Response to the topical editor Dr. Jeffrey Neal for manuscript “The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds”, by Adams et al.

Dear Dr. Neal,

Thank you for taking the time to handle our manuscript. Please find below our replies to your comments to the author. We have responded to your suggestions, and believe these suggestions have strengthened the manuscript. Per the instructions provided, we have pasted below copies of your letter, and our responses to each individual comment in italics.

On the following pages, we have also responded to the comments from the other two reviewers, Dr. Dapeng Yu and Dr. Michaelides. We have replied to each comment in italics. Also attached is a PDF showing the changes we made to the revised LaTeX draft before submitting our updated manuscript. We hope these revisions address the remaining concerns to your satisfaction. Thank you once again for handling and reviewing this manuscript. We look forward to hearing from you.

Many thanks again,

Jordan Adams (on behalf of all the authors)

Response to comments by Dr. Jeffrey Neal

Regarding reviewer comment 1b, my impression was that the model simulates flow over the entire grid using the local inertia approximation of the SWE (a method often used for pluvial flood hazard mapping) and that you are not using a separate 1D channel for river flow or channelised overland flow routing (e.g. Neal et al., 2012 WRR). However, perhaps I have also misunderstood and some additional clarity (or explanation of limitations) would be welcome as requested by the reviewer.

We have now explicitly stated that the model makes no distinction between hillslopes and channels, and have noted that the model simulates flow at all grid locations. We also more clearly defined how we use the model to generate runoff or overland flow. We have addressed reviewer comment 1b in length, and hope you find the explanation suitable.

LISFLOOD-FP on its own does not include many of the stores and processes you might traditionally associate with a rainfall-runoff model, therefore spending a little more time clarifying how this setup works and how you envisage it being used would be beneficial.

We have reworked that section. We moved the citations and references to LISFLOOD-FP to a later section to more clearly emphasize how we’ve adapted the hydrodynamic algorithm to work in Landlab.

I also agree that a shorter abstract would be beneficial if possible.

We have shortened the abstract to be more succinct.
Response to Dr. Dapeng Yu

Dear Dr. Yu,

Thank you for taking the time to re-review our manuscript. We appreciate the time you have put into your comments and believe these new suggestions have improved the manuscript. We have responded to each comment below.

Many thanks again,

Jordan Adams (on behalf of all authors)

Thanks for the authors' efforts in addressing the comments I made. Structure is clearer and new analysis was undertaken. Discussion on future research directions is informative. I am happy with its shape. However a considerable amount of texts were changed. In doing so errors were introduced. Below are just a few examples. I believe these are typos but please do a thorough proof reading before it goes to publication.

We appreciate Dr. Yu’s comments, and the time he has taken to re-review the manuscript. We have done a thorough review and made the edits he suggested below.

Page 12: the last sentence on the page needs correction - not a sentence.
This has been corrected.

Line32@page 13: behaving to behaves
Changed.

Line13@page 13: not a sentence
This has been corrected.

Also headings are misleading after the revision.
- There is Section 2.1 RasterModelGrid library, but no section 2.2.
- Similarly, there is section 3.1.1 but there is no 3.1.2. This needs to be sorted out.

We have removed the subheadings. Now that the paper has been restructured, we agreed with Dr. Yu that they were no longer necessary.

After these are corrected, I recommend its publication.
Response to Dr. Katerina Michaelides

Dear Dr. Michaelides,

Thank you for taking the time to re-review our manuscript. We appreciate the time have put into your suggestions and believe these comments have strengthened the manuscript. We have responded to your comments below.

Many thanks again,

Jordan Adams (on behalf of all authors)

1. Fundamentally, the paper needs to clarify a couple of crucial things that at the moment are still causing some confusion:

a) The term “hydrologic” implies hydrological processes (e.g. rainfall-runoff generation via infiltration and subsurface-surface water linkages); whereas the term “hydraulic” is used to denote the characteristics of movement of water through a system. As is, this paper describes the hydraulic processes (not the hydrologic processes) and it needs clarification. This confusion is apparent in the conflation of flood inundation models with rainfall-runoff models (e.g. LISFLOOD-FP is not a rainfall-runoff model – it is a flood hydraulic model which routes a hydrograph through a channel-floodplain system but does not generate that hydrograph from rainfall nor does it simulate overland flow on un-channelized hillslopes). Therefore, I think the authors need to use the correct terminology when referring to hydraulic vs hydrological processes in the context of this new model component and to decide whether this is a hydrologic model or a hydraulic model (which is what I think it is).

 We have reworked this section to make this distinction clearer in the text. These revisions include removing some of the confusing background material about rainfall-runoff models. Additionally, all references to hydrologic model are now clearer in the text, as they’ve been reworded to reflect that the model simulates runoff generation or overland flow processes specifically. We removed the reference to LISFLOOD-FP that suggested it was a rainfall-runoff model. In the section describing the OverlandFlow algorithm, we outline what that LISFLOOD-FP model is a flood inundation and/or hydrodynamic model, as described by Bates et al., (2010) and de Almeida et al., (2012). We now state explicitly that we used the flood inundation algorithm to explore surface runoff in Landlab.

b) Having read both versions of the paper several times now, I’m still confused as to whether this model routes flow over the hillslopes and channels or only in channelized components. In this revised version, I think I’m even more confused because on page 16 [13-14] it is stated that the model makes no distinction between hillslopes and channels which would lead one to believe that the model routes water over the entire grid (hillslopes and channel) but from the results in Figure 8 c&d it appears as though the ‘overland flow’ routing is only applied in the channelized parts (i.e. water depths and
shear stresses on non-channelized components are zero). The term ‘overland flow’ implies hillslopes (as opposed to channel flow). So can the authors please clarify these aspects as they are quite important? If it is only a channel flow model, then perhaps they may consider revising the name (as it is misleading) and the part of the title that says “across watershed”? If flow routing does take place on the non-channelized parts of the basin (i.e. the hillslopes) then can I please request this is made clear upfront? If from 1) and 2) the authors ascertain that the model is a channel flow hydraulic model (as opposed to basin-scale hydrologic model), then this needs to be clear upfront as the two mean quite different things.

This model simulates flow over the entire domain by solving a diffusive approximation of the shallow water equations. So, the model does not differentiate between hillslopes and channels. At all locations within the grid, flow is calculated as a function of Eq. (4). Figs. (8c) and (8d) are snapshots in time, when flow had collected in the main channels after the precipitation event. We have now explicitly stated that the model routes flow over the entirety of the watershed (not just channels) in several places throughout the text. We have also clarified the confusing statement on page 16.

2. The abstract seems overly long and detailed and still contains some confusing statements. I think it would benefit from becoming more succinct and direct. For example, consider rewording the opening sentences from:

“Hydrologic models and modeling components are used in a wide range of applications. Geomorphologists include aspects of hydrologic models, albeit in a highly simplified manner, when using long-term landscape evolution models to approximate how flowing water shapes landscapes over thousands to millions of years. Most landscape evolution models make assumptions that reduce overland flow into a function of drainage area and precipitation rate, removing physical parameters like water surface slope and surface roughness from flow calculations in favor of computational speed.”

To something like:

Representation of water flows in long-term landscape evolution models (LEMs) is simplistic compared to short-term hydrological models due to assumptions taken to reduce complexity and increase the computational speed necessary to run simulations over thousands to millions of years.

We have shortened the abstract to make it more direct.

3. There is still confusion about the timescales of applicability of this model. On p1 [13] of the Abstract it is stated that the paper will illustrate the application of the new component on event-based and decadal timescales. The final sentence of the Abstract (p2, 2) states that the model takes a few hours to run simulations up to 10,000 years. So given that Landlab functions predominantly as an LEM, and given the speed of running 10,000 years, why didn’t the authors demonstrate some long term results in this paper? I think that would be a great addition.
We removed reference to longer timescales from the abstract. We now explicitly state all timescales used in the applications are decadal or event-based throughout the text. These applications were designed to be simple demonstrations of model capabilities, that can be run quickly by a potential user on their personal machine, looking to test the model before adapting it for their own applications.

4. P2 [22] Remove “moving downstream”
 Removed.

5. P3 [1] Abbreviate landscape evolution models to LEMs throughout the paper
 Changed.

6. P3 [6] Flood inundation models like LISFLOOD are not to be confused with rainfall-runoff models (see point 1a above). This section needs reworking.
 We have edited that sentence and removed reference to rainfall-runoff and hydrologic models. Every reference to either “rainfall-runoff” or “hydrologic” model has been updated to reflect that the model looks at overland flow or runoff processes. We removed citation and references to LISFLOOD-FP until they are introduced later in the model description section, following the suggestions made in comment #1a.

7. P4 [13] Why are you limiting your simulations to 10 years and not showing off the 10,000 year capability? (see point 3 above)
 Removed reference to the longer duration runs as these results are still highly preliminary, and would take a considerable amount of time to reproduce. These applications were designed as simple test cases for a new user to learn how to apply the model before using it for their own application.

8. P13 [section 7] Does ‘long-term fluvial erosion’ here mean decadal? I would reword as the expectation from someone reading this heading is that you are going to be simulating hundreds to thousands of years at least.
 Changed the name of Section 7 to better reflect the application.

 Fixed, removed reference to ‘short-term’.

10. P15 [10] I remember highlighting this point in my review of the original manuscript. What is the geomorphic meaning of comparing 10 years of incision depth with long-term steady state incision? Aren’t you comparing apples and oranges here?
 Comparing the incision depths between the two methods is meant to illustrate how different hydrologic methods in geomorphology models may dictate landscape shape. Solyom and Tucker (2004) did something similar, looking at how morphology changes across their two steady and nonsteady methods. In our
work, we use total incised depth to evaluate how landscapes may respond to our different runoff approaches. We have added more text to this section to better reflect this.

11. P16 [12-14] Sentence is unclear. Clarify whether it is the manuscript or the model that make no distinction between hillslope and channel processes. And see point 1b above.

Reworded this sentence to reflect that flow is simulated across the entire domain, as the model does not distinguish between channels or hillslopes. We also restated this at several points earlier in the text, making it clear that the model simulates flow at all locations in the grid, following the shallow water equations.
The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds

Jordan M. Adams¹, Nicole M. Gasparini¹, Daniel E. J. Hobley², Gregory E. Tucker³,⁴, Eric W. H. Hutton⁵, Sai S. Nudurupati⁶, and Erkan Istanbulluoglu⁶

¹ Department of Earth and Environmental Sciences, Tulane University, New Orleans, USA
² School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
³ Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USA
⁴ Department of Geological Sciences, University of Colorado, Boulder, USA
⁵ Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder, USA
⁶ Department of Civil and Environmental Engineering, University of Washington, Seattle, USA

Correspondence to: J. M. Adams (jadams15@tulane.edu)

Abstract. Hydrologic models and modeling components are used in a wide range of applications. Geomorphologists include aspects of hydrologic models, albeit in a highly simplified manner, when using long-term representation of flowing water in landscape evolution models to approximate how flowing water shapes landscapes over thousands to millions of years. Most landscape evolution models make assumptions that reduce overland flow into a function of drainage area and precipitation rate, removing physical parameters like water surface slope and surface roughness from flow calculations (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational speed/efficiency. The Landlab modeling framework can be used to incorporate more physically based overland flow methods into traditional erosion models, an application not widely used by bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities.

Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al. (2012). This explicit two-dimensional hydrodynamic algorithm propagates simulates a flood wave across a model domain, and where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here we illustrate how the OverlandFlow hydrologic component contained within Landlab can be applied as either a simplified event-based rainfall-runoff model or a landscape evolution model-runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with maps of shear stress applied on the land surface by flowing water. Results from two different synthetic watersheds illustrate that the model correctly captures how network organization impacts hydrograph shape. The OverlandFlow component is also coupled with the Landlab DetachmentLdErosion component to illustrate how the nonsteady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled hydrologic
runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that on landscape evolution timescales, the OverlandFlow model may drive significant lead to differences in simulated topography compared to in comparison with traditional methods. The exploratory applications test cases described within demonstrate how the OverlandFlow component can be used to understand coupled patterns of flooding and erosion. Provided example codes run on a desktop machine will take on the order of hours to run simulations of $\leq 10^2$ years, assuming watersheds with similar drainage areas and grid resolutions are used in both hydrologic and geomorphic applications.

1 Introduction

Numerical models of overland flow have a variety of applications. Examples include mapping urban flooding events (e.g. Dutta et al., 2000; Horritt and Bates, 2002; Maksimović et al., 2009; Kulkarni et al., 2014; Cea and Bladé, 2015), understanding the interactions between surface and subsurface water by way of soil infiltration (e.g. Esteves et al., 2000; Panday and Huyakorn, 2004; Kollet and Maxwell, 2006; Maxwell and Kollet, 2008; Shrestha et al., 2015) and exploring hydrogeomorphologic processes in natural landscapes (e.g. De Roo et al., 1996; Beeson et al., 2001; Francipane et al., 2012; Kim et al., 2013; Wang et al., 2014; Rengers et al., 2016). Yet to be deeply explored is how the details of hydrologic processes, specifically runoff generation, impact landscape evolution over centennial scales and longer. Pioneering work by Tucker and Bras (1998) and Sólyom and Tucker (2004) has explored this problem, but there are still unanswered questions many questions remain, including how hydrograph shape impacts erosion rates and topographic patterns.

Models of landscape evolution all have share the same fundamental structure: all use numerical methods to model flow or transport of water and sediment across a representative mesh that is tessellated into discrete elements, but (e.g. Willgoose et al., 1991; Tucker et al., 1994). However, the complexity of the runoff mechanism varies (e.g. Willgoose et al., 1991; Tucker and Slingerland, 1994; Willgoose, 1994; Braun et al., 2000; Horritt and Bates, 2002; Maksimović et al., 2009; Kollet and Maxwell, 2006; Maxwell and Kollet, 2008; Shrestha et al., 2015). The representation of surface water flow in landscape evolution models (LEMs) is often simplified, as solving the shallow water equations in 2D can be computationally intensive. Most models assume unidirectional steady-state water discharge, where surface water flux is modeled at each location as a product of drainage area and rainfall rate, or:

$$Q_{ss} = PA$$

(1)

where Q_{ss} is the steady-state water discharge $[L^3T^{-1}]$, P is an the spatially averaged effective precipitation or runoff rate $[LT^{-1}]$ and A is drainage area $[L^2]$. Discharge increases moving downstream with drainage area, but only lasts for the duration of a precipitation event and stops when precipitation ends. If the precipitation rate is constant, the discharge rate at a given point in the domain will be constant for the duration of the model run storm event, creating a rectangular hydrograph (Fig. 1). In more physically-based hydrology models, the steady-state assumption is replaced with nonsteady runoff processes that simulate a flood wave moving flowing water across a watershed. Figure 1 compares the steady-state discharge assumption to the a nonsteady method at one location in the watershed. The effective rainfall rate P is the same rate and has the same duration for both the steady (Q_{ss}) and nonsteady (Q_h) discharge simulations. The nonsteady hydrograph (Q_h) lasts longer through time than rectangular steady-state discharge hydrograph (Q_{ss}), as it is water takes time to flow across the landscape, a process
controlled by the physical nature of the system, such as local water depth \((h) \), surface roughness \((n) \) and water surface slope \((S) \).

The simplifying assumption of steady-state discharge is made for two reasons: there can be significant differences between hydrologic timescales for individual flood and storm events (minutes to days) and geomorphic timescales of rock uplift and landscape evolution (thousands to millions of years) that may be complex to resolve. Additionally, computational power is often a limiting factor, and these simplifying assumptions speed up the as some processes in LEMs do not lend themselves to parallelization, so making assumptions about how water fluxes are calculated (e.g. Eq. 1) can speed up model processing time.

Whereas many geomorphic landscape evolution models (LEMs) generalize surface water flow using steady-state assumptions, most hydrologic and flood inundation models route a storm hydrograph (changing physical models of runoff production simulate changing surface water discharge through time), capturing the spatial and temporal variability of water discharge flowing water across a modeled landscape (e.g. Bates and De Roo, 2000; Ogden et al., 2002; Downer and Ogden, 2004; Ivanov et al., 2004; Hunter et al., 2007; Devi et al., 2015). These models, often referred to as ‘rainfall runoff’ models, are applied over real landscapes to simulate overland flow events (e.g. Ogden et al., 2002; Downer and Ogden, 2004; Ivanov et al., 2004; Hunter et al., 2007; Moradkhani and Sorooshian, 2009; Devi et al., 2015).

Surface water runoff is one of many physical processes and parameters explored in these models. Lumped rainfall-runoff models represent watersheds as characteristic subareas or subbasins, and do not account for spatial variability in physical subbasin parameters. These models assume that average variables and parameters adequately capture the processes being modeled (e.g. Donigan et al., 1984; Scharffenberg and Fleming, 2006; Moradkhani and Sorooshian, 2009; Beven, 2011; Devi et al., 2015). Alternatively, domains within distributed rainfall-runoff models are broken into smaller, discrete elements or grid cells. Distributed models allow for increased spatial variability in model parameters or state variables (e.g. Beven and Kirkby, 1979; Woolhiser et al., 1990; Dowling et al., 1997).

Some of these hydrologic-runoff models have been paired with erosional models at the watershed scale (e.g. Aksoy and Kavvas, 2005; Francipane et al., 2012; Coulthard et al., 2013; Kim et al., 2013). However, there are a limited number of studies that integrate a physically-based, distributed runoff method into a landscape evolution modeling (LEM) framework; the steady-state discharge assumption (Eq. 1) is often used instead.

The assumption of steady-state discharge in landscape evolution models (LEMs) is not always reasonable. For example, steady-state hydrologic conditions can rarely be achieved in larger catchments with long flow paths, or in landscapes dominated by short-duration precipitation events. Under these conditions, predicted steady-state discharge may not be reached in a watershed. Additionally, the traditional steady-state model (Eq. 1) does not capture differences in basin organization or orientation, whereas discharge is known to be sensitive to these characteristics (Snyder, 1938). For example, watersheds with identical drainage areas but different shapes or orientations may have dramatically different hydrograph shapes that are not captured by the traditional steady-state assumption.

Adding hydrologic variability in landscape evolution models to LEMs has also been shown to impact watershed morphology and landscape evolution. Previous work coupling spatially variable rainfall models with steady-state discharge in landscape evolution erosion models has illustrated impacts on landform morphology, including relief and drainage network organization (e.g. Anders et al., 2008; Colberg and Anders, 2014; Huang and Niemann, 2014; Han et al., 2015). Similarly, introducing storm and discharge variability into landscape evolution models (LEMs) has implications for incision rates, channel profile form and
steepness in modeled landscapes (e.g. Tucker and Bras, 2000; Lague et al., 2005; Molnar et al., 2006; DiBiase and Whipple, 2011). In contrast to these studies, Coulthard et al. (2013) integrated a semi-implicit hydrodynamic model into the CAESAR landscape evolution model LEM and noted reduced sediment yields on decadal time scales of landscape evolution when using nonsteady hydrology. In another approach, Sólyom and Tucker (2004) estimated nonsteady peak discharge as a function of the storm duration, rainfall rate and the longest flow length in a network. Incision rates were estimated using those peak discharge values. Their findings demonstrated that landscapes evolved with nonsteady hydrology were characterized by decreased valley densities, reduced channel concavities and increased relief when compared to landscapes evolved using steady-state hydrology.

To represent and investigate the role of nonsteady flow routing on landform evolution, a hydrodynamic model has been incorporated into the Landlab modeling toolkit. In this paper, we describe the fundamentals of the Landlab modeling framework, as well as the theoretical background of the Landlab OverlandFlow component, based on a two-dimensional flood inundation model (LISFLOOD-FP: Bates and De Roo, 2000; Bates et al., 2010; de Almeida et al., 2012; de Almeida and Bates, 2013). The new OverlandFlow component includes information on how to set up a model domain using a digital elevation model, how to handle boundary conditions, how Landlab components store and share data in ‘fields’, and the validation against known analytical solutions. The OverlandFlow component is then used to route nonsteady flow on one real landscape and two synthetic watersheds. Model output demonstrates that the OverlandFlow component is sensitive to both catchment characteristics and precipitation inputs. Output hydrographs can be flashier or broader depending on changes in these parameters and model domain. Finally, the variable discharge from the OverlandFlow component is coupled to a detachment-limited erosion component (DetachmentLtdErosion) to explore the feedbacks between hydrograph shape and short-term (10-year) erosion patterns throughout a landscape.

2 Landlab modeling framework

Landlab is a Python-language, open-source modeling framework, developed as a highly flexible and interdisciplinary library of tools that can be used to address a range of hypotheses in Earth-surface dynamics (Adams et al., 2014; Tucker et al., 2016; Hobley et al., 2017). The utilities in Landlab allow users to build two-dimensional numerical models (Fig. 2). This includes a gridding engine that creates structured or unstructured grids, a set of pre-built components that implement code representing Earth surface or near-surface processes, and structures that handle data creation, management and sharing across different process components. A diverse group of processes, such as uniform precipitation, detachment- and transport-limited sediment transport, detachment-limited incision, linear diffusion, crustal flexure, soil moisture, vegetation dynamics, and overland flow, are available in the Landlab library as process components. The Landlab architecture allows for a “plug-and-play” style of model development, where process components can be coupled together. Coupled components share a grid instance and methods, and can operate on the data attached to the grid.

4
2.1 RasterModelGrid library

Landlab offers several different grid types. However, because the core algorithm in the OverlandFlow component can only be applied to structured grids, only the RasterModelGrid class is described here. The RasterModelGrid class can build both square ($\Delta x = \Delta y$), and rectangular ($\Delta x \neq \Delta y$) grids. OverlandFlow applications can methods only operate on square grid cells and require $\Delta x = \Delta y$. Each grid type in Landlab is composed of the same topological elements: nodes, which are points in (x, y) space; cells, a polygon with area $\Delta x \Delta y$ surrounding all non-perimeter or interior nodes; and links, ordered line segments which connect neighboring pairs of nodes and store directionality (Fig. 3). In the RasterModelGrid library, each node has four link neighbors, each oriented in a cardinal direction. Each node has two ‘inlinks’, connecting a given node to its south and west neighbors, and two ‘outlinks’, connecting to the node neighbors in the north and east. The terms ‘inlinks’ and ‘outlinks’ are for topological reference only, as the direction of fluxes in a typical Landlab component are calculated based on link gradients.

Model data are stored on these grid elements using Landlab data fields. The data fields are NumPy array structures that contain data associated with a given grid element. To store and access data on these fields, data are assigned using a string keyword, and are accessed using Python’s mutable dictionary data structure. Data are attached to the grid instance using these fields, and can be accessed using the string name keyword and updated by multiple Landlab components. For example, a field of values representing water depth at a grid node can be accessed using the following syntax: `grid.at_node['surface_water__depth']`, where `grid` is the grid instance. Most Landlab names follow a simplified version of the naming conventions of the Community Surface Dynamics Modeling System (CSDMS), a set of standard names used by several models within the Earth science community (Peckham, 2014; Hobley et al., 2017).

Model boundary conditions are set within a Landlab grid object. Boundary conditions are set on nodes and links (Fig. 4). Node boundary statuses can be set to either `boundary` or `core`. If a node is set to boundary, it can be further defined as an open, fixed gradient, or closed (no flux) boundary. In all RasterModelGrid instances, default boundary conditions are set as follows: perimeter nodes are open boundary nodes, while interior nodes are set as core nodes. Boundary conditions can also be applied to interior nodes (e.g. NODATA values on non-perimeter nodes in a digital elevation model can be set as closed boundaries). In OverlandFlow applications, open boundary nodes act as a watershed outlet flow outlets, allowing water fluxes to move out of the model domain. Input rainfall is added to all core nodes, where water depths are updated at each time step to drive fluxes on grid links.

There are three link boundary statuses: active, inactive and fixed. Link boundary status is tied to the neighboring nodes. Once boundary conditions are set on the nodes, link boundary conditions are automatically updated. Active links occur where fluxes are calculated, and are found in two cases: (1) between two core nodes or (2) between one core node and one open boundary node. Fixed links can be assigned a fixed value that can be set or updated during the model run and are located between a fixed gradient node and a core node. Fluxes are not calculated on inactive links, which occur in two cases: (1) between a closed boundary and a core node or (2) between any pair of boundary nodes of any type (Fig. 4). Core nodes and active links make up the computational domain of a Landlab model.
3 Component equations

3.1 deAlmeida OverlandFlow component

Solving explicit 2D two-dimensional hydraulic formulations can be computationally challenging. For example, the one-dimensional 1D shallow water equation includes four terms:

\[
\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(Q \frac{Q^2}{A_{xs}} \right) + g A_{xs} \frac{\partial (h + z)}{\partial x} + \frac{gn^2 |Q| Q}{R^{4/3}} A_{xs} = 0
\]

(2)

where \(Q \) is water discharge \([L^3 T^{-1}]\); \(t \) is time \([T]\); \(x \) is the location in space \([L]\); \(A_{xs} \) is cross-sectional area of the channel \([L^2]\); \(g \) is gravitational acceleration \([LT^{-2}]\); \(h \) is water depth \([L]\); \(z \) is the bed elevation \([L]\); \(n \) is the Manning’s friction coefficient \([L^{-1/3} T] \) and \(R \) is the hydraulic radius \([L]\). These terms represent, from left to right, local acceleration, advection, fluid pressure and friction slope. To enhance stability, many solutions of the shallow water equations include numerical approximations that neglect terms from this solution. The simplest approximation, the kinematic wave model, neglects the local acceleration, advection and pressure terms. A more complex approximation, the diffusive wave model, only neglects the local acceleration and advection terms (Kazezyılmaz-Alhan and Medina Jr, 2007).

The Landlab OverlandFlow component is based on a two-dimensional hydrodynamic algorithm to simulate flow at all points across the gridded domain. This algorithm, developed for the LISFLOOD-FP model, and similar was incorporated into Landlab for modeling overland flow. Similar to the diffusive approximation, the LISFLOOD-FP algorithm assumes a negligible contribution from the advection term of the shallow water equations (Bates et al., 2010; de Almeida et al., 2012). Additionally, this solution assumes a rectangular channel structure and constant flow width, impacting the pressure and friction terms \((A_{xs} \text{ and } R)\) in Eq. (2) (Bates et al., 2010). This formulation allows for a larger maximum time step than the more common diffusive approximation, enhancing the computational efficiency of the OverlandFlow component. de Almeida et al. (2012) further stabilized this algorithm by introducing a diffusive term into LISFLOOD-FP, updating the Bates et al. (2010) algorithm to work on lower friction surfaces without sacrificing computational speed.

To start the model, a stable time step is calculated. Stable time steps are set according to the Courant-Freidrichs-Levy criteria, which evaluates the ratio of time step size to grid resolution. If large time steps are used, areas of low-high slope are prone to wave oscillations, leading to a spatial ‘checkerboard’ pattern of water depths. If time steps are very small, there may be are significant impacts on the computational performance of a model. To maximize the trade-off between computational efficiency and stability of the de Almeida et al. (2012) solution, an adaptive time step (following Hunter et al., 2005) is used to keep the CFL condition valid:

\[
\Delta t_{\text{max}} = \alpha \frac{\Delta x}{\sqrt{gh_{\text{max}}}}
\]

(3)

where \(\Delta t_{\text{max}} \) is the maximum time step that adheres to the CFL condition; \(\alpha \) is a dimensionless stability coefficient less than 0.7; \(\Delta x \) is the grid resolution \([L]\); and \(\sqrt{gh_{\text{max}}} \), the characteristic velocity of a shallow water wave, or the wave celerity \([LT^{-1}]\), calculated using \(h_{\text{max}} \), the maximum depth of water in the modeling domain \([L]\). When the OverlandFlow component is initialized, a thin film of water is set at all grid nodes to keep Eq. (3) valid. Flow stability and mass balance are controlled by
the α value. On a case by case basis, α must be tuned to find the value that keeps the modeled flow stable while also reducing mass losses. Variables and parameters are defined in Tables (1) and (2).

To calculate water discharge at all grid locations, de Almeida et al. (2012) derived an algorithm using the one-dimensional Saint-Venant or shallow water equations which simulates a flood wave propagating across gridded terrain the domain. This simplified algorithm calculates discharge at all points within the domain (for full derivation see deAlmeida et al., 2012). The explicit solution follows the form:

$$q^t_{x} + \Delta t = \left[\alpha q^t_{x} + \frac{1-\alpha}{2}(q^t_{(x-1)} + q^t_{(x+1)})\right] - g h_f(x) \Delta t S_w(x)$$

$$1 + g \Delta t n^2 |q^t_{x}|/h_f^{7/3}$$

(4)

where q is water discharge per unit width $[L^2 T^{-1}]$, calculated on links, here given superscript t for the current time step and subscript x describing the location of links in space (Fig. 5). α is a weighting factor between 0 and 1, given a default value of 0.8, but can be tuned by the user. Setting α to 1 returns the semi-implicit solution of Bates et al. (2010), that is, removing the diffusive effects implemented by de Almeida et al. (2012). g is gravitational acceleration $[LT^{-2}]$; h_f is the local maximum water surface elevation at a given time $[L]$; Δt is the adaptive time step $[T]$ (Eq. 3); S_w is the dimensionless water surface slope; and n is the Manning’s friction coefficient $[L^{-1/3} T]$ (Tables 1 and 2). Equation (4) is calculated as two one-dimensional solutions in a D4 (four-direction) scheme: first calculated in the east-west direction (in the x direction) and then in the north-south direction (replacing x with y in Eq. 4).

Water depth is calculated on nodes, and updated at each time step as a function of the surrounding volumetric water fluxes $(q \cdot \Delta x)$ on both horizontal and vertical links:

$$\frac{\Delta h}{\Delta t} = \frac{Q_{h(in)} - Q_{h(out)}}{\Delta x \Delta y}$$

(5)

where $Q_{h(in)}$ $[L^3 T^{-1}]$ are the summed water discharges moving into a given node and $Q_{h(out)}$ are summed water discharges moving out of a given node, following Fig. (3). Directionality of discharge is determined not by the orientation of ‘inlinks’ or ‘outlinks’, but instead, flow directions are determined by the water-surface gradient of each link. In this method, water mass is conserved, as the flow moving out of a node is balanced by the flow moving into the nearest node neighbors.

By default, this model assumes that all rainfall is spatially uniform and temporally constant, and all rainfall is converted to surface runoff. No infiltration or subsurface flow is considered within the model equations, however, the OverlandFlow component could be easily coupled with an infiltration component. Spatially or temporally variable rainfall can be could be generated by another process component, or set manually by the user in a driver file. Effective rainfall depths are applied over the basin and added to the surface water depths at each time step.

3.1.1 Steep environment stability criteria

The de Almeida et al. (2012) equation is designed for urban flooding events and is most stable in low-to-zero slope environments. To adjust this component to work in steep mountain catchments, extra stability criteria were added to keep simulations numerically stable, using the steep_slopes keyword flag. A similar criterion was implemented in the CAESAR-Lisflood model.
(Coulthard et al., 2013). This method reduces the calculated flow discharge as needed to keep flow regime critical to subcritical using the Froude number (Eq. 6), where subcritical flow is defined as \(Fr \approx \approx 1.0 \). The Froude number is calculated as a function of wave velocity \(u \), calculated as \(\frac{u}{h_f} \) on all links and wave celerity \(\sqrt{gh_f} \):

\[
F_r = \frac{u}{\sqrt{gh_f}}
\]

If the `steep_slopes` flag is set when initializing OverlandFlow, restrictions are imposed to keep flow conditions critical to subcritical, a reasonable assumption for steep, mountain catchments (Grant, 1997). Specifically, if the water velocity calculated by the component drives the Froude number \(Fr \approx \approx 1.0 \), water velocity is reduced to a value that maintains a Froude number \(\leq \approx 1.0 \) for that given time step. This prevents water from draining too quickly and creating oscillating flow depths in steep reaches.

3.2 DetachmentLtdErosion component

To illustrate the flexibility of the OverlandFlow component, we present an example in Section 7, in which water discharge calculated by the OverlandFlow component are coupled with surface erosion is used in the erosion component. Specifically, we explore a case where incision rate is solved explicitly, and depends on local water discharge and water surface gradient (e.g. Howard, 1994; Whipple and Tucker, 1999, 2002; Pelletier, 2004). This equation follows the form:

\[
I = KQ^{m_{sp}}(S_{w_{max}})^{n_{sp}} - \beta
\]

where \(I \) is the local incision rate \([LT^{-1}] \); \(K \) is a dimensional erodibility coefficient, where the units depend on the positive, dimensionless stream power coefficients \(m_{sp} \) and \(n_{sp} \), whereas the value of \(m_{sp} \) is correlated with the other dimensionless stream power coefficient \(n_{sp} \), \(Q \) is total water discharge on a node at a given time step \([L^3T^{-1}] \); \(S_{w_{max}} \) is the local maximum water surface slope, which is dimensionless, and \(\beta \) is the optional threshold, below which no change in bed elevation is permitted there is no incision \([LT^{-1}] \) (Tables 1 and 2). \(\beta \) is commonly interpreted as an entrainment threshold for bedload at rest on the bed in between erosional events (e.g. Attal et al., 2011). By default, \(m_{sp} \) and \(n_{sp} \) have set values of \(m_{sp} = 0.5 \) and \(n_{sp} = 1.0 \) that can be adjusted by the model user. This erosion formulation is implemented with the Landlab DetachmentLtdErosion component. This solution allows for only the local detachment of material and assumes that transport rate is much larger than sediment supply rate. Therefore, no deposition is considered here. This erosion formulation is implemented with the Landlab DetachmentLtdErosion component. A threshold can be applied, under which no erosion occurs. For simplicity, no threshold is assumed here \((\beta) \) is applied in the following applications.

4 OverlandFlow model implementation in Landlab

To use the coupled Landlab OverlandFlow and DetachmentLtdErosion model, the user interacts with a driver file (Fig. 2). A simple Landlab driver file can run a model using fewer than 20 lines of code (Algorithm 1). There are four parts to running the coupled OverlandFlow-DetachmentLtdErosion model: (1) creating a domain using RasterModelGrid, either explicitly or using a digital elevation model (DEM) in the ArcGIS ASCII format; (2) setting boundary conditions on the domain; (3) initializing the components; and (4) coupling them using the Landlab field data structures.
4.1 Initializing a grid: user-defined or DEM

To set up a grid instance, the user can create a rectangular grid by passing the number of rows, number of columns and grid resolution (Δx) as keywords to the RasterModelGrid object. After Landlab and RasterModelGrid are imported, this can be accomplished in one line of code:

```python
grid = RasterModelGrid((number_of_node_rows, number_of_node_columns), \Delta x)
```

In this method, only an empty instance of the grid is created, so elevation data must be assigned to grid nodes by the user.

An alternative method is to read in gridded terrain data from other file types. The original intent of Bates et al. (2010) was to develop a new flood inundation algorithm that can work easily with the growing availability of terrain data collected by satellite, airborne, or terrestrial sensors. Landlab's input and output utilities include functionality to read in data from an ASCII file in the Esri ArcGIS format (Algorithm 1, Line 3). In this method, elevation data are read in and automatically assigned to a Landlab data field called `topographic_elevation`, set using the `name` keyword.

4.2 Boundary condition handling

Node boundary conditions are set throughout the grid in a Landlab OverlandFlow model to delineate the modeling domain (Algorithm 1, Line 4). For flow to move out of a watershed or system, an open boundary must be set at the outlet(s). If the node location of the outlet is unknown, there is a utility within the grid (`set_watershed_boundary_condition`, Algorithm 1, Line 4) that will find a single outlet and set it as an open boundary, in addition to setting all NODATA nodes to closed boundaries across the DEM or model domain. For landscapes with multiple potential outlets, such as urban environments, which are not discussed here, the user would have to manually identify and set nodes to open boundary status.

The de Almeida et al. (2012) equation uses neighboring link values when calculating water discharge (Fig. 5). By default, links on the edge of the watershed are set to inactive status, and are assigned a value of 0, simulating no input from outside of the watershed for the simulation. If the user wants to simulate an input discharge on these links, an alternative method is the `set_nodata_nodes_to_fixed_gradient` method. If this method is called, the user can manually update discharge values on links with `FIXED_LINK` boundary status outside of the OverlandFlow class. Fixed links are accessed through their IDs using the RasterModelGrid class (`grid.fixed_links`). In this method, the user can set a discharge value per unit width [$L^2 T^{-1}$] on all fixed links. This method is advised if the user has a known input discharge they want to force at the watershed or domain edge.

4.3 Initialize OverlandFlow and DetachmentLtdErosion

Landlab components have a standard initialization signature and take the grid instance as the first keyword (Algorithm 1, Lines 6-8). Any default parameters are also in the component signature and can be updated when the component is called. These parameters can be adjusted according to the physical nature of the landscape being tested. For the OverlandFlow component, Eq. (4) parameters Manning’s n and discharge weighting factor θ can be adjusted. To keep the time step equation (Eq. 3) valid, an initial thin film of water is set across the model domain using the keyword `h_init` (Table 2). A steady, uniform precipita-
tion rate can also be passed as a system input using the `rainfall_intensity` parameter (Algorithm 1, Line 7). Additionally, a stability criterion flag for steep catchments can be set (`steep_slopes = TRUE`, as described in Section 3.1). In the DetachmentLtdErosion component, stream power exponents \(m_{sp} \) and \(n_{sp, \text{threshold}} \) and erodibility parameter \(K \) are also set by passing arguments to the component on instantiation.

4.4 Coupling using Landlab fields

To couple the OverlandFlow and DetachmentLtdErosion components, values for water discharge \((Q_h)\), water surface slope \((S_w)\) and topographic elevation \((z)\) are shared as data fields through the RasterModelGrid instance (e.g. Algorithm 1, Lines 14-15). At each time step, the water discharge and surface water slope fields are updated by the OverlandFlow component (Eq. 4). These new values are used to calculate an incision rate in the DetachmentLtdErosion component (Eq. 7). At each grid location, topographic elevation \((z)\) is reduced according to the incision rate. Changes in topographic slope caused by erosion throughout the landscape will drive changes in surface water slope \((S_{w_{\text{max}}})\) and discharge \((Q_h)\) in the next iteration of the OverlandFlow component.

5 Analytical solution

To validate the OverlandFlow component, we compared model output against an analytical solution for wave propagation on a flat surface, following Hunter et al. (2005). This test case propagates a wave over a flat horizontal surface (with a slope of 0), given a uniform friction coefficient \((n)\) and constant, single-direction velocity \((u)\). (For full derivation see: Hunter et al., 2005; Bates et al., 2010; de Almeida et al., 2012). The analytical solution is:

\[
h(x, t) = \left[-\frac{7}{3} \left(n^2 u^2 \{x - ut\} \right) \right]^3
\]

Solving for the leftmost boundary of the modeling domain \((x = 0)\) gives:

\[
h(0, t) = \left(\frac{7}{3} n^2 u^3 t \right)^{\frac{2}{3}}
\]

All analytical solution tests were modeled across a rectangular RasterModelGrid instance with dimensions of 800 m by 6000 m. The water depth boundary condition `through time` (Eq. 9) is applied to the left edge of the domain `through time`, whereas the top, right and bottom edges of the grid are set to `CLOSED_BOUNDARY` `closed boundary` status to keep flow moving uniformly to the east and contained within the computational domain. All input flow remains on the surface of the domain, as no infiltration is considered. Although not illustrated here, mass was conserved in all analytical test cases. Grid set up and test parameters are described in Table (3).

5.1 Sensitivity to grid resolution

Following Bates et al. (2010), the behavior of OverlandFlow was modeled across a range of grid resolutions. Velocity and surface roughness were held constant throughout all runs \((n = 0.03 \text{ sm}^{-1/3}, \text{ and } u = 1.0 \text{ m s}^{-1})\) and \(\theta\) was set to 1.0 (Bates
et al., 2010, Fig. 2). Wave fronts were plotted at model time $t = 3600$ s. Four grid resolutions were tested: $\Delta x = 5$ m, 10 m, 25 m and 50 m. These tests envelop a range of resolutions, including the 10 m and 30 m dataset resolutions of the United States Geological Survey National Elevation Dataset (USGS-NED) as well as 30 m datasets from the European Environmental Agency’s Digital Elevation Model over Europe (EU-DEM). Larger grid resolutions ($\Delta x > 50$ m) are not shown here, as at those coarser grid resolutions, the OverlandFlow component becomes sensitive to the initial thin film of water (h_{init}) that is used to keep the timestep (Eq. 3) valid. h_{init} was set to 1 mm in all test cases described here.

The minimum time step for the smallest time step over the duration of the $\Delta x = 50$ m test case can be compared to the published value of Bates et al. (2010). Time steps will decrease with increasing water depth, per Eq. (3). The minimum time step from the OverlandFlow component tests, sampled at $t = 3600$ s, was 7.25 s, identical to the value provided by Bates et al. (2010).

In all grid resolution tests, the OverlandFlow predicted wave fronts closely approximate the analytical solution, which was plotted for the $\Delta x = 50$ m test case (Fig. 6a). At the front of the wave, the predicted water elevations from OverlandFlow better approximate the analytical solution as grid resolution increases (Fig. 6b), as noted by Bates et al. (2010) for the semi-implicit ($\theta = 1.0$) solution in LISFLOOD-FP. Figure 6 demonstrates that, with only a minor sensitivity at the leading edge of the wave front, the Landlab OverlandFlow model can effectively operate on a wide range of grid resolutions.

5.2 Sensitivity to surface roughness

To test the Landlab OverlandFlow component with different roughness and resolution characteristics, a RasterModelGrid instance with dimensions of 32 rows by 240 columns: 800 m by 6000 m was initialized with a resolution of $\Delta x = 25$ m. In order to evaluate the sensitivity to surface roughness (Manning’s n), two analytical solution test cases were run on the domain. The first is a low friction test ($n = 0.01$ sm$^{-1/3}$, $u = 0.4$ ms$^{-1}$, Fig. 7a,c) following the solution of Bates et al. (2010), and de Almeida et al. (2012, Fig.2). In the second test, the friction value was increased by an order of magnitude, while velocity was unchanged ($n = 0.1$ sm$^{-1/3}$, $u = 0.4$ ms$^{-1}$, Fig. 7b,d). The two Manning’s n values in this test were selected to demonstrate model behavior across a range of conditions: $n = 0.01$ sm$^{-1/3}$ represents urban environments or man-made channel systems; $n = 0.1$ sm$^{-1/3}$ can be used in landscapes or channels characterized by dense brush and tree growth (Chow, 1959). To mirror previous tests using the LISFLOOD-FP model, Fig. (7) shows the water depth of wave fronts at three model times: $t = 2700$, 5400 and 9000 s. Each dashed line represents a changing theta value in Eq. (4), with $\theta = 1.0$ representing the semi-implicit solution of Bates et al. (2010).

The minimum time step for the low friction test case, smallest time step over the duration of the low friction model run ($n = 0.01$ sm$^{-1/3}$) can be compared to the published value of de Almeida et al. (2012). The minimum time step from the OverlandFlow component tests, sampled at $t = 9000$ s, was 8.6 s, identical to the value provided by de Almeida et al. (2012).

In all velocity-roughness conditions, the wave fronts predicted by the Landlab OverlandFlow component correlate well with the analytical solution defined using Eq. (9). In the low friction case ($n = 0.01$, Fig. 7a,c), the wave speed produced using Landlab OverlandFlow is slower than the predicted wave front speed. Increasing surface roughness ($n = 0.1$, Fig. 7b,d), leads to the predicted wave front overestimating the analytical solution. Overall, the close approximation of the modeled solutions to
known analytical solutions, across a wide range of roughness values, demonstrate the sensitivity of the Landlab OverlandFlow component to different roughness coefficients, and the flexibility of the component to work across a wide range of landscape conditions.

6 Application: Modeling OverlandFlow in a real landscape

The Landlab OverlandFlow component can be used as a distributed rainfall-runoff model in hydrology applications, routing precipitation across a real landscape DEM and estimating runoff for every point within a discrete RasterModelGrid instance. Discharge values can be calculated at every point in the watershed and updated at each timestep. Updated water depths, driven by changing discharge, can be used to calculate shear stress following the depth-slope product:

\[\tau = \rho ghS_w \]

Equation 10 calculates the bed shear stress \(\tau \) [\(ML^{-1}T^{-2} \)] as a function of fluid density \(\rho \) [\(ML^{-3} \)], \(g \), gravity; \(h \), water depth; and \(S_w \) surface water slope. Shear stress exerted on the bed can be used to estimate sediment transport driven by flowing water throughout the domain.

Here we illustrate a single storm routed across a DEM. In addition to water discharge, water depth and bed shear stress are calculated by the model at all grid locations. This implementation of the OverlandFlow component illustrates how hydrologists can use Landlab as a simplified distributed rainfall-runoff runoff model to estimate the hydrologic and sedimentologic impact of flow of water and sediment resulting from a single storm on a real landscape.

6.1 Methods: domain and parameterization

To apply the OverlandFlow component as a rainfall-runoff model route runoff across a real landscape, a DEM can be read into Landlab and converted easily into a RasterModelGrid instance. The Spring Creek watershed is used in this example, as a pre-processed DEM for the watershed has been used before in Landlab applications (e.g. Adams et al., 2016; Hobley et al., 2017, Fig. 15). Spring Creek is a steep, 27 km\(^2\) watershed, located within Pike National Forest in central Colorado, USA (Fig. 8a). This LiDAR-derived DEM has square cells with a resolution of \(\Delta x = 30 \) m (DEM data: Tucker, 2010). Using the set_watershed_boundary_condition utility, all NODATA nodes in the DEM are set to closed boundary status (Algorithm 1, Line 4). This method identifies the lowest elevation point along the edge of the watershed, the outlet, and sets it to an open boundary.

The DEM was pre-processed using the Landlab SinkFiller component is used to ensure all surface water flow can be removed from the domain. This component fills pits in the DEM in a D4 routing scheme, where all nodes have at least one downstream neighbor in one of the four cardinal directions (Algorithm 1, Lines 8-9). If this step were to be skipped, flow may pond in “lakes” or “pits” in the domain, where flow cannot travel out of a given node location until the water surface elevation of the lake exceeds the bed elevation of one of the four neighboring nodes.
To initiate flow across the domain, a single storm was routed across the watershed. A theoretical ‘base storm’ (Table 4) was used as an example, with a constant, effective rainfall rate of 5 mm hr\(^{-1}\) and a duration of 2 hr. The storm event was spatially uniform across the domain, and the 10 mm total rainfall depth was estimated using NOAA precipitation data from a nearby site in Colorado (NOAA, 2014). For this storm, hydrographs were recorded at three points within the model domain. No infiltration or subsurface flow was considered in this test case. Water depths at every location in the watershed were used to calculate the shear stress, which can be used to make interpretations about the transport of sediment across the watershed as a result of the storm.

6.2 Results and implications

In order to illustrate the downstream movement of the flood wave, hydrographs were plotted at three locations within the channel for the duration of the flow event. The three hydrographs correspond to the three starred locations on the watershed DEM in Fig. (8a): at the outlet (black line, Fig. 8b), the approximate midpoint of the main channel (violet line, Fig. 8b) and an upstream location in the main channel (lavender line, Fig. 8b). In these hydrographs, peak discharge and time to peak increase as the sampling site nears the outlet (moving from lighter to darker color). This demonstrates the model behaving as expected as water accumulates in the main channel from the tributaries, demonstrating that the model behaves as expected.

Water depths are variable at each point throughout the model run, changing as a function of discharge inputs, outputs and effective rainfall rate at each time step (Eq. 5). Water depth values can be mapped across the domain at discrete time steps. In this example, water depth was plotted at the peak of the outlet hydrograph (Fig. 8c). The scale in Fig. (8c) emphasizes flow patterns in the channels, but water depth and discharge are calculated across the entire watershed, including on the hillslopes. These water depths can be used to calculate shear stress (following Eq. 10). Stress values were tracked at all points throughout the model run, and the local maximum value for each node was plotted in Fig. (8d). Shear stress (\(\tau\)) values can be used to interpret the size of particles that can be entrained and transported by channelized surface flow. Greater \(\tau\) values correspond to areas with greater water depths (e.g. channels), where more sediment transport would be expected in high flow conditions.

In this example, we illustrate hydrographs across a real landscape, and the resulting shear stress values. These results can be used to explore the processes controlling overland flow in a gauged landscape. Shear stress values can be used to estimate sediment transport rates, and make interpretations about spatial patterns of erosion and deposition, as well as total sediment yields for particular storm events. These values could be calibrated in order data can be used to explore landscape sensitivity to rainfall-runoff events, different rainfall events and runoff conditions.

7 Application: Long-term fluvial Coupling with an erosion component in Landlab

The implementation of the OverlandFlow component in Landlab allows us to investigate the impact of storm characteristics on the resulting hydrograph and how these hydrographs drive erosion processes throughout the basin. Here, we demonstrate the abilities of this new component and how the component resolves the details of the storm hydrograph, and how these hy-
drographs compare to the traditional steady-state method used in landscape evolution models (LEMs). Additionally, in coupling this new component with the Landlab DetachmentLtdErosion component, these model results illustrate the erosion magnitudes and patterns in response to a hydrograph, and allow us to make inferences about how this type of hydrodynamic model could impact long-term geomorphic evolution of similar watersheds.

7.1 Methods: domain and parameterization

To test the new Landlab OverlandFlow component, two synthetic watersheds were generated using the Landlab FlowRouter and StreamPowerEroder components (not described here, see Hobley et al., 2017). These basins were evolved to topographic, or geomorphic, steady state, where uniform rock uplift is matched by erosion at all grid locations, and topography is effectively unchanging through time. Two watershed shapes were modeled: a ‘square’ watershed (Fig. 9a) and a ‘long’ watershed (Fig. 9b) to evaluate how hydrograph shapes change with increasing maximum flow length, where the ‘long’ basin has longer flow paths to the outlet when compared to the ‘square’. Each watershed has a drainage area of approximately 36 km² at the outlet. The square basin has dimensions of 200 rows by 200 columns; the long basin has dimensions of 400 rows by 100 columns. Cells are square and have a resolution of $\Delta x = 30$ m. Each basin has an open boundary at the watershed outlet, located at the center node of the southernmost grid edge. The remaining southern nodes, along with the west, east and north grid edges, were set to closed boundary status.

To initiate flow and incision, three precipitation events were modeled across both watersheds. These storms were represented as spatially uniform across the model domain, and intensities were constant for the given storm duration. No infiltration or subsurface flow was modeled in these test cases. The base storm, following the example in the real landscape, has a rainfall intensity of 5 mm hr$^{-1}$ falling over 2 hr. To test the impacts of changing intensity and duration on model output, duration was extended compared to the base case (the ‘longer duration’ storm, Table 4) and intensity was increased relative to the base storm (the ‘higher intensity’ storm, Table 4). The storm with the longer duration maintained the 5 mm hr$^{-1}$ rainfall intensity, but duration was doubled to 4 hr. In the higher intensity storm, rainfall rate was doubled to 10 mm hr$^{-1}$, while the base duration of 2 hr was kept.

Discharge was recorded calculated at all grid locations for during each model run. To capture the entire overland flow event, all simulations were run for 24 modeled hours, although flow had nearly stopped after 12 hours of modeled time. A single ‘base’ storm on the square watershed run for 24 modeled hours took approximately 80 seconds on a 2014 iMac with 4 GHz Intel Core i7 processors.

The OverlandFlow results from the two test basins (Fig. 9) were coupled with the DetachmentLtdErosion component in Landlab to test the impact of nonsteady hydrology on erosional patterns. At each time step, the DetachmentLtdErosion component calculated total incision depth at all points in the grid using Eq. (7). Cumulative incision depth at the end of each modeled run was saved for all grid locations. Both test basins were evolved to topographic steady state, and so the predicted geomorphic ‘steady-state’ incision rate is equal to the rock uplift rate applied in the model. Total incised depth for the hydrologic steady-state runs can be inferred from this steady-state incision rate. To test the erosional impact of nonsteady hydrology, short-term landscape evolution decadal simulations were run on
each basin, for the three precipitation events (Table 4). The known steady-state incision rate and depth can be compared to the predicted DetachmentLtdErosion depth produced when coupled with the OverlandFlow component. In each basin, an annual precipitation rate of 0.5 m yr\(^{-1}\) was set, and each simulation was run for 10 model years. Decadal-scale runs were selected as they can be run quickly on a personal machine (on the order of hours), and the results can be used to make inferences about how erosion patterns would scale in long-term landscape evolution runs. Because of differences in intensity and duration, the base storm was run 500 times, assuming 50 storms per modeled year, while the longer duration and high intensity storms were run 250 times, assuming 25 storms per modeled year, to achieve 5 m total rainfall depth over 10 years. For each model run, total incised depth Cumulative incision depth at the end of each modeled run was saved at all grid locations points within the gridded terrain.

7.2 Results and implications

The hydrograph measured at the outlet of both the square and long basins are compared with the steady-state hydrographs (Fig. 10). The gray box represents the steady-state case, which produces the same discharge in both watersheds, as they have the same drainage area. In the nonsteady method, hydrograph shapes are distinct between the different basins. In both test basins (Fig. 10a), in the results from the base case storm (Table 4), the hydrographs persist after precipitation and steady-state discharge end. In the case of the square basin, peak discharge exceeds that predicted by the steady-state case (~ 50 m\(^3\)/s), a signal not seen in the long basin results. In the long basin, a singular peak discharge is not clear, and discharge values represented by the hydrograph are less than the predicted steady-state at all timesteps. Because flow in the long basin has to travel a greater distance from the upstream portion of the watershed, there is an elongated hydrograph with no clear peak discharge.

As expected, the OverlandFlow component is also sensitive to changes in rainfall characteristics in both test basins. In the square basin, extending the duration of the storm (green line, Fig. 10b) results in a higher overall peak discharge when compared to the base storm (light blue line, Fig. 10b), as well as a longer overall hydrograph. The second peak in the longer duration hydrograph is due to the drainage organization in the square basin (Fig. 9a), when flow from other tributaries reaches the outlet after the initial flood peak (see supplemental video). Increasing the rainfall intensity in the square basin (dark blue line, Fig. 10c) increases peak discharge when compared to the base storm case.

In the square basin, each storm has a clear hydrograph signature. These patterns are distinct from the long basin results. In the long basin, all three storm hydrographs have lower peak discharges than similar storms in the square basin (Fig. 10a). The higher intensity storm run (mauve line, Fig. 10e), has higher discharge values than both the base case and longer duration runs (Fig. 10d), similar to what was seen in the square basin. However, the hydrograph shapes and discharge values are largely similar in all long basin cases, with longer, lower hydrographs that reflect the different travel time of water in the basin when compared to the square basin.

After the modeled 10 years, the nonsteady hydrologic methods drive erosion in comparison to more traditional LEM methods, total incised depths for the three storm cases can be compared to predicted geomorphic steady-state incised depths after 10 modeled years. This application tests how the different hydrologic methods (steady vs. nonsteady) impact morphology in LEM applications, following the work of Sólyom and Tucker (2004). The nonsteady incision depth
results also demonstrate distinct patterns when compared to geomorphic steady-state. Figure 11 shows that the coupled steady-state hydrology and stream power solutions predict higher incision rates than the nonsteady method at all drainage areas. These patterns are clear in both the long watershed with a broad hydrograph, and the square basin with a more peaked hydrograph. The depth of total incision in both basins are on the same order of magnitude, and the pattern of increasing incision depth moving downstream is also similar in both basins (Fig. 11a). While the steady-state topography maintains the same land surface elevation, changing the hydrologic regime to nonsteady would lead to more relief in modeled landscapes, as the downstream will initially erode more rapidly than the upstream channels. In other words, the upstream locations will need to steepen more than the downstream locations in order to reach geomorphic steady-state incision rates throughout the landscape. Because the upstream locations must steepen more than the downstream locations in order to reach that geomorphic steady state, this will also lead to increased channel concavity on landscape evolution timescales.

The pattern of increasing downstream erosion incision is seen in all storm cases (Figs. 11b,c; Table 4). In both basins, total eroded incised depth is least in the higher intensity storm, increases in the longer duration storm, and is greatest in the base case. The higher intensity storm exhibits a greater peak discharge in both basins, but there are fewer overall higher intensity and longer duration storms when compared to the base storm case to maintain the 5 m total rainfall depth over 10 years. Additionally, when calculating total incision using the stream power model, increases in discharge are less significant than the water surface slope due to the exponents \(m \) and \(n \). While not explored here, changing the stream power exponents \(m \) and \(n \) will likely impact the steady and nonsteady fluvial erosion results in this model, as would adding a threshold \(\beta \) to Eq. (7).

Overall, these results suggest that when compared to the OverlandFlow component, hydrologic steady-state predictions can over- or underestimate the peak of a hydrograph depending on basin orientation or shape (Fig. 10a). As expected, the hydrodynamic algorithm from de Almeida et al. (2012) is sensitive to rainfall inputs, both with changes in duration and intensity (Figs. 10b-e). This component can be applied across a range of time scales, used for predictions of overland flow for a single storm or multiple storms, and used efficiently with other process components in Landlab, as demonstrated by coupling to the DetachmentLtdErosion component.

The patterns of erosion support earlier findings by Sólyom and Tucker (2004), which suggested that landscapes dominated by nonsteady runoff patterns can be characterized by greater overall relief. Their results were generated using an incision rate controlled by the peak discharge. While in contrast, the runs using the Landlab model were over shorter timescales, but these results were integrated over the entirety of the hydrograph, not just the peak discharge. These results suggest that on longer timescales, watershed morphology would vary depending on the method used to calculate overland flow. Additionally, as the watershed morphology evolves in response to these spatial variations in incision rate, the hydrograph shape may change, impacting overall incision patterns and rates. The difference in patterns between steady and nonsteady hydrology implies that the retention of water within the channels flow patterns across a landscape during a runoff event, driven by nonsteady hydrology can drive can have morphological significance over longer term landscape evolution landscape evolution timescales.
8 Future applications

The Landlab OverlandFlow model is flexible enough to be used in a number of scientific applications not discussed here. This manuscript While the model does simulate surface flow over the entire domain, internally it makes no distinction between hillslope or channel processes, which can be problematic as hillslopes make up the majority of a watershed area and supply sediment to the channels. If coupled with a hillslope sheet-wash component, OverlandFlow could be used to examine how nonsteady channel processes interact with hillslope processes to sculpt watersheds across a range of spatial and temporal scales. Furthermore, these hillslope processes can be coupled with a fluvial transport-limited component, and applied at event scales to explore sediment delivery from hillslopes to channels and how quickly sediment moves through a watershed. At landscape evolution timescales, evolved topographies resulting from more physically-based hydrology and sediment transport components can be compared to traditional models, to evaluate how physical parameters within the fluvial and hillslope models impact landscape relief and organization.

Other opportunities include evaluating the impact of spatially variable parameters on model behavior. Spatial variability in rainfall could be explored with the development of new components that model orography or variability in storm cell size. Following the work of Huang and Niemann (2014), the OverlandFlow model can be used to explore patterns in runoff and erosion in response to changes in storm size, area and location within a watershed. Spatially variable roughness could also be incorporated into the OverlandFlow component. A water-depth-dependent Manning’s n method, similar to that of Rengers et al. (2016), could be implemented, where roughness at each grid node is calculated based on local water depths. Another method to evaluate spatial variability in roughness would be to allow the user to read-in or set a map of surface roughness. Spatially variable roughness can also be input and set by the user based on field observations.

Another application of potential application is coupling the OverlandFlow component to Landlab’s ecohydrology components (Nudurupati et al., 2015). In this type of application, OverlandFlow could be used to calculate water depths across a surface. Surface water depths can be used to drive infiltration in the SoilInfiltrationGreenAmpt component. The Soil-Moisture component computes the water balance and root-zone soil moisture values. Soil moisture can drive changes in the Vegetation component, which simulates above-ground live and dead biomass. This coupled model would provide a more complete process ecohydrology model, to be used in applications to understand how different flood events impact the succession of vegetation.

Finally, the applications explored in this manuscript are on shorter timescales, ranging from event- to decadal-scale runs. An interesting future direction is exploring the OverlandFlow component in true landscape evolution runs (millennia or longer). Preliminary work modeling 10^3 to 10^4 years demonstrates that patterns seen in the decadal applications are clear, however, the full implications of hydrograph-driven erosion on long time scales longer timescales need to be further explored.

9 Conclusions

This manuscript illustrates the theory behind the OverlandFlow component, and how to use it as part of Landlab. Being part of the Landlab modeling framework comes with many advantages. The OverlandFlow component can make use of DEM
input and output utilities and be coupled with other Landlab components, and is flexible enough to allow for a wide range of applications in both geomorphology and hydrology. As illustrated here, it can be used as a simplified distributed rainfall-runoff model. Those results process components. Results from the real landscape application demonstrate that the OverlandFlow component can be used to generate realistic hydrologic responses route flow from observed rainfall events across a watershed DEM. This hydrology–method can be used to estimate the grain sizes moved by different real storm events, and in the future could be coupled with other components and calibrated to understand the hydrologic erosional response to flooding events.

It also can–The OverlandFlow component can also be coupled to the stream power–DetachmentLtdErosion component to explore impacts of a hydrograph on erosion on decadal scales. In the synthetic landscapes explored here, the hydrograph results from the OverlandFlow component demonstrate a sensitivity to both basin shape, precipitation duration and intensity.

The erosion incision results predicted by using steady-state and nonsteady hydrology water discharge are distinct in both the patterns and magnitudes of eroded depth and incision rates. Incision–Landscape evolution driven by nonsteady hydrology runoff showed increasing incision rates moving downstream in the modeled watersheds. These results suggest that nonsteady hydrology runoff could have important implications for predicting watershed relief and hypsometry in landscapes with different rainfall regimes, and that choice of hydrology runoff method can have implications for both short- and long-term landscape evolution modeling results.

10 Code availability

The Landlab OverlandFlow and DetachmentLtdErosion components are part of Landlab version 1.0.0. Source code for the Landlab project is housed on GitHub: http://github.com/landlab/landlab. Documentation, installation instructions and software dependencies for the entire Landlab project can be found at: http://landlab.github.io/. Driver–A detailed User’s Manual and driver scripts for the applications illustrated in this paper can be found at: https://github.com/landlab/pub_adams_etal_gmd (Adams, GitHub Repository). The Landlab project is tested on recent-generation Mac, Linux and Windows platforms using Python versions 2.7, 3.4, and 3.5. The Landlab modeling framework is distributed under a MIT open-source license.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This research was supported by the National Science Foundation grants ACI-1147519 and ACI-1450338 (PI: Gasparini), ACI-1148305 and ACI-1450412 (PI: Istanbulluoglu), ACI-1147454 (PI: Tucker) and ACI-1450409 (PI: Tucker, Co-PI: Hobley), as well as the Tulane University Department of Earth and Environmental Sciences Vokes Fellowship (Adams). The authors are grateful to Topical Editor Jeffrey Neal and reviewers Astrid Kerkweg, Katerina Michaelides, and Dapeng Yu, whose comments greatly improved this manuscript.
References

Figure 1. Cartoon illustrating the differences between steady-state and nonsteady hydrology and incision at a single point within a watershed. In this schematic, the effective precipitation rate (P) is the same for both steady and nonsteady cases. During the precipitation event, steady discharge (Q_{ss}) and incision rate (I_{ss}) are constant, driven by that effective precipitation rate and drainage area (A), erodibility (K), water surface slope (S) and stream power exponents (m_{sp}, n_{sp}). In the nonsteady case, a wave front begins to propagate and incise, producing time-varying discharge (Q_h), calculated using physical parameters such as water depth (h), water surface slope (S) and Manning’s roughness coefficient (n). Nonsteady incision rate (I_h) is calculated using the time-varying discharge, erodibility and water surface slope. At the end of the precipitation event, Q_{ss} and I_{ss} also end, while nonsteady values Q_h and I_h continue until all water has completely exited the system at the outlet.
Figure 2. Sample workflow for the Landlab OverlandFlow component. Users create or adapt a pre-developed model driver, where the grid, components and model utilities are imported and instantiated. The time loop is set in the driver, and at each time step the component methods are called and the data structures are updated.
Figure 3. Example of the Landlab structured grid type with key topological elements shown. In the Landlab OverlandFlow component, RasterModelGrid class stores data at both nodes and links. Links denoted as west (w) and south (s) are called ‘inlinks’, while north (n) and east (e) are ‘outlinks’ of the center node. Direction is only for topological reference; flux directionality is tied to gradients on the grid.
Figure 4. Simple example of Landlab RasterModelGrid, demonstrating both node and link boundary conditions. The OverlandFlow class calculates fluxes at active links, and can update the surrounding fixed links according to these fluxes. No fluxes are calculated at inactive links. Water depth is updated at core and open boundary nodes. No calculations are performed on closed or fixed gradient boundaries. Note that RasterModelGrid cell elements and link directionality are not illustrated here.
Figure 5. In the de Almeida et al. (2012) equation, flux information from neighboring links is used to calculate surface water discharge. In this sample one-dimensional grid, discharge is calculated in the horizontal (subscript x) direction on links. Here, discharge is calculated at location q_x using the left neighbor (q_{x-1}) and right neighbor (q_{x+1}) flux values, following Eq. (4).
Figure 6. Sensitivity of the Landlab OverlandFlow component to changes in grid resolution, tested against the analytical solution. Panel (a) is illustrated in the same manner as Bates et al. (2010, Fig. 2), and shows water depths plotted against distance, modeled at four different grid resolutions, at $t = 3600$ s. Panel (b) is a zoomed-in image of all wave fronts from panel (a).
Figure 7. Sensitivity of the Landlab OverlandFlow component with changing Manning’s n, compared to the analytical solution. This figure is illustrated in the same manner as Fig. (2) from de Almeida et al. (2012). Water depth was plotted against distance for two combinations of velocity and friction coefficient values. Both panels (a) and (b) show water depths for $t = 2700$, 5400, and 9000 s. Panels (c) and (d) are zoomed-in images of the wave fronts from panels (a) and (b) respectively, at time = 9000 s.
Figure 8. Results from the real landscape example. Panel (a) shows the topography of the Spring Creek watershed, and the inset notes the location of this watershed in central Colorado, USA. Panel (b) illustrates the hydrographs from three points within the main channel. The location for each hydrograph sampling site is shown in panel (a), with the lightest color at the upstream, darkening in color towards the outlet. The delay in hydrograph peak is clearest between the outlet and upstream points. There is a delay between the upstream and midstream points, but it is difficult to detect at this scale. Panel (c) shows the water depth plotted at the time of the outlet hydrograph peak, as noted by the arrow in panel in (b). Panel (d) shows the local maximum shear stress value at each point, over the duration of the model run. Note that the discontinuities in the shear stress figure are a result of the uneven bed topography, and variations in the surface water slope linked to that topography.
Figure 9. Two test basins evolved using the Landlab FlowRouter and StreamPowerEroder components (not described here, see Hobley et al., 2017), generating a network using D4 flow routing and erosion methods. Each grid was evolved from an initial random topography to steady state, where uplift rate is matched by incision rate. Both basins have the same drainage area (36 km2) at the watershed outlet, but different dimensions: panel (a) 200 rows x 200 columns, and panel (b) 400 rows x 100 columns. Both have a grid resolution (Δx) of 30 m. Note the perpendicular junctions are due to the D4 flow routing scheme.
Figure 10. OverlandFlow output for all storms described in Table (4). Hydrographs are taken from the active link upstream of the outlet node. Steady-state discharge is shown for each event, with the gray box representing the base storm in all cases. Panel (a) shows the base storm for both the square basin and the long basin; panel (b) compares outlet hydrographs from the base and longer duration storms in the square basin; panel (c) compares outlet hydrographs from the base and higher intensity storms in the square basin; panel (d) compares outlet hydrographs from the base and longer duration storms in the long basin; panel (e) compares outlet hydrographs from the base and higher intensity storms in the long basin.
Figure 11. DetachmentLtdErosion output for all storms described in Table (4). Incision depth was taken after 10 years of modeled storms from the OverlandFlow component for all grid locations. The average incision depth was plotted at each drainage area: panel (a) shows incision depth versus drainage area for both the square and long basin after 10 years of the base storm; panel (b) shows total incision results from the square basin for all three precipitation events after 10 years; and panel (c) shows total incision results from the long basin for all three precipitation events after 10 years.
Table 1. List of variables used in the OverlandFlow and DetachmentLtdErosion. For each variable the name, grid element and units are given.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Name</th>
<th>Grid element</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>water discharge</td>
<td>link</td>
<td>m^2 , s^{-1}</td>
</tr>
<tr>
<td>h_f</td>
<td>local maximum water depth</td>
<td>link</td>
<td>m</td>
</tr>
<tr>
<td>S_w</td>
<td>water surface slope</td>
<td>link</td>
<td>–</td>
</tr>
<tr>
<td>h</td>
<td>water depth</td>
<td>node</td>
<td>m</td>
</tr>
<tr>
<td>Q_h</td>
<td>water discharge from hydrograph method</td>
<td>node</td>
<td>m^3 , s^{-1}</td>
</tr>
<tr>
<td>I</td>
<td>incision rate</td>
<td>node</td>
<td>ms^{-1}</td>
</tr>
<tr>
<td>$S_{w_{max}}$</td>
<td>local maximum water surface slope</td>
<td>node</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2. List of parameters used in the OverlandFlow and DetachmentLtdErosion. For each variable the name and units are given.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Default value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta t)</td>
<td>time step</td>
<td>adaptive</td>
<td>s</td>
</tr>
<tr>
<td>(h_{init})</td>
<td>initial water depth</td>
<td>0.01</td>
<td>mm</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>stability coefficient</td>
<td>0.7</td>
<td>–</td>
</tr>
<tr>
<td>(g)</td>
<td>gravity</td>
<td>9.81</td>
<td>(m s^{-2})</td>
</tr>
<tr>
<td>(\theta)</td>
<td>weighting parameter</td>
<td>0.8</td>
<td>–</td>
</tr>
<tr>
<td>(n)</td>
<td>Manning’s n, surface roughness coefficient</td>
<td>0.3</td>
<td>(s m^{-1/3})</td>
</tr>
<tr>
<td>(K)</td>
<td>erodibility coefficient</td>
<td>(1.26 \times 10^{-7})</td>
<td>(m^{1-2m_{sp}} s^{-1})</td>
</tr>
<tr>
<td>(m_{sp})</td>
<td>stream power coefficient</td>
<td>0.5</td>
<td>–</td>
</tr>
<tr>
<td>(n_{sp})</td>
<td>stream power coefficient</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>(\beta)</td>
<td>entrainment threshold</td>
<td>0.0</td>
<td>(m s^{-1})</td>
</tr>
<tr>
<td>(\rho)</td>
<td>fluid density</td>
<td>1000.0</td>
<td>(kg m^{-3})</td>
</tr>
</tbody>
</table>
Table 3. Grid characteristics and parameters for analytical solution tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Δx</th>
<th>Grid rows</th>
<th>Grid Columns</th>
<th>n (sm$^{-1/3}$)</th>
<th>u (ms$^{-1}$)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution sensitivity</td>
<td>5</td>
<td>160</td>
<td>1200</td>
<td>0.03</td>
<td>1.0</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>80</td>
<td>600</td>
<td>0.03</td>
<td>1.0</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>32</td>
<td>240</td>
<td>0.03</td>
<td>1.0</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>16</td>
<td>120</td>
<td>0.03</td>
<td>1.0</td>
<td>3600</td>
</tr>
<tr>
<td>Low friction roughness</td>
<td>25</td>
<td>32</td>
<td>240</td>
<td>0.1</td>
<td>0.4</td>
<td>2700 - 9000</td>
</tr>
<tr>
<td>High friction roughness</td>
<td>25</td>
<td>32</td>
<td>240</td>
<td>0.01</td>
<td>0.4</td>
<td>2700 - 9000</td>
</tr>
</tbody>
</table>
Table 4. Precipitation parameters for the three storm cases routed across the test basins.

<table>
<thead>
<tr>
<th>Storm ID</th>
<th>Intensity (mm hr$^{-1}$)</th>
<th>Duration (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Storm</td>
<td>5.0</td>
<td>2</td>
</tr>
<tr>
<td>Longer Duration</td>
<td>5.0</td>
<td>4</td>
</tr>
<tr>
<td>Higher Intensity</td>
<td>10.0</td>
<td>2</td>
</tr>
</tbody>
</table>
Algorithm 1 Sample Landlab overland flow and erosion model

1: from landlab.components import OverlandFlow, DetachmentLtdErosion, SinkFiller #Import Landlab components and utilities
2: from landlab.io import read_esri_ascii
3: (grid, elevations) = read_esri_ascii(asc_file='watershed_DEM.asc', name='topographic__elevation') #Read in DEM and create grid
4: grid.set_watershed_boundary_condition(elevations, nodata_value = -9999.0) #Set boundary conditions
5: effective_rain_rate_ms = 5.0 * (2.78 * 10^-7) #Convert rainfall from mm hr^-1 to m s^-1
6: dle = DetachmentLtdErosion(grid) #Instantiate components and set parameters
7: of = OverlandFlow(grid, steep_slopes=TRUE, rainfall_intensity = effective_rain_rate_ms)
8: sf = SinkFiller(grid, routing='D4') #Pre-process DEM and fill pits in D4 flow-routing scheme
9: sf.fill_pits() #Start time in seconds
10: elapsed_time = 0.0 #Run for 10 modeled hours
11: while elapsed_time < 36000.0 : #Calculate stable time step
12: \Delta t = calculate_time_step() #Generate overland flow
13: of.overland_flow(dt = \Delta t) #Below, populate fields with water discharge and water surface slope to be shared across components
14: grid['node']['surface_water__discharge'] = of.discharge_mapper(of.q, convert_to_volume = True)
15: grid['node']['water_surface__slope'] = (of.water_surface_slope[grid.links_at_node] * grid.active_link_dirs_at_node).max(axis=1)
16: dle.erode(dt = \Delta t, discharge_cms = 'surface_water__discharge', slope = 'water_surface__slope') #Erode the landscape
17: elapsed_time += \Delta t #Updated elapsed time