The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

Saulo R. Freitas1, a, Jairo Panetta2, Karla M. Longo1, a, Luiz F. Rodrigues1, Demerval S. Moreira3,4, Nilton E. Rosário5, Pedro L. Silva Dias6, Maria A. F. Silva Dias6, Enio P. Souza7, Edmilson D. Freitas6, Marcos Longo8, Ariane Frassoni1, Alvaro L. Fazenda9, Cláudio M. Santos e Silva10, Cláudio A. B. Pavani1, Denis Eiras1, Daniela A. França1, Daniel Massaru1, Fernanda B. Silva1, Fernando C. Santos11, Gabriel Pereira12, Gláuber Camponogara5, Gonzalo A. Ferrada1, Haroldo F. Campos Velho13, Isilda Menezes14,15, Juliana L. Freire1, Marcelo F. Alonso16, Madeleine S. Gáctica1, Mauricio Zarzur13, Rafael M. Fonseca1, Rafael S. Lima1, Ricardo A. Siqueira1, Rodrigo Braz1, Simone Tomita1, Valter Oliveira1, Leila D. Martins17

[1] Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil

[2] Divisão de Ciência da Computação, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil

[3] Departamento de Física, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, Brazil.

[4] Centro de Meteorologia de Bauru (IPMet), Bauru, SP, Brazil.

[5] Universidade Federal de São Paulo, Campus Diadema, Diadema, SP, Brasil

[6] Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP, Brazil

[7] Departamento de Ciências Atmosféricas, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil

[8] Embrapa Informática Agropecuária, Campinas, SP, Brazil

[9] Instituto de Ciências e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
Abstract

We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial
resolutions using a scale-aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. The gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitiveness regarding both its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.

1 Introduction

The Brazilian developments on the Regional Atmospheric Modeling System version 5.2 (hereafter, BRAMS 5.2) is derived from the Regional Atmospheric Modeling System (RAMS, Pielke et al., 1992, Cotton et al., 2003) originally developed at Colorado State University in the USA. BRAMS/RAMS are multipurpose numerical weather prediction models designed to simulate atmospheric circulations spanning from planetary scale waves down to large eddies of the planetary boundary layer. RAMS has progressed with its development, which includes, but not limited to, its coupling to a biogeochemistry model (Eastman et al., 2001a and b, and Lu et al., 2001), air quality applications (Lyons et al., 1995; Pielke et al., 1998), and, more recently, a climate application over South America (Beltran-Przekurat et al., 2011). On the other side, BRAMS developed its own identity and diverged from RAMS with several new features and modifications that have been included mainly to improve the numerical representation of fundamental physical processes on tropical and subtropical regions (Freitas et al., 2005b, 2009). Additionally, BRAMS includes an urban surface scheme coupled with a photochemical model (Freitas et al., 2005a, 2007), a complete
in-line module for atmospheric chemistry and aerosol processes (Longo et al., 2013), as well as a state-of-the-art surface scheme to simulate the energy, water, carbon and others biogeochemical cycles (Moreira et al., 2013), which extend RAMS original functionalities (as reference, please see Table B in Pielke, 2013) towards a fully integrated environmental model.

Back in the 1990’s, a consortium between ATMET (Atmospheric, meteorological, and Environmental Technologies) company from United States, the Institute of Mathematics and Statistics (IME), the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) of the University of São Paulo (USP) and the Center for Weather Forecasting and Climate Studies of the Brazilian National Institute for Space Research (CPTEC/INPE) started the BRAMS project funded by the Brazilian Funding Agency of Studies and Projects (FINEP). Nowadays, BRAMS is one of the models operationally used at CPTEC and in several other regional weather forecast centers in Brazil. In CPTEC, a previous version of BRAMS has been applied since 2003 for air quality forecasting over a domain that encompasses the entire South America with a grid spacing of 25 km. Simultaneous (in-line) predictions of weather and atmospheric composition are available in real time, including smoke from vegetation fires. Since the 1st of January, 2013, BRAMS has been running operationally on the CPTEC’s supercomputer, using 9600 cores, to process twice a day regional weather forecasts on 5 km grid spacing and over a domain covering the entire South America and neighboring oceans.

BRAMS has also been applied for numerical studies in several universities and research centers addressing local storms, urban heat island, urban and remote (e.g. fire emissions) air pollution, aerosol-cloud-radiation interactions, carbon and water cycles over the Amazon, volcanic ash dispersion, etc. Numerous Ph.D. thesis and Master dissertations, including institutions outside Brazil, have been written on BRAMS developments and applications.

From the computational point of view, an improved code structure and optimization ensures great scalability in several architectures. BRAMS runs on massively parallel supercomputers, clusters, and personal x86 systems with high efficiency. BRAMS development follows a modular approach to code design, allowing users to write and plug in additional modules as necessary. BRAMS and its components are open source and available under the GNU General Public License at the web page http://brams.cptec.inpe.br.

As shown in the present paper and references herein, the current BRAMS version has capabilities analogous to the state-of-the-art limited area integrated atmospheric chemistry
transport models such as WRF-Chem (Grell et al., 2005) and COSMO-ART (Vogel et al., 2009).

This paper is organized as follows. Section 2 introduces the modeling system focusing on the novelty in comparison with the original RAMS code. In Section 3 we highlight the main applications of BRAMS for operational forecast of weather and integrated weather and chemistry on South America. Section 4 summarizes the model accomplishments, and Section 5 instructs readers about the code availability and access.

2 Model system description

BRAMS solves the compressible non-hydrostatic equations described by Tripoli and Cotton (1982), reproduced here though omitting the horizontal and vertical grid transformations for convenience. The equations of motion are:

\[
\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} - w \frac{\partial u}{\partial z} - \theta \frac{\partial \pi'}{\partial x} + f_v + \frac{\partial}{\partial x} \left(K_m \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial u}{\partial z} \right) \tag{1}
\]

\[
\frac{\partial v}{\partial t} = -u \frac{\partial v}{\partial x} - v \frac{\partial v}{\partial y} - w \frac{\partial v}{\partial z} - \theta \frac{\partial \pi'}{\partial y} - fu + \frac{\partial}{\partial x} \left(K_m \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial v}{\partial z} \right) \tag{2}
\]

\[
\frac{\partial w}{\partial t} = -u \frac{\partial w}{\partial x} - v \frac{\partial w}{\partial y} - w \frac{\partial w}{\partial z} - \theta \frac{\partial \pi'}{\partial z} - g \frac{\theta'}{\theta_0} + \frac{\partial}{\partial x} \left(K_m \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_m \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_m \frac{\partial w}{\partial z} \right) \tag{3}
\]

The thermodynamic equation is:

\[
\frac{\partial \theta_d}{\partial t} = -u \frac{\partial \theta_d}{\partial x} - v \frac{\partial \theta_d}{\partial y} - w \frac{\partial \theta_d}{\partial z} + \frac{\partial}{\partial x} \left(K_h \frac{\partial \theta_d}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial \theta_d}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_h \frac{\partial \theta_d}{\partial z} \right) + \left(\frac{\partial \theta_d}{\partial t} \right)_{rad} + \left(\frac{\partial \theta_d}{\partial t} \right)_{mic} + \left(\frac{\partial \theta_d}{\partial t} \right)_{con} \tag{4}
\]

The water species mixing ratio continuity equation reads:

\[
\frac{\partial r_n}{\partial t} = -u \frac{\partial r_n}{\partial x} - v \frac{\partial r_n}{\partial y} - w \frac{\partial r_n}{\partial z} + \frac{\partial}{\partial x} \left(K_h \frac{\partial r_n}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_h \frac{\partial r_n}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_h \frac{\partial r_n}{\partial z} \right) + \left(\frac{\partial r_n}{\partial t} \right)_{mic} + \left(\frac{\partial r_n}{\partial t} \right)_{con} \tag{5}
\]

Finally, for mass continuity, RAMS solves the equation, expressed in terms of the Exner function:
\[
\frac{\partial \pi'}{\partial t} = -\frac{R \pi'}{c_v \rho_0 \theta_0} \left(\frac{\partial \rho_0 \theta_0 u}{\partial x} + \frac{\partial \rho_0 \theta_0 v}{\partial y} + \frac{\partial \rho_0 \theta_0 w}{\partial z} \right) - \frac{u}{\partial x} - \frac{v}{\partial y} - \frac{w}{\partial z}
\]

The previous equations are all Reynolds-averaged and the prognostic variables have the usual meaning (see Table 1). BRAMS is equipped with a multiple-grid one-way nesting scheme to perform downscaling on computational meshes of increasing spatial resolution. Original capabilities and physical formulations available within RAMS model and inherited by BRAMS are described in Cotton et al. (2003), and Table B in Pielke (2013), and references therein, where the readers are asked to search for further information about RAMS, which we shall not discuss here. This paper will mostly concentrate on BRAMS additional features in comparison with the RAMS model. Table 2 summarizes the main options and characteristics present in BRAMS. The following sections introduce some key aspects of BRAMS and exemplify its added capabilities.

2.1 Aspects of the Dynamics

2.1.1 Complete, mass conservative formulation for the Exner function prognostic equation

BRAMS original prognostic equation for the Exner function was derived by Klemp and Wilhelmson (1978, hereafter KW78). The prognostic equation was obtained by combining the ideal gas equation with the mass continuity equation for compressible fluids. Medvigy et al. (2005, hereafter M05) expanded the original Eq. 6, which now reads:

\[
\frac{\partial \pi'}{\partial t} = -\frac{R \pi'}{c_v \rho_0 \theta_0} \left(\frac{\partial \rho_0 \theta_0 u}{\partial x} + \frac{\partial \rho_0 \theta_0 v}{\partial y} + \frac{\partial \rho_0 \theta_0 w}{\partial z} \right) - \frac{u}{\partial x} - \frac{v}{\partial y} - \frac{w}{\partial z}
\]

KW78 pointed out that the first term of the right-hand-side of Eq. (7) typically has a higher order of magnitude than the other terms in studies of cloud dynamics, and the simplified version of Eq. (7) became the standard solution in both RAMS and BRAMS. However, KW78 also pointed out that the simplified equation violates mass conservation and deteriorates the accuracy of predicted pressure fields. M05 evaluated the conservation of mass in a regional simulation for New England, and found the loss rates to be as large as 3% day\(^{-1}\), and showed a significant improvement when the full equation was included. In this
version of BRAMS, both the native and the complete form of the prognostic equation are available, and following M05 implementation, in BRAMS 5.2 we also solved the advection, divergence, and heating terms of Eq. (7) using the main time step, whereas the heat flux term is updated using the acoustic time step.

2.1.2 Time integration schemes

RAMS employs a hybrid time integration scheme combining leapfrog scheme for the wind components and Exner function with forward-in-time for scalars. The computational mode produced by the leapfrog scheme is damped with the application of the Robert-Asselin time filter (Asselin, 1972), which makes the overall accuracy of 1st order. Williams (2009) proposed a simple modification in this time filter with few extra lines of coding but increasing the accuracy of the scheme to 3rd order. This improved time filter is available in BRAMS by appropriate setting of a flag in the namelist input file (RAMSIN).

A third option for time integration in BRAMS was based on the work of Wicker and Skamarock (2002, hereafter WS2002). This scheme has proven to be very robust and efficient being applied in several state-of-the-art non-hydrostatic atmospheric models (e.g., Skamarock and Klemp, 2008, Baudauf, 2008 and 2010, Skamarock et al., 2012). The WS2002 scheme is a low storage Runge-Kutta type with 3 stages and 3rd order for linear problems (hereafter RK3). The 3 stages require 3 evaluations of the slow mode tendencies (e.g. advection term), however, this cost is offset by the larger time step allowed by the scheme when allied with high order advection scheme (see discussion in Section 2.1.3).

The last option for time integration scheme was described by Wicker (2009). This technique comprehends a combination of 2 different schemes applied in 2 steps. A predictor step is performed applying Adams-Bashforth of 2nd order scheme and then a corrector step is completed applying Adams-Moulton of 3rd order scheme (hereafter ABM3). ABM3 is of 3rd order and requires only 2 evaluations of the slow mode tendencies, demanding, however, a larger memory footprint than RK3 and a shorter time step. The advantage of using ABM3 over RK3 might arise when the length of the time step required by model stability is not dictated by the advective transport but by other physical processes (e.g. cloud microphysics).
2.1.3 Additional advection schemes

2.1.3.1 Monotonic scheme for advection of scalars

An additional advection scheme, which preserves the initial monotonic characteristics of a scalar field being transported with simultaneously levying low numerical diffusion, is available in BRAMS. The method developed by Walcek (2000) is highly accurate and absolutely monotonic. Freitas et al. (2012) reported its implementation in BRAMS and related impacts on the accuracy of the transport of relatively inert tracers as well as on the formation of secondary species from non-linear chemical reactions of precursors. The results revealed that the new scheme produces much more realistic transport patterns, without generating spurious oscillations and under- and overshoots or diffusing mass away from the local peaks. Besides these features, the scheme also presents good performance on retaining non-linear tracer correlations and conserving mass of multi-component chemical species. The latter feature is not evident since monotonic preserving filters typically make the numerical advection scheme non-strictly linear.

As an example of the application of this scheme within of BRAMS, the advection of a hypothetical rectangular parallelepiped tracer field by a realistic 3-D wind flow is discussed as follow. The model was configured with one grid with 10 km horizontal grid spacing covering the southeast part of Brazil and with a time step of 15 seconds. The total length of the time integration was 24 hours. The tracer mass mixing ratio is initiated with 100 au and the background is set to zero. The horizontal domain initially occupied by the tracer is shown on panel A of Figure 1, while in the vertical the tracer was initially localized between 1.7 and 4.1 km in height (not shown). The tracer mass mixing ratio distribution 12 hours after and simulated by the original and monotonic advection schemes are shown on panels B and C of Figure 1, respectively. In this study, the original advection scheme of BRAMS noticeably introduced spurious oscillations, overshoots and undershoots (panel B), the latter with negative values of mass mixing ratio (see Freitas et al 2012 for further details). On the other hand, the simulation produced by the new scheme is much better at keeping the monotonicity of the distribution without spurious oscillations and negative mass mixing ratio (panel C), even for a real strongly divergent and deformational wind as of this case.

2.1.3.2 High order advection schemes

Following WS2002, BRAMS has also a new set of advection schemes to be applied in conjunction with RK3 or ABM3 time schemes. The set is comprised of first to sixth order
spatial approximations for the fluxes at the edge of the grid cells. Also, exactly the same flux approximation can be applied for advection of scalars and momentum. Positivity constraint for scalars can be applied following Skamarock (2006).

Future versions of BRAMS will include also monotonicity constraints for scalars and an option for the WENO (Weighted Essentially Non-Oscillatory) 3rd and 5th orders formulation (Baba and Takahashi, 2013) for the advection operators.

2.2 Physical parameterizations

2.2.1 Microphysics

2.2.1.1 Two-moment parameterization from RAMS/CSU

The current version of the two-moment (2M) microphysical parameterization used in RAMS, version 6, has been implemented into BRAMS. This scheme has prognostic equations for number concentration and mixing ratio for eight hydrometeors categories (cloud, drizzle, rain, pristine, snow, aggregates, graupel and hail). Each hydrometeor size spectrum is described by a generalized gamma distribution with a user specified shape parameter (Meyers et al., 1997, Saleeby and Cotton, 2004, 2008).

According to Cotton et al. (2003), the 2M microphysical scheme comes with an efficient and stable algorithm for heat and vapor diffusion without requiring numerical iteration (Walko et al., 2000), sea salt and dust treatment and bin sedimentation scheme. Lately, Saleeby and Cotton (2008) developed a binned approach to cloud-droplet rimming, which computes the collision-coalescence process between ice and cloud particles in a more realistic way.

Cloud and drizzle number concentrations are computed from cloud condensation nuclei (CCN) and Giant CCN (GCCN) concentrations, respectively. A lookup table (LUT) is used to obtain the CCN concentration that is activated as function of aerosol size, concentration, and composition via hygroscopicity parameter (Petters and Kreidenweis, 2007), as well as updraft velocities, pressure and temperature. On the other hand, GCCN activation does not depend on the environment conditions, being completely used in the drizzle nucleation process. Both aerosol categories may be advected, diffused, depleted and restored (by droplet evaporation) as well as have their initial concentrations specified by the user as either homogeneous or heterogeneous fields (Saleeby and Cotton, 2004, 2008).
2.2.1.2 Thompson cloud microphysics

The aerosol aware bulk microphysics scheme described in Thompson et al., (2008), and Thompson and Eidhammer (2014), hereafter GT, was also implemented in BRAMS. The GT scheme treats five separate water species, mixing single and double moment treatment for different cloud species to minimize computational cost. It also includes the activation of aerosols as cloud condensation (CCN) and ice nuclei (IN) and, therefore, explicitly predicts the droplet number concentration of cloud water as well as the number concentrations of the two new aerosol variables, one each for CCN and IN. The aerosol species are lumped into two different groups according to their hygroscopicity. Hygroscopic aerosols are in the general category of “water friendly” (Nwfa), and the non-hygroscopic ice-nucleating aerosols are in the group “ice friendly” (Nifa). As a first approximation, Nifa is assumed to be only mineral dust in the accumulation mode; and all the other species (sulfates, sea salts, and organic matter, and black carbon) are assumed to be a mixture of the species in each population and allocated to the hygroscopic mode Nwfa.

Aerosol activation also uses a LUT of activated fraction determined by temperature, vertical velocity, aerosol number concentration, and hygroscopicity parameter determined by the model. The LUT was built following Köhler activation theory within a parcel model from Feingold & Heymsfield (1992) with additional changes by Eidhammer et al. (2009) to use the hygroscopicity parameter (Petters & Kreidenweis 2007). This approach is similar to the one used by RAMS CSU microphysics previously described (Saleeby and Cotton, 2004, 2008). However, the LUT of GT has a coarser variation in the terms of hygroscopicity parameter compared to RAMS CSU. The coarse resolution of the LUT in terms of aerosol hygroscopicity contributes to GT scheme low cost, though also represents a limitation for ambient with high loading of very low hygroscopic aerosols, such as biomass burning affected areas (Gácita et al., 2016).

2.2.1.3 Abdul-Rassack parameterization

As a low-cost option to the explicit aerosol aware microphysics schemes described above, the parameterization of aerosol particle activation as CCN was also implemented following the approach of Abdul-Razzak and Ghan (2000, 2002). This scheme, in its form for multiple log-normal distributions, assumes that the particles are in equilibrium with the environment, and the terms of curvature and the solute in the particle growth after activation can be neglected. As a first approach, for applications in a black-carbon rich atmosphere, the aerosol activation
can be done via Abdul-Rassack parameterization and feed either the GT or RAMS CSU microphysics directly with the CCN number concentration.

2.2.2 Radiation

2.2.2.1 CARMA and RRTMG schemes

BRAMS radiation module includes two additional schemes to treat atmospheric radiative transfer, consistently for both long- and short-wave spectrum. The first scheme is a modified version of the Community Aerosol and Radiation Model for Atmospheres (CARMA) (Toon et al., 1989), and the second one is the Rapid Radiation Transfer Model (RRTM) version for GCMs (RRTMG, Mlawer et al. 1997; Iacono et al. 2008). RRTMG shares the same basic physics as RRTM, though it incorporates several modifications (Iacono et al. 2008) in order to improve computational efficiency. CARMA and RRTMG schemes both solve the radiative transfer using the two-stream method and include all the major molecular absorbers (water vapor, carbon monoxide, ozone, oxygen) and aerosol extinction. The RRTMG implementation preserved all the absorption coefficients for molecular species used in the correlated k distribution method, which were based on a line-by-line model (Iacono et al., 2008). CARMA treats gaseous absorption coefficients using an exponential sum formulation (Toon et al., 1989).

Radiation schemes in BRAMS are both in line coupled with the aerosol and cloud microphysics modules to provide on line simulations of aerosol-cloud-radiation interactions. CARMA and RRTMG radiative schemes are both fed with Aerosol Optical Depth (AOD) profiles calculated from simulated aerosol mass loading and prescribed aerosol intensive optical properties, specifically the extinction efficiency, single scattering albedo and asymmetry parameter taken from a LUT. Aerosol intensive optical parameters prescription is regionally dependent. For South America, the parameters present in the LUT (Procópio et al. 2001, Rosário et al., 2013) are obtained from off-line Mie calculations using as input climatological particle size distribution and the complex refractive index from sites of the AErosol RObotic NETwork (AERONET, Holben et al., 1998) distributed across South America. As an example, Figures 2 and 3 present comparisons between BRAMS 5.2 simulation with the CARMA scheme for a set of diurnal cycles of downward shortwave and longwave irradiance, respectively, at the surface, with measurements at a pasture site (Abracos Hill - 10.760°S, 62.358°W) in the southern portion of the Amazon basin. For both radiation spectrums, the model reproduced consistently the diurnal cycle of the surface
downward radiative energy. In the case of the shortwave radiation, the inclusion of the aerosol radiative effect proves to be fundamental to model its diurnal cycle.

Cloud physical (ice and liquid water path and particle sizes) and optical properties (optical depth) in CARMA radiative scheme, have been parameterized according to Sun and Shine (1994), Savijarvi (1997), and Savijarvi et al. (1997, 1998) using liquid and ice water content profiles provided by BRAMS cloud microphysical module. In this case, subgrid-scale cloud variability is not taken into account.

For RRTMG scheme, the optical properties of liquid and ice water are from Hu and Stamnes (1993) and Ebert and Curry (1992), respectively, and subgrid-scale cloud variability including cloud overlap is statistically addressed with MCICA (Iacono et al., 2008), the Monte Carlo Independent Column Approximation [Barker et al., 2002; Pincus et al., 2003]. The MCICA approach presupposes that cloud liquid water and ice, and cloud fraction are prognostic variables. As so, the cloud liquid water effective radius was parameterized in BRAMS following the generalized power-law expression of Liu et al. (2008):

\[r_{el} = \left(\frac{3}{4\pi \rho_w} \right)^{1/3} \beta \left(\frac{LWC}{N} \right)^{1/3} \]

(8)

where \(LWC \) is the liquid water content, \(\rho_w \) is the water density, and \(N \) is the cloud droplets number concentration. \(L \) and \(N \) are in CGS units. \(\beta \) is a dimensionless parameter that depends on the spectral shape of the cloud droplet distribution, set based on observation as:

\[\beta = a_\beta \left(\frac{LWC}{N} \right)^{-b_\beta} \]

(9)

with \(a_\beta \) and \(b_\beta \) equal to 0.07 and 0.14, respectively.

The cloud radiative forcing is very sensitive to the determination of \(\beta \). According to Liu et al. (2008), \(\beta \) increases with aerosol loading and leads to a warming effect that acts to substantially offset the cooling of the Twomey effect by a factor of 10 to 80%. A \(b_\beta > 0 \) leads to a weaker dependence of \(r_{el} \) on \(LWC/N \) and a smaller indirect aerosol effect, with a better agreement with observation. In principle, this generalized power-law expression for \(r_{el} \), effectively accounts for the increase in droplet concentration and decrease in droplet size due to aerosol (Twomey, 1974), as well as the reduction on precipitation efficiency, which increases the liquid water content, the cloud lifetime (Albrecht, 1989), and the cloud thickness (Pincus and Baker, 1994).
The ice effective radius was parameterized in BRAMS following Wyser (1998), with an explicit dependence on both ice water content and temperature:

\[r_{ei} = 377.4 + 203.3B + 37.91B^2 + 2.3696B^3 \] \hfill (10)

\[B = -2 + 10^{-3}(273 - T)^{1.5} \log_{10}\left(\frac{IWC}{IWC_0}\right) \] \hfill (11)

where \(T \) is the temperature in Kelvin, \(IWC \) is the ice water content in \(\text{gm}^{-3} \), and \(IWC_0=50\text{gm}^{-3} \).

This parameterization assumes the ice crystals consisting of hexagonal columns, and so is compatible with the ice optical properties from Ebert and Curry (1992) assumed in RRTMG.

In addition, to fulfill MCICA requirements, a cloud fraction representation was also implemented in BRAMS, based on the parameterization originally from the Community Atmosphere Model (CAM, http://www.cesm.ucar.edu/models/cesm1.2/cam/), which is a generalization of the scheme introduced by Slingo (1987), with variations described in Kiehl et al. (1998); Hack et al. (1994), and Rasch and Kristjánsson (1998). In this representation, three types of cloud are diagnosed, depending on relative humidity, atmospheric stability, and convective mass fluxes: low-level marine stratus, shallow and deep convective clouds, and layered cloud.

The marine stratus clouds are located according to the identification of stable layers between surface and 700 mb (\(> 0.125 \text{ K mb}^{-1} \)) and using the following empirical relationship from Klein & Hartmann (1993):

\[C_{st} = \min\{1, \max[0, (\theta_{700} - \theta_s) \cdot 0.057 - 0.5573]\} \] \hfill (12)

where \(\theta_{700} \) and \(\theta_s \) is the potential temperatures at 700 mb and surface levels, respectively. The stratus clouds are located just below the strongest stability jump between these two levels.

The convective clouds fraction follows Xu and Krueger (1992) formulation based on the updraft mass flux, both for shallow and deep:

\[C_{\text{shallow}} = k_{1,\text{shallow}} \ln (1.0 + k_2 M_{c,\text{shallow}}) \] \hfill (13)

\[C_{\text{deep}} = k_{1,\text{deep}} \ln (1.0 + k_2 M_{c,\text{deep}}) \] \hfill (14)

With \(k_{1,\text{shallow}} = 0.07, k_{1,\text{deep}} = 0.14, k_2 = 500 \), and \(M_c \) is the convective mass flux at the given level.

Any other clouds are diagnosed according to the relative humidity:
\[C_c = \min \left[0.999, \left(\max \frac{R_h - R_{\text{min}}}{1 - R_{\text{min}}} \right)^2 \right] \] (15)

\[RH_{\text{min}} = \begin{cases} RH^{\text{low}}_{\text{min}}, & p \geq 750 \text{ mb} \\ RH^{\text{high}}_{\text{min}}, & p < 750 \text{ mb} \end{cases} \] (16)

with \(RH^{\text{low}}_{\text{min}} = 0.90 \) and 0.80, over water and land, respectively, and \(RH^{\text{high}}_{\text{min}} = 0.80 \).

\[C_c = \min \left[0.999, \left(\max \frac{R_h - R_{\text{min}}}{1 - R_{\text{min}}} \right)^2 \right] \] (17)

The total cloud fraction in the grid cell is:

\[C_{\text{tot}} = \min \left[1, \max \left(C_{\text{St}}, C_{\text{deep}}, C_{\text{shallow}}, C_s \right) \right] \] (18)

The total cloud optical depth is given by the contribution from liquid and ice water contents, and as well accounts for the cloud fraction.

2.2.3 Turbulence parameterizations

2.2.3.1 Nakanishi & Nino TKE based formulation

In BRAMS, as in the original RAMS formulation, the local changes of momentum and scalars due to turbulent transport depend on the divergence of turbulent fluxes (RAMS, 2003). When the grid resolution is coarser than the size of the largest eddies (typically coarser than 100 m ~ 1 km), the eddy covariance fields needed to determine the turbulent fluxes are determined through the K-theory (Stull, 1988), which requires the determination of eddy diffusivities for momentum and scalar quantities

\[
\begin{align*}
\overline{u'v'} &= \overline{v'u'} = -K_{mh} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), \\
\overline{u_h w'} &= -K_{mz} \frac{\partial u_h}{\partial z}, \\
\overline{w' u_h} &= -K_{mz} \frac{\partial w}{\partial x_h}, \\
\overline{u_h' \varepsilon'} &= -K_{hh} \frac{\partial \varepsilon}{\partial x_h}, \\
\overline{w' \varepsilon'} &= -K_{hz} \frac{\partial \varepsilon}{\partial z},
\end{align*}
\] (19)

where \((x,y)\) are the horizontal directions \((x_h \text{ is either } x \text{ or } y)\), \(z\) is the vertical direction, \((u,v)\) are the horizontal wind directions \((u_h \text{ is either } u \text{ or } v)\), \(w\) is the vertical velocity and \(\varepsilon\) is any scalar, \(K_{mh}\) and \(K_{mz}\) are the horizontal and vertical diffusivity coefficients for momentum, \(K_{hh}\)
and K_{hz} are the horizontal and vertical diffusivity coefficients for scalars. It is important to note that the equations (3-4) are only to be used when the grid horizontal resolution is much coarser than the vertical resolution because they violate vorticity conservation, however, different scales are needed when the horizontal and vertical grid resolution are different to avoid numerical instabilities (RAMS, 2003).

The horizontal diffusivities are determined using the same algorithm implemented in RAMS, which is based on the Smagorinsky (1963), with the inclusion of the Brunt-Väisälä correction by Hill (1974). For the vertical diffusivity coefficients, we use a vertical parameterization based on the level-2.5 model by Mellor and Yamada (1982), further modified by Nakanishi and Niino (2004). In this model, the diffusivity coefficients depend on turbulent kinetic energy per unit mass (TKE), which also becomes a prognostic variable:

$$
K_{mz} = LqS_m, \\
K_{hz} = LqS_h, \\
q = \sqrt{2TKE} = \sqrt{u'u' + v'v' + w'w'}
$$

where L is the master length scale, and S_m and S_h are non-dimensional stability functions for momentum and buoyancy. Both L and the stability functions are determined following the Nakanishi and Niino (2004), which allows for stronger turbulence and deeper boundary layers compared to the original formulation. The non-dimensional stability functions also include a correction factor to avoid numerical instabilities under growing turbulence (see Helfand and Labraga, 1988), and an upper limit on L under very stable conditions to avoid TKE becoming negative, following the implementation by Janjić (2001) and Nakanishi and Niino (2006). Although Nakanishi and Niino (2004) also described a higher-order, level-3 parameterization, this would require including prognostic equations for the variance of every scalar and the covariance between pairs of scalars, which would rapidly become unmanageable due to high computational load (Mellor and Yamada, 1982).

2.2.4 Surface interactions:

2.2.4.1 Town Energy Budget (TEB) scheme to simulate urban areas

BRAMS offers also the possibility of using a combination of LEAF surface scheme (Walko et al., 2000) and Town Energy Budget (TEB) (Masson, 2000; Freitas et al., 2007). The use of the bare soil formulation or the adjustment in the surface-vegetation-atmosphere transfer (SVAT) scheme parameters is very frequent. However, as stressed out by Masson (2000),
such approximation is satisfactory only for large temporal or spatial averages, and it is necessary to incorporate a more detailed scheme when smaller scales are considered. Therefore, the simulation of several mesoscale and local processes that simultaneously occur in an urban atmosphere and its surroundings requires a more detailed urban surface parameterization. Such processes include the circulations generated by urban heat islands (UHI) and its interaction with other atmospheric phenomena (Freitas et al., 2007, Nair et al., 2004), air pollution (Andrade et al., 2004, Freitas et al., 2005a), and human comfort conditions (Johansson et al., 2013), among others. In BRAMS 5.2, the TEB and LEAF schemes are activated simultaneously, and the surface fluxes of momentum and moisture, temperature, surface albedo, and emissivity are calculated by TEB wherever an urban grid point is identified, while LEAF is applied elsewhere (e.g., bare soil, water bodies, grass, forest, or any vegetation). TEB considers the interaction of short and long wave radiation with the urban structure, allowing multiple reflections with walls and roads. In addition to the tridimensional urban structure in TEB formulation, other advantage is the possibility to simulate anthropogenic heat and moisture fluxes emitted both by mobile sources, such as heavy and light duty vehicles, and fixed sources, such as industries, commerce and domestic activities in general. For large cities, such as São Paulo and Rio de Janeiro, the anthropogenic heat sources are key features, not only for meteorological reasons, but also for health and public policies management. As anthropogenic contributions can vary strongly depending on the urban area, the implementation of TEB in BRAMS allows the user to define those contributions in the model configuration file. Following the work of Khan and Simpson (2001), anthropogenic contributions can be estimated based on fuel and electricity consumption, as well as the population and their related activities in the area of interest. For example, maximum values of 30 and 20 W m$^{-2}$ of the sensible heat flux emission in the peak hours for vehicular and industrial contributions, respectively, was considered for the Metropolitan Area of São Paulo, Brazil, with more than 20 million inhabitants, and more than 7 million vehicles (Freitas et al., 2007). Such fluxes properly represent most of the urban heat island features for São Paulo, including the interaction between the UHI and the sea-breeze. However, the fluxes must be adjusted on a case to case basis, and, therefore, urban structure and anthropogenic contributions are user specified in the model namelist (Table 3) to limber model application for different urban areas. Additionally, the diurnal cycle of vehicle activities and other related features (as pollutants emission, for example) are dependent on local time. Therefore, there is an input file describing local time as function of latitude and
longitude of each grid point. Vehicular activity is defined in the model using a double normal distribution centered on two values of the time of rush hours, which are also user definable (Freitas et al., 2005a, 2007).

2.2.4.2 Joint UK Land Environment Simulator (JULES) model

In this section, the coupling between the Joint UK Land Environment Simulator (JULES) surface–atmosphere interaction model (Best et al., 2011, Clark et al., 2011) and the BRAMS model is concisely described (for further details, readers are referred to Moreira et al., 2013). JULES contains the state-of-the-art numerical representation of surface processes and is able to simulate a number of soil-vegetation processes such as vegetation dynamics, photosynthesis and plant respiration, and also transport of energy and mass in soils and plants, including a representation of urban elements. The coupling of JULES and BRAMS is fully 2-way with BRAMS providing atmospheric dynamics, thermodynamics and chemical constituents information to JULES, which in turn responds with fluxes of horizontal momentum, water, energy, carbon and others tracers exchanged between the atmosphere and the surface beneath. In JULES, the land surface is divided in sub-grid boxes, which can be occupied by a number of plant functional types (PFTs) and non-functional plant types (NPFTs). Up to five PFTs are allowed in each sub-grid box: broadleaf trees (BT), needleleaf trees (NT), C3 grass type (C3G), C4 grass type (C4G), and shrubs (Sh). A sub-grid box can also be occupied by up to four NPFTs: urban, inland water, soil and ice. JULES adopts a tiled structure, in which the surface processes are calculated separately for each surface type. Its initialization requires: land cover and soil type classifications, normalized difference vegetative index (NDVI), sea surface temperature, carbon and moisture soil contents and soil temperature.

Moreira et al. (2013) indicated that the application of JULES on simulations over South America implied in significant gain of skill compared to the original surface scheme in RAMS (LEAF3). As an example, Figure 4 shows model root-mean-square error (RMSE) of 2-meter temperature, which was calculated using observations from ground stations distributed all over a large part of this continent. RMSE corresponds to the first 24-hour forecast averaged over 30 runs on the wet (March, panel A) and dry seasons (September, panel B) of 2010. During the night, both surface schemes present similar skills, with LEAF3 being slightly better in the dry season. However, during daytime JULES notably improves
model skills in both seasons. As daily average, RMSE decreases by approximately 10% with the latter surface scheme.

2.2.5. Parameterizations of moist convection

2.2.5.1. Shallow convection

The shallow cumulus parameterization scheme in BRAMS is a mass flux type described in details in Souza (1999). The cloud model follows the version of Albrecht et al. (1986) for a single-cloud formulation of the Arakawa and Schubert (1974) ensemble scheme. The shallow cumulus characteristic in the cloud model is obtained through an entraining function that gives more weight to the side entrainment as air parcels approach the cloud top. Therefore, a lifted air parcel from near surface starts with a small entrainment of $\lambda=10^{-6}$ m$^{-1}$, and this value increases by an order of magnitude each time the parcel reaches a ten-folding height z_f, which is the only adjustable parameter of the scheme. The entrainment rate is about 10^{-3} m$^{-1}$ at the 2.1 km height for a z_f of 0.7 km. The cloud top is reached when the total buoyancy of the parcel, integrated from the surface to the top, becomes zero. The mass-flux formulation is based on the heat engine framework proposed by Rennó and Ingersoll (1996). The derivation of the convective mass flux follows the rationale that the convective heat engine, which is driven by surface heat flux, forces the upward motion of air masses. The convective flux is then a result of the total forcing at the surface, namely the sum of the fluxes of sensible and latent heat, which are converted into kinetic energy accordingly to the second law of thermodynamics. Once surface fluxes start forcing the heat engine, upward convecting air parcels might reach levels where water vapor saturation take place. The triggering function follows the work of Wilde et al. (1985), which showed that moist parcels could give origin to shallow cumuli only when the entrainment zone, located on top of the mixing layer, is above the lifting-condensation-level zone.

This shallow convective scheme is suitable to study the interaction between shallow convection and surface processes and its use in BRAMS improved the representation of the diurnal cycle of temperature and moisture over land.

2.2.5.2. Grell and Deveny for deep convection

Grell and Deveny (2002, hereafter GD) deep convection scheme was included in BRAMS in 2002 and its implementation is described in Freitas et al. (2005). One of the reasons for the GD inclusion in BRAMS was the need of a mass flux scheme for a consistent convective
transport of tracers. GD expanded the original formulation based on Grell (1993) by including stochastic capability through permitting a series of different assumptions that are widely used in convective parameterizations. The GD scheme can use a very large number of ensemble members based on five different types of closure formulations, precipitation efficiency and the ability of the source air parcels to overcome the convective inhibition energy.

Dos Santos et al. (2013) developed a method to generate a set of weights related with the closure members of the GD ensemble to optimize the combination of them. As an inverse problem of parameter estimation, the optimization problem for retrieving the weights applied a metaheuristic optimization method called Firefly algorithm (FY, Yang, 2008). The method consists of minimizing an objective function computed with the quadratic difference between BRAMS precipitation forecasts and observation, a measure of the distance between the observational data and model results. Six different model simulations were performed to produce a 5-member ensemble of precipitation forecasts, each one using a single closure option and one of the runs was performed using the ensemble simple mean option. The single closure options used were: Arakawa and Schubert (1974), moisture convergence (Krishnamurti et al., 1983), low-level Omega (Frank and Cohen, 1987), Kain and Fritsch (1992) and Grell (1993). The method demonstrated to be able to produce an ensemble with improved statistical scores compared with the original ensemble mean calculation (dos Santos et al., 2013, Santos, 2014). As an example, the categorical verification bias score computed for South America as depicted in Figure 5. The mean of a set of 30 forecasts of 24-h accumulated precipitation for 120 h in advance of precipitation for January 2008 (panel A) and 2010 (panel B) was carried out using both GD ensemble arithmetic mean (EN) and the ensemble mean using FY method. The model setup included a grid with 25 km horizontal resolution covering South America and a 100 meters vertical resolution in the first level, then the vertical resolution varied telescopically with a ratio of 1.1 up to a maximum vertical resolution of 950 m, with the top of the model at approximately 19 km (a total of 40 vertical levels). As initial and boundary conditions, we used the CPTEC/INPE Atmospheric General Circulation Model (AGCM) analysis with T126L28 resolution, where T126 is the rhombooidal truncation at wave number 126, and L28 is the number of model vertical levels.

The vertical bars in Figure 5 refer to a significance test from the bootstrap method (Hamill, 1999). These results indicate a reduction of bias in the low thresholds of precipitation, as well as an increase of the model skills for higher thresholds, in agreement with the increase of
Equitable Threat Score (not shown) for higher thresholds, both with statistical significance, which demonstrates that FY is a robust method for training the GD ensemble of closures.

In addition, GD scheme in BRAMS contains an alternative option for the convective trigger function (CTF), which was originally developed by Jakob and Siebesma (2003) and implemented by Santos e Silva et al. (2012). In this formulation, the CTF is linked with the sensible and latent surface fluxes. Previous results, within both a global model (Betchold et al., 2004) and BRAMS (Santos e Silva et al., 2012) showed improvements on simulating the diurnal cycle of precipitation over continental areas, especially in tropical South-America.

2.2.5.3 A scale and aerosol aware convective parameterization for deep and shallow cumulus

The Grell and Freitas (2014, hereafter GF) scheme is based on the stochastic approach originally implemented by GD with several additional features. One new feature is scale dependence formulations for high-resolution runs (or gray-zone for deep convection model configurations) and interaction with aerosols. The scale dependence was introduced by two approaches. One is based on spreading subsidence to neighboring grid points instead of in the same model convective column, as usually done by classical convective parameterizations. The second approach applies methods devised by Arakawa et al. (2011). This work reformulated the eddy fluxes associated with the convective transports as a function of the updraft area fraction and the eddy fluxes given by a closure of a conventional convective parameterization. The idea is readily applied to the conventional parameterizations provided that a reliable formulation for the updraft area fraction is achieved. Because of its simplicity and its capability for an automatic smooth transition as the resolution is increased, Arakawa’s approach is recommended to the BRAMS users.

A second new feature present in GF is an aerosol awareness capability through a CCN (cloud condensation nuclei number concentration) dependent autoconversion of cloud water to rain, as well as an aerosol dependent evaporation of cloud drops. However, this feature is still in the experimental stage, so caution when using it is advised.

Recently, the GF ensemble of closures has been extended to include a new closure inspired in ideas developed by Bechtold et al., (2008, 2014 - hereafter B2014). In the B2014 paper, the authors derive a diagnostic CAPE based closure where selective boundary layer time scales over land and water are applied. As a consequence, their convective parameterization improved its capability on the representation of non-equilibrium convection forced by...
boundary layer processes, with a more realistic phase of the associated diurnal cycle over land. In GF scheme, 2015 version, (Freitas and Grell, in prep.), a corresponding closure, although built on the cloud work function concept, was included. Additionally, GF, 2015 version, contains a variant scheme for shallow convection (non-precipitating) with three options for the closure of mass flux at cloud base (Freitas and Grell, in prep.).

Several experiments with BRAMS, with the GF 2015 version, including Arakawa’s approach (GF-A), using horizontal grid-sizes of 5, 10 and 20 km were carried out to evaluate the performance of the GF scheme as well as its behavior on different scales. For the 5 km model run we described also the performance of the scheme without applying any scale correction (GF-NS). Each experiment comprised 15 runs from 1 to 15 January for 36-hour forecasts, all starting at 00UTC. 24-hour precipitation accumulation used for verification were taken from 12 to 36-hour. Also, all experiments covered the same region and used the same initial and boundary conditions, which were taken from NCEP/USA Global Forecast System (GFS) analysis and forecast fields. Physical parameterizations included CARMA radiation, JULES surface scheme, Mellor-Yamada 2.5 turbulence scheme and the single-moment bulk microphysics parameterization from Walko et al. (1995). Model results are presented in Figure 6. Decreasing the grid spacing from 20 to 5 km (panels A, B and C), detailed precipitation structures shows up, while the broad precipitation distribution is preserved with the domain averaged precipitation, exhibiting deviation in a 10% range (between 4.1 and 4.5 mm day$^{-1}$). On the other side, the precipitation produced by CP only (lower row, panels E, F and G) presents a consistent decrease, becoming less significant, from 3.5 to 1.0 mm day$^{-1}$, allowing the dynamics and cloud microphysics to be responsible for a much larger fraction of the total precipitation. Instead of GF-A 5 km run, GF-NS (panel D) resulted in about 20% larger domain average precipitation with much smoother spatial distribution. In Panel H, is shown that even on 5 km grid spacing, most of the precipitation (\sim 75%) is generated by the convection scheme. These results demonstrate the ability of the GF-A scheme to produce a smooth transition across scales within the BRAMS modeling system.

Figure 7 introduces an exploratory study on the impacts of the B2014 closure (here called “diurnal cycle” closure) on BRAMS results with respect the diurnal cycle of precipitation over the Amazon Basin. Model configuration for this study comprised a grid with spacing of 27 km on horizontal and 80 to 850 m on vertical. The physical parameterizations and initial and boundary condition were the same as of the preceding scale-dependence experiment, but GF applied the B2014 approach. Again, model was setup to perform several runs resembling
the operational mode, comprising fifteen runs (from 1 to 15 February 2011) with 120-hour forecast each.

Santos e Silva et al. (2009, 2012) discussed in details the diurnal cycle of precipitation over the Amazon Basin using the TRMM rainfall product (Huffman et al., 2007) and observational data from a S band polarimetric radar (S-POL) and rain gauges obtained in a field experiment during the wet season of 1999. Their analysis indicated that a peak of rainfall is common late in the afternoon (between 1700 and 2100 UTC), in spite of variations existent associated with wind regimes. Figure 7 shows model results with and without the diurnal cycle closure, both panels depict area average precipitation from GF scheme (mm h⁻¹), as well as downwelling short-wave radiation (W m⁻², DSWR). A sample of 5-day forecast initiating on 00UTC 1 February 2011 is presented on Panel A. The simulated precipitation from GF scheme not applying the diurnal cycle closure shows a premature peak with both precipitation and DSWR closely in phase. The introduction of the B2014 closure causes a shift between the two curves delaying the peak of precipitation by about 3 hours, in better agreement with the observation. The diurnal cycle averaged over the 15 runs with 120-hour forecast each is presented in panel B clearly showing the rainfall shift, which demonstrates the robustness of the B2014 closure. One potential drawback of this closure is the systematic reduction of the total amount of precipitation evidenced in panel B. Future work will focus on this issue.

An example of real time rainfall forecast over South America with BRAMS using a different set of physical parameterizations is discussed as follows. The case is associated with a mid-latitude cold front approach together with tropical daytime convection over the northwest part of the Amazonia Basin and a weak band of convection in the Inter-Tropical Convergence Zone (ITCZ) over the Atlantic Ocean. Figure 8 shows an estimate of the 24-hour accumulated rainfall given by the TRMM product for the day 12 October 2015 and depicts location and rainfall intensities of the cloud systems discussed above. This rainfall estimate is produced on a grid with 0.25-degree resolution. Model forecast was done on 5 km horizontal grid spacing with the vertical resolution varied from 50 m up to a maximum value of 850 m, with the top of the model at 19 km. The soil model was composed of 7 layers distributed within the first 12 meters of the soil depth. Again GFS analysis and forecast fields were used for initial and boundary conditions, while initial soil moisture was supplied following Gevaerd and Freitas (2006) and the sea surface temperature was prescribed using data from Reynolds et al. (2002). The physical parameterizations included RRTMG short- and long-wave radiation schemes, GF 2015 version for deep and shallow convection with the diurnal cycle closure,
Thompson single-moment on cloud liquid water (no aerosol aware option) cloud microphysics and the MYNN turbulence parameterization. The model run was completed on a CRAY XE-6 supercomputer using 2400 cores. This configuration took 1.6 hour to complete 24 hours forecast with 1360 x1480 on horizontal and 45 on vertical grid points and 12 seconds for time step. The simulation applied the hybrid time integration scheme with RA time filter.

Figure 9 presents the 24-hour accumulated rainfall model forecast for this day. The total (resolved plus from convection scheme) rainfall is shown on panel A. Visual comparison with TRMM rainfall (Figure 8) shows that model properly reproduces the main rainfall patterns over different parts of South America, in spite of the extreme amount of concentrated rainfall estimated by TRMM on Amazon Basin (around 5° S and 65° W) is underestimated by the model. Similar model behavior is spotted on the Atlantic Ocean, close to the border between Brazil and Uruguay. However, in general, model is able of the capture consistently the rainfall intensity as well. Figure 9 B shows the separated contribution of the cumulus convection scheme on the total rainfall (panel A). Noticeable is the fact that, on 5 km grid spacing, the scale awareness capability of the convection scheme allows the rainfall associated with the mid-latitude cold front being almost entirely explicitly resolved. On the other hand, over tropical areas a significant part of the total rainfall is rather generated by the convection scheme suggesting the existence of much smaller scale rainfall systems, which is not explicitly captured on this model resolution.

2.3 Atmospheric composition related processes and tracer transport

2.3.1 The CCATT in-line emission, deposition, transport and chemical reactivity model

The Coupled Chemistry-Aerosol-Tracer Transport model (Longo et al., 2013, hereafter CCATT) is a Eulerian transport model coupled with BRAMS and developed to simulate the transport, dispersion, chemical transformation and removal processes of gases and aerosols for atmospheric composition and air pollution studies. CCATT computes the tracer transport in-line with the simulation of the atmospheric state by BRAMS, using the same dynamical core, transport scheme and physical parameterizations. The prognostic of tracer mass mixing ratio includes the effects of sub-grid-scale turbulence in the planetary boundary layer and convective transports by shallow and deep moist convection, in addition to grid-scale advective transport. The model includes also gaseous/aqueous chemistry, scavenging and dry depositions and aerosol sedimentation.
In a form of tendency, the general mass continuity equation for gas phase tracers solved in CCATT model is

\[
\frac{\partial \bar{s}}{\partial t} = \left(\frac{\partial \bar{s}}{\partial t} \right)_{adv} + \left(\frac{\partial \bar{s}}{\partial t} \right)_{PBL\ diff} + \left(\frac{\partial \bar{s}}{\partial t} \right)_{deep\ conv} + \left(\frac{\partial \bar{s}}{\partial t} \right)_{shallow\ conv} + \left(\frac{\partial \bar{s}}{\partial t} \right)_{chem} + W + R + Q \tag{21}
\]

where \(\bar{s}\) is the grid box mean tracer mixing ratio, the term \(adv\) represents the 3-d resolved transport (advection by the mean wind) and the terms \(PBL\ diff, deep\ conv\) and \(shallow\ conv\) are for the sub-grid scale turbulence in the planetary boundary layer (PBL), deep and shallow convection, respectively. The \(chem\) term refers either to the simple passive tracers’ lifetime (Freitas et al., 2009) or to the calculation of chemical loss and production (Longo et al., 2013). The \(W\) is the term for wet removal applied only to aerosols, and \(R\) is the term for the dry deposition applied to both gases and aerosol particles. Finally, \(Q\) is the emission source term, which for biomass burning emissions also solves the plume rise mechanism associated with vegetation fires (Freitas et al., 2006, 2007, 2010).

In addition to CCATT-BRAMS code itself, the modeling system includes also three pre-processing software tools for user-defined chemical mechanisms (M-SPACK, Longo et al., 2013), aerosol and trace gas emissions fields (PREP-CHEM-SRC, Freitas et al., 2011) and the interpolation of initial and boundary conditions for meteorology and chemistry (BC-PREP) (see Figure 10).

The choice of different chemistry mechanisms in CCATT-BRAMS is possible using a modified version of the pre-processing tool SPACK (Simplified Pre-processor for Atmospheric Chemical Kinetics, Damian-Iordache and Sandu, 1995; Djouad et al., 2002). The modified-SPACK (called hereafter M-SPACK) basically allow the passage of a list of species and chemical reactions from symbolic notation (text file) to a mathematical one (ODEs), automatically preprocesses chemical species aggregation and creates Fortran 90 routines files directly compatible to be compiled within the main CCATT-BRAMS code. The M-SPACK output feeds also the codes of the preprocessor tools PREP-CHEM-SRC and BC-PREP of emissions and the initial and boundary fields for the chemical species, respectively, in order to ensure consistency between the several input database to be used in CCATT-BRAMS and the list of species treated in chemical mechanism.

In principle, M-SPACK allows the use of any chemical mechanism in CCATT-BRAMS, though it requires the built of emissions interface. The current version of M-SPACK includes three widely used tropospheric chemistry mechanisms: RACM - Regional Atmospheric
Chemistry Mechanism (Stockwell et al., 1997), Carbon Bond (Yarwood et al., 2005), and RELACS - Regional Lumped Atmospheric Chemical Scheme, (Crassier et al., 2000), which consider, respectively, 77, 36 and 37 chemical species. Photolysis calculations are possible via LUTs of pre-calculated photolysis rates as well through Fast-J (Wild et al., 2000 and Brian and Prather, 2002) and Fast-TUV (Madronich, 1989, Tie et al., 2003) radiative codes. The latter approach provides on-line calculation of photolysis rates, including interaction of radiation with aerosols and clouds.

CCATT-BRAMS performance has been extensively evaluated for both urban and biomass burning areas (Freitas et al., 2009; Longo et al., 2010; Alonso et al., 2010; Longo et al., 2013 and Bela et al., 2015). Figure 11 and Figure 12 depict examples of model comparison results with mean daily values of carbon monoxide and ozone mixing ratio measured near surface level in Porto Velho, Brazil from 14 August to 08 October 2012. For this specific experiment, the model was configured to simulate smoke emission, transport and its effects during the 2012 dry season in South America. The applied domain covered the whole South America with a horizontal resolution of 25 km and 42 vertical levels. Atmospheric initial and boundary conditions were assimilated from analysis of the Brazilian Center for Weather Forecasting and Climate Studies global circulation model. The tropospheric chemistry mechanisms used was RACM and biomass burning emissions for carbon monoxide and ozone precursors were estimated by the Brazilian Biomass Burning Emission Model (3BEM, Longo et al., 2010) in PREP-CHEM-SRC based on satellite remote sensing fire detections (Freitas et al., 2011).

2.3.2 Simple Photochemical Model with TEB

BRAMS has also a simpler option for ozone forecasting suitable for urban areas. The Simple Photochemical Model (SPM) is available in the model together with the TEB scheme (Freitas et al., 2005a). The model is composed of 15 reactions related to ozone formation and consumption. This small number of reactions was possible through the lumping of a large number of hydrocarbons, allowing a simplified way to deal with the photochemical process in the model, which is very convenient to be used in the operational mode. TEB-SPM considers industrial and vehicular emissions of carbon monoxide, volatile organic compounds (VOC), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5). In spite of its very simple formulation, the model has been used with relative success to simulate ozone
concentrations in São Paulo (Freitas et al., 2005a) and Rio de Janeiro metropolitan areas in Brazil. Figure 13, adapted from Carvalho (2010), shows a comparison between model results and ozone observational data in two ground stations (Duque de Caxias and Jardim Primavera) of an automated network maintained by the Rio de Janeiro’s Environmental Agency (INEA). As one can see, the agreement is relatively high for a period over 7 days. For the simulations, the author used the Global Forecast System (GFS) analysis for the initial and boundary conditions. The model was setup with two nested grids of 16 km and 4 km horizontal grid spacing, respectively, with 33 vertical sigma-z type levels. Both grids were centered at 22.80° S and 43.25° W. The coarser domain covered an area of 61,440 km² (60 x 30 grid points), while the inner domain covered a 22,464 km² area (54 x 26 grid points). The primary pollutant emissions were based on the inventories provided by INEA and considered both vehicular and industrial emissions for the five elements previously mentioned (CO, VOC, NOx, SO2 and PM).

2.3.3 Carbon Cycle

This section introduces the capability of BRAMS composed with JULES on simulating CO2 fluxes associated with biogenic activities. Here we discuss an example of model simulation for September 2010 over the Amazon basin. For this case, BRAMS model was set with 20 km horizontal resolution, covering the northern part of South America. The simulation was carried out for 45 days, starting on the 15th of August 2010 at 00:00 UTC, with the first 15 days discarded due to model spin-up. The NCEP Global Forecast System analysis (http://rda.ucar.edu/datasets/ds083.2/), with 1° × 1° spatial resolution, provided initial and boundary conditions for the meteorological fields. The carbon data assimilation system, Carbon Tracker 2015, (Krol et al., 2005), with 3° × 2° horizontal resolution, provided the CO2 initial and boundary conditions. Biomass burning emissions of trace gases and aerosols were from 3BEM (Longo et al., 2010). The land use map, with 1 km spatial resolution, was provided by USGS (United States Geological Survey), merged with a land cover map for the Brazilian legal Amazon region (Sestini et al., 2003). Figure 14 presents the gross primary productivity (GPP, panel A), plant respiration (PR, panel B), soil respiration (SR, panel C) and the net ecosystem exchange (NEE=PR+SR-GPP, panel D) all as a monthly average. September corresponds to the last month of the Austral winter, with typically very low amount of rainfall over a large part of Brazil. In this month, the ITCZ stays over positive latitudes inducing rainfall only on the northwest part of South America, with warm temperatures (maximum around 33 °C), low moisture and clear skies. The abundance of
photosynthetic active radiation and water availability at root zones of the tropical forest implies in a large GPP over the region dominated by this land cover. As SR is mostly controlled by the soil humidity, the larger values are present in the region with higher rainfall amounts, which are in the northwest part of the domain shown. At the same time, over areas dominated by Cerrado and Caatinga biomes, dry soil conditions dictate the response of the plants with very low values of GPP and SR. However, the simulated NEE presents a more complex spatial distribution, with values oscillating from around zero and extreme around +/- 10 µmolC m⁻² s⁻¹, meaning CO₂ in/out- atmospheric fluxes (panel D).

BRAMS simulation of the diurnal cycle of CO₂ in the low troposphere over the Amazon Basin is discussed as follow. Figure 15 shows one-day simulation of CO₂ mixing ratio and the turbulent kinetic energy (TKE) in the low troposphere and DSWR at surface. In this figure, TKE is used as a proxy for the depth of the atmospheric boundary layer, which evolves from a stable layer with less than 200 m depth during the nighttime and early morning towards a convective and well-mixed boundary layer with maximum heights of 1.2 to 1.5 km on late afternoon. The results show a realistic nighttime near surface accumulation of CO₂ associated with the surface (soil and vegetation) respiration and a shallow stable boundary layer. After sunrise, with the increasing of DSWR, the photosynthesis starts to dominate the net flux of CO₂, which becomes more negative and subtracts this gas from the atmosphere. All the same time, the heating of the surface produces buoyant air parcels, which generates TKE deepening the mixing layer. As a result, CO₂ is mixed up and depleted inside of this layer with its mixing ratio ending smaller than the one of the free atmosphere late in the afternoon.

2.3.4 Volcanic ash transport and dispersion

The BRAMS tracer transport capability also incorporates emission, transport, dispersion, settling and dry deposition of volcanic emissions, both for ash and a set of related gases. This capacity represents a critical step towards a numerical tool suitable not only for research, but also for an emergency, on-demand system for ash dispersion forecast after a volcanic eruption event, which is required for the safety of the air traffic around disturbed areas. The volcanic ash module follows closely the system described in Stueffler et al. (2013), and more details of its implementation in BRAMS is provided in Pavani (2014) and Pavani et al. (2016). The input needed to set up BRAMS for volcanic ash is produced using the PREP-CHEM-SRC (Freitas et al., 2011) emissions preprocessing tool, which contains a comprehensive database developed by Mastin et al. (2009). This database has information
about 1535 volcanoes, including location (geographical position and height above sea level of the vent) and a set of historical parameters (e.g., initial plume height, mass eruption rate, volume rate, duration of eruption, and size distribution of the ash particle), which can be used as a first guess for a potential returned volcanic eruption. However, by default, whenever available, observed real-time information overwrites the historical ones. In BRAMS simulations, a vertical profile of the ash emission distribution is defined by a linear detraining of 25% of the total ash mass below the injection height and 75% around it, obeying a parabola shape. Pavani et al. (2016) adjusted an exponential curve between the rate of ash mass produced during the eruption and the injection height, which is expressed as follow:

\[H = 0.34M^{0.24} \]

(22)

where \(H \) is the plume height in km (height above the vent) and \(M \) is the emission rate in kg/s. This fitting formula is an additional method to make a first guess of the erupted mass of ash when the injection height is known.

The model functionality for volcanic ash dispersion has been applied to real cases. One example is the eruption of the Puyehue volcano in Chile, which occurred around 20:15 UTC on 04 June 2011 expelling a huge mass of ash and gases up to 13 km height above the sea level. This eruptive event caused the closure of numerous airports for many days and transport disruption in several countries in South America, South Africa, and even Australia and New Zealand. Additionally, ash scavenging caused harm to agriculture and livestock, besides a sort of other economical and health-public related issues. Costa et al. (2012) described the development and application of a remote sensing technique for traces of ash retrieval based on METEOSAT-8 satellite data.

The BRAMS simulation to study the transport of the Puyehue volcano ash was carried out for 40 days starting on the 4th of June 2011 00 UTC, with 30 km horizontal resolution and a vertical resolution starting at 100 m at the surface, stretching with a ratio of 1.1 up to 500 m at the model top. Figure 16 shows the location of ash as determined by this technique at 06 June 2011 15 UTC, approximately 44 hours after the first eruption event. The eruption introduced material in the jet stream region, which was rapidly transported eastward following the Rossby wave circulation. BRAMS results for this case study showed significant improvement with the use of the monotonic advection scheme described on section 2.1.3.1, since monotonicity is required to properly model the long distance transport of tracers associated with sharp, small-scale emission source within low-resolution atmospheric
models. Figure 17 depicts the regional distribution of the ashes, as example of the model performance on simulating the long-range transport of volcanic emissions. In Panel A, is the simulated vertically integrated total mass of ash (mg m$^{-2}$) for the same time of the remote sensing imagery (Figure 16). In Panel B, the ash total mass concentration (μg m$^{-3}$) at approximately 9,500 m above the surface. At beginning of the eruption, the ash was transported eastward for about 20 degrees, after then assumed an undulating shape associated with the Rossby waves. The ash layer at 9,500 m constitutes primarily of small size particles, since the larger and heavier ones quickly falls vertically due the gravitational force. The higher sensitivity of the ash retrieval in the upper levels explains the better agreement between the ash distribution presented in this panel and the traces of ash retrieved by remote sensing (Figure 16). The wider ash distribution close to the volcanic vent on panel A is associated mainly with the vertical settling of the large, heavy ash particles that ends getting different wind circulation and/or are quickly deposited over land. A more comprehensive analysis of this case study is discussed in Pavani et al. (2016).

2.4 Additional features, miscellaneous aspects

2.4.1 Coupling with the STILT Lagrangian Particle Dispersion Modelling

The Stochastic Time-Inverted Lagrangian Transport model (STILT, Lin et al., 2003) is a Lagrangian model framework coupled with surface emission models, and has been used to identify sources and their influence on receptors in studies with a multitude of scales and chemical components (see Gerbig et al., 2003, Miller et al., 2008, 2013, Xiang et al., 2013, McKain et al., 2015). The core component of STILT is a Lagrangian particle dispersion model that has two key features that allows for a realistic representation of dispersion: (1) STILT accounts for sub-grid scale transport and dispersion by incorporating an stochastic component associated with small-scale turbulence (Lin et al., 2003), (2) STILT also accounts for vertical transport due to parameterized convective clouds (Nehrkorn et al., 2010). However, in order to take full advantage of BRAMS turbulent and convective models, additional turbulence- and convection-related quantities are included in BRAMS output so that can be directly used by STILT.

Following Lin et al. (2003), in STILT each wind component u_i can be decomposed following a Markov assumption, i.e. the grid volume average component \bar{u}_i and a turbulent component u'_i. The turbulent component is modeled after Hanna (1982), who defines the autocorrelation
coefficient in terms of the Lagrangian time scale T_{Li} and the standard deviation of wind σ_{ui} in the mixing layer:

$$u'_i(t + \Delta t) = \alpha_i(\Delta t) u'_i(t) + N\left(0, \sigma_{u'_i}(t)\right) \sqrt{1 - \left(\sigma_i(\Delta t)\right)^2},$$

$$\alpha_i(\Delta t) = \exp\left(-\frac{\Delta t}{T_{Li}}\right),$$

where t is the previous time, Δt is the time step, and N is a random number following the normal distribution with mean 0 and standard deviation given by σ_{ui}. For consistency with the turbulence scheme, the standard deviation is computed following Nakanishi and Niino (2004). The Lagrangian time scale is determined following the parameterization by Hanna (1982), which also depends on the boundary layer depth. Hanna (1982) parameterization of the boundary layer depth depends on the reciprocal of vertical component of Coriolis vorticity, which would cause singularities at the Equator. Therefore, we implemented an alternative parameterization by Vogelezang and Holtslag (1996).

When BRAMS simulations are carried out using the Grell and Dévényi (2002) cumulus parameterizations, all mass fluxes associated with updrafts and downdrafts (entrainment, detrainment, and vertical motion) are also saved to the output, and can be used to assign both the probability of any particle to be in the environment or in the cloud (either at the updraft or downdraft), as well as the vertical displacement of particles in case they are in the updrafts or downdrafts, using the same method described by (Nehrkorn et al., 2010). Besides, the inclusion of mass flux and turbulence-related variables in the output also allows a seamless integration with different Lagrangian Particle Dispersion Models.

2.4.2 Coupling with an air parcel trajectories model

BRAMS simulated fields can readily be applied as input data to a 3-D air parcel kinematic trajectory model described in Freitas et al. (1996, 2000). Forward and backward time integrations are allowed using a 2nd order in time accurate scheme. The trajectories are computed using the same map projection and the vertical coordinate of BRAMS and also includes a sub-grid scale vertical velocity enhancement associated with sub-grid scale convection not explicitly solved by model dynamics.
2.4.3 Digital filter

A digital filter for model initialization has been implemented in BRAMS and demonstrated capability to reduce high-order imbalances and inconsistencies among model variables, with potential to improve deterministic forecasts.

2.4.4 Model output for GrADS visualization

A new feature present in BRAMS is the possibility of the model output be produced in GrADS (http://iges.org/grads) format during the run time, simultaneously with the model integration. This feature is especially important for operational centers by allowing faster generation of operational products.

2.5 Model data structure and code aspects

BRAMS version 5.2 is mostly written in Fortran 95, with a few modules written in C. BRAMS has a pure MPI parallelism since its first version. Only the horizontal domain is decomposed over MPI ranks. This parallelism has been incrementally enhanced over time on a cumulative fashion, that is, enhancements made on previous versions are present at version 5.2. The following paragraphs summarize the development history of BRAMS parallelism.

BRAMS versions 1 to 4 were run on machines with less than 100 computing cores. Parallel scalability of BRAMS on machines with higher core count was unknown. In 2007 CPTEC acquired the SUN-NEC cluster “UNA” with 275 nodes, each node with two dual-core AMD Opteron 2218, with a total of 1,100 cores. Each node addresses 8 GB of central memory and the nodes are connected to a 70TB Lustre parallel file system. UNA was used to enhance the parallel scalability of BRAMS version 4.2 from about 100 cores to about 1,000 cores. In 2011 CPTEC acquired a Cray XE6 named “TUPA” with 1304 computing nodes, each node with two 12 cores AMD Opteron Magny Cours with a total of 31,296 cores. Each node addresses 32 GB of central memory and the nodes are connected to a 866TB Lustre parallel file system. TUPA was used to enhance parallel scalability of BRAMS version 5.2 from about 1,000 cores to about 10,000 cores.

Core count increase was used to enhance resolution. CPTEC’s operational domain covers most of South America and parts of the surrounding oceans, spanning an area of approximately 6,800 x 7,400 km. UNA was used to enhance horizontal resolution from the previous operational resolution of 20 km to the new 10 km resolution, keeping 38 vertical levels at both grids. TUPA was used to enhance horizontal resolution to 5 km and increase
the number of vertical levels to 45. The 5 km grid has about 90 million grid points, about 19 times the number of grid points of the 20 km grid. To keep numerical stability according to the CFL condition, the time step integration has to be decreased according to horizontal grid resolution, increasing the total amount of computing from the 20 km grid to the 5 km grid by a factor of about 76 times per forecasting day. This increase in computing has to be achieved by enhancing parallel scalability by a factor of 100, from about 100 cores to about 10,000 cores.

Parallel scalability of BRAMS versions 4.2 up to version 5.2 was enhanced by working on four unglamorous computing phases. Input and output algorithms were sequential. Master-slave parallelism wasted computational resources and created unnecessary synchronization points. Old coding practices used too much memory. The work on each of these directions is summarized hereon.

On BRAMS version 4, input was performed by the master process. The master process input new boundary conditions every three hours of forecast time, performed domain decomposition and sent the sub-domains to slaves. This was a sequential algorithm since a single process (master) computed the decomposition and sent the data. Consequently, runtime increased with the number of slaves since the number of data partitions (and messages) increased with the number of slaves. BRAMS intermediate version 4.2 moved the domain decomposition to the slaves (Fazenda et al, 2011). The master process read each input data field and broadcasted the full field to the slaves. Each slave extracted their own sub-domain from the broadcasted field, parallelizing domain decomposition. Figure X contains the impressive execution time reduction from the original version 4.0 sequential algorithm to the version 4.2 parallel algorithm as a function of slave processes count. Data of Figure 18 was collected at UNA on a 24 hours forecast over the 20 km resolution CPTEC’s operational grid.

On BRAMS version 4, output was performed by the master process. Each slave process sends its sub-domain to the master process, that collected the slave partitions through MPI point to point communications, composed the full field and outputs each field. Again, this was a sequential algorithm since its execution time increases with the number of slaves. Two solutions were implemented at UNA and incorporated at BRAMS version 4.2. The first solution was to use a collective MPI operation to gather all sub-domains of each field at the master process prior to output. The second solution was to use UNA’s local disk at each node for output: each slave wrote data on its own sub-domain to the local disk, moving the gather
phase to post-processing. Since execution time of MPI_Gather depends on the inter-node network speed, both solutions were kept as user-selected options at run-time (Fazenda et al, 2011). Figure 19 compares the execution time of the output phase of the original version 4 sequential algorithm with version 4.2 parallel algorithms as a function of slave processes count. Data of Figure X was collected at UNA on a 24 hours forecast over the 20 km resolution CPTEC’s operational grid.

Replacing BRAMS version 4 input and output sequential algorithms by version 4.2 parallel algorithms substantially reduced the workload of the old master process. Thus, there is no reason to distinguish the master process from slave processes, and all processes can perform the same computation (computing the timestep phase), although only one of them (the old master, now MPI rank zero) performs I/O operations.

Elimination of the master process had a profound impact in code structure, since from the original version thereon, BRAMS always had one set of procedures for the master process and a distinct set of procedures for slave processes. It also contained a third set of procedures to connect master and slave codes just for sequential (non-MPI) runs. BRAMS version 4.2 collapsed these three distinct source codes into a single code, since the master/slave distinction occurred only at I/O, and a sequential computation can be performed on a single MPI process.

Figure 20 shows the execution time reduction at UNA on 20 and 10 km grids due to input, output and code structure optimizations just summarized (Fazenda et al, 2011). These optimizations increased parallel scalability, allowing execution time reduction by increasing core count.

The availability of TUPA allowed experimentation with the 5 km grid. The first experiments could not use all cores in each node, due to the high memory requirement per MPI process. Only eight of the twenty-four cores per node could be used at preliminary executions. A detailed analysis showed that the higher memory usage was due to an old coding practice, from the times when dynamic memory allocation in Fortran was expensive: allocate large scratch arrays at the beginning of the computation, keep these scratch arrays allocated throughout the computation and use them whenever scratch areas where required. It turns out that there were just too many and too large scratch areas. A long and tedious work replaced the largest scratch areas by dynamically allocated and deallocated areas that exist only at
required code sections. This procedure reduced the memory requirement per process from the original 3.84 GB to 1.08 GB, allowing the use of all 24 cores per node (Fazenda et al, 2012).

The left side of

Figure 21 contains execution time of the reduced memory BRAMS version 4.2 on the 5 km grid at TUPA with fixed 400 nodes and increasing core count per node from 1 to 24. It shows execution time stagnation around 4,800 cores. The right side of the same figure shows execution time explosion on input, timestep and output phases as a percentage of total execution time. It is clear that the output phase responsibility increases with core count, up to a point where output dominates the computation.

The output phase of BRAMS reduced memory version 4.2 at TUPA used the MPI_GATHER solution described above. The local disk output solution, used at UNA, could not be used at TUPA, since TUPA computational nodes are diskless. A new form of output had to be devised. MPI-IO and parallel HDF-5 were implemented as code options, selected at run-time. Both forms of parallel I/O scaled correctly. BRAMS version 4.2 with the reduced memory and new I/O modifications was named BRAMS version 5. Figure 22 contains the execution time and the parallel efficiency of BRAMS version 5 on the 5 km resolution grid at TUPA up to 9,600 cores. Execution time with 9,600 cores was low enough to allow daily operational runs at CPTEC on the 5 km resolution since the end of 2011.

A few years later, an independent work (Souto, 2015) obtained even better scalability of BRAMS version 5.2 on the 5 km grid on the Santos Dumont cluster. This is an ATOS/BULL machine with 786 nodes, each node containing two Intel Xeon E5-2695 with 12 cores each, totalizing 18,144 cores. The same grid on the same domain was run from 1,024 cores to 13,400 cores, achieving a parallel efficiency of 78% on 13,400 cores with respect to the 1,024 cores execution.

2.6 Ongoing work features

2.6.1 Spread fire model

The Spread Fire (SFIRE) is a semi-empirical fire propagation model developed by Coen (2005), Clark et al. (2004) and Mandel et al. (2009, 2011) that was coupled to BRAMS model and is currently under evaluation. SFIRE simulates a fire propagation based on a spread rate

\[S = S(x, y, t) \] in an orthogonal direction to the fire boundary and expressed as a function of the wind \(\vec{v} = \vec{v}(x, y, z, t) \) and terrain gradient \(\nabla z \). The model provides the sensible and latent
heat fluxes associated with the fire propagation (the second terms of RHS of Eq. 23 and 24, respectively) allowing feedbacks between the combustion processes and the surrounding atmosphere. The total sensible Q_H and Q_E latent heat fluxes are given by

$$Q_H = -c_p \rho_a T_* u_* + \frac{F(T) - F(t + \Delta t)}{\Delta t} \frac{1}{1 + M_f} \frac{wh}{wh}$$

$$Q_E = -\chi_* \rho_a u_* + \frac{F(T) - F(t + \Delta t) M_f + 0.56}{1 + M_f} \frac{wL}{wL}$$

Here the fluxes are depending on properties of forestry fuels models, following Anderson (1982) categories, and of an exponential decay function of total fuel fraction, F (see Error! Reference source not found. for detailed description of the symbols). The fuel fraction decreases exponentially from the initial ignition time t_i (Albini, 1994) and is given by

$$F(x,y,t) = \begin{cases}
\frac{1}{\text{area}} \iint_{(x,y) \in \Omega(t)} e^{-0.8514 \left(\frac{t-t_i(x,y)}{w(x,y)} \right)} \, dx \, dy \\
1 \quad \text{otherwise}
\end{cases}$$

An interface code was built to implement a link between SFIRE and BRAMS, which includes new modules for memory allocation and initialization, and a new namelist (sfire.in). Currently, the fire spread model run only on a serial mode inside of a BRAMS parallel simulation. Full parallelization of the SFIRE model will be available in future BRAMS versions.

The user needs to produce fuel models classes map and topography defined on the refined surface meshes used by SFIRE, to do so the user must download any necessary high resolution fields (topography raster and FNFL fuel models (Anderson, 1982)) and convert them into a SIG for ASCII format, through a Euclidean allocation interpolation. Instead the user can, use topography from BRAMS, although it is highly smoothed for the needs of sfire, and the code cannot benefit for more accurate fire spread computations, because required a high resolution grid. This high resolution data is interpolated and assimilated by BRAMS-SFIRE in fire mesh simulations.
The available atmospheric data to BRAMS is limited to around 111 km resolution and should be simulated in downscaling grids, each with a 4 to 5 refinement ratio, and can incorporate weather sounding data. BRAMS model simulated on 3-D grid covering the Earth surface, and only the downscaling refined atmospheric domain can be activated with the SFIRE model.

BRAMS-SFIRE was applied to the region of Alentejo in Portugal, but can be applied to any other region of the world. The coupled model has a input file named “namelist.fire” where the user is able to introduce the properties of fuel models of the region of interest (Menezes, 2015).

The average sensible and latent heat fluxes released in the time interval \((t, t + \Delta t) \), Eqs. 23 and 24, from SFIRE are passed into the atmospheric model trough fluxes coming from boundary conditions and mixed in boundary layer by the PBL scheme.

The BRAMS-SFIRE simulations were performed using the downscaling procedure (ONE-WAY interaction), which started from a model grid of 64 km resolution (with the model domain covering Europe). The data from this simulation is then applied to feed another model run with a grid of 16 km resolution (covering Portugal Continental), which in turn feed another grid of 4 km resolution (covering the Alentejo), which feed another grid of 1 km resolution (which covers the area under study). At last, the 200 m grid resolution simulation (on the area of forest fire) applied SFIRE model with atmospheric fields provided by the 1 km resolution grid model run.

The BRAMS physical parametrizations was configured with Silhouette Orography to topography scheme, Klemp/Wilhelmsen to lateral boundary conditions, CARMA to shortwave and longwave radiation scheme, with 900 s frequency update of the radiation trend, Microphysics complexity level 3 (Flatau et al., 1989), Grell 3D formulation convective parameters with a convection 900 s frequency and Grell/Deveny Parameters of shallow cumulus with a 1200 s of frequency. For 1 km and 200 m grid resolution, cumulus parametrization was not used. The Surface scheme JULES (Moreira et al., 2013) was used for downscaling until 4 km resolution, and LEAF (Walko et al., 2000) was used in the 1 km and 200 m resolution grids. Turbulent diffusion coefficient parameter of Mellor e Yamada (Mellor e Yamada, 1982) was used in all grids until 1 km resolution, and an isotropic deformation was used to the 200 m resolution grid.

The simulations were carried out with the non-hydrostatic equations on a vertical grid with 55 levels. SFIRE was configured with 200 m of horizontal grid resolution and updating the fuel
moisture calculation at each 30 s, with an reaction velocity of 7 ms$^{-1}$, with 15 km radius prescription fire and with fire initiation time of 180 s after the start the atmospheric simulation.

One of the results from the BRAMS-SFIRE simulation showed that over the three regions, of flat land and low hilly, the propagation of fireline originated sensible heat fluxes of approximately 28 kW m$^{-2}$. During its spread over the fuel models 1 and 2, the fire burned them quickly, compared to the fuel model 4, which degraded fuel and releasing fluxes of about 2.5 kW m$^{-2}$ during combustion. Fuel models 8 and 9 combustion liberated fluxes between 1.4 kW m$^{-2}$ and 1.6 kW m$^{-2}$, and over fuel model 9 liberated fluxes of the order of 1.2 kW m$^{-2}$, which glowed until its extinction at approximately 0.75 kW m$^{-2}$. The fire spread was influenced by the topography gradient, following dispersion over valleys or down the mountain (Ossa mountain range, Figure 23) or simply propagating into plain zones. In all the three regions, propagation occurred in an elliptical pattern. In Ossa mountain range region, the wind is anabatic with intensity 4.5 ms$^{-1}$, and changes its pattern with fire outbreak, becoming disordered with vortices on the fire which increased the intensity of the wind to 7.5 ms$^{-1}$, this pattern extends to the entire region as the fire develops and fire line spreads (Figure 23).

3 Applications for weather and air quality forecasting

3.1 Regional air quality forecast

Since March 2003, previous versions of BRAMS are applied operationally at CPTE/INPE for integrated weather and air quality forecasts over South America. Besides the traditional meteorological fields, forecast of biomass burning related aerosols and the main trace gases prejudicial to the health public such as carbon monoxide and ozone are generated once a day with 3-day ahead time window. The forecast is routinely available at the webpage http://meioambiente.cptec.inpe.br/. For the next months, CPTEC/INPE plans to implement BRAMS version 5.0 in the operational forecast system, running on 20 km grid spacing.

3.2 Regional and local scale weather forecast

Since January 2013, BRAMS has been applied operationally at CPTEC/INPE to provide up to 3½ days weather forecast. The system ran twice a day on 5 km horizontal grid spacing with the grid domain encompassing the South America continent and part of the neighbors Oceans. On vertical, model grid spacing starts with 50 m increasing to 800 m at the upper
levels. The numbers of grid points are 1360 x 1489 x 55 (~ 100 million grid cells) and the model runs over 9600 cores to process the forecast, with initial and boundary conditions taken from the GFS/NCEP global model, which are pre-processed using the RAMS ISAN analysis software package. The forecast is on-line available at the web page [http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=Brams5]. Robust evaluations of BRAMS 5 km forecasts are provided by Figure 24 and Figure 25. The former one shows BIAS and RMSE of five near surface quantities (2-meter temperature and dew-point temperature, 10-meter wind speed, 24-h accumulated precipitation and the mean sea level pressure). The evaluation was performed using observations from approximately 1000 surface stations distributed all long of South America and for the time period comprising 15 January of 2013 to 15 January of 2015. The evaluated quantities have a BIAS in a numerical range of ~ -1.0 to ~ +1.0, which are consistent with mostly of state-of-the-art NWP models with forecast available for South America. For RMSE, the 24-h accumulated precipitation shows the lower range of value (~1.75), with wind speed, dew-point temperature and pressure oscillating around ~2.0. The temperature has the larger RMSE (~2.25 K), with higher values during the dry season (austral winter). Sensitivities studies (not shown) have been demonstrated that the initial soil moisture field, provided by the Gevaerd and Freitas (2006) technique and currently used in the operations, has a significant accountability for this larger RMSE. Therefore, improving the representation of soil moisture in the model would provide further gain in model skill.

Figure 25 shows model skill in terms of the Equitable Threat Scores (ETS) and the BIAS scores of the 24-h accumulated rainfall for 36 and 60-hour time integration and averaged over the period of 15 January of 2013 to 15 January of 2015. The BIAS score measures the ratio of the frequency of forecast events to the frequency of observed events, binned by certain thresholds. A perfect model would obtain a value of 1 for both ETS and BIAS scores for any threshold. The forecast skills are very reliable and similar to the state-of-the-art NWP models. ETS change from ~0.3 to ~0.07 from small to large thresholds. Over the South-Southeast portion of Brazil, which corresponds to the larger amount of inhabitants of South America, the forecast has larger skill. Regarding BIAS scores, the model tends to overestimate rain amount at the lower and higher thresholds but is pretty close to the optimal value of 1 in between.
4 Conclusions

The original RAMS/CSU model was advanced towards a fully integrated regional atmospheric chemistry model, which includes carbon and biogenic VOC’s cycles, aerosol-radiation-cloud interactions, urban surfaces and others features, giving rise to the Brazilian version named BRAMS. Besides, BRAMS runs on massively parallel supercomputers, clusters, and personal x86 systems with high efficiency.

Here the main features of the latest version 5.2 are described which includes a state-of-the-art set of physical and chemical parameterizations for radiation, cloud microphysics, scale-aware convective parameterization and turbulence scheme, a land-surface model for urban areas and carbon cycle, and availability of higher order time integration and advection schemes. BRAMS has been applied for scientific research related to severe weather, urban heat island, urban and remote (e.g. fire emissions) air pollution, aerosol-cloud-radiation interactions, carbon and water cycles over the Amazonia including aerosol effects, volcanic ash dispersion, and many others subjects. For the purposes of operational environmental forecast, BRAMS is applied in several regional forecast centers and at CPTEC/INPE, providing routinely weather and air quality forecasts for South America.

Besides its applications in research and operational forecasting, BRAMS has been a platform of joint model development in South America, as so playing a great role on helping to build up a South American community of atmospheric modelers, highlighting the participation of young scientists.

Lastly, to maintain and advance its competitiveness in the select team of limited area environmental models in the world, BRAMS needs to keep expanding the community of user and developers, continue being tested and evaluated against observations, and improving the sub-model components. Within the list of the immediately needed improvements, is the introduction of a data assimilation procedure to allows BRAMS has its own initial condition for the integration. This step is essential for a further and significant gain of skill of this modeling system in both, operational and research areas.

5 Code availability

BRAMS software is available under the GNU Public License. The main code as well as pre- and post-processing software and input data are available on the website http://brams.cptec.inpe.br/, which is officially maintained by the CPTEC/INPE in Cachoeira Paulista, São Paulo, Brazil.
Acknowledgements

S. R. Freitas acknowledges partial support of this work by CNPq (306340/2011-9) and FAPESP (2014/01563-1 and 2015/10206-0) and K. M. Longo acknowledges partial support of this work by FAPESP (2014/01564-8). This work was partially carried out during the sabbatical year of Dr. S. R. Freitas and Dr. K. M. Longo at the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration (ESRL/NOAA), Boulder, USA. Both authors acknowledge the partial support by this institution. The authors acknowledge Drs. Georg Grell from ESRL/NOAA and Michael Baldauf from Deutscher Wetterdienst (DWD), Germany, for their collaboration on key aspects of this modeling system.

References

Carvalho, V. S. B. et al.: Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, 47: 68-79, 2015.

Table 1: List of symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>east-west wind component</td>
</tr>
<tr>
<td>v</td>
<td>north-south wind component</td>
</tr>
<tr>
<td>w</td>
<td>vertical wind component</td>
</tr>
<tr>
<td>f</td>
<td>Coriolis parameter</td>
</tr>
<tr>
<td>Km</td>
<td>eddy viscosity coefficient for momentum</td>
</tr>
<tr>
<td>Kh</td>
<td>eddy viscosity coefficient for heat and moisture</td>
</tr>
<tr>
<td>θ_{il}</td>
<td>ice-liquid water potential temperature</td>
</tr>
<tr>
<td>r_n</td>
<td>water mixing ratio species of total water, rain, pristine crystals, aggregates, and snow</td>
</tr>
<tr>
<td>ρ_0</td>
<td>reference state for air density</td>
</tr>
<tr>
<td>con</td>
<td>subscript denoting tendency from convective parameterization</td>
</tr>
<tr>
<td>rad</td>
<td>subscript denoting tendency from radiation parameterization</td>
</tr>
<tr>
<td>res</td>
<td>subscript denoting tendency from resolvable scale microphysical parameterization</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>rt</td>
<td>total water mixing ratio</td>
</tr>
<tr>
<td>rv</td>
<td>water vapor mixing ratio</td>
</tr>
<tr>
<td>π_0</td>
<td>reference state for Exner function</td>
</tr>
<tr>
<td>π'</td>
<td>perturbation Exner function</td>
</tr>
<tr>
<td>θ_v</td>
<td>virtual potential temperature</td>
</tr>
<tr>
<td>θ_0</td>
<td>reference state for potential temperature</td>
</tr>
<tr>
<td>C_v</td>
<td>specific heat of air at constant volume</td>
</tr>
</tbody>
</table>
Table 2: Main configuration options in BRAMS 5.2

<table>
<thead>
<tr>
<th>Category</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic equations</td>
<td>o Non-hydrostatic time-split compressible</td>
</tr>
<tr>
<td></td>
<td>o Option for complete, mass conservative formulation for the Exner function prognostic equation</td>
</tr>
<tr>
<td></td>
<td>o Vertical coordinate:</td>
</tr>
<tr>
<td></td>
<td>o Standard Cartesian coordinate</td>
</tr>
<tr>
<td></td>
<td>o Terrain-following height coordinate</td>
</tr>
<tr>
<td>Coordinates</td>
<td>o Option for complete, mass conservative formulation for the Exner function prognostic equation</td>
</tr>
<tr>
<td></td>
<td>o Horizontal coordinate:</td>
</tr>
<tr>
<td></td>
<td>o Standard Cartesian coordinate</td>
</tr>
<tr>
<td></td>
<td>o Rotated polar-stereographic transformation</td>
</tr>
<tr>
<td>Computational grid</td>
<td>o Arakawa-C grid staggering on horizontal, Lorenz grid on vertical</td>
</tr>
<tr>
<td></td>
<td>o Vertical grid-spacing can vary with height</td>
</tr>
<tr>
<td></td>
<td>o One-way nesting only</td>
</tr>
<tr>
<td>Time integration</td>
<td>o Hybrid combination of leapfrog and forward-in-time, with option for Robert-Asselin-William time filter (William, 2009)</td>
</tr>
<tr>
<td></td>
<td>o Runge-Kutta 2<sup>nd</sup> and 3<sup>rd</sup> order (Wicker and Skamarock, 1998, 2002)</td>
</tr>
<tr>
<td></td>
<td>o Adams-Bashforth-Moulton 3<sup>rd</sup> order (Wicker, 2009)</td>
</tr>
<tr>
<td></td>
<td>o Time-split small step for acoustic and gravity-wave modes:</td>
</tr>
<tr>
<td></td>
<td>o Small step horizontally-explicit, vertically-implicit</td>
</tr>
<tr>
<td></td>
<td>o Divergence damping option</td>
</tr>
<tr>
<td>Advection schemes</td>
<td>o Forward upstream of 2nd order (Tremback et al., 1987)</td>
</tr>
<tr>
<td></td>
<td>o Monotonic advection scheme for scalars (Walcek, 2000)</td>
</tr>
<tr>
<td>Turbulence closure</td>
<td>o Smagorinsky (1963), Lilly (1962) and Hill (1974) closure formulation</td>
</tr>
<tr>
<td></td>
<td>o Deardorff (1980) level 2.5 scheme</td>
</tr>
<tr>
<td></td>
<td>o Mellor-Yamada level 2.5 scheme (Mellor and Yamada, 1982)</td>
</tr>
<tr>
<td></td>
<td>o Nakanishi & Nino (2004) TKE based formulation</td>
</tr>
<tr>
<td></td>
<td>o Taylor’s theory based formulation (Campos Velho, 1998)</td>
</tr>
<tr>
<td>Cloud microphysics</td>
<td>o Single-moment bulk scheme (Walko et al., 1995)</td>
</tr>
<tr>
<td></td>
<td>o Double-moment bulk scheme (Meyers et al., 1997)</td>
</tr>
<tr>
<td></td>
<td>o Thompson double-moment and aerosol aware scheme (Thompson and Eidhammer, 2014)</td>
</tr>
<tr>
<td>Radiation</td>
<td>o CARMA (Toon et al., 1989) schemes for long- and short-wave radiation</td>
</tr>
<tr>
<td></td>
<td>o RRTMG (Iacono et al., 2008) schemes for long- and short-wave radiation</td>
</tr>
<tr>
<td>Convective Parameterization</td>
<td>o Modified Kuo for deep convection (Tremback, 1990)</td>
</tr>
<tr>
<td></td>
<td>o For shallow convection based on the heat engine approach (Souza, 1999)</td>
</tr>
<tr>
<td></td>
<td>o Grell and Deveny (2002) ensemble version for deep convection</td>
</tr>
<tr>
<td></td>
<td>o Grell and Freitas (2014) ensemble version, scale and aerosol aware scheme for deep and shallow convection</td>
</tr>
<tr>
<td>Surface processes and lower boundary</td>
<td>o LEAF-3 soil-vegetation-snow parameterization (Walko et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>o Town Energy Budget (TEB) scheme for urban areas (Freitas et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>o Joint UK Land Environment Simulator scheme (Moreira et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>o Fire spreading model (Mandel et al., 2010, Menezes, 2015)*</td>
</tr>
<tr>
<td>Chemical processes</td>
<td>Gas/aqueous phase chemistry with CCATT (Longo et al., 2013) and SPM Freitas et al., 2005a) modules.</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Photochemistry with LUT, FAST-TUV and FAST-J photolysis calculation</td>
</tr>
<tr>
<td></td>
<td>SPACK chemical mechanism pre-processor</td>
</tr>
<tr>
<td></td>
<td>PREP-CHEM-SRC pre-processor emission fields (Freitas et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>Dry and wet deposition</td>
</tr>
<tr>
<td></td>
<td>Simple aerosol model for volcanic ash, biomass burning, sea salt and urban aerosols (Longo et al., 2013)</td>
</tr>
<tr>
<td>Aerosol processes</td>
<td>MATRIX aerosol model (Bauer et al., 2008)*</td>
</tr>
<tr>
<td></td>
<td>Aerosol direct effect included in CARMA radiation scheme</td>
</tr>
<tr>
<td></td>
<td>Rigid lid</td>
</tr>
<tr>
<td></td>
<td>Rigid lid with a high-viscosity layer aloft</td>
</tr>
<tr>
<td>Upper boundary condition</td>
<td>Klemp and Wilhelmson (1978) radiative condition</td>
</tr>
<tr>
<td>Lateral boundary condition</td>
<td>Large-scale nudging boundary conditions (Davies, 1983)</td>
</tr>
<tr>
<td></td>
<td>Horizontally homogeneous from a single sounding</td>
</tr>
<tr>
<td>Initialization and data assimilation</td>
<td>RAMS-ISAN analysis package (Tremback, 1990) with inclusion of tracers</td>
</tr>
<tr>
<td></td>
<td>Four-dimensional nudging (Newtonian relaxation) to data analyses with inclusion of tracers</td>
</tr>
<tr>
<td></td>
<td>Digital filter</td>
</tr>
<tr>
<td></td>
<td>Soil moisture initialization using real time cycling estimation from an off-line hydrological model (Gevaerd and Freitas, 2006)</td>
</tr>
</tbody>
</table>

* Under development and/or evaluation
Table 3: List of parameters that can be modified by the user when using TEB in the model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSHH1</td>
<td>Morning Rush Hour (Local Time in hours)</td>
</tr>
<tr>
<td>RUSHH2</td>
<td>Afternoon/Evening Rush Hour (Local Time in hours)</td>
</tr>
<tr>
<td>HC_ROOF, HC_ROAD, HC_WALL</td>
<td>Heat capacity for Roof, Road, and Wall layers (J m⁻³ K⁻¹)</td>
</tr>
<tr>
<td>TC_ROOF, TC_ROAD, TC_WALL</td>
<td>Thermal conductivity for Roof, Road, and Wall layers (Wm⁻¹ K⁻¹)</td>
</tr>
<tr>
<td>D_ROOF, D_ROAD, D_WALL</td>
<td>Depth for Roof, Road, and Wall layers (m)</td>
</tr>
<tr>
<td>Z0_TOWN</td>
<td>Urban type roughness length (m)</td>
</tr>
<tr>
<td>BLD</td>
<td>Fraction occupied by buildings in the grid cell (%)</td>
</tr>
<tr>
<td>BLD_HEIGHT</td>
<td>Building Height (m)</td>
</tr>
<tr>
<td>BLD_HL_RATIO</td>
<td>Vertical/Horizontal rate (N/D)</td>
</tr>
<tr>
<td>AROOF, AROAD, AWALL</td>
<td>Roof, Road, and Wall albedo (N/D)</td>
</tr>
<tr>
<td>EROOF, EROAD, EWALL</td>
<td>Roof, Road, and Wall emissivity (N/D)</td>
</tr>
<tr>
<td>HTRAF</td>
<td>Maximum value of sensible heat released by Traffic (W m⁻²)</td>
</tr>
<tr>
<td>HINDU</td>
<td>Maximum value of sensible heat released by Industry (W m⁻²)</td>
</tr>
<tr>
<td>PLETRAF</td>
<td>Maximum value of latent heat released by Traffic (W m⁻²)</td>
</tr>
<tr>
<td>PLEINDU</td>
<td>Maximum value of latent heat released by Industry (W m⁻²)</td>
</tr>
</tbody>
</table>
Table 4: List of symbols SFIRE model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_*</td>
<td>scale friction velocity</td>
</tr>
<tr>
<td>ρ_a</td>
<td>air density</td>
</tr>
<tr>
<td>T_e</td>
<td>scale of temperature</td>
</tr>
<tr>
<td>χ_e</td>
<td>scale of specific moisture</td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat at constant pressure</td>
</tr>
<tr>
<td>M_f</td>
<td>moisture content of the fuel particle</td>
</tr>
<tr>
<td>w</td>
<td>total fuel load per unit area</td>
</tr>
<tr>
<td>h</td>
<td>low heat value</td>
</tr>
<tr>
<td>L</td>
<td>specific latent heat of water condensation</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>Q_H</td>
<td>sensible heat flux</td>
</tr>
<tr>
<td>Q_L</td>
<td>latent heat flux</td>
</tr>
</tbody>
</table>
Figure 1: A 3-D hypothetical case study: transport of a rectangular parallelepiped by a realistic divergent flow over the Southeast part of Brazil. (A) The tracer concentration field expressed in terms of mass mixing ratio at initial time and 1900 m height; the horizontal wind flow is also depicted. (B, C) The correspondent mass mixing ratio after 12 hours as simulated by the original and monotonic advection schemes, respectively.

Figure 2: Time series of downwelling short-wave irradiance (Wm$^{-2}$) at Abracos Hill AERONET site during a cloudy period from 17 to 21 September 2002 from BRAMS 5.2 results with (in red) and without (in blue) aerosol effects. The black line refers to measurement data in the same periods, and the green (line and marks) is the attenuation due to aerosol effect.
Figure 3: Time series of downwelling long-wave irradiance (Wm$^{-2}$) at Abracos Hill AERONET site during a cloudy period from 17 to 21 September 2002 from BRAMS 5.2 results. The black line refers to measurement data in the same period.

Figure 4: RMSE of air temperature at 2 meters using JULES (in red) and LEAF3 (in blue) surface schemes with BRAMS over South America during (A) wet season in March 2010, and (B) dry season in September 2010.
Figure 5: Mean bias score versus precipitation thresholds for South America for a set of 30 forecasts of 24-h accumulated precipitation for 120h in advance for (A) January 2008 and (B) January 2010. Blue line represents simulations using FY weight method and red line the original EN. Blue bars indicate significance test from the bootstrap method (Hamill, 1999).

Figure 6: Averaged precipitation rates over 15 runs for total precipitation (A, B, and C) and convective (non-resolved) precipitation (E, F and G), using the scale dependence formulation (GF-A) and horizontal resolutions of 20km (A, E), 10km (B, F) and 5km (C, G). The column on the right (panels D and H) depicts results on 5 km without the scale dependence formulation (GF-NS). Units are mm/day.
Figure 7: Simulation of the diurnal cycle of precipitation over the Amazon Basin with GF scheme and the diurnal cycle closure. (A) An example of 5 days forecast of the convective parameterization precipitation rate (mm h$^{-1}$, averaged over the model domain). (B) The same as (A) but daily averaging also over 15 runs with 120-hour forecast each. The green line shows the diurnal cycle of the downwelling short-wave radiation (W m$^{-2}$) to spot the local time.

Figure 8: TRMM 24-hour accumulated rainfall for day 12 October 2015. The data is produced on 0.25-degree grid resolution and the unit is mm.
Figure 9: BRAMS model forecast of 24-hour accumulated (A) total precipitation and (B) from convective parameterization for 12 October 2015 and on 5 km grid spacing. Unit is mm.
Figure 10: A chart of the BRAMS system with the CCATT chemistry model component. The gray blocks and the black arrows indicate the codes that make up the CCATT-BRAMS System and their outputs, respectively. The white blocks indicate either the input files for the pre-processing (first line) as the pre-processing outputs (third line), which are also input files for pre-processing emissions and boundary conditions and routines for composing the BRAMS model (adapted from Longo et al., 2013).
Figure 11: Time series of mean daily values of mixing ratio of carbon monoxide measured at an Amazonian ground station (Porto Velho) and from CCATT-BRAMS simulations.

Figure 12: Time series of ozone mixing ratio measured at an Amazonian ground station and from CCATT-BRAMS simulations.
Figure 13: Comparisons between model results for ozone concentrations and observed values provided by INEA in Rio de Janeiro (Adapted from Carvalho, 2010).

Figure 14: CO$_2$ fluxes as simulated by BRAMS [μmolC m$^{-2}$ s$^{-1}$], average for September 2010. (a) Gross primary production, (b) plant respiration, (c) soil respiration and (d) net ecosystem exchange. Positive value means CO$_2$ flux from atmosphere into the land surface.
Figure 15: The diurnal cycle of CO$_2$ mixing ratio (ppmv, shaded colors), the turbulent kinetic energy (TKE, m2 s$^{-2}$, black contours) and the dowelling short-wave radiation at surface (DSWR, W m$^{-2}$, in white line and using the same scale as the height above surface on the left) as simulated by BRAMS with Jules surface scheme in the low troposphere. All quantities are area averaged over a portion of the Amazon Basin with tropical forest as the dominant vegetation type and correspond to an example for 27 January 2014.
Figure 16: Traces of volcanic ash associated with the eruption of the Puyehue volcano as retrieved from METEOSAT-8 satellite data. The image corresponds to 06 June 2011 at 15 UTC. The color scale refers to temperature difference between the infrared 10 and 11 channel (Costa et al., 2012), the contrast allowing to identify the ashes.
Figure 17: (a) Vertically integrated total mass of ash (mg m\(^{-2}\)). (b) Total ash mass concentration (µg m\(^{-3}\)) at level of approximately 9500 m above surface and the associated horizontal wind. Both panels show results for 06 June 2011 at 15 UTC as simulated by BRAMS model.
Figure 18: Execution Time of the Input Phase at UNA for a 24 hours forecasting over the 20 km grid.

Figure 19: Execution Time of the Output Phase at UNA machine for a 24 hours forecasting with the 20 km grid spacing model configuration.
Figure 20: Execution time reduction at UNA machine on 20 and 10 km grid spacing model configurations.

Figure 21: Execution time at TUPA of the 5 km grid and processes responsibility

Figure 22: On the left, execution time of BRAMS on 5km grid spacing covering South America and adjacent Oceans in function of the number of computing cores. On the right appears the corresponding parallel efficiency.
Figure 23: (A) Fuel models of Ossa mountain range region. Panels from a1 to a13 show sensible heat fluxes (W m$^{-2}$) during the fireline spread and behavior of horizontal atmospheric wind (m s$^{-1}$) at surface under the influence of the fire in different moments of forestry fire occurred in 7/8/2006 in Ossa mountain range in Alentejo in Portugal, simulated by BRAMS-SFIRE.
Figure 24: BRAMS 5km operational forecast over South America. Model performance evaluation with BIAS (upper panel) and RMSE of five near surface quantities: 2-meter temperature and dew-point temperature (K), 10-meter wind speed (m s\(^{-1}\)), 24-h accumulated precipitation (mm) and the mean sea level pressure (hPa).
Figure 25: Equitable Threat Score (ETS) and BIAS score for the BRAMS 5km operational forecast over South America. Results are runs averaged over two model domains (South America and the South-southeast portion of Brazil) and the time period from 15 January of 2013 to 15 January of 2015. The results also show skill for 30 and 60-h time integration.