General comment to the reviewer: Thank you for taking the time to thoroughly read our manuscript and for your constructive comments, which have greatly improved the clarity and accessibility of our manuscript. Your original comments are highlighted in red and our responses are in black. When text is copied directly from the revised paper the words are italicized.

This paper seems a mine of parameters for land surface process models and resources for generating the parameters. My feeling is that the author(s) made a reasonable effort for conducting this research, and further, this paper should be published in GMD as soon as possible because I believe this paper would be of extreme value for developers and users of the land surface process and terrestrial ecosystem dynamics models.

Thank you for recognizing the value of our research, and again for reading our paper thoroughly.

However, there are some small flaws in the present manuscript, and so before this paper is accepted, the author(s) must revise the manuscript according to the followings:

When an abbreviation/a symbol appears for the first time, write it out in full spelling:

What is TFS (P1L33, P6L20), WD, LMA, NL and PL (P6L21)?

We have ensured that all acronyms are defined the first time they are used in the manuscript.

I suggest in Introduction section, you should state the temporal (apparently, hourly scale) and spatial (apparently single-plot/stand scale) scale of the model. This might be “readers-friendly”.

We added two sentences in the revised introduction (P4 L4-8) to clarify this point:

In this paper, we develop a continuous porous media approach intended for application at specific sites in the tropics to explore dynamics of water fluxes from hourly to seasonal timescales and at spatial scales ranging from individual trees to the stand-level scale. This intermediate-scale approach is a model testbed meant to inform implementations of plant hydraulics in coarse-scale forest ecosystem models.

Prior to this insertion in the Introduction, we also clarified the scale of the various modeling approaches that are discussed (coarse-scale ecosystem models and fine-scale hydraulics models; see P3 L14 and P3 L27).

Further, you elaborated a plant hydraulic submodel in this research. As you note, solving Richards Equation is tough and needs heavy computation resource. I do not think such plant hydraulic models are suitable for large-scale and long-term vegetation dynamics models. Thus, I also suggest in the Introduction section you should explicitly state why you elaborated the hydraulic models (“because such models can describe detailed plant water relations” is not enough) and future strategy of applications of the hydraulic models.
We have expanded the section outlining the various approaches to doing plant hydraulics (P3 L27-P5L8), in order to highlight why we elaborated (what we have now termed) the “continuous porous media” approach:

A range of approaches exist for modeling plant hydraulics at fine scales (i.e., individual trees), all involve an extension of Darcy’s law (Darcy, 1856) from the soil domain to include plants as well. Darcy’s law states that water flux anywhere in the soil-plant continuum is proportional to the product of soil or plant hydraulic conductivity and a gradient in water potential. In order for these models to capture drought response, hydraulic conductivity within the soil-plant continuum must dynamically respond to changes in moisture. Three main approaches are distinguished in terms of how they represent the impact of declines in water potential on tissue water content and xylem hydraulic conductivity. A first class of models is the simplest and simulates moisture sensitivity of soil-root conductance but not xylem hydraulic conductance (Jarvis et al., 1981; Williams et al., 1996; Ogée et al., 2003; Alton et al., 2009; Bonan et al., 2014). This approach has proven useful for modeling the effects experimental drought in tropical forests (Williams et al., 1998; Fisher et al., 2006; Fisher et al., 2007), but it remains unclear whether this approach misattributes drought effects occurring within trees to the soil; therefore a second class of models implements variable xylem conductivity with xylem water potential (Williams et al., 2001; Hickler et al., 2006; Domec et al., 2012; Duursma and Medlyn, 2012; Xu et al., 2016). To simplify computational load, these two approaches do not explicitly track dynamic changes in the volume of plant water storage. Instead, a constant ratio of change in stored water per unit change in water potential, or stem hydraulic capacitance, is assumed, which may overestimate the buffering capacity of tree stored water under extreme drought conditions when small relative declines in stored water induce very large declines in water potential. An additional consequence of the design of these models is the inability to represent the bidirectional flow of water at the root-soil interface. Reverse flow of water from roots into soil is an important process in root hydraulic distribution (Oliveira et al., 2005), and may also mediate time to desiccation under drought (North and Nobel, 1997).

A convenient way to address these issues is in a third class of models (hereafter the “continuous porous media approach”), which simply extend the modeled mass balance of water from the soil domain into the plant by relating simulated changes in water content to water potential (and vice versa) everywhere within the plant-soil continuum (Edwards et al., 1986; Arbogast et al., 1993; Sperry et al., 1998; Kumagai, 2001; Bohrer et al., 2005; Mackay et al., 2015; Mirfenderesgi et al., 2016). While more computationally complex, the continuous porous media approach offers two main advantages in addition to addressing the issue of plant water storage and bidirectional root flow. First, the coupled plant-soil system is represented by a single mass balance equation, such that root water uptake or loss simply emerges from the solution of this equation, and needs not be ascribed post-hoc as is the case in the first two approaches. Second, this approach relies on an explicit description of the relationship between water content and water potential in plant xylem (the “pressure-volume”, or PV curve), analogous to the water retention curves used in soil physics. As we will show, there is a wealth of information on PV hydraulic traits for leaves, and to a lesser degree, stems in tropical forests. Implementing PV curves in the model greatly increases the scope of data with which the model can be parameterized. In this paper, we develop a continuous porous media approach intended for application at specific sites in the tropics to explore dynamics of water fluxes from hourly to seasonal timescales and at spatial scales ranging from individual trees to the stand-level scale. This intermediate-scale approach is
a model testbed meant to inform implementations of plant hydraulics in coarse-scale forest ecosystem models.

We found this paper particularly relevant (thank you!) and have cited it in the place you suggested. We anticipate returning to this paper when considering deriving mortality functions from our plant hydraulics model.

Concerning to P4L3-7, you need to mention this pioneer paper: Kumagai, T. (2001) Modeling water transportation and storage in sapwood -model development and validation. Agricultural and Forest Meteorology, 109, 105-115. And “Arbogast et al., 1993” should be inserted in the former array of references P4L6-7.

This citation has now been included.

Figure 1: Subfigures involved in Fig 1 are incomprehensible and seem unnecessary because they have no explanation. Provide them with appropriate explanations if you want them to be involved in Fig 1.

The figure caption has now been updated to explain the various other sub-panels in this figure:
Left sub-panel: inputs are plot observations of the tree size distribution and distributions of each of four plant functional traits (WD, LMA, NL, PL). Middle bottom: the perfect plasticity approximation (PPA) orders trees by decreasing crown area. Middle top: TFS assigns physiological traits, such as $V_{c,max}$, to each tree based on functional traits. Middle: the PPA is used to estimate light environments of each tree, which influence fast timescale (hourly) biophysics of crown light interception, photosynthesis, and stomatal conductance. Assimilated carbon is allocated to leaves, stems, and fine roots daily. Top right (hydrodynamics): Soil-root-stem-canopy water fluxes interact with fast-timescale TFS biophysics by taking transpiration as a boundary condition and passing back the ‘fraction of maximum conductance’ (FMCgs) for downregulating the next timestep’s stomatal conductance based on leaf water potential. Top right (size- and trait-scaling): Hydraulic traits in leaves, stem, and roots are assigned based on each tree’s height and trait values according to empirical equations and allometric theory described in this paper. Bottom right: TFS predicts a distribution of individual tree net primary productivities. See Supplement Fig S1.1 for the structure of the plant hydraulics model.

P8L18: “>=” should be “≥”.

Assuming the pdf conversion of your comment meant to say “≥”, we updated the symbol accordingly

P10L13: “(-)” should be omitted or changed to “(unitless)”.
Done.

P10L14: “-1” should be superscripts, and “FMC” should be “FMCx”.
Done.

P10L15: “1” should not be italic.
Done.

P10L23: Why is “relative to” italic?
These italics have been removed

P11L13: Remove “derive”.
Done.

P14L13: Insert “statistical” between “All” and “analyses”. “R” should be “R software” and “(R core team 2015)” is not enough information.

“statistical” was inserted and “R” was changed to “R language,” but we left the citation the same, as this is the suggested format for citing the R statistical program.

P14L14-15: You should not state this text “In all : : :: : : ‘* * *’.” here. You should refer to statistical significance at each figure’s caption (Figs 2-6, and 8).

This sentence has been deleted and the reference to statistical significance remains in the figure captions.

3.2 Model setup: Give more detailed throughfall exclusion experiment (TFE) or remove all statements on the TFE in the manuscript (I will explain later).

We have removed all analyses and references to the TFE per your suggestion (further explanation given below)

P18L4: 50% reduction of what?
Removed.

Captions of Figures 2 and 10: Give full spellings of the abbreviations such as LMA, WD, and so forth.
Done.

Figures 5, 6 and 8: Legends of symbols are needed.
4.2.1 Impact of plant...: Add further and more detailed explanation on why transpiration rate was higher in dry season than in wet season for both TFSs and why transpiration rate in dry season was inhibited with v.1-Hydro.

Done. Revised text reads as follows, first on the seasonal differences (P22 L22-27):
The large increase in simulated transpiration in the dry season for both TFS v.1 and TFS v.1-Hydro (Fig. 9e-f) is driven by the comparatively large increase in incoming solar radiation, and hence absorbed radiation, due to a reduction in cloud cover (Fig 9a-d) (Carswell, 2002; Fisher et al., 2007). At the level of individual tree crowns, canopy position is the dominant control over the amount of absorbed PAR (compare different colored lines in Fig 9a-d).

and on why dry season transpiration was inhibited with v.1-Hydro (P23 L1-4):
The effect of including plant hydraulics in TFS v.1-Hydro was to limit late morning and afternoon transpiration via the depletion of stored water within the canopy and tree stem, which caused midday declines in leaf water potential (see Fig 10) and induced hydraulic limitation to water flux via the F_{FMCGS} term (see Eqn 8).

Figure 11: Mention clearly which type of TFS was used for this simulation in the caption. Further, you have to note that this analysis in Fig 11 cannot be any validation for the model because there was no difference in both observations and computations between control and 50%TFE. I recommend to omit all statements on both the TFE observations and computations (further recommendation and explanation later).

Done. As explained below and per your suggestion, all analyses and references to TFE have been removed.

Figure 13 and 4.3.3 Fidelity of modeled: Did you mean the simple soil bucket models of both TFSs v1 and v1-Hydro could not reproduce the temporal variation in soil moisture for the Control and the 50%TFE? If so, this is very critical problem because simulations of plant water relations such as stomatal behavior, sapflow, root water uptake and so forth must be conducted on the premises that the soil moisture environment is appropriately reproduced. In this case, I think discussion on simulation of TFE would ruin this paper. So, in this case, I suggest omitting all statements about TFE in this paper. Note that without the TFE, the value of this paper would not change. If you are successful in reproducing soil moisture environment for both the Control and the TFE, show the time variations in modeled and simulated soil moisture and give more
detailed and analytical explanation about why both TFSs v1 and v1-Hydro could not capture the observed reduction in transpiration under the TFE.

We agree on your suggestion to remove the TFE parts of this paper, because the current bucket soil hydrology is not amenable to simulating drought. We also revised a couple sentences (P8 L1-4) highlighting this current belowground structural deficiency for future development:

The present scheme does not consider the vertical distribution of soil water or roots. We anticipate this to be a key component for future model development when we incorporate this scheme into host models with variable soil depths.

P25L24-25: How thinking plant hydraulic submodels important leads to developing ESM? Please give a concrete explanation.

We have added a clause to the final sentence of this paragraph to this effect (P26 L26-27):

Finally, the model makes substantial improvements to TFS v.1 in terms of simulated transpiration rates (Fig 13a, b), highlighting how plant hydraulics mediate the biosphere-atmosphere exchange of carbon and water.

P29L3: (If the models failed to reproduce the soil moisture environment) I guess “not vertically discretize the soil water or root distribution” is not big problem. This is simply problem caused by failures in mass balance equations because the models could not capture the soil moisture depletion induced from 50% rainwater reduction.

The inability of the model to reproduce soil drought conditions is not related to the failure of the model to do soil water mass balance; all precipitation and evaporation is accounted for via changes in the total stored water in the system. Rather, it is a direct consequence of using a soil depth of 4 meters at this site and allowing roots to exploit this entire bucket. This soil bucket does not sufficiently deplete under the simulated drought conditions (in default TFS v.1 nor in TFS v1.-Hydro) because it represents an average soil moisture over the entire 4-meter domain. In contrast, a vertically stratified water balance model that accurately reproduces observed TFE soil moisture response at this site would, according to the observations (see Rowland et al. 2015 Extended Data Figure 2), have the largest a large TFE effect in shallow layers where most roots would be concentrated (see Fisher et al. 2007 Figure 6).

Conclusion: You should confess this paper’s current model is too complex to incorporate it to coarse-scale DGVMs.

Done, although future work will need to identify where simplification is necessary and where complexity is still needed. The final sentence of the paper (P33 L5-8) highlights this:

Likely some degree of simplification of the present approach will be required upon implementation in ESMs; nonetheless we expect that inclusion of trait-driven plant hydraulics
schemes will lead to reduced uncertainty in the future state of tropical forests under climate change.

References
General comment to the reviewer: Thank you for taking the time to thoroughly read our manuscript and in particular, for highlighting the key parts of the paper which were unclear. We believe that our revisions make a substantial improvement to the accessibility of the description of the model and why we pursued our particular approach to a broad audience. Below, your original comments are highlighted in red and our responses are in black. When text is copied directly from the revised paper the words are italicized.

This paper presents a plant hydraulic model and the parameterization of this model with plant traits of tropical forest trees. The study is interesting and in the scope of the journal Geoscientific Model Development. The hydraulic model itself is based on the model proposed by Sperry et al. (1998). But the parameterization with plant traits is comprehensive and valuable for model development, especially for modeling tropical forests. The equations in Supplement S1 have well explained the formulations of the model. And the figures and the equations in Table 2 are presenting the results well.

Thank you for recognizing the value of our research.

I have to say that I had a hard time reading this paper. I went through this paper many time in the past weeks and still didn’t well get it. Fortunately, the equations in Supplemental material and Table 2 are clear and the figures of results are readable. I can see it is a good work. But the writing of this paper should be substantially improved in its revised version.

We made substantial changes in four main places of the manuscript where the model is either introduced or described: The introduction (1.), the model overview (2.1.1), the tissue water relations (2.1.2), and scaling conductance with tree size (2.1.4). Several other minor modifications to text were also made. We describe these changes in detail in our response to your “Minor suggestions” #1, #2, #3 and #6 below.

Another concern is the interactions between the hydraulics model and the host model TFS. The authors only show that the hydraulics model makes the hourly predictions of water dynamics better (e.g., transpiration, water potential, etc.) at given forest structure in their results. But, how the hydraulics model affects the long-term predictions of TFS (decades to a century)? I ask this question because a plant hydraulics model may change the behavior of trees in competition and therefore change the long-term predictions of forest dynamics. I want to know to what extent it changes the host model (i.e., TFS).

We agree that the interactions between plant hydraulic traits and longer term demographic dynamics is a scientifically intriguing and important topic and is one we intend to pursue, but in future work. The current version of TFS we are using is not as of yet dynamic – mortality and recruitment processes are not yet fully developed. The model in its current form requires site-specific initialization and is intended to explore (and be validated by) various short-term demographically-structured outputs, such as productivity and (in the case of the hydraulics mode) water status of individual trees.
The validation exercises conducted by Fyllas et al. (2014) and this paper give us confidence to proceed with the analysis you suggest. We highlight how the novel model capability described here fits within the broader scope of interactions between plant hydraulic traits and forest trait composition and dynamics in two new sentences at the end of the Discussion overview paragraph (page 26 line 27 – page 27 line 2):

In sum, TFS v. 1-Hydro represents a key and advanced model capability to represent differential performance of individual trees based on hydraulic traits, size and light environments (Figs 9-10). Future work coupling the present scheme with community dynamics (mortality, growth and recruitment) has the potential to predict shifts in community trait distributions under changing moisture regimes, as has been observed or implied in studies of tropical species distributions and forest community dynamics (Engelbrecht et al., 2007; Fauset et al., 2012).

Minor suggestions:
1. The section of “introduction” : I didn't get it why it is necessary to build this model and why this way works here from this section. I hope the authors can write a better introduction to make it easier to understand in a revised version.

We have expanded the section outlining the various approaches to doing plant hydraulics (page 3 line 27 – page 5 line 8), in order to highlight why we elaborated (what we have now termed) the “continuous porous media” approach:

While a range of approaches exist for modeling plant hydraulics at fine scales (i.e., individual trees), all involve an extension of Darcy’s law (Darcy, 1856) from the soil domain to include plants as well. Darcy’s law states that water flux anywhere in the soil-plant continuum is proportional to the product of soil or plant hydraulic conductivity and a gradient in water potential. In order for these models to capture drought response, hydraulic conductivity within the soil-plant continuum must dynamically respond to changes in moisture. Three main approaches are distinguished in terms of how they represent the impact of declines in water potential on tissue water content and xylem hydraulic conductivity. A first class of models is the simplest and simulates moisture sensitivity of soil-root conductance but not xylem hydraulic conductance (Jarvis et al., 1981; Williams et al., 1996; Ogée et al., 2003; Alton et al., 2009; Bonan et al., 2014). This approach has proven useful for modeling the effects experimental drought in tropical forests (Williams et al., 1998; Fisher et al., 2006; Fisher et al., 2007), but it remains unclear whether this approach misattributes drought effects occurring within trees to the soil; therefore a second class of models implements variable xylem conductivity with xylem water potential (Williams et al., 2001; Hickler et al., 2006; Domec et al., 2012; Duursma and Medlyn, 2012; Xu et al., 2016). To simplify computational load, these two approaches do not explicitly track dynamic changes in the volume of plant water storage. Instead, a constant ratio of change in stored water per unit change in water potential, or stem hydraulic capacitance, is assumed, which may overestimate the buffering capacity of tree stored water under extreme drought conditions when small relative declines in stored water induce very large declines in water potential. An additional consequence of the design of these models is the inability to represent the bidirectional flow of water at the root-soil interface. Reverse flow of water from roots into soil is an important process in root hydraulic distribution (Oliveira et al., 2005), and may also mediate time to desiccation under drought (North and Nobel, 1997).
A convenient way to address these issues is in a third class of models (hereafter the “continuous porous media approach”), which simply extend the modeled mass balance of water from the soil domain into the plant by relating simulated changes in water content to water potential (and vice versa) everywhere within the plant-soil continuum (Edwards et al., 1986; Arbogast et al., 1993; Sperry et al., 1998; Kumagai, 2001; Bohrer et al., 2005; Mackay et al., 2015; Mirfenderesgi et al., 2016). While more computationally complex, the continuous porous media approach offers two main advantages in addition to addressing the issue of plant water storage and bidirectional root flow. First, the coupled plant-soil system is represented by a single mass balance equation, such that root water uptake or loss simply emerges from the solution of this equation, and needs not be ascribed post-hoc as is the case in the first two approaches. Second, this approach relies on an explicit description of the relationship between water content and water potential in plant xylem (the “pressure-volume”, or PV curve), analogous to the water retention curves used in soil physics. As we will show, there is a wealth of information on PV hydraulic traits for leaves, and to a lesser degree, stems in tropical forests. Implementing PV curves in the model greatly increases the scope of data with which the model can be parameterized. In this paper, we develop a continuous porous media approach intended for application at specific sites in the tropics to explore dynamics of water fluxes from hourly to seasonal timescales and at spatial scales ranging from individual trees to the stand-level scale. This intermediate-scale approach is a model testbed meant to inform implementations of plant hydraulics in coarse-scale forest ecosystem models.

We have also better highlighted (page 5, line 28 – page 6, line 8) why plant hydraulics is important from a long-term demographic and trait-filtering perspective (which will give rise to the kinds of long-term investigations you highlight above):

The implication for ecosystem models is that under-representation of diversity in functional traits and tree size in tropical forests is undermining efforts to make accurate projections of tropical forest response to climate. Model parameterization of hydraulic trait diversity should thus provide much-needed model capability to represent a diversity of responses to changes in moisture availability, laying the groundwork for representing trait-mediated differences in survival and subsequent shifts in forest trait composition. Shifts in trait composition are already occurring in some tropical forests (e.g., Enquist and Enquist, 2011; van der Sande et al., 2016), and such shifts (or the diversity of traits alone) have been shown to buffer ecosystems in the face of environmental change, and in some cases, are the difference between predicted complete loss of forest and forest persistence (Fauset et al., 2012; Levine et al., 2016; Sakschewski et al., 2016).

2. In page 4, lines 36 “Other models treat the plant continuum as a porous medium with constitutive equations defining water retention properties (the relationship between water potential and water content) and xylem PLC, using Darcy’s law to incorporate fluxes within the Richards’ mass balance equation”. I think this sentence is important because it describes what other models do. But please make this sentence clear.

This description has been entirely re-worked and is given in the response to your comment immediately above
3. Pages 45, from line 10 in page 4 to line 30 in page 5: These two big paragraphs have a lot of facts and arguments. But they are too messy. I have read through them many times, trying to figure out the messages that the authors want to deliver. But, I still do not get them.

We have substantially restructured these paragraphs to highlight our important messages, by deleting some content and adding some clarifying sentences that link this section to the previous section summarizing modeling approaches, as follows (page 5, lines 9 – 15):

Model parameterization leads us to the challenge of how to represent variation in plant hydraulic traits governing moisture sensitivity and water transport capacity. It has long been recognized that the functional trait diversity of tropical forests mirrors their large species diversity (Corner, 1949; Hallé et al., 1978; Leigh Jr, 1999), and diversity in plant hydraulic traits such as the water potential at turgor loss (\(\pi_{tp}\)) and at 50% loss of conductivity (\(P_{50}\)), xylem-specific hydraulic conductivity (\(k_{s,\text{max}}\)) and the leaf-to-sapwood area ratio (\(A_t:A_s\)) is no exception (Borchert, 1994; Tobin et al., 1999; Lopez et al., 2005; Meinzer et al., 2008a; Zhu et al., 2013).

We then proceed with our original summary (which has been reworded in some places) of various lines of evidence indicating how plant hydraulic traits can ultimately affect the distribution of species and their various hydraulic strategies across gradients in water availability (page 5, line 15 – page 6, line 8).

4. Page 7, lines 910 “: : : the model developed by J.S. Sperry and described in Sperry et al. (1998)” can be shortened as “: : : the model developed by Sperry et al. (1998)”.

Done.

5. Page 7, line 21 “we modified S98 in three important ways : : :”. I prefer to say “we modified S98 in three ways : : :” by crossing out “important”. I understand that these modifications are important. But here it’s a description of the model and you don’t have to evaluate your works here.

We have eliminated value statements about our modeling approach from the Methods section.

6. Page 8 lines 112: This paragraph should be a summary of the model, not just what have been described in Supplement S1. The authors should expect the readers to get a picture of the model by their descriptions without reading S1.

We have substantially re-worked the model overview section (page 8, line 5 – page 9, line 9) to summarize the model for readers so that they do not have to read S1 to understand its structure. We maintained references to the Supplement S1, however, so that readers can refer to it for further details not included in the main text:
The fast-timescale dynamics of the hydraulics model are governed by three sets of constitutive relationships: 1) the relationship between water potential and water content, 2) the relationship between hydraulic conductivity and water potential, and 3) the relationship between a stomatal water stress multiplier and leaf water potential. The first two relations are applied to every compartment within the plant-soil continuum and have specific equations for plant and soil porous media types. The soil constitutive equations for the first two relations are given by, respectively, the van Genuchten (1980) and Mualem (1976) formulations. We chose these particular equations for the soil water characteristic and unsaturated hydraulic conductivity because extensive work has parameterized these formulations on tropical soils, which have been noted to have distinct hydraulic properties when compared to temperate soils of similar texture (Tomasella and Hodnett, 2002). These equations are given in the Supplement S1 Sections 3.1.2 and 3.2.2. The plant constitutive equations for the first two relations are formulated and described in Sections 2.1.2 and 2.1.3 below. The third relation for stomatal response to moisture stress is described in Section 2.1.5. All parameters of the constitutive relations for plant tissue are biologically interpretable and measureable plant hydraulic traits.

Several linkages are made between tree allometry and hydraulic properties (see Supplement S1 Section 4). Leaf, stem, transporting root, and absorbing root water storage compartment volumes derive respectively from the TFS-predicted leaf, stem, coarse root, and fine root biomasses using characteristic tissue densities. The heights of these components derive from tree height and rooting depth. The characteristic soil volume over which root uptake occurs is given by half the distance between absorbing roots, which decreases as total community root length (summed across all trees) increases. Total hydraulic conductance between adjacent plant water storage compartments is scaled from xylem hydraulic conductivity using first principles and plant allometric theory (Section 2.1.4). The model code only initializes these allometrically-dependent hydraulic properties; it does not (yet) implement functions to update them as trees grow. Neglecting the effects of growth has negligible effects on the results presented in this paper but will be necessary for application of the model at timescales longer than one year.

The numerical solution (see Supplement S1 Section 5) operates at every timestep and updates water contents and potentials throughout the plant-soil continuum (including root uptake or loss) due to transpiration. It uses a first-order Taylor series expansion about the water content term to linearize the Richards mass balance equation describing the 1-dimensional continuous array of plant and soil compartments. This results in a tridiagonal matrix that is solvable without iteration. Following the approach of Siqueira et al. (2008), infiltration and drainage are treated separately from the plant-soil fluxes due to transpiration (Supplement S1 Section 6).

7. Page 8, lines 2223: It took me a while to think what the authors want to tell in this sentence. If the authors just want to talk about “capillary water”, I prefer a sentence like “sapwood also stores capillary water in its void spaces and embolized conduits”. Then, I don’t have to think about “tension theory”.

This sentence has been modified as suggested.

8. Page 8 lines 2330: These arguments are not necessary because this section is to describe the model. And, the sentences in lines 1423 can be reorganized so that it’s easier for readers to understand Eqn 1.

We have eliminated value statements about our modeling approach from the Methods section. We deleted unnecessary details from the paragraph leading up to Eqn 1 and
added a sentence at the end to make it easier to understand Eqn 1. This paragraph now reads as:

We used pressure-volume (PV) theory (Bartlett et al., 2012; Tyree and Hammel, 1972; Tyree and Yang, 1990) to describe the constitutive relation between total water potential ($\psi_{\text{tot}}, \text{MPa}$) and relative water content (RWC, g H_2O g$^{-1}$ H_2O at saturation) in the plant compartments (Eqn 1). ψ_{tot} is the sum of two components: solute potential ψ_{solute} (MPa) which is negative due to the presence of solutes in living cells, and pressure potential ψ_p (MPa) which is ≥ 0 due to cell wall turgor (but see Ding et al., 2014). PV theory is usually applied to leaves, but can also apply to sapwood (Chapotin et al., 2006; Meinzer et al., 2008b; Scholz et al., 2007); thus we apply it here to all plant tissue. Sapwood also stores capillary water (Tyree and Yang 1990) in its void spaces and embolized conduits. Consequently, this relation is described by three successive dehydration phases representing, respectively, capillary water (sapwood only), elastic cell drainage (positive turgor), and continued drainage after cells have lost turgor:

[equation 1]

9. Page 9, line 6: “RWC” is not explained.

It is now explained.

10. Page 10, line 13 “(-)”: Does it mean ax is negative? If yes, I prefer to use “-ax” in the equation.

“(−)” was changed to “(unitless)”

11. Page 11, lines 213: This paragraph is supposed to describe some “first principles” of the size effect of trees on plant hydraulics according to the second paragraph, but where are they? I saw “two main mechanisms”. The second one describes two possibilities. Which one should be the “first principle” in the model?

The Section 2.1.5 including the paragraph to which you refer was substantially reworked (page 11, line 19 – page 12, line 22) to make clear our scaling approach to the reader:

Tree size exhibits a first-order control over much variation in whole-plant hydraulic conductance (Sperry et al., 2008) since hydraulic path length increases with tree height (H) (Mencuccini, 2002). For this reason, whole plant conductance is not a constant parameter in our model. Rather, first principles dictate that, to a first approximation, whole-tree maximum aboveground conductance ($K_{\text{max.tree.ag}}$, kg s$^{-1}$ MPa$^{-1}$) may be derived as a function of xylem conductivity ($k_{s,\text{max,x}}$, kg m$^{-1}$ s$^{-1}$ MPa$^{-1}$), sapwood area (A_s, m2), and H (m) as

$$K_{\text{max.tree.ag}} = \frac{k_{s,\text{max,x}}A_s}{H}$$

This relation predicts the negative effects of H (increasing H means decreasing $K_{\text{max.tree.ag}}$). Whole-tree conductance per unit leaf area ($K_{\text{max.tree.ag}}$) will determine water status at the level of individual leaves, and thus hydraulic constraints on leaf-level gas exchange. Dividing through by leaf area (A_l, m2) gives
In this relation, the leaf:sapwood area ratio \((A_t: A_s) \) emerges as a key plant trait controlling \(K_{l,max,tree,ag} \). If \(A_t: A_s \) decreases with tree height, as has been documented in many tree species (McDowell et al., 2002, but see Calvo-Alvarado et al., 2008), the negative effects of height can be partially overcome. In addition, the near-universal tendency for xylem conduits to increase in diameter within trees from stem tips to trunk base (referred to as xylem taper in the opposite direction) (Meinzer et al., 2010; Mencuccini et al., 2007; Olson et al., 2014; Olson and Rosell, 2013; Petit and Anfodillo, 2011) also mitigates the negative effects of height according to the Hagen-Poiseuille law. Neglecting the effects of xylem taper may thus overestimate the negative hydraulic effects of increasing path length in size-structured forests. Metabolic scaling theory (MST) makes baseline predictions about the optimal degree of xylem conduit taper in trees subject to the constraint of hydraulic safety (which decreases as conduits get larger) and has been validated against observations of conduit diameter across trees of different heights (Savage et al., 2010; West et al., 1999). We therefore use MST to include the effect of xylem taper on \(K_{l,max,tree,ag} \) by modifying Equation 6 to include a xylem taper term \(\chi_{tap,notap,ag} \) representing the ratio of whole-plant conductance with taper to that without:

\[
K_{l,max,tree,ag} = \frac{k_{s,max,petiole}A_s}{HA_t} \chi_{tap,notap,ag}
\]

(7)

where \(k_{s,max,petiole} \) is used to reference \(K_{l,max,tree,ag} \) to MST predictions. \(\chi_{tap,notap,ag} \) is in the range of 23-50 for trees of heights 10-30 m; thus the benefit of xylem taper for increasing total plant conductance itself increases with tree height. \(\chi_{tap,notap} \) is assumed constant across individuals in this study, but parameterizing variation in \(A_t: A_s \) across species is an outcome of this study. The full details of this approach in addition to the treatment of the belowground component of tree conductance (\(K_{max,tree,bg} \)) are outlined in Section 2 of the Technical Description (Supplement S1).

12. Page 11, line 10: "because of the Hagen-Poiseuille law". It’s a phenomenon of the Hagen-Poiseuille law, not because of it.

This was changed to “according to”

13. Page 12, lines 2023: I think the sentence “FMCgs : : : is the only variable passed from the hydraulics module to the host model” is the message of this paragraph and therefore should be the first sentence.

We moved this sentence to be the first sentence.

14. Lines 2326 in Pages 12 and lines 15 in page 13: These sentences can be moved to discussion. This section is to describe the model, it’s not necessary to argue these issues here.
Done – these sentences were moved to become the third paragraph in the ‘Practical Implications’ Section 5.3 of the Discussion (page 30, lines 17 – 27).

15. Page 13, line 28: Please also cite Strigul et al. 2008 for PPA.

Done.

16. Page 16, line 15: “Idealized model experiments”. I would use “Model experiments” because any model experiments are always “idealized” somehow.

Done. Other references to “idealized model experiments” in the manuscript were also changed.

17. Page 17, lines 1314 “We matched simulated trees : : : :” It would be clearer if there is a table to show the settings of trees.

Great suggestion. We made a new Table 3 to this effect and now refer to it on page 18 line 5 and Figure 11 caption. This new table is reproduced below:

Table 3. Properties of simulated and observed trees given in Figure 11.

<table>
<thead>
<tr>
<th>Figure 11 sub-panel</th>
<th>Tree ID*</th>
<th>Observed DBH (cm)</th>
<th>Simulated DBH (cm)</th>
<th>Simulated Canopy Layer</th>
<th>Simulated $A_{i:A}$ (m² cm⁻²)</th>
<th>Simulated $K_{\text{max,ag}}$ (kg s⁻¹ MPa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b</td>
<td>C1</td>
<td>15.6</td>
<td>15.6</td>
<td>2</td>
<td>0.41</td>
<td>0.062</td>
</tr>
<tr>
<td>c,d</td>
<td>C2</td>
<td>18.7</td>
<td>18.8**</td>
<td>2, 3</td>
<td>0.45**</td>
<td>0.064**</td>
</tr>
<tr>
<td>e,f</td>
<td>C4</td>
<td>43.9</td>
<td>43.9**</td>
<td>1, 2</td>
<td>0.74**</td>
<td>0.076**</td>
</tr>
<tr>
<td>g,h</td>
<td>C3</td>
<td>51.4</td>
<td>51.4</td>
<td>2</td>
<td>0.81</td>
<td>0.078</td>
</tr>
</tbody>
</table>

* as given in Fisher et al. (2006)

** two simulated trees were included in this size class. Value given is the average of the two trees.

Per the suggestion of Referee #1, we have removed the analyses related to TFE in this paper.

References
Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

Bradley O. Christoffersen1,2, Manuel Gloor3, Sophie Fauset3, Nikolaos M. Fyllas4, David R. Galbraith3, Timothy R. Baker3, Lucy Rowland2, Rosie A. Fisher4, Oliver J. Binks3, Sanna A. Sevanto1, Chonggang Xu1, Steven Jansen6, Brendan Choat7, Maurizio Mencuccini2,8, Nate G. McDowell1 and Patrick Meir2,9

Correspondence to: bradley@lanl.gov, ph: +1-505-665-9118

1. Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
2. School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
3. School of Geography, University of Leeds, Leeds, United Kingdom
4. Department of Ecology and Systematics, University of Athens, Athens, Greece
5. Climate & Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado, USA
6. Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
7. University of Western Sydney, Hawkesbury Institute for the Environment, Richmond, New South Wales 2753, Australia
8. ICREA at CREAF, Cerdanyola del Vallès, Barcelona 08193, Spain
9. Research School of Biology, Australian National University, Canberra, Australia

Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous Richards’ equation-based porous media approach to modeling of plant hydraulics in which all parameters of their constitutive equations are biologically-interpretable and measureable plant hydraulic traits (e.g., turgor loss point π_{tp}, bulk elastic modulus ε, hydraulic capacitance C_{ft}, xylem hydraulic conductivity $k_{s,max}$, water potential at 50% loss of conductivity for both xylem ($P_{50,x}$) and stomata ($P_{50,gs}$), and the leaf:sapwood area ratio $A_l: A_s$). We embedded this plant hydraulics model within a ‘trait forest simulator’ (TFS) that modelled individual tree-light environments of individual trees and their upper boundary condition (transpiration) as well as providing a means for parameterizing individual variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits including wood density (WD), leaf mass per area (LMA) and photosynthetic capacity (A_{max}) and evaluated the coupled models (called TFS v.1-Hydro)
predictions against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux.

Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, the TFS-Hydro model parameterization is capable of representing patterns of coordination and trade-offs in hydraulic traits. TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration under control conditions, but the absence of a vertically stratified soil hydrology model precluded improvements to the simulation of drought response. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

Key words: vegetation modeling, plant hydraulics, size scaling, xylem embolism, capacitance, turgor loss point, water stress, soil-plant-atmosphere continuum
1 Introduction

Tropical forests harbor great biodiversity (Myers et al., 2000; ter Steege et al., 2013) and play an important role in regulating regional and global climate (Gash and Nobre, 1997; Silva Dias et al., 2002). However, climate change is inducing changes to the hydrological regime of tropical forests (Feng et al., 2013; Fu et al., 2013; Gloor et al., 2013), with some consensus for a projected increase in drought frequency over the coming century via an intensification of precipitation seasonality (Joetzjer et al., 2013; Boisier et al., 2015), or an increase in El Niño events (Cai et al., 2014), and chronically rising atmospheric moisture demand (McDowell and Allen, 2015), even as the directional change of total precipitation remains highly uncertain (IPCC, 2007). Therefore, because of their intrinsic value and strong coupling to the regional and global climate system, it is of paramount importance to have a predictive capability of tropical forest response to changes in water availability (Kumagai and Porporato, 2012; Oliveira et al., 2014; Meir et al., 2015).

Evaluations of many coarse-scale forest ecosystem models in the species-rich tropics indicate a poor predictive ability of these models to simulate tropical forest response to drought when plant hydraulics are not represented (Galbraith et al., 2010; Powell et al., 2013; Joetzjer et al., 2014; Rowland et al., 2015b). While most of these models treat soil water fluxes mechanistically, soil-root and internal plant water fluxes are not mechanistically modeled; consequently, dynamic changes in plant moisture stress in these models are driven by changes in soil water status alone. This is due in large part to water stress being parameterized by a single heuristic “beta” function that downcales photosynthesis or stomatal conductance based solely upon soil water content or potential (discussed in Feddes et al., 1978; Egea et al., 2011; Xu et al., 2013; Verhoef and Egea, 2014). Additionally, water stress in many models includes relatively few plant functional type (PFT)-dependent parameters; thus models are largely ignorant of plant traits which that may control response to moisture. In contrast, a mechanistic treatment of explicit representation of plant hydraulics allows water stress to be driven by changes in leaf water status (Sperry and Love, 2015). Coupled with site-specific parameterization, the plant hydraulics approach enabled high-fidelity simulation of tropical forest response to moisture (Fisher et al., 2006; Fisher et al., 2007).
While there are a range of approaches exist for modeling plant hydrodynamics, hydraulics at fine scales (i.e., individual trees), all involve an extension of Darcy’s law (Darcy, 1856) from the soil domain to include plants as well. Darcy’s law states that water flux anywhere in the soil-plant continuum is proportional to the product of soil or plant hydraulic conductivity and a gradient in water potential. In order for these models to capture drought response, hydraulic conductivity within the soil-plant continuum must dynamically respond to changes in moisture. Three main approaches are distinguished in terms of how they represent the impact of declines in water potential on hydraulic effects on tissue water content and xylem hydraulic conductivity and its reduction with increasing tension, and tissue water content or hydraulic capacitance. A first class of models is the simplest and represent the continuum with resistors and optional capacitors but which does not simulate moisture sensitivity of soil-root conductance but not within tree reductions in xylem hydraulic conductance (Jarvis et al., 1981; Williams et al., 1996; Ogée et al., 2003; Alton et al., 2009; Bonan et al., 2014). This approach has proven useful for modeling the effects of seasonal and experimental drought in tropical forests (Williams et al., 1998; Fisher et al., 2006; Fisher et al., 2007), but it remains unclear whether this approach misattributes drought effects occurring within trees to the soil; therefore a second class of models has upon implemented variable xylem conductivity with xylem water potential (Williams et al., 2001; Hickler et al., 2006; Domec et al., 2012; Duursma and Medlyn, 2012; Xu et al., 2016). To simplify computational load, these two approaches do not explicitly track dynamic changes in the volume of plant water storage. Instead, a constant ratio of change in stored water per unit change in water potential, or stem hydraulic capacitance, is assumed, which may overestimate the buffering capacity of tree stored water under extreme drought conditions when small relative declines in stored water induce very large declines in water potential. An additional consequence of the design of these models is the inability to represent the bidirectional flow of water at the root-soil interface. Reverse flow of water from roots into soil is an important process in root hydraulic distribution (Oliveira et al., 2005), and may also mediate time to desiccation under drought (North and Nobel, 1997).

In addition to variable xylem conductivity with water potential, a convenient way to address these issues is in a third class of other models (hereafter the “continuous porous media approach”), which simply extend the modeled mass balance of water from the soil domain into the plant by relating simulated changes in water content to water potential (and vice versa).
everywhere within the plant-soil continuum treat the plant continuum as a porous medium with constitutive equations defining water retention properties (the relationship between water potential and water content) and xylem PLC, using Darcy’s law to incorporate fluxes within the Richards’ mass balance equation (Edwards et al., 1986; Arbogast et al., 1993; Sperry et al., 1998; Kumagai, 2001; Bohrer et al., 2005; Mackay et al., 2015; Mirfenderesgi et al., 2016). While more computationally complex, the continuous porous media approach offers two main advantages in addition to addressing the issue of plant water storage and bidirectional root flow. First, the coupled plant-soil system is represented by a single mass balance equation, such that root water uptake or loss simply emerges from the solution of this equation, and needs not be ascribed post-hoc as is the case in the first two approaches. Second, this approach relies on an explicit description of the relationship between water content and water potential in plant xylem (the “pressure-volume”, or PV curve), analogous to the water retention curves used in soil physics. As we will show, there is a wealth of information on PV hydraulic traits for leaves, and to a lesser degree, stems in tropical forests. Implementing PV curves in the model greatly increases the scope of data with which the model can be parameterized. This approach is attractive because it makes no assumptions about where within the continuum hydraulic transport is limiting, and also possesses the relevant hydraulic parameters for which large variation has been documented in the tropical literature. In this paper, we develop a continuous porous media approach intended for application at specific sites in the tropics to explore dynamics of water fluxes from hourly to seasonal timescales and at spatial scales ranging from individual trees to the stand-level scale. This intermediate-scale approach is a model testbed meant to inform implementations of plant hydraulics in coarse-scale forest ecosystem models.

Model parameterization leads us to the challenge of how to represent variation in plant hydraulic traits governing moisture sensitivity and water transport capacity. An additional challenge for modeling tropical vegetation responses to climate lies in addressing the large and growing body of knowledge about the diversity of drought sensitivity and hydraulic traits within tropical forests. It has long been recognized that the functional trait diversity of tropical forests mirrors their large enormous species biodiversity of tropical forests mirrors a comparative functional diversity and associated ecological strategies for dealing with environmental variation (Corner, 1949; Hallé et al., 1978; Leigh Jr, 1999), and. This diversity in tropical forests is prominently manifested in plant hydraulic traits such as the water potential at turgor loss ($\pi_{t,t=0}$) and at 50%
loss of conductivity (P_{50}), xylem-specific hydraulic conductivity ($k_{s,max}$) and the leaf-to-sapwood area ratio ($A_l:A_s$) cell turgor properties and capacitance, xylem conductivity, and vulnerability to embolism is no exception (Borchert, 1994; Tobin et al., 1999; Lopez et al., 2005; Meinzer et al., 2008a; Zhu et al., 2013). Interspecific variation in these traits is thought to mediate which are implicated in the variation in species differences level in survival in both natural and experimentally-induced droughts (Nakagawa et al., 2000; Engelbrecht and Kursar, 2003; Kursar et al., 2009; Moser et al., 2014; Meir et al., 2015). Differential drought sensitivity, in turn, is known to explicitly link to species distributions (Choat et al., 2007; Engelbrecht et al., 2007; Baltzer et al., 2008; Condit et al., 2013). Mechanistic plant hydraulics also allows for diversity in tree height, already included in size-structured forest ecosystem models, to act as a hydraulic trait because it influences the path length over which water must traverse to reach the canopy. Survival in these studies was not only taxon-specific, but also stratified by tree size, usually with larger trees often demonstrating significantly higher vulnerability to drought (Nakagawa et al., 2000; Nepstad et al., 2007; da Costa et al., 2010; Rowland et al., 2015a), a trend demonstrated to be pantropical in scope (Phillips et al., 2010; Bennett et al., 2015). Such a trend highlights that, in addition to hydraulic functional traits, the increasing hydraulic path length associated with tall trees (and perhaps increased radiation loads) is an equally important determinant of drought sensitivity (McDowell and Allen, 2015).

Thus the implication of increases in drought frequency for tropical forests are shifts in growth form (Phillips et al., 2002; Schnitzer and Bongers, 2011), species composition (Fauset et al., 2012; Meir et al., 2015) as well as size distribution. The implication for ecosystem models is that under-representation of diversity in functional traits and tree size in tropical forests is hampering undermining efforts to make accurate projections of tropical forest response to climate. Model parameterization of hydraulic trait diversity should thus provide much-needed model capability to represent a diversity of responses to changes in moisture availability, laying the groundwork for representing trait-mediated differences in survival and subsequent shifts in forest trait composition. Shifts in trait composition are already occurring in some tropical forests (e.g., Enquist and Enquist, 2011; van der Sande et al., 2016), and such shifts (or the diversity of traits alone) have been shown to buffer ecosystems in the face of environmental change, and in some cases, are the difference between predicted complete loss of forest and forest persistence (Fauset et al., 2012; Levine et al., 2016; Sakschewski et al., 2016).
Because a complete representation of trait diversity in models is neither tractable nor desired, the challenge becomes to identify and represent the key-dominant axes, or modes, of trait variation within our plant hydraulics model. To date, syntheses of hydraulic traits have typically focused on a limited set of traits in isolation (Bartlett et al., 2012; Choat et al., 2012; Nardini et al., 2014; Anderegg, 2015) but see Mencuccini et al. (2015). In contrast, here we present a model that necessitates a synthesis how a large suite of hydraulic traits represented in our model vary with better quantified dimensions of plant functional trait variation, such as the spanning a large range of hydraulic traits. It introduces multiple parameters to the forest model (Table 2); if all of these parameters varied independently of each other, representing trait diversity would be intractable. If, however, these hydraulic traits coordinate with other aspects of plant economics, such as the leaf economics spectrum (Wright et al., 2004) and the stem economics spectrum (Chave et al., 2009) economics spectra. We make no a priori assumptions about the coordination (or lack thereof) between leaf and stem economics, given the conflicting evidence - then we can represent the realistic plant water use strategies using a relative low number of axes of trait variation in our model. Arguments for and evidence of both strong (Baraloto et al., 2010; Mendez-Alonzo et al., 2012; Reich, 2014). In addition, we assess the evidence for trade-offs and coordination among hydraulic traits, independent of leaf and stem economics traits, and weak to nonexistent (Baraloto et al., 2010) coupling between stem and leaf economics spectra in tropical forests have been put forward; therefore given the lack of consistent evidence for their coordination, we make no a priori assumptions in this regard, and ask how hydraulic traits coordinate with either leaf or stem economics traits either in conjunction or separately. An additional (not necessarily independent) constraint on trait variation might emerge via trade-offs among certain hydraulic traits, such as the trade-off between xylem efficiency (hydraulic conductivity) and safety (embolism resistance) (Gleason et al., 2016; Sperry et al., 2008; Tyree et al., 1994) or the trade-off between drought avoidance (e.g., via leaf shedding) and tolerance (embolism resistance), mediated by sapwood capacitance (Borchert and Pockman, 2005; Meinzer et al., 2008b; Pineda-Garcia et al., 2013). Here we investigate the possibility of predicting hydraulic traits from more commonly measured leaf and stem traits. These quantitative relationships are analogous to pedotransfer functions that soil physicists have used to derive soil hydraulic properties from more easily measured properties such as soil
texture; hence we refer to quantitative trait-trait relationships as ‘ecotransfer’ functions. A key aspect of this study, however, is to address how well such ecotransfer functions capture coordination and trade-offs among hydraulic traits wherever they exist.

In what follows, The objective of this study is to develop a plant hydraulics model rooted in established theory of plant physiology and allometry, and to implement this model within a broader model framework capable of parameterizing individual-level variation in plant hydraulics traits along key axes of hydraulic trait variation. Specifically, we first present describe the a continuous porous media hydraulics module that simulates the fast-timescale (hourly) processes of tree water flux and representation of tree water use that both resolves water potential gradients throughout the soil-root-stem-canopy continuum and uses first-principles to capture the effect of increasing tree size on whole tree hydraulic properties. Second, this hydraulic framework is incorporated into a size-structured and trait-driven model that allows for the representation of individual-level variation in leaf, stem and root hydraulic traits and tree size, via a pantropical synthesis of hydraulic traits, we derive empirical relationships for parameterizing hydraulic trait variation in the plant hydraulics model. To parameterize the model, we conduct an empirical synthesis that both identifies how hydraulic traits are coordinated with more readily measured leaf and stem traits and assesses the evidence for and capability of the new model framework to represent coordination and trade-offs among hydraulic traits. Third, we then demonstrate the model’s capability to simulate different individual-level functional responses to environmental variation (either water or light), arising from hydraulic limitations imposed by tree size or hydraulic traits. Finally, we evaluate the new model in terms of its ability to capture diurnal dynamics of water potential, individual-level variation in leaf water status, and the observed seasonal dynamics of whole-ecosystem-level water use under control and experimentally-induced soil water deficit.

2 Model Description: Plant Hydraulics and Host Individual Trait-Driven Forest Models

The plant hydraulics model developed here is integrated into a “host” individual tree trait-driven forest model (TFS). TFS (i.e., it simulates every tree in a stand > 10 cm DBH and driven by plot observations of the tree size distribution, and each tree can possess a unique suite-set of values of the four functional traits). TFS supplies plant traits wood density (WD), leaf mass per area
(LMA), leaf nitrogen (N_l) and leaf phosphorus (P_l), tree size, and canopy biophysics to the new plant hydraulics module (Fig. 1). Through synthesis of literature and existing databases, we develop empirical equations to estimate, for each simulated tree, tissue-level hydraulic traits from the input plant traits and, combined with tree size, whole-tree hydraulic properties. The new plant hydrodynamics scheme. The modification of transpiration fluxes in TFS by the plant hydraulics module can be summarized as follows (see Figure 1): The hydraulics module passes to TFS a nondimensional multiplier (FMC_{gs}) $[(0,1)]$ for each tree for downregulating stomatal conductance, which is based on each tree’s leaf water potential at the previous timestep. The TFS model uses FMC_{gs} to within its biophysics calculations to estimate individual tree canopy-level transpiration fluxes for each tree at the current timestep, and the transpiration of each tree is which it then passes back to the hydrodynamic hydraulics model, which computes changes in water potentials and water contents throughout the soil-plant continuum (including root water uptake or loss) due to transpiration. The plant hydraulics module also assigns hydraulic traits based on each tree’s size and pre-assigned plant functional traits. Below we describe the components of the plant hydraulics model (Section 2.1), and at the end of each subsection highlight the key hydraulic traits for which we seek to understand trait trade-offs and coordination via our empirical synthesis. Section 2.2 gives a description of the host TFS our host trait-driven model within which the hydraulics scheme is embedded. The Supplement S1 gives a full technical description of the hydrodynamics portion of our tree hydraulics module as it is implemented within TFS, and Figure S1.1 can be referred to as the schematic of our hydraulics module schematic.

2.1 Plant Hydraulics Model

2.1.1 Overview

In this section we highlight the important developments we made to the model developed by J.-S. Sperry and described in Sperry et al. (1998; hereafter S98). S98 consists of a discretization of the soil-plant continuum as a series of water storage compartments with defined heights, volumes, conducting areas, water retention and conductivity properties, connected by elements with defined path lengths and conductances. Trees are divided into the four porous medium types of leaf, stem, transporting root and absorbing root, with the stem being divided into a variable number of compartments and all other types consisting of a single compartment (Fig
S1.1). The soil is radially discretized with a variable number of compartments, or cylindrical ‘shells’ around a characteristic absorbing root (the rhizosphere), and soil hydraulic properties are assumed constant across these compartments and across trees within a given soil type. The present TFS v.1-Hydro scheme does not consider the vertical distribution of soil water or roots.\footnote{We anticipate this to be a key component for subsequent future model development when we incorporate this scheme into host models with variable soil depths.}

The fast-timescale dynamics of the hydraulics model are governed by three sets of constitutive relationships: 1) the relationship between water potential and water content, 2) the relationship between hydraulic conductivity and water potential, and 3) the relationship between a stomatal water stress multiplier and leaf water potential. The first two relations are applied to every compartment within the plant-soil continuum and have specific equations for plant and soil porous media types. The soil constitutive equations for the first two relations are given by, respectively, the van Genuchten (1980) and Mualem (1976) formulations. We chose these particular equations for the soil water characteristic and unsaturated hydraulic conductivity because extensive work has parameterized these formulations on tropical soils, which have been noted to have distinct hydraulic properties when compared to temperate soils of similar texture (Tomasella and Hodnett, 2002). These equations are given in the Supplement S1 Sections 3.1.2 and 3.2.2. The plant constitutive equations for the first two relations are formulated and described in Sections 2.1.2 and 2.1.3 below. The third relation for stomatal response to moisture stress is described in Section 2.1.5. All parameters of the constitutive relations for plant tissue are biologically interpretable and measureable plant hydraulic traits.

Several linkages are made between tree allometry and hydraulic properties (see Supplement S1 Section 4). Leaf, stem, transporting root, and absorbing root water storage compartment volumes derive respectively from the TFS-predicted leaf, stem, coarse root, and fine root biomasses using characteristic tissue densities. The heights of these components derive from tree height and rooting depth. The characteristic soil volume over which root uptake occurs is given by half the distance between absorbing roots, which decreases as total community root length (summed across all trees) increases. Total hydraulic conductance between adjacent plant water storage compartments is scaled from xylem hydraulic conductivity using first principles and plant allometric theory (Section 2.1.4). The model code only initializes these allometrically-dependent
hydraulic properties; it does not (yet) implement functions to update them as trees grow. Neglecting the effects of growth has negligible effects on the results presented in this paper but will be necessary for application of the model at timescales longer than one year.

The numerical solution (see Supplement S1 Section 5) operates at every timestep (hourly) and updates water contents and potentials throughout the plant-soil continuum (including root uptake or loss) due to transpiration. It uses a first-order Taylor series expansion about the water content term to linearize the Richards mass balance equation describing the 1-dimensional continuous array of plant and soil compartments. This results in a tridiagonal matrix that is solvable without iteration. Following the approach of Siqueira et al. (2008), infiltration and drainage are treated separately from the plant-soil fluxes due to transpiration (Supplement S1 Section 6). With reference to the sections below, we modified S98 in three important ways by: 1) incorporating continuous functions of varying water potential with water content in tree stem and leaf tissues (i.e., non-constant capacitance; Section 2.1.2); 2) using first principles to scale length-independent hydraulic conductivities to hydraulic conductance over the entire stem (Section 2.1.4); and 3) linking the hydrodynamics to stomatal conductance (Section 2.1.5), thus creating a fully prognostic and dynamic model of leaf water potential. The end result is a plant hydraulics model where the parameters of the constitutive equations (Eqns 1-5) are biologically interpretable and measureable plant hydraulic traits. We summarize these key plant-specific developments in the sections below.

With reference to the sections of the Technical Description in Supplement S1, a brief summary of the other components of the model is as follows: We used the van Genuchten (1980) and Mualem (1978) formulations for the soil water characteristic (Section 3.1.2) and unsaturated hydraulic conductivity curves (Section 3.2.2), respectively, which have been the basis for pedotransfer functions developed for tropical soils (Hodnett & Tomasella 2002). Hydraulie compartment heights and sizes (volumes and lengths, in the case of absorbing roots) are linked to the tree allometry of TFS (Section 4). The numerical solution uses a non-iterative mass-based solution to the Richards’ equation, thereby doing away with the need for an iterative (potentially computationally intensive) Newton-Raphson scheme (Section 5). Following the approach of Siqueira et al. (2008), we separated out solutions for water movement in soil due to root water
uptake (given in sections above) from those for vertical water movement due to infiltration and drainage, which were based on the mean water content across all rhizosphere shells (Section 6).

2.1.2 Tissue water relations

We used pressure-volume (PV) theory (Tyree and Hammel, 1972; Tyree and Yang, 1990; Bartlett et al., 2012) to describe the constitutive relation between total water potential (ψ_{tot}, MPa) and relative water content (RWC, g H$_2$O g$^{-1}$ H$_2$O at saturation) in the plant compartments (Eqn 1). ψ_{tot} is the sum of two components: solute potential ψ_{sol} (MPa) which is negative due to the presence of solutes in living cells, and pressure potential ψ_p (MPa) which is \geq 0 due to cell wall turgor (but see Ding et al., 2014). PV theory assumes that xylem water (outside of living cells; the apoplast) is in equilibrium with water in living cells (the symplast). It is usually applied to leaves, but can also apply to sapwood (Chapotin et al., 2006; Scholz et al., 2007; Meinzer et al., 2008b); thus and we apply it here to all plant tissue. In addition, sapwood also stores capillary water (Tyree and Yang 1990), originating from its void spaces and embolized conduits and which is not held under tension. Consequently, this relation is described by three successive dehydration phases representing, respectively, capillary water (sapwood only), elastic cell drainage (positive turgor), and continued drainage after cells have lost turgor. Using PV theory as a formulation for tissue water relations in the model offers four main advantages: 1) it represents an explicit expression for the relation between water content and water potential amenable to numerical solution techniques for porous media water flow; 2) its parameters have a mechanistic interpretation; 3) it avoids the use of a constant capacitance with water potential (and thereby potentially infinite water supply); and 4) it allows for species differences in physiological parameters which may govern differential drought tolerance under extreme drought beyond the turgor loss point.

The general form for both leaf and sapwood PV curves describes three successive dehydration phases as:

$$
\psi_{tot} = \begin{cases}
\psi_0 - m_{cap} (1 - RWC) & RWC_{ft} \leq RWC \leq 1 \\
\psi_{sol}(RWC) + \psi_p(RWC) & RWC_{tip} \leq RWC < RWC_{ft} \\
\psi_{sol}(RWC) & RWC_r \leq RWC < RWC_{tip}
\end{cases}
$$

(1)
The first phase (capillary water) represents drainage of capillary water and is assumed linear, characterized by a slope (m_{cap}) and a saturated water potential (ψ_0). This is followed by an elastic drainage region phase where both solute (ψ_{sol}) and pressure (ψ_{p}) potential are changing from the relative water content point at which elastic drainage begins (RWC_{ft}) up to the turgor loss point (RWC_{tlp} and corresponding $\psi = \pi_{tlp}$), at which $\psi_{p} = 0$. In the final post-turgor loss region phase, symplastic (cell water) and xylem water from embolized conduits are expressed up to the point at which ψ_{total} approaches $-\infty$ (RWC_{r}). RWC_{r} is often referred to as the apoplastic fraction (Bartlett et al. 2012), but in light of the considerable amount of water released when vessels embolize in stems (Tyree et al., 1991; Holta et al., 2009), in this context RWC_{r} is best termed the residual fraction. Leaf PV curves as traditionally interpreted are a special case of Eqn (1) in which there is no capillary water ($RWC_{ft} = 1$). ψ_{sol} and ψ_{p} are respectively given by

$$\psi_{sol}(RWC) = \psi_{sol}(RWC^*) = \frac{-|\pi_o|}{RWC^*}$$

$$\psi_{p}(RWC) = \psi_{p}(R^*) = |\pi_o| - \varepsilon R^*$$

where π_o (MPa) and ε (MPa) are osmotic potential at full turgor and bulk elastic modulus, respectively, and $RWC^* = (RWC - RWC_{r})/(RWC_{ft} - RWC_{r})$ and $R^* = (RWC_{ft} - RWC)/(RWC_{ft} - RWC_{r})$ are transformations representing RWC and R (relative water deficit; $1 - RWC$) of symplastic (cell) water only (Bartlett et al. 2012). The absolute mass (W; kg) of water in tissue is given by $W = \rho_w \theta_{sat} RWC$, where θ_{sat} ($m^3 m^{-3}$) is the maximum water content on a per volume basis (or porosity) and ρ_w (kg m^{-3}) is the density of water. The constitutive equations used in the model are in terms of volumetric water content (θ; m^3 H2O m^{-3} plant tissue), achievable by using the transformations given above (see Supplement S1).

Volumetric capacitance (C; $kg m^{-3}$ MPa$^{-1}$) is defined at any point along the three regions as $(\rho_w \theta_{sat} \frac{dRWC}{d\psi})$, which for sapwood is highest in the capillary region ($\sim 200-400$ kg m^{-3} MPa$^{-1}$), intermediate in the elastic region (20-200 kg m^{-3} MPa$^{-1}$) (Tyree and Yang 1990), and after an initial increase beyond the turgor loss point, in theory will approach zero as $RWC \rightarrow RWC_{r}$.

Henceforth and in all figures, we report C at full turgor (C_{ft}), defined as the change in water mass per unit volume per unit change in water potential over the region where cell turgor (ψ_{p}) \geq
\(C_{ft} \equiv \rho_w \theta_{sat} \frac{\Delta RWC}{\Delta \psi}_{RWC=1}^{RWC=RWC_{tip}} \). For these hydraulic traits and all others which follow, we denote specific reference to leaf and xylem (sapwood) tissue with the subscripts \(l \) and \(x \), respectively. Key hydraulic PV traits which we seek to determine as functions of more commonly measured plant traits are \(\varepsilon, \pi_o, RWC_{tip}, C_{ft}, \) and \(RWC_r. \)

2.1.3 Embolism vulnerability

We use the inverse polynomial of (Manzoni et al., 2013a) for the xylem vulnerability curve, termed here the ‘fraction of maximum conductivity’ for xylem \((FMC_x) \):

\[
FMC_x(\psi_x) = \left[1 + \left(\frac{\psi_x}{P_{50,x}} \right)^a_x \right]^{-1}
\]

(4)

where \(P_{50,x} \) is the water potential at which 50% of maximum conductance is lost and \(a_x \) is a shape parameter \((-\text{unitless})\). \(FMC_x \) is defined at compartment nodes and is a nondimensional multiplier bounded on \((0,1]\) limiting the maximum xylem conductance \((K_{max,i}; \text{kg s}^{-1} \text{MPa}^{-1}; FMC_x FMC = 1 \) and 0 indicate no and complete xylem embolism, respectively) between any two compartments \(i \) and \(i+1 \). (Section 1 of the Supplement outlines how \(FMC_x \), defined at compartment nodes, limits \(K_{max,i} \), which is defined at compartment boundaries). Critically, \(K_{max,i} \) derives from plant hydraulic architecture and maximum xylem-specific conductivity \((k_s, max, x). \) Because \(k_s, max, x \) relates to the maximum rate at which water can be transported through the xylem, and \(P_{50,x} \) quantifies the xylem water potential at which half of this transport capacity is lost, these can be thought as representing xylem efficiency and safety, respectively. “Safety” refers to a property of the xylem alone and is not to be confused with the hydraulic safety margin (HSM), which is field-observed or modeled minimum leaf water potential relative to \(P_{50,x}. \) As with PV traits, we seek to determine to what extent xylem efficiency and safety covary with other plant traits and trade off with each other and/or covary with other plant traits.

2.1.4 Scaling conductance with tree size

Tree size exhibits a first-order control over much variation in whole-plant hydraulic conductance (Sperry et al., 2008); since therefore, capturing this effect in any hydraulics scheme is critical for modeling size-structured communities such as forests. The size effect is driven by an increase in hydraulic path length increases with tree height \((H)\) size (Mencuccini, 2002). -For this reason,
whole plant conductance is not a constant parameter in our model. Rather, first principles dictate
that, to a first approximation, whole-tree maximum aboveground conductance ($K_{\text{max,tree,ag}}$; kg
s$^{-1}$ MPa$^{-1}$) may be derived as a function of xylem conductivity ($k_{s,max,x}$; kg m$^{-1}$ s$^{-1}$ MPa$^{-1}$),
sapwood area (A_s; m2), and H (m) as

$$K_{\text{max,tree,ag}} = \frac{k_{s,max,x}A_s}{H} \quad (5)$$

This relation predicts the negative effects of H (increasing H means decreasing $K_{\text{max,tree,ag}}$).

Whole-tree conductance per unit leaf area ($K_{l,max,tree,ag}$) will determine water status at the level
of individual leaves, and thus hydraulic constraints on leaf-level gas exchange. Dividing through
by leaf area (A_l; m2) gives

$$K_{l,max,tree,ag} = \frac{k_{s,max,x}A_s}{HA_l} \quad (6)$$

In this relation, the leaf:sapwood area ratio ($A_l:A_s$) emerges as a key plant trait controlling

$K_{l,max,tree,ag}$. If $A_l:A_s$ decreases with tree height, as has been documented in many tree species
(McDowell et al., 2002, but see Calvo-Alvarado et al., 2008), the negative effects of height can
be partially overcome. In addition, Trees have evolved two main mechanisms to mitigate this
negative effect of height: 1) the near-universal tendency for xylem conduits to decrease in
diameter within trees from stem tips to trunk base to stem tips (referred to as xylem taper in the
opposite direction) (Mencuccini et al., 2007; Meinzer et al., 2010; Petit and Anfodillo, 2011;
Olson and Rosell, 2013; Olson et al., 2014) which increases whole plant conductance also
mitigates the negative effects of height according to because of the Hagen-Poiseuille law.

Neglecting the effects of xylem taper may thus overestimate the negative hydraulic effects of
increasing path length in size-structured forests. Metabolic scaling theory (MST) makes baseline
predictions about the optimal degree of xylem conduit taper in trees subject to the constraint of
hydraulic safety (which decreases as conduits get larger) and has been validated against
observations of conduit diameter across trees of different heights (West et al., 1999; Savage et
al., 2010). We therefore use MST to include the effect of xylem taper on $K_{l,max,tree,ag}$ by
modifying Equation 6 to include a xylem taper term ($\chi_{\text{tap,notap,ag}}$; unitless) representing the ratio
of whole-plant conductance with taper to that without:
\[K_{l,\text{max,tree,ag}} = \frac{k_{s,\text{max,petiole}} A_s}{HA_l} \chi_{\text{tapnotap,ag}} \]

(7)

where \(k_{s,\text{max,petiole}} \) (kg m\(^{-1}\) s\(^{-1}\) MPa\(^{-1}\)) is used to reference \(K_{l,\text{max,tree,ag}} \) to MST predictions, and 2) the tendency for the leaf:sapwood area ratio \((A_t:A_s)\) to decrease with increasing tree size, at least in temperate trees (McDowell et al., 2002), while some evidence for tropical forests has shown a tendency for \(A_t:A_s \) to increase with tree size (Calvo-Alvarado et al., 2008). derive

We used these first principles in the model to derive a bottom-up estimate of whole-tree maximum aboveground conductance \((K_{\text{max,tree,ag}}; \text{kg s}^{-1} \text{MPa}^{-1}) \) from xylem-specific conductivity \((k_{s,\text{max,x}}; \text{kg m}^{-1} \text{s}^{-1} \text{MPa}^{-1}) \). We followed a three-step process, as follows: 1) \(k_{s,\text{max,x}} \) was first standardized to the petiole \((k_{s,\text{max,petiole}}; \text{kg m}^{-1} \text{s}^{-1} \text{MPa}^{-1}) \); 2) \(k_{s,\text{max,petiole}} \) was then used to estimate whole-tree maximum aboveground conductance without xylem conduit taper \((K_{\text{max,tree,notaper,ag}}; \text{kg s}^{-1} \text{MPa}^{-1}) \); 3) \(K_{\text{max,tree,notaper,ag}} \) was multiplied by a nondimensional factor representing the ratio of theoretical whole-tree aboveground conductance with taper to that without taper \(\chi_{\text{tapnotap,ag}} \) to derive \(K_{\text{max,tree,ag}} \). The primary purpose of this component of the model is to capture the size dependency of \(K_{\text{max,tree,ag}} \), without resorting to a pre-specified relationship between \(K_{\text{max,tree,ag}} \) and tree size because we wanted to make explicit the key hydraulic architecture traits \((A_t:A_s, \chi_{\text{tapnotap,ag}})\) governing this trend, which may covary across species independently or in conjunction with other plant trait spectra. A taper exponent of 1/3 amounts to \(\chi_{\text{tapnotap,ag}} \) is in the range of 23-50 for trees of heights 10-30 m; thus the benefit of xylem taper for increasing total plant conductance itself increases with tree height. \(\chi_{\text{tapnotap}} \) is assumed constant across individuals in this study, but parameterizing variation in \(A_t:A_s \) across species is an outcome of this study. The full details of this approach in addition to the treatment of the belowground component of tree conductance \((K_{\text{max,tree,bg}}) \) are outlined in Section 2 of the Technical Description (Supplement S1).

2.1.5 Hydraulic impacts on stomatal conductance

The fraction of maximum stomatal conductance \((FMC_{gs}; [0,1]) \), which is updated at every timestep and is used to down-regulate non-water stressed stomatal conductance, is similar in this regard to traditional soil-based “beta” approaches (Powell et al., 2013). \(FMC_{gs} \) encapsulates the hydraulic limitation of each tree and is the only variable passed from the hydraulics module to
Finally, we introduced to TFS a formulation for the impact of water supply on stomatal conductance (g_s), in which reductions in leaf water potential (ψ_t) cause a decline in g_s (sensu Jarvis, 1976). This is one of two variables passed from the hydraulics module to the host model TFS. As in Mencuccini et al. (2015), the formulation for FMC_{gs} mimics. Similar to the approach for the loss of xylem conductivity with water potential relation (Eqn 4), this formulation followed a “fraction of maximum conductivity” ($F_{FC}g_s$) curve:

$$g_s = g_{s,max} \cdot FMC_{gs} = g_{s,max} \left[1 + \left(\frac{\psi_t}{P_{50,gs}} \right)^{a_{gs}} \right]^{-1} \quad (85)$$

where $P_{50,gs}$ and a_{gs} respectively represent leaf water potential at 50% stomatal closure and the slope of the curve at $\psi_t = P_{50,gs}$ (Manzoni et al., 2013b; Mencuccini et al., 2015), and $g_{s,max}$ is stomatal conductance in the absence of water supply limitation and comes from the host model’s stomatal conductance scheme (for TFS, we used Medlyn et al. (2011); see Eqn A25 of Fyllas et al. 2014). The second variable passed from the hydraulics module to the TFS model describes the derivative of FMC_{gs} with leaf water content, which is derived from the $FMC_{gs} \sim \psi_t$ (Equation 8) and leaf pressure-volume (Equations 1-3) relations (see Equations A34a and A40 in the Supplement S1 for derivation). This variable is used as an additional constraint promoting stability within the numerical solution (see Section 5.3 of the Supplement S1 and Supplement S3 Figure S3.3).

Theory and data suggest that stomata operate in such a way so as to prevent catastrophic xylem embolism (Sperry and Love, 2015); this implies that $P_{50,gs} > P_{50,x}$, which is supported by global datasets (Klein (2014) Manzoni et al. (2013b)). We used a 1:1 relationship between $P_{50,gs}$ and the water potential at 20% loss of xylem hydraulic conductivity ($P_{20,x}$), a relationship suggested which is supported by data from a tropical dry forest (Brodribb et al., 2003). $P_{20,x}$ is easily derived from $P_{50,x}$ and a_x using Equation 4. This current approach ignores the continuum in hydraulic safety (Klein, 2014; Martinez-Vilalta et al., 2014; Skelton et al., 2015) and future work needs to identify how such a continuum maps onto other plant traits. a_{gs} is derived from $P_{50,gs}$ using the same relationship derived for a_x and $P_{50,x}$ (Table 2).

$FMC_{gs} \in [0,1]$, which is updated at every timestep and is used to down-regulate non-water-stressed stomatal conductance, is similar in this regard to traditional soil-based “beta” approaches (Powell...
et al., 2013). \(\text{EMC}_{\text{app}} \) encapsulates the hydraulic limitation of each tree and is the only variable passed from the hydraulics module to the host model TFS. While this approach might seem simplistic relative to the comparative rigor of the hydrodynamics scheme, we note that 1) the present function (Eqn A5) is based on leaf water potential, a new prognostic, non-steady-state metric of tree water status that integrates individual-level differences in hydraulic traits, size, and microenvironment (e.g., light) in addition to soil water potential, 2) there is no consensus as to the exact mechanism (direct or indirect) by which stomata respond to leaf water potential—recent theoretical developments on stomatal function are largely restricted to the effects of temperature and humidity alone (Buckley, 2005; Nikinmaa et al., 2013; Peak and Mott, 2011), and 3) this approach simplifies the interface between the hydraulics module and the host model.

2.2 Host model TFS

The Trait Forest Simulator (TFS) (Fyllas et al., 2014) is an individual tree model parameterized from plot-level observed tree size distribution and distributions of the four plant traits wood density \((WD)\), leaf mass per area \((LMA)\), leaf nitrogen \((N_L)\), and leaf phosphorus \((P_L)\). These traits are assigned to each individual upon initialization in a way that preserves the underlying observed joint distribution of all four traits (be it tight or weak coupling among traits), which are then used to parameterize plant physiological parameters for each tree in a stand (Figure 1). \(WD\) in TFS v.1 drives differential rates of stem respiration and stem C allocation, and \(LMA, N_L\) and \(P_L\) jointly drive differential rates of leaf light-saturated photosynthesis \((A_{\text{max}})\) via parameterization of photosynthetic parameters \(V_{\text{cmax}}\) and \(J_{\text{max}}\) (Domingues et al. 2010), in addition to respiration and leaf and stem C allocation. The construction of this model was motivated by a need to diagnose large-scale patterns of productivity and turnover in tropical forests which, among other drivers, implicate a link to soil fertility and more proximally, plant traits reflective of fertility differences (Baker et al., 2004; Fyllas et al., 2009; Patiño et al., 2012; Quesada et al., 2012; Johnson et al., 2016). Because measurements of stand-level variation in easily measured plant traits are much more abundant than comparative measures of hydraulic traits, but may reflect ecological axes of variation common to hydraulic traits, we sought to parameterize hydraulic trait variation via empirical relationships with the four TFS traits (see Table 1 and Section 3.1 below).
A second key component of TFS is the representation of stand structure and hence individual-level variation in tree crown light environments, which is an additional key determinant of ecosystem productivity (Stark et al., 2012) and, as we will show, individual-level variation in tree hydraulic function and limitation. To estimate the light environment for each tree, ITFSt uses the perfect plasticity approximation (PPA) of Purves et al. (2007) and Strigul et al. (2008), updated to represent multiple canopy layers typical of tropical forests (Bohlmann et al., 2012) as well as basic gap dynamics that allow for a fraction of small trees to receive full sunlight (Fauset et al., unpublished manuscript in revision) to estimate individual tree light environments.

In sum, TFS couples individual-level variation in plant traits and light environments with a full canopy biophysics scheme for estimating photosynthesis and transpiration for each tree > 10 cm DBH in a stand. Transpiration, in turn is the necessary boundary condition for our new plant hydrodynamics hydraulics module (Fig. 1). For further details on TFS biophysics, size structure, trait parameterization, and light competition, see Fyllas et al. (2014) and references therein.

3 Methods

3.1 Hydraulic trait syntheses for parameterization of plant hydraulics model

We synthesized the literature and existing trait databases and asked whether hydraulic traits associated with pressure-volume (PV) curves in leaves ($\pi_{o,l}$, ε_l, $R WC_{t lp,l}$, and $R WC_{r,l}$) and sapwood ($\pi_{o,x}$, ε_x, $R WC_{t lp,x}$, and $R WC_{r,x}$), xylem conductivity per unit sapwood area ($k_{s,max,x}$) or per unit leaf area ($k_{l,max,x}$), xylem resistance to embolism ($P_{50,x}$) and associated shape parameter (a_x) as well as hydraulic architecture (A_l; A_s) were coordinated with the leaf and stem traits employed as input by the TFS model. All statistical analyses were carried out within the R language (R Core Team, 2015). In all figures, the following asterisk codes denote statistical significance at α levels of 0.05, 0.01, 0.001, and 0.0001, respectively: ***, ****.

For leaf PV traits and LMA, we started with the Bartlett et al. (2012) database subsetted for tropical ecosystems (111 individuals across 14 studies) and added substantial additional data (44 individuals across 12 studies) through further literature review, and joined to this dataset species-averaged values of wood density using the Global Wood Density Database (Chave et al., 2009;
For sapwood PV traits, we generated our own database (33 specimens across 9 studies) by digitizing data points of RWC_x vs. ψ_x conducted on trunk or branch tissue from published figures using WebPlotDigitizer (Rohatgi, 2014), and fit curves to these plots following established methods for extracting PV parameters (Tyree and Hammel, 1972; Sack and Pasquet-Kok; Bartlett et al., 2012). We found significant differences in the shape of curve and magnitude of capacitance for sapwood PV curves conducted on small trunk cores versus cut whole terminal branches, with trunk cores yielding capacitances 2-10 times that of branches, suggesting substantial artefacts associated measurements conducted on trunk cores, an issue recently highlighted by Wolfe & Kursar (2015). Using measurements made on the same species using both methods, we developed a correction procedure and applied it to data suffering this bias (Christoffersen, unpublished manuscript), and provide versions of figures without the correction applied in the Supplement S2.

For analyzing relations between xylem efficiency and safety and other traits, we started with the Xylem Functional Traits (XFT) database (Choat et al., 2012; Gleason et al., 2016), subsetted to tropical regions and added data from 15 additional species not originally present (Mendez-Alonzo et al. 2013). We then evaluated the hypothesis that variation in hydraulic transport is explained by WD explored relationships of these traits with WD and A_{max} by prioritizing WD reported in the original publications and adding species-average WD data from Zanne et al. (2009) where it was unreported. We also evaluated the hypothesis that rates of hydraulic transport coordinate with leaf-level rates of gas exchange. Because the objective of this paper is to derive hydraulic traits from other non-hydraulic plant traits, we explored the relationship of $k_{5,\text{max},x}$ regressed on the light-saturated photosynthesis rate (A_{max}), even though the causality of the relationship could be interpreted in reverse. There is substantial debate surrounding appropriate methods for determining embolism vulnerability (Choat et al., 2010; Cochrard et al., 2010; Sperry et al., 2012; Wang et al., 2014) (see Brodribb et al. in press for a brief summary). Because there is some consensus that the “gold-standard” for $P_{50,x}$ measurements involves bench dehydration (DH) on long stem segments (Jansen et al., 2015), we explored trait relationships with and without other measurement methods for $P_{50,x}$.

For hydraulic architecture, we used the only study of which we were aware for tropical trees (Calvo-Alvarado et al., 2008) that reports independent measurements of individual total tree leaf
area and sapwood area across a wide range of tree sizes to explore the relationship of $A_t:A_s$ with tree height as well as with LMA and verified the latter relationship using a much broader dataset of branch-level measurements of $A_t:A_s$ conducted across the Amazon basin (Patiño et al., 2012). Via literature survey, we also compiled an independent, extensive dataset of A_s as it varied with tree diameter at breast height (DBH, cm) in tropical forests.

Finally, we standardized the representation of the “biome” category across all databases, and defined the following categories based on the location of the study (not the species’ home range): tropical flooded forest (if identified as such in original publication), tropical wet forest (no months where evaporative demand exceeds precipitation), tropical moist forest (at least 1 month where evaporative demand exceeds precipitation; predominantly evergreen), tropical dry forest (drought-deciduous phenologies make up a substantial fraction of species), tropical savanna (identified as such in original publication), subtropical forest (absolute latitude exceeded 23 degrees), tropical mangrove, and greenhouse. Syntheses of traits were limited to studies conducted on species growing in native (non-greenhouse) environments in tropical (thus excluding subtropical observations) upland (non-flooded) habitats. In some cases, it was also necessary to match hydraulic traits for the same species given as multiple (different) records within a database. As a rule, however, we did not average to the species level, and thus some variation included in regressions is intraspecific, albeit small.

3.2 Model setup

We used Princeton downscaled meteorological forcing data (Sheffield et al., 2006), observed soil textural properties, and observed tree size and trait distributions (for WD, LMA, N_L and P_L) in the Caxiuana National Forest of east-central Brazilian Amazonia, a seasonal evergreen forest receiving 2100-2500 mm rainfall annually, and the site of an ongoing throughfall exclusion experiment (Meir et al., 2008; da Costa et al., 2010; Meir et al., 2015; Rowland et al., 2015a; Rowland et al., 2015c), to parameterize and run our model for one year. **Spinup was not necessary, as the model was initialized from plot observations as described above, and an initial soil moisture was chosen typical of wet season conditions, which is when the model period began.** While actual soil depth at the site is ~10 m, we set soil depth in simulations to 4m, which reflects the effective depth over which the majority of water extraction occurs, based on previous model validation with soil moisture data (Fisher et al., 2007). This setup applied to all model
simulations in this paper -- both the idealized model experiments and the simulations for comparison with field data.

3.3 Idealized Model experiments

We conducted two sets of idealized model experiments designed to explore the impacts of the new plant hydraulics scheme on simulated tree transpiration. In both cases, the TFS model was run with (TFS v.1-Hydro) and without (TFS v.1) the new plant hydraulics scheme. In the first experiment, all trees were assigned identical trait values using plot mean values of \(WD \), leaf mass per area \(LMA \), leaf nitrogen \(N_l \), and leaf phosphorus \(P_l \). Plant hydraulic traits were identical across individuals in TFS v.1-Hydro. Having eliminated plant hydraulic traits as a source of variation among simulated tree transpiration, we used this model experiment to explore the impact of plant hydraulics on transpiration dynamics as a function of tree height and canopy position. To explore the consequence of trait variation independent of height and canopy position, our model experiment varied a single trait, all trees were assigned different trait values for one trait only (or two, in the case of \(N_l \) and \(P_l \), \(WD \), or \(LMA \)), by resampling the observed plot trait distributions of these traits following the algorithm of Taylor and Thompson (1986) (see Fyllas et al. 2014 for a full description of this resampling method as implemented in TFS), keeping all other traits at the plot mean value. We then explored the dynamics of transpiration, for canopy trees (full sunlight) only, of three large (50-55 cm DBH) trees spanning the range of assigned trait values. In both model experiments, we examined the simulated mean diurnal cycle of transpiration characteristic of the wet and dry season, defined as months where monthly precipitation exceeded or fell below 100 mm, respectively. Months at season boundaries were excluded to maximize seasonal differences.

3.4 Model evaluation

Separate from and in addition to the model experiments, we performed three sets of model evaluation which assessed the model’s ability to capture observed variations in transpiration and water potential at the individual tree level and the stand level. In the first evaluation set, we evaluated diurnal cycles of leaf and stem water potential across multiple individual trees spanning a wide range of size and canopy position which were also subject to seasonal and experimental (TFE) differences in light and water availability. In this set, We used output from
our idealized model experiment in which all individual trees possessed identical (plot-mean) trait values, and ran an additional simulation of this type in which precipitation was reduced by 50%, similar to that of other model-data comparison exercises at this site (Powell et al. 2013, Joetzjer et al. 2014). We matched simulated trees to those measured by Fisher et al. (2006) on the basis of size (closest simulated tree within +/- 2 cm DBH see Table 3) across replicate days in the month matching the month in which observations were made (May for wet season, November for dry season), taking the standard error of the mean as the model error. A total of four eight individual-tree level comparisons (four individuals in the control plot and four in the TFE plot) were made.

The second evaluation set was similar to the first, except we focused on midday simulated leaf water potentials. We conducted four distinct sets of model simulations, in which we explored how successive changes to model parameterization impacted model fidelity with the observations. The first model simulation assigned trees identical trait values, equal to the plot mean, and made no accounting of xylem conduit taper (following Equation 6). The second model simulation was like the first, except this time accounting for xylem conduit taper (see Section 2.1.4 and Supplement S1 section 2.1.1 following Equation 7). The third simulation was as the second but adjusted the canopy position of two of the simulated individuals. The fourth simulation was as the third but assigned the four simulated individuals species-specific WD values adjusted the stomatal sensitivity parameter $P_{50,gs}$ for a single tree to be less sensitive to leaf water potential by changing its value from -2.9 MPa to -5.0 MPa.

In the final set, we evaluated seasonal differences in stand-scaled sap flux under control and experimentally-induced drought (throughfall exclusion experiment; TFE). We used model setups in which all individuals possessed identical hydraulic traits and where all individuals possessed different traits according to the plot observed trait distributions in order to assess ecosystem-level consequences of plant trait variation. Each of these setups was run as TFS v.1 and TFS v.1-Hydro. For comparison with observations, all combinations of these setups were run with both control precipitation and a 50% reduction. Simulated individual total transpiration (kg s$^{-1}$) was summed across individuals, divided by the plot area, and accumulated for each month of the year. Observed stand-level transpiration was derived following the methods outlined in Fisher et al. (2007).
4 Results

4.1 Hydraulic trait synthesis for parameterization of plant hydraulics model

4.1.1 Hydraulic trait synthesis

All resultant empirical equations relating traits WD, LMA, or A_{max} to hydraulic traits are given in Table 2.

For leaf PV traits (Fig. 2), we found highly significant ($p < 0.0001$) but weak negative relationships of $\pi_{o,t}$ (leaf osmotic potential at full turgor) with both WD (wood density) and LMA (leaf mass per area) ($r^2 = 0.28$ and 0.09, respectively). Because WD and LMA were not significantly correlated in this dataset ($p = 0.48$) we used them as independent predictors of $\pi_{o,t}$ in multiple regression and were able to explain a higher fraction of the variance in $\pi_{o,t}$ ($r^2 = 0.44$; see Table 2). Surprisingly, ϵ_t (leaf bulk elastic modulus) demonstrated no significant relationship with LMA but was marginally correlated with WD ($p < 0.05$; $r^2 = 0.10$; Fig 2c, d). While we found no significant relationship of the residual fraction ($RWC_{r,t}$) with LMA or WD, we did find a significant relationship of $RWC_{r,t}$ with ϵ_{leaf} ($r^2 = 0.32$; $p = 0.002$; Fig 2e). These relationships imply that leaf capacitance increased with both decreasing WD and LMA, which was corroborated by independent datasets (Fig 2f).

For bias-corrected sapwood PV traits (Fig. 3), we found that WD well-represented a single axis of variability along which $\pi_{o,x}$, ϵ_x, and $R_{t\text{tp},x} = 1 - RWC_{t\text{tp},x}$ were organized ($r^2 = 0.31$ to 0.44), with increasing WD leading to exponentially increasing ϵ_x and decreasing $\pi_{o,x}$ and $R_{t\text{tp},x}$. The result was exponentially declining sapwood capacitance ($C_{f,t,x}$) with WD ($r^2 = 0.84$; Fig. 3d). The same trends were generally supported by the uncorrected data (Fig. S2.1), most importantly for $C_{f,t,x}$.

On the full dataset of $P_{50,x}$, we found a significant relationship with WD ($p < 0.0001$), but the explained variance was low ($r^2 = 0.08$) due to a large number of high wood density species with high (less negative) low $P_{50,x}$ values. However, when limiting the dataset to measurements made using the bench dehydration method (DH), many values of high (less negative) $P_{50,x}$ at intermediate to high WD were now excluded (the majority of which were obtained using the air injection method) and a stronger negative relationship emerged ($r^2 = 0.34$) (Fig 4a). In addition,
we found that the slope (a_x) of the xylem FMC curve decreased significantly ($p < 0.0001$) with increasingly negative $P_{50,x}$ (Fig 4b), suggesting that threshold responses of embolism to increasing xylem tension were more pronounced in individuals with less resistant xylem.

The relationship of xylem efficiency on a leaf area basis ($k_{l,max,x}$) with WD, while highly significant ($p < 0.0001$), explained only 7% of the variance (Fig 5a). However, when examined in relation to reported values of light-saturated leaf photosynthesis rates (A_{max}), a greater fraction of the variance was explained ($r^2 = 0.29; p < 0.0001$) (Fig 5b). Because A_{max} and WD were uncorrelated (Fig 5d), we used them as independent predictors (as A_{max}/WD) of $k_{l,max,x}$, which now explained 42% of the variance (Fig 5c). Similar trends were observed for xylem efficiency on a sapwood area basis ($k_{s,max,x}$; Supplement Fig. S2.2).

While the Calvo-Alvarado et al. (2008) study showed no significant common relationship of $A_{i}:A_{s}$ with H or DBH across all individuals studied, it identified increasing $A_{i}:A_{s}$ with H within 4 out of 5 individuals (Fig 6a). When we took species-average $A_{i}:A_{s}$ from the Calvo-Alvarado (2008) study and plotted the interspecific differences as a function of species-average LMA, the individuals largely fell on the same regression line as that of Patiño et al. (2012) (Fig. 6b). Therefore, it appears that for tropical forests leaf-level traits sets the range of $A_{i}:A_{s}$ about which variation occurs in response to height and/or light availability (Fig 6c).

4.1.2 Plant hydraulics parameterization

Figure 7 shows the parameterization of all components of the plant hydraulics model (combining Table 2 and plant hydraulics model constitutive equations 1-4) as a function of the TFS model input traits and tree height (H). Panels a-c demonstrate the distribution of leaf PV, sapwood PV and xylem vulnerability curves for a characteristic TFS model simulation in which each tree is assigned four trait values (WD, LMA, N_L and P_L) according to the observed joint distribution (Taylor & Thompson 1986 resampling algorithm) of these four traits at the focal field site Caxiuana National Forest, which are used to parameterize each tree’s constitutive equations (using Table 2), with each tree plotted as separate lines colored by trait values. This forest is representative of others in the region (Baraloto et al., 2010), showing decoupled leaf and stem economics (i.e., lack of any significant correlation between WD and any of the three leaf traits used as input for TFS). A consequence of this lack of leaf-stem trait coupling and our
formulation of \(k_{l, max,x} \) as empirically derived primarily from leaf traits (Fig 5) while \(P_{50,x} \) derives from stem traits (Fig 4a) is that, the model input does not prescribe only a weak any trade-off between xylem efficiency \(k_{l, max,x} \) and \(P_{50,x} \) safety (Fig 7c), which is consistent with the data for this relationship (Fig 8a). In contrast, panels d-f present ‘idealized’ scenarios for a case in which the full range of possible hydraulic trait inputs are presented, based on tight coupling of leaf and stem economics are tightly coupled (specifically, between \(WD \) and \(LMA \) or \(WD \) and \(A_{\text{max}} \)) over a wide range of input values. In this case, the consequence for the relationship between \(k_{l, max,x} \) and \(P_{50,x} \) is a perfect tradeoff (Fig 7f). Finally, we represented the dual dependency of \(A_{t}:A_s \) on both \(LMA \) and tree size (Fig 6) as an \(A_{t}:A_s \sim H \) relationship with an \(LMA \)-dependent slope (Fig 7g). For a prescribed leaf biomass allometry function (as \(\sim DBH^2H \); Lescure et al. 1980), this \(A_{t}:A_s \) formulation predicted \(LMA \) as the driver of differences in sapwood area (\(A_s \)) ~ DBH allometry, spanning the range of values given by our independent literature compilation across many different studies, though this relationship warrants further validation.

4.1.3 Ability of hydraulics model parameterization to represent observed trade-offs and coordination among hydraulic traits

Based on the pantropical xylem functional traits dataset, evidence for a trade-off between xylem efficiency (as \(k_{s, max,x} \)) and safety (\(P_{50,x} \)) was insignificant (\(p = 0.14 \) on log-transformed data), which was also the case when limiting the database to the DH method (\(p = 0.82 \); Fig 8a).

However, when limiting the dataset to tropical dry forests (not savanna), a significant trade-off between xylem efficiency and safety emerged (\(p < 0.01; r^2 = 0.17 \)) which was even stronger (\(p < 0.0001; r^2 = 0.44 \)) when considering two tropical dry forest studies (see circled points in Fig 8a (Markesteijn et al., 2011a; Markesteijn et al., 2011b; Mendez-Alonzo et al., 2012). Our plant hydraulics model parameterization is able to capture both the lack of a safety-efficiency tradeoff, which occurs when stem and leaf economics are decoupled (Fig 7c), and a strong safety-efficiency tradeoff when stem and leaf economics are tightly coupled (Fig 7f).

When we paired our sapwood PV data with data on xylem hydraulic safety, we found that \(C_{f,t,x} \) (xylem capacitance) and \(P_{50,x} \) demonstrated significant evidence (\(p = 0.02 \)) for a trade-off in drought avoidance (increasing capacitance) and drought tolerance (increasingly negative \(P_{50,x} \)) (Fig 8b). The strength of this relationship became marginally insignificant (\(p = 0.05 \)) when
considering $P_{50,x}$ values obtained with the bench dehydration (DH) method only, but was
unaffected by the correction factor that we applied to the sapwood PV curves, remaining
significant ($p = 0.02$ and $p = 0.01$ for all data and DH-limited data, respectively; Supplement Fig.
S2.4). Because $C_{ft,x}$ and $P_{50,x}$ both derive directly from WD, our plant hydraulics model
parameterization also follows this avoidance-tolerance tradeoff (cf thin line Fig 8b).

Finally, joining of the leaf PV database with the xylem functional traits database demonstrated
significant evidence in support of coordination between leaf and xylem drought tolerance, as
given by significant relationships between leaf drought tolerance traits $\pi_{o,t}$ and associated turgor
loss point $\pi_{t_{LP,t}}$ with xylem drought tolerance traits $P_{50,x}$ and $P_{88,x}$, albeit with R^2 values no
greater than 0.3 (Fig 8c-f). This cross-tissue coordination is also preserved by our model
parameterization, with WD driving most of the variation in this coordination space and LMA
generating residual variation in leaf drought tolerance (thin lines, Fig 8c-f).

4.2 Model idealized experiments

4.2.1 Impact of plant hydraulics on size- and light-dependency of transpiration

Figure 9 shows how mean +/- 1 s.d. diurnal cycles of transpiration change as a function of
canopy position and wet/dry season for both TFS v.1 and TFS v.1-Hydro. The large increase in
simulated transpiration in the dry season for both TFS v.1 and TFS v.1-Hydro (Fig. 9e-f) is
mainly driven by the seasonality of cloud cover associated with wet and dry seasons at this equatorial site drives a large seasonal increase from the wet to dry season in incoming solar radiation, and hence absorbed radiation, due to a reduction in cloud cover, and consequently, absorbed photosynthetically active radiation (PAR) (Fig 9a-d) (Carswell, 2002; Fisher et al., 2007). At the level of individual tree crowns, canopy position is the dominant
control over the amount of absorbed PAR (compare different colored lines in Fig 9a-d). In TFS
v.1, the large increase in incoming radiation from the wet to dry season as well as the vertical
gradient in absorbed radiation drives comparatively large increases in transpiration per unit
crown area (Fig 9e, f). These trends remain when considering total tree transpiration (Fig 9i, j, k,
l), but variation in crown size adds significant variability in total water fluxes, especially for
canopy trees (very small trees can still be in the canopy depending on subplot assignment). The
effect of including plant hydraulics in TFS v.1-Hydro was to limit late morning and afternoon transpiration via the depletion of stored water within the canopy and tree stem, which caused midday declines in leaf water potential (see Fig 10) and induced hydraulic limitation to water flux. These seasonal and canopy gradient trends remained in TFS v.1-Hydro with some significant modification, however. Hydraulic limitation imposed by stomatal closure via the $FMCP_{so,gs}$ term (see Eqn 85). Hydraulic limitation was highest in canopy trees, intermediate in subcanopy trees, and nonexistent in understorey trees, but this limitation only occurred during the dry season when incoming radiation was sufficiently high to drive high potential evapotranspiration (compare the effect of including hydraulics in Fig 9e and g vs. Fig 9f and h, k, l), consistent with other studies (McDowell et al., 2005).

4.2.2 Impact of plant hydraulics on the trait-dependency of transpiration

Figure 10 shows how mean +/- 1 s.e. diurnal cycles of transpiration per unit crown area of three large (50-55 cm DBH and 26-27 m height) individuals change as a function of a single plant trait (PL, WD or LMA) and wet/dry season for both TFS v.1 and TFS v.1-Hydro. In most cases, the seasonal wet to dry increase in transpiration associated with incoming radiation is the same as for the previous model experiment. In the absence of plant hydraulics, leaf nutrients drive large differences in photosynthetic parameters and rates, which, by model design, then drive large differences in $g_{s,max}$ and transpiration rates (Fig 10a, b). Because our plant hydraulic trait parameterization explicitly links hydraulic transport rates ($k_{s,max,x}$) to photosynthetic capacity, this trend is preserved in TFS v.1-Hydro, except that all trees experience hydraulic limitation (Fig 10c, d). In contrast, large canopy trees with differences in WD and LMA in default TFS simulations demonstrated no differences in simulated transpiration dynamics (Fig 10e, f). In the case of WD, adding plant hydraulics caused hydraulic limitation across all three individuals but surprisingly little to no divergence in simulated dynamics (Fig 10g, h), despite large differences in plant hydraulic traits which derive from WD (Table 2). This lack of a difference arises, however, because the effects of decreasing WD have opposing effects on midday leaf water potential via sapwood capacitance and xylem P50 because of the drought avoidance – tolerance tradeoff (Fig. 8b). In the case of LMA, dramatic differences emerged among the three individuals with differing $LMAs$ (209, 95 and 47 g m-2) upon the inclusion of plant hydraulics (Fig 10k, l). This was driven by large differences in total tree aboveground hydraulic
conductance \((K_{\text{max.tree,ag}})\), which arose because of large differences in \(A_t:A_s\) that ranged from 0.1 – 1.8 m² cm⁻² (itself arising from the LMA differences; see Fig 7g, h and Table 2). By Darcy’s law, a reduction in conductance results in a comparative reduction in water flux for a given water potential gradient.

4.3 Model evaluation

TFS v.1-Hydro demonstrated capability to represent lags in water flux throughout the leaf-stem-soil continuum (Fig. S3.1), with sap flux lagging leaf-level transpiration, and root uptake continuing into the nighttime hours, consistent with diurnal dynamics of soil moisture shown in other ecosystems. In addition, as expected, the model predicted that soil most adjacent to absorbing roots experiences significantly lower rates of volumetric root water uptake as compared to more distal rhizosphere shells (Fig S3.2), demonstrating capability for the model to represent rhizosphere hydraulic limitation if soil gets sufficiently dry.

4.3.1 Diurnal dynamics of leaf and stem water potential

Observed diurnal dynamics of leaf and stem water potential \((\psi_{\text{leaf}}\) and \(\psi_{\text{stem}}\), respectively) indicated, for all trees regardless of size, predawn (~ 6am) values in the range of -0.1 to -0.4 MPa, whereas midday water potentials varied largely in concert with tree size (Fig 11). The model captured the observed diurnal trends in both \(\psi_{\text{leaf}}\) and \(\psi_{\text{stem}}\) reasonably well, especially given the absence of any model tuning or tissue-level hydraulic trait differences among individuals. This suggests that the first-order control over variation in \(\psi_{\text{leaf}}\) among individuals was primarily due to variation in radiation interception (both across seasons and within the canopy) and tree size, rather than tissue-level hydraulic traits. See Fig S3.4 for an alternate version of Fig. 11 showing how root water potentials vary diurnally for these individuals.

Despite large (upwards of -4 MPa) differences in midday and predawn leaf values, observed \(\psi_{\text{stem}}\) remained for the most part within -1 MPa of the observed \(\psi_{\text{leaf}}\) values (Fig 11). For the larger trees, observed midday \(\psi_{\text{stem}}\) during the dry season was in the range of -2 to -3 MPa. In contrast, modeled \(\psi_{\text{stem}}\) rarely went more negative than -1 MPa, suggesting that the model parameterization overestimates sapwood capacitance \((C_{ft,x})\).
The data do not support the existence of an effect of TFE on water potential, either in the ψ_{stem} or ψ_{leaf} (compare dry season control and TFE columns in Fig. 11), at least within the first two years of the experiment when these measurements were collected. The model did not predict significant effects of the TFE treatment on water potential either, due to the fact that dry season ψ_{leaf} approached P_{50} and were regulated near P_{50} via Eqn 5.

4.3.2 Impact of model parameterization on fidelity of simulated midday leaf water potential

Modeled dynamics of leaf water potential at the Caxiuana site captured observed variation at both diurnal and seasonal timescales (Supplement Fig S2.6). Throughout each day, reductions in leaf water potential lagged that of the stem and transporting root system, congruent with the buffering role of canopy and stem capacitance, with refilling of distal tissues occurring at night (results not shown). The model also simulated reductions in predawn leaf water potential in the dry season due to reductions in soil water supply, and captured an increasing magnitude of diurnal variation driven largely by light-driven increases in canopy transpiration rates typical of equatorial Amazonian dry seasons (Fig. S6) (Carswell, 2002; Fisher et al., 2007; Hasler and Avissar, 2007; da Rocha et al., 2009; Christoffersen et al., 2014).

Each of three successive model parameterization adjustments was able to make incremental improvements in the fidelity of modeled ψ_{leaf}, and these adjustments are informative for understanding the dominant controls over individual-level differences in ψ_{leaf}. First, when the model’s treatment of xylem conduit taper is turned off, the model in most cases overestimated the negative hydraulic impacts of tree height, with modeled midday ψ_{leaf} falling below that which was observed (Fig 12a). Re-instating xylem taper ameliorated the negative effects of tree height for some trees by increasing $K_{max.tree.ag}$ and thus reducing the soil-leaf water potential gradient needed to maintain transpiration (Fig 12b). Next, adjusting the canopy position of two of the four individual trees from a subcanopy (canopy layer = 2) light environment to an understorey (canopy layer = 3) light environment reduced the incoming radiation for these trees and hence their transpiration rates and midday ψ_{leaf} values (Fig 12c). Finally, we found that the extremely negative midday ψ_{leaf} values during the dry season of the largest tree (tree C3 of Fisher et al., 2006) could be better simulated by allowing its stomatal regulation to behave in a
more anisohydric way (less stomatal regulation of leaf water potential) by setting its $P_{50,gs} = -5.0$ MPa.

4.3.3 Fidelity of modeled stand-level transpiration under control and TFE conditions

Without plant hydraulics, TFS v.1 had a large positive bias in simulated dry season stand-level transpiration rates (Fig 13a, b). Including plant hydraulics (TFS v.1-Hydro) largely eliminated this dry season positive bias when plot-mean trait values were used (Fig 13a). However, TFS v.1-Hydro tended to underestimate observed transpiration year-round when each tree was assigned different trait values (Fig 13eb) according to the observed plot distribution (according to Fig. 7a-c). As expected, the simple soil bucket models of TFS v.1 and TFS v.1-Hydro precluded both of them from capturing the observed pronounced reduction of transpiration under 50% TFE (Fig 13b, d).

5 Discussion

We present here a plant hydraulics model built from the bottom up. By “bottom-up” we mean that this model is parameterized at the level of plant tissues (leaf, stem, roots) and then scaled to the whole-tree level using established theory about how size and aboveground branching structures impact whole-tree function. We embedded this model within a size-structured forest simulator (TFS) providing critical input information to the plant hydraulics model on light environments of individual trees, light environments and community-level size and trait distributions (collectively these two models comprise TFS v.1-Hydro), but the plant hydraulics scheme is appropriate for inclusion within any demographic dynamic vegetation model. Our plant hydraulics model is also “trait-driven”. By “trait-driven” we mean that individual trees take on distinct plant functional trait values (WD, LMA, N_l, P_l) according to observed plot-level trait distributions and we have parameterized hydraulic traits from each tree’s assigned traits according to a pantropical empirical synthesis. (Engelbrecht et al., 2007; Fauset et al., 2012) Our empiricalThis synthesis documented widespread correlations between these plant hydraulic traits and the leaf and stem economic traits used in our model (Figs 2-6), and we additionally showed that even where such correlations were weak, the hydraulic trait parameterization for our model respected observed ecological trade-offs and coordinations among hydraulic traits (Figs 7-8) known to be crucial to plant water use and survival. As a consequence, TFS v.1-Hydro has
novel capability to simulate divergent functional responses to environmental variation (Figs 9-10) owing to the hydraulic impacts of tree size and coordinated shifts in hydraulic traits across individuals. This provides encouragement to the growing research agenda to expand the role of plant functional traits into parameterizing Earth System Models (ESMs) (Fisher et al., 2015; Sakschewski et al., 2015). The model also reasonably captures size- and light-related inter-individual variation in water potential across individuals (Figs 11-12) without need for significant model tuning. Finally, the model makes substantial improvements to TFS v.1 in terms of simulated transpiration rates under normal conditions (Fig 13a, eb), highlighting how plant hydraulics mediate the biosphere-atmosphere exchange of carbon and water. In sum, TFS v.1-Hydro represents a key and advanced model capability to represent differential performance of individual trees based on hydraulic traits, size and light environments (Figs 9-10). Future work coupling the present scheme with community dynamics (mortality, growth and recruitment) has the potential to predict shifts in community trait distributions under changing moisture regimes, as has been observed or implied in studies of tropical forest species distributions and community dynamics (Engelbrecht et al., 2007; Fauset et al., 2012). The only place where the model demonstrably fails is under experimental drought (Fig 13b, d), a consequence of its simplified belowground soil hydrology scheme, which will be updated in subsequent version.

5.1 Underlying causes and implications of trait-trait relationships

The relationship of leaf $\pi_{o,t}$ (i.e., cell “saltiness”) with WD is robust, and suggests some degree of correspondence between sapwood and leaf osmoregulation at the cellular level, itself potentially a function of soil potassium (K^+) availability (Quesada et al., 2012), although there was not significant enough species overlap in our leaf and sapwood databases to directly assess whether $\pi_{o,t}$ tracks $\pi_{o,x}$. An additional possibility is that species with a tendency to osmoregulate leaf tissue also have sapwood with higher WD and embolism resistance, though recent results challenge this explanation (Binks et al., 2016). The observation that leaf ε_{l} (i.e., leaf cell “stiffness”) was coordinated more closely with stem WD rather than LMA (Fig 2) may be due more to uncertainty in how ε_{l} is calculated, either based on symplastic or total relative water content (RWC^* or RWC, respectively) (Bartlett et al., 2012), rather than strong evidence for stem over leaf traits governing leaf cell stiffness per se. There may be a mix of both methods used in calculating ε_{l} in this dataset due to ambiguity in the original publications (M.
Bartlett, personal communication), so the relationship of ϵ_1 with WD should be viewed as tentative.

The correspondence of sapwood PV parameters and associated capacitance with WD (Fig 3) was in some cases particularly tight ($r^2 = 0.84$ for sapwood capacitance $C_{ft,x}$). Given the uncertainty associated with the vessel cutting artefact for which we corrected (Supplement Notes S2), the exact relationships with WD should also be considered tentative, but the qualitative nature of WD as a 1st-order predictor of $C_{ft,x}$ should be robust. Nonetheless, the absence of data for sapwood PV traits for $WD > 0.7$ g cm$^{-3}$ highlights a real data need, which is particularly apparent for some regions of the tropics, such as eastern and north-eastern Amazonia, which have a large abundance of high wood density species (Baker et al., 2004; Quesada et al., 2012). 2nd-order predictors for sapwood capacitance have been identified in separate studies, which we have not explicitly dealt with here. Recently, Wolfe & Kursar (2015) identified a similar trend of $C_{ft,x}$ with WD, but additionally identified deciduousness as a modulator of $C_{ft,x}$, with evergreen species tending to have lower $C_{ft,x}$ at a given WD.

The increase of xylem efficiency ($k_{s,\text{max,x}}$) with A_{max} we highlighted in our synthesis (Fig 5) has already been identified in individual studies (Brodribb et al., 2002; Santiago et al., 2004; Zhu et al., 2013), but to our knowledge, our study is new in demonstrating it across diverse tropical forests spanning wet, moist, and dry systems (and to some degree, savanna) when incorporating WD as a secondary predictor, which increased by 13% the variance explained by A_{max} alone. This relationship underscores the functional constraint of xylem “plumbing” on leaf gas exchange. This relationship potentially presents an important constraint for plant hydraulics modeling: given that WD is a poor predictor of the relevant wood anatomical characteristics mechanistically controlling xylem hydraulic conductivity in tropical angiosperms (Poorter et al., 2010; Zanne and Falster, 2010; Zanne et al., 2010; Zieminska et al., 2015), A_{max} serves as a powerful proxy, with WD acting as an additional constraint (albeit small) on the relevant anatomical variation. This is important in light of the relative ubiquity of leaf nitrogen and phosphorus measurements (which in turn are good proxies for A_{max}; Domingues et al. 2010) relative to wood anatomical measurements (Fichtler and Worbes, 2012) in tropical forests worldwide.
Our synthesis of hydraulic traits suggests that a trade-off between drought avoidance (as given by $C_{f,t,x}$) and tolerance ($P_{50,x}$) is more prominent than between xylem efficiency ($k_{s,\text{max},x}$) and safety ($P_{50,x}$), though more data are needed to corroborate the limited data suggesting the former (Fig. 5). Partially responsible for this weak safety-efficiency tradeoff is methodological variation in terms of how $k_{s,\text{max},x}$ is measured (Gleason et al. 2016). However, there is undoubtedly a real component to this weak trade-off, as intervessel pit membrane thickness, which does not necessarily correlate with hydraulic conductivity, is a strong anatomical predictor of $P_{50,x}$ (Li et al. 2016). Perhaps of greater significance, however, is understanding patterns associated with the presence or absence of the efficiency-safety tradeoff in particular bioclimatic regions. The correspondence of this tradeoff with tropical dry forests where stem economics traits closely track leaf economics traits (Markesteijn et al., 2011a; Markesteijn et al., 2011b; Mendez-Alonzo et al., 2012), in contrast to their wetter counterparts (Baraloto et al., 2010), suggests that the hydraulic safety-efficiency trade-off may be an underlying mechanism for the extent to which stem and leaf trait coupling is observed.

5.2 Model limitations

Our analysis reveals some limitations of our particular approach to trait-driven plant hydraulics modeling, namely that not all trait-trait relationships are of sufficient predictive accuracy to enable simulations with low uncertainty (most notably leaf drought tolerance traits and the leaf:sapwood area ratio, see Figures 2 and 6). This is a likely outcome of the reality that emergent properties of biological systems arise from the combination of multiple traits and their associated trade-offs, thus no single trait is likely to explain the majority of an emergent process (Mencuccini et al., 2015). More work identifying general plant trait-hydraulic trait relationships is justified, but should consider incorporation of multiple traits for improved realism and accuracy, and should emphasize understanding how trees as an integrated system function. One consequence of using the empirical trait-trait correlations given here is to either under- or over-estimate the range of any given hydraulic trait in a simulated community of individuals, depending on the hydraulic trait of interest. For example, in our idealized-model experiment in which we varied a single trait (Fig. 10), variation in xylem-specific hydraulic conductivity ($k_{s,\text{max},x}$; Fig 10c, d), which was derived from the full range of observed P_L (and hence, modeled A_{max}) at this site, was limited to only 1.1 - 2.9 kg m$^{-1}$ MPa$^{-1}$ s$^{-1}$, which is only ~15% of
the range of observed $k_{s,max,x}$ values for tropical moist forests (cf. green points, Fig S3). Indeed it seems unlikely that the observed range of $k_{s,max,x}$ at this site would be this small. On the other hand, the range of $A_t:A_s$ predicted by LMA and tree height (Fig 6 and 7g) is likely overestimated; we found that individuals with $A_t:A_s$ greater than the maximum observed $A_t:A_s$ (1.8 m2 cm$^{-2}$) for whole trees in the Calvo-Alvarado et al. (2008) study were unviable (whole-tree conductance was insufficient for any appreciable tree transpiration to occur). Indeed, our result showing that a slight negative bias results when all individuals receive distinct trait values according to the community trait distribution versus a single community-mean value (Fig 13a vs 13be) follows as a consequence. Furthermore, in contrast to our simple implementation of hydraulic architecture, $A_t:A_s$ may vary substantially throughout a tree’s crown, at different branching levels, or different light environments (see Schuldt et al., 2011 as an example), given the deviations from self-similar, volume-filling branching and area-preserving A_s that have been observed (Whitehead et al., 1984; Bentley et al., 2013; Smith et al., 2014).

The expected deficiency of TFS v.1-Hydro to capture experimentally induced soil water deficit (Fig 13b, d) relates to the absence of any significant soil drying within the root zone. The current model formulation does not vertically discretize the soil water or root distribution, whereas observations (Rowland et al., 2015a) indicate a strong vertical gradient in soil moisture, with the driest soil occurring in shallow layers where roots are most abundant. The lack of sensitivity is not due to a lack of vegetation sensitivity (else TFS v.1-Hydro would not down-regulate transpiration relative to TFS v.1 under control conditions; cf Fig 13a, c), nor is it due to discrepancies in soil hydraulic parameters, as comparison of measured (Fisher et al., 2008) vs. pedotransfer-modeled van Genuchten parameters revealed no significant differences in soil water holding capacity. The importance of capturing soil drying in the appropriate portions of the root zone for capturing drought response is an outcome that corroborates previous work showing that soil-root resistance alone (Williams et al., 2001) or some combination soil-root and within-root resistance are the key drivers of sharp reductions in water use under drought conditions (Fisher et al., 2007). We thus expect that extending our plant hydraulics model to incorporate vertical variation in root length density and soil water content will make strong improvements in this regard.
5.3 Practical implications

Because TFS v.1-Hydro parameterized the majority of tree hydraulic traits at the scale of plant tissues and built the size-scaling into the model (rather than specifying hydraulic properties at the whole-tree level), it has great potential for being used as a tool in data assimilation and other inverse approaches when in situ field data on sap flow, water potential, or water content data are available at one or multiple points within individual trees. This may aid in deciphering unobserved or unobservable processes, such as diagnosing where within the soil-plant continuum hydraulic limitation or embolism may be occurring (branches, stems, or fine roots) or how much stored water is used for daily transpiration.

A second benefit to its method of construction is that the constitutive equations of the model (i.e., the relationships between water potential and water content, and between hydraulic conductivity and water potential), use formulations from plant physiology (such as PV theory) and as a consequence, have parameters (Table 2) which are empirically measurable and biologically interpretable, such as saturated and residual tissue water contents θ_s and θ_r, osmotic potential at full turgor π_{at}, turgor loss point π_{tlp}, bulk elastic modulus ε, xylem water potential at 50% loss of conductivity $P_{\text{x,50}}$, and leaf water potential at 50% loss of maximum stomatal conductance $P_{\text{gs,50}}$. Hence, as more of these hydraulics data become available, this model can readily incorporate this information by either substituting the empirical trait relationships with measured quantities, or updating the empirical hydraulic trait relationships.

Finally, the ‘fraction of maximum stomatal conductance’ (FMC_{gs}) encapsulates the hydraulic limitation of each tree and is implemented in a similar fashion to traditional soil-based “beta” approaches (Powell et al., 2013). While this approach might seem simplistic relative to the comparative rigor of the hydraulics scheme, we note that 1) the present function (Eqn 8) is based on leaf water potential, a new prognostic, non-steady-state metric of tree water status that integrates individual-level differences in hydraulic traits, size, and microenvironment (e.g., light) in addition to soil water potential, 2) there is no consensus as to the exact mechanism (direct or indirect) by which stomata respond to leaf water potential – recent theoretical developments on stomatal function are largely restricted to the effects of temperature and humidity alone (Buckley, 2005; Peak and Mott, 2011; Nikinmaa et al., 2013), and 3) this approach simplifies the interface between the hydraulics module and the host model.
5.4 Future directions

In light of the limitations to our empirical approach for parameterizing hydraulic traits via more commonly measured traits, one potential alternative for parameterizing community-level hydraulic trait variation is to do so independent of other traits employed by the model. One approach is to use the Taylor & Thompson (1986) resampling algorithm to resample individuals or species with values in multiple trait databases which were used in this paper, but sparse database overlap may limit the utility of this approach. Alternatively, region-specific distributions of individual hydraulic traits from the databases presented here could be coupled with empirical relationships among hydraulic traits as given by our synthesis of coordination and trade-offs among hydraulic traits (Fig 8). This analysis suggested that two independent hydraulic trait spectra may be sufficient: one safety-efficiency or avoidance-tolerance trait spectrum and potentially a stomatal hydraulic safety spectrum. More work is needed to clarify these hydraulic coordination and trade-off surfaces and in particular, to quantify how much residual variation is real or due to measurement biases.

From an empirical perspective, explaining the remaining 16 – 95% of unexplained variance in hydraulic traits shown here should be of high priority. We suggest some additional traits that show promise. The volumetric fractions of airspace, water, and solid material in leaves and stems (sensu (Roderick et al., 1999; Roderick and Berry, 2001)) are one such trait. For leaves, these volumetric fractions have been shown to explain much more variance in leaf PV traits than LMA and WD (Sack et al., 2003; Bouche et al., 2015; Buckley, 2015; Scoffoni, 2015). While not as routine of a measurement in comparison to LMA, these measurements are not as intensive as the full PV curve. Second, identifying the strongest wood anatomical correlates of xylem vulnerability to embolism ($P_{50,x}$) should also be of high priority, such as the thickness of the intervessel pit membranes (Choat et al., 2008; Jansen et al., 2009), as well as improving understanding of the air-seeding mechanism (Schenk et al.; Jansen and Schenk, 2015). Third, and perhaps most important for whole-tree hydraulics, is more data on hydraulic architecture. Tuning hydraulic architecture in our dynamic model proved to be a key ‘knob’ for matching observations. Additional measurements of $A_l: A_s$, xylem taper, and crown branching patterns should be conducted not in isolation, but in tandem with each other and with other leaf and stem
economics traits (in particular LMA, as suggested by Fig 6b) to isolate physical constraints on structure and the dynamics of whole-tree transpiration (Smith et al., 2014). The paired relationship of A_t / A_s with xylem taper as integrative measures of whole-tree hydraulic regulation is virtually nonexistent for tropical forests, although collocated measurements of these two traits exist (Zach et al., 2010; Horna et al., 2011).

For modeling hydraulic impacts on stomatal closure, we favored the use of a ‘stomatal vulnerability function,’ but this is one possibility among many. Specifically, multiple studies have found that branch ψ rarely falls below that at which stem capacitance begins to decrease precipitously (Meinzer et al., 2008b; Wolfe and Kursar, 2015), and stomatal regulation has also been observed to track leaf turgor loss points (Brodribb et al., 2003). Whether stomatal closure in response to water stress in tropical forests forms an entirely distinct ‘safety margin’ axis (Martinez-Vilalta et al., 2014; Skelton et al., 2015), or maps on to other hydraulic traits remains to be elucidated. A recent review highlights the interacting roles of both hydraulic supply and vapor pressure deficit in controlling stomatal responses, which we have not yet accounted for (Sperry and Love, 2015). We also did not include into our model variability in leaf-level hydraulic conductance, or comparative values for root traits. While terminal branches and leaves account for a majority of total plant resistance due in part to xylem taper, roots may be more vulnerable to cavitation-embolism for the same reason and therefore represent a weak link in drought-induced mortality; these should be topics of future work.

6 Conclusions

We present a plant hydraulics model based on biologically interpretable and measureable plant hydraulic traits and rooted in established plant physiology theory. It is capable of scaling tissue-level hydraulic traits to whole-tree hydraulic function. Embedding it within an individual tree trait-driven model allowed us to explore how individual-level variation in hydraulic traits (including tree size) interacts with light environments to drive differences in hydraulic function across individuals. Addition of plant hydraulics made substantial improvements to modeled transpiration fluxes during periods of high incoming radiation. Our synthesis of data for the tropics on a wide range of hydraulic traits needed to parameterize the model allowed us to develop empirical relationships among commonly measured plant traits and less common traits.
hydraulic traits. These ‘ecotransfer’ functions, as we have termed them, empirical relationships are analogous to pedotransfer functions (Clapp and Hornberger, 1978; Cosby et al., 1984) developed for predicting soil hydraulic properties as a function of soil textural ‘traits.’ While they should be refined as more data become available, they are an important first step towards representing ecological dimensions of hydraulic trait variation in process ecosystem models.

Critically, this individual- and trait-driven framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Earth System Models (ESMs) Dynamic Global Vegetation Models. Likely some degree of simplification of the present approach will be required upon implementation in ESMs; nonetheless we expect that inclusion of trait-driven plant hydraulics schemes, which will lead to reduced uncertainty in the future state of tropical forests under climate change.

Code Availability

The JAVA source code for TFS v.1-Hydro can be obtained from the corresponding author upon request.

Data Availability

The Supplement S4 describes supplementary data for this paper. Leaf PV data (Figs 2 and 8) that were newly extracted from publications are available as .csv data files as described under the heading “Leaf PV database”. Leaf PV data originating from pre-existing leaf PV databases are available by accessing the original articles cited under the heading “Leaf PV database.” Sapwood PV data (Figs 3, S2.1, and S2.3) are available as .csv data files as described under the heading “Sapwood PV database.” Sapwood area data (Fig 7h) are available as .csv data files as described under the heading “Sapwood Area database.” Xylem hydraulic trait data (Figs 4, 5, 8, and S2.2) that were newly extracted from publications are available as .csv data files as described under the heading “Xylem Functional Traits Database.” Xylem hydraulic trait data originating from the TRY archive can be accessed there (www.try-db.org); the references of data from that archive used in analyses here are given under the heading “Xylem Functional Traits Database.”

Acknowledgments

This research was supported in part by the European Union Seventh Framework Programme, under the project AMAZALERT (Grant Agreement No. 282664 to PM), and by the Next-
Generation Ecosystem Experiments (NGEE-Tropics) project, which is funded by the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE), and Los Alamos National Laboratory LDRD program. PM also acknowledges ARC support from FT110100457. This submission is under public release with the approved LA-UR-16-20338. We thank all colleagues who contributed data to the Xylem Functional Traits Database, as well as Rick Meinzer for sharing ancillary LMA data and Megan Bartlett for answering clarifying questions. We additionally thank Brett Wolfe, Rafael Oliveira, Yadavinder Malhi, Dan Johnson and John Sperry for helpful discussions, Crystal Ng for suggesting the pithy term ‘ecotransfer function,’ and Mark Decker and Guo-Yue Niu for helpful discussions regarding the use of the mass-based solution to the Richards equation. We are grateful for the constructive criticisms of two anonymous referees that improved the overall clarity of this manuscript.

References

Scoffoni, C.: Modelling the outside-xylem hydraulic conductance: towards a new understanding of leaf water relations, Plant, Cell & Environment, 38, 4-6, 2015.

Tables

Table 1. Input tree size and leaf and stem traits used by the TFS model.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree height</td>
<td>H</td>
<td>m</td>
</tr>
<tr>
<td>Tree diameter at breast height</td>
<td>DBH</td>
<td>cm</td>
</tr>
<tr>
<td>Leaf mass per area</td>
<td>LMA</td>
<td>g m$^{-2}$</td>
</tr>
<tr>
<td>Leaf nitrogen</td>
<td>N_L</td>
<td>mg g$^{-1}$</td>
</tr>
<tr>
<td>Leaf phosphorus</td>
<td>P_L</td>
<td>mg g$^{-1}$</td>
</tr>
<tr>
<td>Light-saturated photosynthesis rate</td>
<td>A_{max}</td>
<td>µmol m$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Wood density</td>
<td>WD</td>
<td>g cm$^{-3}$</td>
</tr>
</tbody>
</table>
Table 2. Hydraulic traits used by the model. Resultant empirical “ecotransfer” function which estimates hydraulic traits as a function of input traits and its corresponding source.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Empirical “ecotransfer” function</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf saturated water content</td>
<td>$\theta_{s,l}$</td>
<td>m3 m$^{-3}$</td>
<td>$\frac{-2.32 \times 10^4/LMA + 782}{\rho_w} \left(\frac{1}{-0.21\ln(10^4/LMA) + 1.43} - 1 \right)$</td>
<td>Stewart et al. (1990), L. Rowland & B. Christofferson (unpublished data)</td>
</tr>
<tr>
<td>Leaf osmotic potential at full turgor</td>
<td>$\pi_{0,l}$</td>
<td>MPa</td>
<td>$-0.04 - 1.51WD - 0.0067LMA$</td>
<td>This study</td>
</tr>
<tr>
<td>Leaf osmotic potential at turgor loss</td>
<td>$\pi_{tip,l}$</td>
<td>MPa</td>
<td>$\frac{\varepsilon \pi_{0,1}}{\varepsilon + \pi_{0,1}}$</td>
<td>Bartlett et al. (2012)</td>
</tr>
<tr>
<td>Leaf bulk elastic modulus</td>
<td>ε_l</td>
<td>MPa</td>
<td>$2.5 + \frac{37.5}{1 + e^{-8.6WD+5.7}}$</td>
<td>This study</td>
</tr>
<tr>
<td>Leaf relative water content at turgor loss</td>
<td>$RW_{C_{tip,l}}$</td>
<td>(-)</td>
<td>$\frac{(\pi_{0,1}(1 - RW_{C_{r,l}}) + \varepsilon_l)}{\varepsilon_l}$</td>
<td>Bartlett et al. (2012)</td>
</tr>
<tr>
<td>Leaf residual fraction</td>
<td>$RW_{C_{r,l}}$</td>
<td>(-)</td>
<td>$0.01\varepsilon_l + 0.17$</td>
<td>This study</td>
</tr>
<tr>
<td>Leaf capacitance over $RW_{C_1} = 1$ to $RW_{C_{tip,l}}$</td>
<td>$C_{ft,l}$</td>
<td>g H$_2$O g$^{-1}$ dry weight MPa$^{-1}$</td>
<td>$\frac{\rho_w \theta_{s,l}(1 - RW_{C_{r,l}})(\varepsilon_l + \pi_{0,1})}{\varepsilon_l^2}$</td>
<td>Bartlett et al. (2012)</td>
</tr>
<tr>
<td>Sapwood saturated</td>
<td>$\theta_{s,x}$</td>
<td>m3 m$^{-3}$</td>
<td>$1 - \frac{WD}{1.54}$</td>
<td>Siau 1984</td>
</tr>
<tr>
<td>water content</td>
<td></td>
<td></td>
<td></td>
<td>Sapwood RWC at which capillary reserves exhausted</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$RWC_{ft,x}$ (-)</td>
<td>$1 - 0.72(1 - RWC_{tip,x})$</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>

| **Fraction of $1 - \tau_{t,x}$ that is capillary in source** | f_{cap} (-) | 0.07 | This study |

| **Sapwood osmotic potential at full turgor** | $\pi_{0,x}$ MPa | $0.52 - 4.16 \times WD$ | This study |

| **Sapwood osmotic potential at turgor loss** | $\pi_{tip,x}$ MPa | $\frac{\varepsilon_x \pi_{0,x}}{\varepsilon_x + \pi_{0,x}}$ | Bartlett et al. (2012) |

| **Sapwood bulk elastic modulus** | ε_x MPa | $\sqrt{1.02 e^{0.5WD} - 2.89}$ | This study |

| **Sapwood RWC at turgor loss** | $RWC_{tip,x}$ (-) | $1 - \frac{(1 - 0.75 \times WD)}{(2.74 + 2.01 \times WD)}$ | This study |

| **Sapwood residual fraction** | $RWC_{r,x}$ (-) | $\frac{\varepsilon_x(1 - f_{cap} - RWC_{tip,x})}{\pi_{0,x}(1 - \varepsilon_x f_{cap})} + 1 - \varepsilon_x f_{cap}$ | This study |

| **Sapwood capacitance over $RWC_{1} = 1$ to $RWC_{tip,1}$** | $C_{ft,x}$ kg m$^{-3}$ MPa$^{-1}$ | $\rho_w \theta_{s,x} (1 - RWC_{r,x}) (\varepsilon_x + \pi_{0,x}) (\pi_{0,x}(1 - f_{cap}) - \varepsilon_x f_{cap})$ | This study |

<p>| Xylem water potential at 50% loss of | $P_{50,x}$ MPa | $-(3.57 WD)^{1.73} - 1.09$ | This study |</p>
<table>
<thead>
<tr>
<th>Conductivity</th>
<th>Slope of xylem vulnerability curve at P_{50}</th>
<th>a_x</th>
<th>MPa$^{-1}$ *100</th>
<th>$54.4(-P_{50,x})^{-1.17}$</th>
<th>This study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum xylem conductivity per unit leaf area</td>
<td>$k_{l,max,x}$</td>
<td>kg m$^{-1}$ s$^{-1}$ MPa$^{-1}$</td>
<td>$0.0021e^{-26.6WD/A_{max}}$</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Maximum xylem conductivity per unit sapwood area</td>
<td>$k_{s,max,x}$</td>
<td>kg m$^{-1}$ s$^{-1}$ MPa$^{-1}$</td>
<td>$\frac{k_{l,max,x}}{A_lA_s}$</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Leaf to sapwood area ratio</td>
<td>$A_l: A_s$</td>
<td>m2 cm$^{-2}$</td>
<td>$546LMA^{-2.14}H$</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td>Leaf to fine root absorbing surface area ratio</td>
<td>$A_l: A_r$</td>
<td>m2 m2</td>
<td>1</td>
<td></td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 3. Properties of simulated and observed trees given in Figure 11.

<table>
<thead>
<tr>
<th>Figure 11 sub-panel</th>
<th>Tree ID*</th>
<th>Observed DBH (cm)</th>
<th>Simulated DBH (cm)</th>
<th>Simulated Canopy Layer</th>
<th>Simulated A_1/A_s (m² cm⁻²)</th>
<th>Simulated $K_{max,ag}$ (kg s⁻¹ MPa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b</td>
<td>C1</td>
<td>15.6</td>
<td>15.6</td>
<td>2</td>
<td>0.41</td>
<td>0.062</td>
</tr>
<tr>
<td>c, d</td>
<td>C2</td>
<td>18.7</td>
<td>18.8**</td>
<td>2, 3</td>
<td>0.45**</td>
<td>0.064**</td>
</tr>
<tr>
<td>e, f</td>
<td>C4</td>
<td>43.9</td>
<td>43.9**</td>
<td>1, 2</td>
<td>0.74**</td>
<td>0.076**</td>
</tr>
<tr>
<td>g, h</td>
<td>C3</td>
<td>51.4</td>
<td>51.4</td>
<td>2</td>
<td>0.81</td>
<td>0.078</td>
</tr>
</tbody>
</table>

* as given in Fisher et al. (2006)

** two simulated trees were included in this size class. Value given is the average of the two trees.
Figure 1. Overview of TFS v.1-Hydro model. Integration of new plant hydraulics scheme (enclosed in dashed box) with host model TFS. Arrows indicate main sources of information flow among the two models.

Left sub-panel: inputs are plot observations of the tree size distribution and distributions of each of four plant functional traits (WD, LMA, N_L, P_L). Middle bottom: the perfect plasticity approximation (PPA) orders trees by decreasing crown area. Middle top: TFS assigns physiological traits, such as $V_{c,max}$, to each tree based on functional traits. Middle: the PPA is used to estimate light environments of each tree, which influence fast timescale (hourly) biophysics of crown light interception, photosynthesis, and stomatal conductance. Assimilated carbon is allocated to leaves, stems, and fine roots daily. Top right (hydrodynamics): Soil-root-stem-canopy water fluxes interact with fast-timescale TFS biophysics by taking transpiration as a boundary condition and passing back the ‘fraction of maximum conductance’ (FMC_{gs}) for downregulating the next timestep’s stomatal conductance based on leaf water potential. Top right (size- and trait-scaling): Hydraulic traits in leaves, stem, and roots are assigned based on each tree’s height and trait values according to empirical equations and allometric theory described in this paper. Bottom right: TFS predicts a
Figure 2. Tropical synthesis of leaf PV parameters in relation to leaf mass per area (LMA), wood density (WD), or each other. a), b) leaf osmotic potential at full turgor (π_o,l) in relation to LMA and WD; c), d) Leaf bulk elastic modulus (ε_l) in relation to LMA and WD; e) residual fraction (RWC_r,l) in relation to ε_l, and f) capacitance ($C_{ft,l}$) in relation to LMA (different lines) and WD. LMA and WD values come first from published values and are supplemented with species-average values from GLOPNET (Wright et al. 2004) and the global wood density database (Zanne et al. 2009). In this and all other figures, the following asterisk codes denote statistical significance at α levels of 0.05, 0.01, 0.001, and 0.0001, respectively: '*', '**', '***', '****'.
Figure 3. Tropical synthesis of sapwood PV parameters and resultant capacitance in relation to wood density (WD). a) osmotic potential at full turgor ($\pi_{o,x}$), b) bulk elastic modulus (ε_x), c) relative water deficit at turgor loss ($R_{tlp,x} = 1 - RWC_{tlp,x}$) and d) capacitance at full turgor ($C_{ft,x}$). Sapwood PV curves conducted on trunk cores, and their associated parameters and capacitances, are bias-corrected (see main text). Original data are shown in light gray in panel d) and Supplement Fig S2.1. Color scheme is given in the legend of panel d). Asterisk codes for significance as in Fig. 2.
Figure 4. Tropical synthesis of xylem vulnerability. **a)** water potential at 50% loss of maximum xylem conductivity ($P_{50,x}$). **b)** slope of percent loss of conductivity curve at ($P_{50,x}$) as a function of $P_{50,x}$. Bold open symbols: Bench dehydration method for P_{50} measurement; light closed symbols: Air injection + all other methods (see Methods 3.1 in main text). Curves are fit through bench dehydration measurements conducted on field-derived plant material in upland tropical forests & savannas only (colored, bold open symbols). Asterisk codes for significance as in Fig. 2.
Figure 5. a) – c). Tropical synthesis of maximum xylem conductivity per unit leaf area ($k_{l,\text{max}}$) in relation to wood density (WD) and light-saturated leaf maximum rate of photosynthesis rate (A_{max}). d) No significant correlation between A_{max} and WD exists in this dataset, justifying their use as independent simultaneous predictors of $k_{l,\text{max}}$. Symbols as in Figs. 2-3. See Supplement Fig. S2.2 for a version of this figure in terms of $k_{s,\text{max}}$. Asterisk codes for
Figure 6. Tropical synthesis showing the dual dependency of the leaf:sapwood area ratio ($A_l:A_s$) on both leaf mass per area (LMA) and tree height (H) size. a) $A_l:A_s$ versus tree height, replotted from Calvo-Alvarado et al. (2008). b) Species-average LMA versus $A_l:A_s$ from a) overlain on a much broader dataset from the Amazon basin (replotted from Patino et al. 2012). c) The slope of the $A_l:A_s$ \sim H relationship in a) versus LMA. Circled datapoint is *Pentaclethra macroloba*, a compound-leaf species averaging 1600 leaflets / leaf and is excluded from the regression. The dependency of $A_l:A_s$ on LMA in b) is thus implemented in the model via variations in the slope of $A_l:A_s$ with H in c); see Fig 7g. Asterisk codes for significance as in Fig. 2.
Figure 7. Plant hydraulics model parameterization as a function of plant traits leaf mass per area (LMA), wood density (WD), light-saturated photosynthesis rate (A\text{max}) and size (H) resulting from the syntheses presented in Figs. 2-6 and summarized in Table 2. a), b) Leaf and sapwood PV curves, respectively (Eqns 1-3) which relate tissue water potential to relative water content (RWC). c) Sapwood xylem vulnerability curves (FMLC; Eqn 4) multiplied by maximum leaf-specific xylem conductivity based on a dataset of the joint distribution of WD and A\text{max} in an eastern Amazonian forest. Note that curves in a) and c) are also dependent on WD and A\text{max}, respectively, in addition to the color scale shown. d)-f) same as a)-c) except for an idealized distribution of plant traits in which trait variation occurs over a single axis (LMA ~ WD ~ A\text{max}). g) Leaf:sapwood area ratio (A_l:A_s) as a function of LMA and tree height. h) Sapwood area (A_s) as a function of DBH and LMA, overlain with synthesis of independent measurements of A_s. Dashed red line in h) represents theoretical maximum for A_s (entirely sapwood).
Figure 8. Tropical synthesis of trade-offs or coordination of various hydraulic traits with the water potential at 50% or 88% loss of maximum xylem conductivity (P$_{50,x}$ or P$_{88,x}$). a) The relationship between maximum xylem conductivity ($k_{s,max,x}$) and P$_{50,x}$ does not support the notion of a trade-off between xylem efficiency and safety, except in tropical dry forests (circled points). b) The relationship between xylem capacitance (C_{ft}) and P$_{50}$ provides tentative evidence for a trade-off between drought avoidance and tolerance. c)-f) Relationships of the leaf osmotic potential at full turgor ($\pi_{o,l}$) and the leaf turgor loss point ($\pi_{tlp,l}$) with P$_{88,x}$ support the hypothesis of coordination between leaf and xylem drought resistance, with less support for the hypothesis in terms of P$_{50,x}$. Thin lines in b)-f) correspond to the empirical equations in Table 2 over a wide range of input WD [0.2, 1.2] and LMA [50,250]. Symbols as in Fig. 4. See Supplement Fig. S2.3 for a version of b) in which no correction factor was applied to sapwood PV curves. Asterisk codes for significance as in Fig. 2.
Figure 9. TFS simulated mean (+/− 1 s.d.) diurnal cycles across all individuals by canopy position, in wet and dry seasons with (v.1-Hydro) and without (v.1) plant hydraulics implemented, at Caxiuana, Brazil. a)-d) total absorbed photosynthetically active radiation, e)-h) transpiration rate per unit crown area, i)-l) total tree transpiration rate.
Figure 10. TFS simulated mean (+/− 1 s.e.) diurnal cycles of transpiration of three large (50-55 cm DBH) individual trees receiving full sunlight but differing in one plant trait, stratified by wet/dry season and TFS version with (v.1-Hydro) and without (v.1) plant hydraulics implemented, at Caxiuana, Brazil. a)-d) individuals differing in leaf P exhibit different light-saturated photosynthesis rates (A_{max}) and consequently $g_{s,\text{max}}$ and, (in v.1-Hydro), $k_{s,\text{max}}$. e)-h) individuals differing in wood density WD exhibit no difference in maximum transpiration rate per unit crown area in v.1, but different rates in v.1-Hydro emerge due to differences in xylem safety ($P_{50,x}$) and hence, stomatal control ($P_{50,gs}$). i)-l) individuals differing in leaf mass per area LMA exhibit little difference in v.1, but large differences in v.1-Hydro due to large differences in the leaf:sapwood area ratio ($A_l:A_{s,\text{v}}$), and hence, total aboveground conductance ($K_{\text{max,ag}}$).
Simulated and observed diurnal variation in leaf and stem water potential for individual trees subject to seasonal and experimental variation in water availability at Caxiuana National Forest, Brazil. Simulated trees possess identical trait values equal to the plot mean and were matched with observed trees based on size (DBH) (see Table 3). Trees are in order from smallest to largest, top to bottom, and are the following trees given in Fisher et al. (2006): a)-b) tree C1, c)-d) tree C2; e)-f) tree C4; g)-h) tree C3; i)-j) tree T1; k)-l) tree T2; m)-n) tree T3; o)-p) tree T4.
Treatment: control 50% TFE

Season: wet dry wet dry

DBH = 15.6 cm DBH = 15.9 cm

DBH = 18.7 cm DBH = 29.5 cm

DBH = 43.9 cm DBH = 36.6 cm

DBH = 51.4 cm DBH = 48.5 cm
Figure 12. Simulated vs. observed individual-level variation in midday leaf water potential, Caxiuana National Forest, Brazil. **a)** without accounting for xylem taper and using mean plot values for input plant traits and derived hydraulic traits from Table 2 (Savage et al. (2010) taper exponent $p = 0.0$, $LMA = 96.1$ g m$^{-2}$, $WD = 0.73$ g cm$^{-3}$, $N_L = 20.9$ mg g$^{-1}$, $P_L = 0.59$ mg g$^{-1}$). **b)** as in a) but accounting for xylem taper ($p = 1/3$). **c)** as in b) but after modifying canopy position of individual trees (see Methods). **d)** as in c) but forcing tree C3 to be less isohydric by setting $P_{gs}^{50} = -5.0$ MPa (P_{x}^{50} remained the same at -3.2 MPa). Different colors represent the following four individuals from Fisher et al. (2006): green – tree C2 (18.7 cm DBH), blue – tree C1 (15.6 cm DBH), orange – tree C4 (43.9 cm DBH), red – tree C3 (51.5 cm DBH). Filled circles and squares represent wet and dry season values, respectively.
Figure 13. Simulated and observed stand-level total transpiration at Caxiuana National Forest, Brazil, under a control (a, c) and a 50% throughfall exclusion experiment (TFE; b, d). Model simulations were carried out where individuals were either (a)–(b) forced to take on identical plot-mean trait values ($LMA = 96.1$ g m$^{-2}$, $WD = 0.73$ g cm$^{-3}$, $N_L = 20.9$ mg g$^{-1}$, $P_L = 0.59$ mg g$^{-1}$), or (c)–(d) allowed to vary according to the plot-level trait distribution.
Identical trait values: plot mean

Different trait values: plot distribution