. 1 and Fig. 2, are quantified in this section according to the emissions of CO (Fig. 9a) and CO$_2$ (Fig. 9b). The boxplots include all flaring boxes for the two domains SWA (green) and the Niger Delta area Nigeria (blue). The numbers above indicate the integrated emissions per hour and area in tons.

![Flare box Single flaring emissions of (a) CO and (b) CO$_2$ (E$_{\text{flare}}$, t h$^{-1}$ flarebox$^{-1}$) for SWA (green) and the Niger Delta area Nigeria (blue) for TP14 and TP15. The values above the boxplots indicate the emissions per hour, integrated over SWA (green) and the Niger Delta area Nigeria (blue). The whiskers span the data range from the 0.025-quantile to the 0.975-quantile (95% of the data). Data outside of this range is not shown.]

The emissions of CO$_2$ are 6.3 times higher than the CO emissions. For SWANigeria (blue boxplots) the mean value of emissions is statistically significant lower for TP15 compared to TP14 (Wilcoxon-Mann-Whitney rank sum test with a significance level of 0.05). For the Niger Delta area-SWA the emission meansaverages show no significant difference. The significant different mean values for SWA emissionsNigeria emphasize the relevance of using a flaring dataset which is up to date to reduce uncertainties arising from deviations in flare locations or flaring processes.

3.3.5 Uncertainty due to spatial variability in H$_2$S

Since hydrogen sulfide (H$_2$S) is the only sulfur source in the flared gas, it determines the emission of sulfur dioxide. The natural gas composition measurements from the ten flow stations given in Sonibare and Akeredolu (2004) contain only two stations with nonzero H$_2$S content. Therefore averaging over the ten stations (see Tab. 3) leads to a low H$_2$S content in the emission calculations. By using the highest concentration value of H$_2$S given in Sonibare and Akeredolu (2004) (see Tab. 3, H$_2$S concentration 0.03% instead of 0.005%), we try to estimate the upper limit of SO$_2$ emission, assuming that all flares are provided with this more sulfur containing gas. With this approach the
spatiotemporal averaged sum of \(\text{SO}_2 \) emissions over SWA increase from 0.636 to 4.9320 \(\text{kg h}^{-1} \). The maximum values in the flare boxes increase from 4.7 to 41.8 kg \(\text{h}^{-1} \). These are rather low values.

This comparison reveals that among the flaring conditions also the natural gas composition plays an important role in estimating the flaring emissions reasonably. To rely on a single measurement dataset for a large flaring domain and without taking into account spatial variability is therefore problematic but has to be accepted owing to insufficient data shortage.

This section has estimated the uncertainties in gas flaring due to cloud cover, parameters of IU14, the fraction of radiated heat, the temporal variability and the \(\text{H}_2\text{S} \) concentration in the natural gas. The uncertainty regarding the spatial variability of the total hydrocarbon fraction of the natural gas, which is estimated by the variations in the ten flow station measurements of Sonibare and Akeredolu (2004), is below 1%.

However, there are further assumptions or sources of uncertainty which cannot be quantified within this study: We assume that the natural gas composition, which is measured in one region, is valid for SWA entirely. The gas flares are taken as constant emission sources because \(\text{VNPVNF}_{\text{flare}} \) only provides one observation (overflight) per day. We cannot take into account the spatial variability of the flares concerning the IU14 parameters and the stack heights. And finally IU14 delivers no VOCs and black carbon.

4. Comparison with existing emission inventories

The following section places the estimated flaring emissions of this study in the context of existing emission inventories, by taking the focus on \(\text{CO}_2 \). A direct comparison with existing emission inventories is problematic due to different reference time periods, spatial domains, definitions of emission sectors and the limitation of chemical compounds. Tab. 5 summarizes the \(\text{CO}_2 \) emissions for different inventories regarding Nigeria or the Niger Delta area as denoted in Fig. 5a, the flaring hotspot of the research domain. The results of this study shows no flaring in the northern part of Nigeria and therefore flaring within the Niger Delta area can be seen as the total flaring area of the country. To derive annual emission values for the results of this study, it is assumed that the flaring emission conditions of TP14 and TP15 are representative for the whole year 2014 and 2015 respectively. Therefore the hourly emissions are integrated over 365 days. In addition to the three inventories \(\text{E}_{\text{obs}}, \text{E}_{\text{com}} \) and \(\text{E}_{\text{clim}} \), whose emissions are derived from temporal averages of the source temperature and radiant heat, also an emission estimation using instantaneous source temperature and radiant heat (calculating emissions for every single observation and subsequent temporal averaging of the emissions) for both time periods is presented in Tab.5 (\(\text{E}_{\text{clim, instant. input}} \)).

Tab.5. Comparison between existing emission inventories for \(\text{CO}_2 \) (with a focus on gas flaring if available) and the results of this study for Nigeria or the Niger Delta area in teragram (Tg) per year. For TP14 and TP15 it is assumed that the two month observations represent the flaring conditions of the whole year 2014 and 2015 respectively. Therefore the emissions were integrated to yearly values. The values in brackets represent domain of uncertainty arising from the upper limit owing to the uncertainties estimated in Section 3, spatial variability in total hydrocarbon is given in brackets. For the fraction of radiated heat \(f_i \), the mean value 0.27 and the lower (upper) boundary of 0.16 (0.38) are used, representing a further source of uncertainty. The products given in bold are directly related to flaring emissions.

<table>
<thead>
<tr>
<th>Emission inventory</th>
<th>Time period</th>
<th>(f = 0.16)</th>
<th>(f = 0.27)</th>
<th>(f = 0.38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study ((\text{E}_{\text{obs}}), averaged)</td>
<td>2014 (from TP14)</td>
<td>1.71^{2.2/0.31}</td>
<td>1.01^{1.3/0.21}</td>
<td>0.71^{1.0/0.11}</td>
</tr>
<tr>
<td>This study ((\text{E}_{\text{com}}), averaged)</td>
<td>2014 (from TP14)</td>
<td>4.51^{6.1/0.91}</td>
<td>2.71^{3.6/0.51}</td>
<td>1.91^{2.6/0.31}</td>
</tr>
<tr>
<td>Source</td>
<td>Year (from)</td>
<td>CO₂ Emission (Tg y⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Eclim)</td>
<td>2014 (from TP14)</td>
<td>$13.4^{+3.9}_{-1.6}/1.6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$8.4^{+2.9}_{-0.9}/0.6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6.8^{+2.1}_{-0.4}/0.1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Eclim, averaged)</td>
<td>2015 (from TP15)</td>
<td>$1.0^{+1.4}_{-0.2}/0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Ecom, averaged)</td>
<td>2015 (from TP15)</td>
<td>$3.4^{+4.5}_{-0.7}/0.1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Eclim)</td>
<td>2015 (from TP15)</td>
<td>$8.4^{+3.7}_{-0.9}/0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5.2^{+2.4}_{-0.9}/0.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4.0^{+1.5}_{-0.3}/0.1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Einc, instant, input)</td>
<td>2014 (from TP14)</td>
<td>$7.4^{+9.9}_{-3.2}/2.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$4.5^{+5.9}_{-2.0}/1.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3.4^{+3.7}_{-2.0}/0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study (Einc, instant, input)</td>
<td>2015 (from TP15)</td>
<td>$5.2^{+8.8}_{-3.2}/1.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3.5^{+6.2}_{-3.0}/0.9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2.4^{+3.7}_{-1.8}/0.7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDIAC (2015b)</td>
<td>2011</td>
<td>27.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIA (2015)</td>
<td>2010; 2011; 2013</td>
<td>38.81; 41.39; 52.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doumbia et al. (2014)</td>
<td>2010</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGAR 4.2¹ (EDGAR, 2016)</td>
<td>2008</td>
<td>8.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGAR 4.2¹ (EDGAR, 2015)</td>
<td>2008</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGAR 4.3.2² (EDGAR, 2016)</td>
<td>2010; 2011; 2012</td>
<td>29.4, 28.8, 28.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDGARv43FT2012{}(EDGAR, 2014)</td>
<td>2014</td>
<td>93.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹from gas flaring, Nigeria
²from consumption and flaring of natural gas
³from refineries and transformation, Nigeria
⁴from refineries and transformation, Niger Delta area according to Fig. 5a
⁵from venting and flaring of oil and gas production, Nigeria
⁶emission totals of fossil fuel use and industrial processes (cement production, carbonate use of limestone and dolomite, non-energy use of fuels and other combustion). Excluded are: short-cycle biomass burning (such as agricultural waste burning) and large-scale biomass burning (such as forest fires), Nigeria

The CO₂ emission estimations of this study are given in Tab. 5 together with an overall uncertainty range ($\pm 38\% \text{ of } (\pm 33\% \text{ of } (\pm 79\%)) \text{ in brackets}$, including the uncertainty from the IU14 parameters η and δ ($\pm 15\% \text{ of } (\pm 12\% \text{ of } (\pm 53\%))$ and the gauge pressure ($\pm 24\% \text{ of } (\pm 20\% \text{ of } (\pm 25\%))$ and from spatial variability of total hydrocarbon. The latter uncertainty is small (below 1%) owing to the low variation in THC concentration in the measurements of Sonibare and Akeredolu (2004). The uncertainty owing to the fraction of radiated heat f is represented by using the average value of 0.27 and the upper and lower estimate of 0.16 and 0.38 respectively. The uncertainty due to cloud cover is represented by E_{clim}. Regarding the relatively large uncertainty there is no preference the difference in one of the emission estimates E_{inc} and E_{com}.

By assuming the uncertainty range of the fraction of radiated heat f between 0.16 and 0.38, the results of the study on hand show CO₂ emissions in the same order of magnitude as By assuming that E_{com} with $f = 0.27$ represents the best emission estimate for this study and by integrating the above mentioned sources of uncertainty, a total Nigerian CO₂ flaring emission of $2.7^{(3.6/0.5)} \text{Tg y}^{-1}$ for 2014 and $2.0^{(2.7/0.4)} \text{Tg y}^{-1}$ for 2015 was derived. Due to the high uncertainties, the two estimates are not statistically different. These values are one order of magnitude smaller than the values from the Carbon Dioxide Information Analysis Center (CDIAC, 2015b), the Energy Information Administration (EIA, 2015) and the EDGARv4.3.2 (EDGAR, 2016) database, with best results for $f = 0.16$ but with an overall tendency to underestimate the emissions. E_{com} shows smaller deviations to the existing inventories than the cloud correction approach of E_{inc}. A direct comparison is hindered by a time lag of 3-4 years and missing information about the uncertainties of CDIAC. The values of EIA are higher than those of CDIAC because EIA includes the consumption of natural gas in addition to gas flaring. Doumbia et al. (2014) combines Defense Meteorological Satellite Program (DMSP) observations of
flaring with the emission factor method to derive flaring emissions. The results agree with EIA (2015) but are 64% higher than CDIAC (2015b).

The emission inventory EDGAR v4.2 (ECCAD, 2015) delivers 8.75 (3.50) Tg CO$_2$ y$^{-1}$ for Nigeria (Niger Delta area) for the emission sector *refineries and transformation*, which is in good agreement with the results for the study on hand.

As a benchmark for the flaring CO$_2$, the total CO$_2$ emissions for Nigeria are given by EDGAR (2014), (fossil fuel use and industrial processes). Taking EDGAR (2014) as a reference for total CO$_2$ emissions of Nigeria, flaring emissions contributes by $9 \pm 0.2\%$ (2014; $E_{\text{clim}} - f_{\text{clim}} = 0.27$), $14 \pm 2\%$ (2014; $E_{\text{clim}} - f_{\text{clim}} = 0.16$) contribute with $2 \pm 0.1\%$ (this study for 2014; E_{com}), 9% (2008; ECCAD, 2015), 28% (2011; CDIAC, 2015b), 48% (2010; Doumbia et al., 2014) or 56% (2013; EIA, 2015). The large spread between the different inventories emphasizes the large uncertainty within the estimation of emissions from gas flaring.

<table>
<thead>
<tr>
<th>Year</th>
<th>Source</th>
<th>CO$_2$ Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>CDIAC</td>
<td>28%</td>
</tr>
<tr>
<td>2010</td>
<td>EIA</td>
<td>48%</td>
</tr>
<tr>
<td>2015b</td>
<td>CDIAC</td>
<td>48%</td>
</tr>
<tr>
<td>2013</td>
<td>EIA</td>
<td>56%</td>
</tr>
<tr>
<td>2008</td>
<td>ECCAD</td>
<td>9%</td>
</tr>
</tbody>
</table>

By using the climatological approach with instantaneous source temperature and radiant heat input data (E_{clim}, instant. input) instead of temporal averages (E_{clim}), the emissions are increased by approx. a factor of two (5.9 ± 0.12 Tg y$^{-1}$ for 2014, 5.2 ± 0.0 Tg y$^{-1}$ for 2015). This underlines that also the preprocessing of the remote sensing data for the calculation of the emissions is a considerable source of uncertainty. However, due to the high uncertainties also the two emission estimates with and without instantaneous data are not statistically different.

A shortcoming of the PEGASOS PBL-v2 (not shown) and the EDGAR v4.2 emission inventory is the lack of offshore flaring emissions in the Gulf of Guinea south of Nigeria. For CDIAC and EIA this cannot be verified since the data is only available as a single value per country.

The differences between the results of this study and the existing emission inventories might be caused by an underestimation insufficient information about the efficiency of the flow rate by VNP and Eq. combustion processes of SWA flares or by an inconsistent definition of emission source sectors for the existing inventories. $E_{\text{clim}} - E_{\text{com}}$, Doumbia et al. (2014) and CDIAC (2015b) focus on gas flaring, whereas other products also include natural gas consumption and emissions from refineries and transformation, which also can include non-flaring emissions within and outside the areas indicated as flaring area by the satellite imagery. In addition, the existing inventories do not provide current values (time lag of 2 to 6 years) and therefore not consider the emission reduction indicated by Fig. 9.

5. Discussion and conclusions

The gas flaring emission estimating method of Ismail and Umukoro (2014) (IU14) has been combined with the remote sensing flare location determination of the VIIRS Nightfire Prerun V2.1 Flares only (VNPVNF) (VIIRS, 2015) for a new flaring emission parameterization. The parameterization combines equations of incomplete combustion with the gas flow rate derived from remote sensing parameters instead of using emission factors and delivers emissions of the chemical compounds CO, CO$_2$, SO$_2$, NO and NO$_2$.

Within this study the parameterization was applied to southern West Africa (SWA) including Nigeria as the second biggest flaring country. Two two-month flaring observation datasets for June/July 2014 (TP14) and June/July 2015 (TP15) were used to create a flaring climatology for both time periods. In this climatology all detected flares emit with their mean activity (climatological approach).

The uncertainties owing to missed flare observations by cloud cover, parameterization parameters, interannual variability and the natural gas compositions were assessed. It can be shown that the
highest uncertainties arise from the IU14 parameters (+33/−29%), followed by the definition of the fraction of radiated heat f and the IU14 parameters. The uncertainty arising from flares masked by clouds is estimated as 61% on average in TP15.

By using remote sensing—the cloud cover observations, a correction factor for the flaring climatological detection of VNF and by assuming that all cloud-covered flares are active, an additional emission dataset was derived which reduces the mean emissions about 50% from the currently observed flares and the climatological emissions from cloud-covered (not detected) flares (combined approach). These emissions are on average 9% smaller than the climatology but 61% larger than the net observations.

However, owing to the large uncertainty ranges, no significant difference between the climatological inventory and the cloud corrected combined inventory can be stated. Comparing the emissions of 2014 and 2015, a reduction in the flaring area, density of active flares and a significant reduction in Nigerian flaring emissions about 30–25% can be observed, which underlines the need for more recent emission inventories.

The uncertainty due to the natural gas composition is compound dependent. The spatial variation in total hydrocarbon is negligible but the availability of hydrogen sulfide, which exclusively determines the amount of emitted SO$_2$, cause large uncertainty. By taking the combustion efficiency to derive the fraction of unburned natural gas, the amount of emitted VOCs might be estimated in addition to the species of the study on hand but would also be linked to high uncertainties concerning the VOC speciation. The uncertainty in VOC emission is increased drastically by natural gas which is vented directly into the atmosphere instead of being flared, since the venting cannot be detected by VNP.

With a focus on Nigeria, the CO$_2$ emission estimates of this study were compared with existing inventories. For the climatology combined approach, CO$_2$ emissions of $8.4_{-2.7}^{+3.6}/0.5$ Tg y$^{-1}$ for 2014 and $5_{-2.0}^{+2.7}/0.4$ Tg y$^{-1}$ for 2015 were derived. EDGAR v4.2 for the year 2008 shows the same order of magnitude when limiting to emissions from refineries and transformation. The results of this study are one order of magnitude smaller compared to CDIAC (Carbon Dioxide Information Analysis Center) is in the same order of magnitude as the results of this study, Doumbia et al. (2014) and EIA (Energy Information Administration) show emissions which are 2.4 and 2.8 times higher than the results. This emission underestimation is not caused by an underestimation of the flared gas volume. VNF$_{flow}$ includes an estimation of the annual sum of flared gas by country. For Nigeria the estimated values are 8.56 (7.64) bcm flared gas in 2014 (2015). Within this study—higher values of 37.89 (20.68) bcm for 2014 (2015) are derived.

The deviations might be caused by uncertainties in the flow rate derived by VNP, radiant heat, which can be assessed only rudimentary via the parameter efficiency of the fraction of radiated heat, flares concerning the combustion process and their operation. A lack of information regarding the combustion efficiency together with the high sensitivity of the parameters within the combustion equations of IU14 can lead to high uncertainties. Additionally, the usage of emission factors in the existing inventories which did not take into account the spatiotemporal variability of flaring, inconsistent emission sector definitions or the time lag of the emission inventories of 2–5 years can lead cause deviations. The positive trend in Nigerian gas flaring CO$_2$ emissions derived by EIA from 38.81 to 52.83 Tg y$^{-1}$ between 2010 and 2013 contradicts the findings of Doumbia et al. (2014) and this study, which generally show a decrease in emissions from 1994 to 2010 and from 2014 to 2015, respectively. Based on the sensitivity study, which reveals high uncertainties of the flaring emission, we conclude that there is no preference in the choice of one of the emission
estimates climatological and or the combined approach presented in this study. Therefore for simplicity we recommend the use of the climatological approach when using the R package.

Despite the generally large uncertainties in the estimation of emissions from gas flaring, this method allows a flexible creation of flaring emission datasets for various applications (e.g. as emission inventory for atmospheric models). It combines observations with physical based background concerning the combustion. The use of current data makes it possible to consider present trends in gas flaring. Even the creation of near real-time datasets with a time lag of one day is possible. The emissions are merged on grid predefined by the user and depending on the availability of VNPVNF data, the temporal resolution can be selected from single days to years.

An improvement of this parameterization can be achieved by an extension of the IU14 method to black carbon and VOCs and an inclusion of spatial resolved measurements of the natural gas composition in combination with information of the gas flaring processes from the oil producing industry.

Acknowledgments

The research leading to these results has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under Grant Agreement no. 603502 (EU project DACCIA: Dynamics-aerosol-chemistry-cloud interactions in West Africa).

We thank Mikhail Zhizhin from Earth Observation Group (EOG) of NOAA for providing us with the extracted flaring information from the VNF product. We are grateful to Godsgift Ezaina Umukoro (Department of Mechanical Engineering, University of Ibadan, Nigeria) for the kind support during the implementation of their combustion reaction theory into our parameterization. We also thank the Earth Observation Group (EOG) of NOAA for providing the VIIRS Nightfire Flares Only product.

Code and/or data availability

This publication includes a package of well documented R scripts which is free available for research purposes and enables the reader to create their own gas flaring emission datasets. It includes exemplarily the preprocessing for June-/July 2015 with a focus on southern West Africa. You get access to the code via zenodo.org (DOI: 10.5281/zenodo.50938), entitled “Gas flaring emission estimation parameterization v2”.

References

API, 2007: Pressure-relieving and Depressuring Systems, ANSI/API STANDARD 521 FIFTH EDITION, JANUARY 2007, ISO 23251 (Identical), Petroleum and natural gas industries – Pressure-relieving and depressuring systems, American Petroleum Institute, Section 7.3.2.4: Design details h), 127

Elvidge, C. D., Zhizhin, M., Baugh, K., Hsu, F.-C., Gosh, T., 2015: Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data, Energies 2016, 9, 14, 1-15

EPA, 1985: Evaluation of the efficiency of industrial flares: Flare head design and gas composition, Research and Development, United States Environmental Protection Agency (EPA), EPA-600/2-85-106, Tab. 2-6

Strosher, M. T., 1996; Investigations of flare gas emissions in Alberta, Final Report to: Environment Canada, Conservation and protection, the Alberta Energy and Utilities Board, and the Canadian Association of Petroleum Producers; Environmental Technologies, Alberta Research Council, Calgary, Alberta

