Terrestrial Ecosystem Process Model Biome-BGCMuSo v4.0:
Summary of improvements and new modeling possibilities

Dóra Hidy, Zoltán Barcza, Hrvoje Marjanović, Maša Zorana-Ostrogović Sever, Laura Dobor, Györgyi Gelybó, Nándor Fodor, Krisztina Pintér, Galina Churkina, Steven Running, Peter Thornton, Gianni Bellocchi, László Haszpra, Ferenc Horváth, Andrew Suyker, Zoltán Nagy

1 MTA-SZIE Plant Ecology Research Group, Szent István University, Páter K. u. 1., H-2103 Gödöllő, Hungary
2 Department of Meteorology, Eötvös Loránd University, Pázmány P. sétány 1/A., H-1117 Budapest, Hungary
3 Croatian Forest Research Institute, Department for Forest Management and Forestry Economics, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
4 Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. út 15., H-1163 Budapest, Hungary
5 Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2., H-2462 Martonvásár, Hungary
6 Institute for Advanced Sustainability Studies e.V., Berliner Strasse 130, D-14467 Potsdam, Germany
7 Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences University of Montana, Missoula, MT 59812 USA
8 Climate Change Science Institute / Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6335, USA
9 UREP, INRA, 63000 Clermont-Ferrand, France
10 Hungarian Meteorological Service, H-1675 Budapest, P.O.Box 39, Hungary
11 Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Academy of Sciences, Alkotmány u. 2-4., H-2163 Vácrátót, Hungary
12 School of Natural Resources, University of Nebraska-Lincoln, 806 Hardin Hall, Lincoln, Nebraska 68588, USA
13 Geodetic and Geophysical Institute, MTA Research Centre for Astronomy and Earth Sciences, H-9400 Sopron, Csatkai Endre utca 6-8., Hungary

Correspondence to: Dóra Hidy (dori.hidy@gmail.com)
Abstract. The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil moisture related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

Keywords: model development, Biome-BGC, biogeochemical model, management, soil water content, drought stress
1 Introduction

The development of climate models has led to the construction of Earth System Models (ESMs) with varying degrees of complexity where the terrestrial carbon cycle is included as a dynamic submodel (Ciais et al., 2013). In some of the ESMs, the atmospheric concentration of carbon dioxide (CO$_2$) is no longer prescribed by the emission scenarios but it is calculated dynamically as a function of anthropogenic CO$_2$ emission and the parallel ocean and land surface carbon uptake. Focusing specifically on land surface, the carbon balance of terrestrial vegetation can be quantified by state-of-the-art biogeochemical models and are integral parts of the ESMs.

At present, there is no consensus on the future trajectory of the terrestrial carbon sink (Fig. 6.24 in Ciais et al., 2013; see also Friedlingstein et al., 2014). Some ESMs predict saturation of the land carbon sink in the near future while others show that the uptake will keep track with the increasing CO$_2$ emission. This means a considerable uncertainty related to the climate-carbon cycle feedback (Friedlingstein et al., 2006; Friedlingstein and Prentice, 2010). The wide range of model data related to the land carbon sink means that the current biogeochemical models have inherent uncertainties which must be addressed.

Biogeochemical models need continuous development to include empirically discovered processes and mechanisms e.g. acclimation processes describing the dynamic responses of plants to the changing environmental conditions (Smith and Dukes, 2012), regulation of stomatal conductance under elevated CO$_2$ concentration (Franks et al., 2013), drought effect on vegetation functioning (van der Molen et al., 2011), soil moisture control on ecosystem functioning (Yi et al., 2010) and other processes. Appropriate description of human intervention is also essential to adequately quantify lateral carbon fluxes and net biome production (Chapin et al., 2006). Keeping track with the new measurement-based findings is a challenging task but necessary to improve our ability to simulate the terrestrial carbon cycle more accurately.

The process-based biogeochemical model Biome-BGC is the focus of this study. The model was developed by the Numerical Terradynamic Simulation Group (NTSG), at the University of Montana (http://www.ntsg.umt.edu/project/biome-bgc), and is widely used to simulate carbon (C), nitrogen (N) and water fluxes of different terrestrial ecosystems such as deciduous and evergreen forests, grasslands and shrublands (Running and Hunt, 1993; Thornton, 1998; Thornton et al., 2002; Churkina et al., 2009; Hidy et al., 2012). Biome-BGC is one of the earliest biogeochemical models that include an explicit N cycle module. It is now clear that climate-carbon cycle interactions are affected by N availability and the CO$_2$ fertilization effect can be limited by the amount of N in ecosystems (Friedlingstein and Prentice, 2010; Ciais et al., 2013). Therefore, the explicit simulation of the N cycle is an essential part of these biogeochemical models (Thornton et al., 2007; Thomas et al., 2013).

Several researchers used and modified Biome-BGC in the past. Without being exhaustive, here we review some major applications on forest ecosystems, grasslands, croplands, urban environment, and we also list studies that focused on the spatial application of the model on regional and global scales.

Vitousek et al. (1988) studied the interactions in forest ecosystems such as succession, allometry and input-output budgets using Biome-BGC. Nemani and Running (1989) tested the theoretical atmosphere-soil-leaf area hydrologic equilibrium of forests using satellite data and model simulation with Biome-BGC. Korol et al. (1996)
tested the model against observed tree growth and simulated the 5-year growth increments of 177 Douglas-fir trees growing in uneven-aged stands. Kimball et al. (1997) used Biome-BGC to simulate the hydrological cycle of boreal forest stands. Thornton et al. (2002) improved developed the model to simulate forest fire, harvest, and replanting and forest fire. Churkina et al. (2003) used Biome-BGC to simulate coniferous forest carbon cycle in Europe. Pietsch et al. (2003) developed presented developments of Biome-BGC in order to take into account the effect of where water infiltration from groundwater and the effect of seasonal flooding were taken into account in floodplain forest areas. Bond-Lamberty et al. (2005, 2007) developed Biome-BGC-MV to enable simulation of forest species succession and competition between vegetation types. Vetter et al. (2005) used Biome-BGC to simulate the effect of human intervention on coniferous forest carbon balance. Schmid et al. (2006) assessed the accuracy of Biome-BGC to simulate forest carbon balance in Central Europe. Tatarinov and Cienciala (2006) further improved the Biome-BGC facilitating management practices in forest ecosystems (including thinning, felling, and species change). Merganičová et al. (2005) and Petritsch et al. (2007) implemented forest management in the model including thinning and harvest. Bond-Lamberty et al. (2007a) implemented elevated groundwater effect on stomatal conductance and decomposition in Biome-BGC, and then simulated wildfire effects across a western Canadian forest landscape (Bond-Lamberty et al. 2007b). Chiesi et al. (2007) evaluated the applicability of Biome-BGC in drought-prone Mediterranean forests. Turner et al. (2007) used Biome-BGC to estimate the carbon balance of a heterogeneous region in the western United States. Ueyama et al. (2010) used the model to simulate larch forest biogeochemistry in East Asia. Maselli et al. (2012) used the model to estimate olive fruit yield in Tuscany, Italy. Hlásny et al. (2014) used Biome-BGC to simulate the climate change impacts on selected forest plots in Central Europe. Di Vittorio et al. (2010) developed Agro-BGC to simulate the functioning of C4 perennial grasses including a new disturbance handler and a novel enzyme-driven C4 photosynthesis module. Wang et al. (2005) applied Biome-BGC to simulate cropland carbon balance in China. Ma et al. (2011) developed ANTHRO-BGC to simulate the biogeochemical cycles of winter crops in Europe including an option for harvest and considering allocation to yield. Trusilova and Churkina (2008) applied Biome-BGC to estimate the carbon cycle of urban vegetated areas. Lagergren et al. (2006) used Biome-BGC to estimate the carbon balance of the total forested area in Sweden. Mu et al. (2008) used Biome-BGC to estimate the carbon balance of China. In the paper of Jochheim et al. (2009) presented forest carbon budget estimates were presented for Germany based on a modified version of Biome-BGC. Barcza et al. (2009, 2011) used Biome-BGC to estimate the carbon balance of Hungary. Eastaugh et al. (2011) used Biome-BGC to estimate the impact of climate change on Norway spruce growth in Austria. Biome-BGC was used within the CARBOEUROPE-IP project as well as in several studies exploiting the related European scale simulation results (e.g. Jung et al. 2007a, b; Vetter et al., 2008; Schulze et al., 2009; Ťupek et al., 2010; Churkina et al., 2010). Hunt et al. (1996) used Biome-BGC in a global scale simulation and compared the simulated net primary production (NPP) with satellite based vegetation index. Hunt et al. (1996) also used an atmospheric transport model coupled with Biome-BGC to simulate surface fluxes to estimate the distribution of CO₂ within the atmosphere. Churkina et al. (1999) used Biome-BGC in a global scale multimodel intercomparison to study the effect of water limitation on NPP. Churkina et al. (2009) used Biome-BGC in a coupled simulation to estimate
the global carbon balance for the present and up to 2030. Biome-BGC is used in the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013; Schwalm et al., 2010) as part of the North American Carbon Program.

In spite of its popularity and proven applicability, the model development temporarily stopped at version 4.2. One major drawback of the model was its relatively poor performance in the simulation of the effect of management practices. It is also known that anthropogenic effects exert a major role in the transformation of the land surface in large spatial scales (Vitousek et al., 1998). Some structural problems also emerged like the simplistic soil moisture module (using one soil layer), lack of new structural developments (see e.g. Smith and Dukes, 2012), problems associated with phenology (Hidy et al., 2012), and lack of realistic response of ecosystems to drought (e.g. senescence).

Our aim was to improve the model by targeting significant structural development, and to create a unified, state-of-the-art version of Biome-BGC that can be potentially used in Earth System Models, as well as in situations where management and water availability plays an important role (e.g. in semi-arid regions) in biomass production. The success and widespread application of Biome-BGC can be attributed to the fact that Biome-BGC strikes a great balance between process fidelity and tractability: it is relatively easy to use and run, even for non-specialists, but still yields interesting insights. The success can also be attributed to the open source nature of the model code. Following this tradition, we keep the developed Biome-BGC open source. In order to support application of the model, a comprehensive User’s Guide was also compiled (Hidy et al., 2015).

In the present work, the scientific basis of the developments is presented in detail followed by verification studies in different ecosystems (forest, grassland and cropland) to demonstrate the effect of the developments on the simulated fluxes and pools.

2 Study sites

Model developments were motivated by the need to improve model simulation for grasslands, croplands, and forests. Here we demonstrate the applicability of the developed model at three sites on three different plant functional types characterized by contrasting management, climate and site conditions.

2.1 Grassland/pasture

The large pasture near Bugacpuszta (46.69° N, 19.60° E, 111 m a.s.l.) is situated in the Hungarian Great Plain covering an area of 1074 hectares. The study site (2 ha) has been used as pasture for the last 150 years according to archive army maps from the 19th century. The soil surface is characterized by an undulating micro-topography formed by winds within an elevation range of 2 m. The vegetation is highly diverse (species number over 80) dominated by Festuca pseudovina Hack. ex Wiesb., Carex stenophylla Wahlbg., Cynodon dactylon L. Pers., Poa spp.

The average annual precipitation is 562 mm and the annual mean temperature is 10.4 °C. According to the FAO classification (Driessen et al., 2001) the soil type is chernozem with a rather high organic carbon content (51.5 g kg⁻¹ for the 0-10 cm top soil; Balogh et al., 2011). The soil texture is sandy loamy sand (sand content 78%, silt content 9% in 0-10 cm soil layer). The pasture belongs to the Kiskunság National Park and has been
under extensive grazing by a Hungarian grey cattle herd in the last 20 years. Stocking density was 0.23-0.58 animal ha\(^{-1}\) during the 220-day-long grazing period between 2004 and 2012.

Carbon dioxide (CO\(_2\)) and latent heat flux (LHF) have been measured by the eddy-covariance (EC) technique. Continuous measurements began in 2003 and they are used in this study as input and verification data (Nagy et al., 2007, 2011). The EC station has a measurement height of 4 m and is equipped with a CSAT3 (Campbell Scientific) sonic anemometer and a LI-7500 open path infrared gas analyzer (IRGA; LI-COR Inc., Lincoln, NE).

Air density is measured to calculate fluxes of sensible and latent heat and CO\(_2\). Several other sensors measure micrometeorological variables including wind speed and direction, air temperature, and relative humidity, precipitation, global, reflected and net solar radiation, photosynthetically active photon flux density (PPFD), reflected PPFD, soil heat flux, soil temperature, and soil moisture. Soil water content is measured by CS616 (Campbell Scientific, Shepshed, Leic’s, UK) probes. Two probes were inserted horizontally at 3 and 30 cm depth and one was inserted vertically averaging the soil water content of the upper 30 cm soil layer. For model evaluation measured soil water content at 30 cm depth was used.

Data processing includes spike detection and removal following Vickers and Mahrt (1997) and linear detrending to calculate fluctuations from the raw data. To avoid errors caused by the flow disturbance effect of the sensor heads the correction proposed by van der Molen et al. The flow disturbance effect of sensor heads is influenced by the angle between the wind vector and horizontal plane, the so-called angle of attack. To avoid errors caused by this error our database is calibrated after van der Molen et al. (2004). The error caused by the inaccurate levelling of the sonic anemometer is corrected by the planar fit method (Wilczak et al., 2001) used to correct for sonic anemometer tilt in a slightly modified way. Crosswind correction was applied for sensible heat flux calculation after is done following Liu et al. (2001). The fluctuation in air density influences the concentrations measured by the open path IRGA, which is not taken into account during the measurements, but has to be done afterwards by the Webb-Pearman-Leuning correction (WPL; Webb et al., 1980) used to consider the effect of fluctuations in air density on the fluxes. Frequency response corrections were applied after Moore (1986) to account for. To take into consideration the damping effect of sensor line averaging, lateral separation distance between the IRGA scalar and the sonic anemometer wind sensor and the limited response time of the sensors of both the anemometer and the LI-COR 7500 LI-COR Inc., Lincoln, NE, frequency response corrections were applied (Moore, 1986). Gap-filling and flux partitioning method is based on the nonlinear function between PPFD and daytime CO\(_2\) fluxes, and temperature and night-time CO\(_2\) fluxes (Reichstein et al., 2005).

### 2.2 C4 cropland

Three production-scale cropland measurement sites were established in 2001 at the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska, USA, which are the part of the AmeriFlux (http://amerifluxornl.gov/) and the FLUXNET global network (http://fluxnet.ornl.gov/). Mead1 (41.17° N, 96.48° W, 361 m a.s.l.; 48.7 ha) and Mead 2 (41.16° N, 96.47° W, 362 m a.s.l.; 52.4 ha) are both equipped with center pivot irrigation systems. Mead3 (41.18° N, 96.44° W, 362 m a.s.l.; 65.4 ha) relies on rainfall. Maize is planted each year at Mead1 while Mead2 and Mead3 are in a maize-soybean rotation.
On the Mead sites the annual average temperature is 10.1 °C and the mean annual precipitation total is 790 mm. Soil at the site is deep silty clay loam consisting of four soil series: Yutan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs), Tomek (fine, smectitic, mesic Pachic Argialbolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), Filmore (fine, smectitic, mesic Vertic Argialbolls).

The CO₂ and energy fluxes are measured by an EC system using an omnidirectional three dimensional sonic anemometer (Model R3, Gill Instruments Ltd., Lymington, UK), an open-path infrared CO₂/H₂O gas analyzer (Model LI-7500: LI-COR Inc., Lincoln, NE) and a closed-path CO₂/H₂O system (Model LI-6262: LI-COR Inc., Lincoln, NE). The sensors were mounted 3 m above the ground when the canopy was shorter than 1 m, and later moved to a height of 6 m until harvest when maize was planted (Suyker et al., 2004; Verma et al., 2005).

Raw EC data processing included correction of fluxes for inadequate sensor frequency response (i.e., tube attenuation, sensor separation; Massman, 1991; Moore, 1986). Fluxes were adjusted for flow distortion (Nakai et al., 2006) and the variation in air density due to the transfer of water vapour (Webb et al., 1980; Suyker et al. 2003).

Air temperature and humidity were measured at 3.0 m and 6.0 m height (Humitter50Y, Vaisala, Helsinki, Finland). PPFD (LI 190SA Quantum Sensor, LI-COR Inc., Lincoln, NE), net radiation at 5.5 m height (Q*7.1, Radiation and Energy Balance Systems Inc., Seattle, WA), and soil heat flux (0.06 m depth; Radiation and Energy Balance Systems Inc.) were also measured (Verma et al., 2005). Soil water content measured at 0.1 m depth was used in this study (ML2 Thetaprobe, Delta T Devices Ltd, Cambridge, UK).

Green leaf area index (LAI) was determined from destructive sampling. A LI-COR 3100 (LI-COR Inc., Lincoln, NE) leaf area meter was used to measure sampled leaves. Each sampling was from six, 1-meter long row samples from six parts of the field. Aboveground biomass was determined using destructive plant sampling. Each sampling was from 1-meter long row samples from each of six different parts of the field. Plants were cut off at ground level, brace roots were removed, and plants were placed in fine mesh bags. Plants were dried to constant weight. Subsequently, the mass of green leaves, stems, reproductive organs, and senesced tissue were determined on a per plant basis. Measured plant populations were used to convert from per plant-basis to a unit ground area basis.

The Mead1 site was under no-till management prior to the harvest of 2005. Currently, there is a fall conservation tillage for which approximately 1/3 of the crop residue is left on the surface. From 2010 to 2013, for a biomass removal study, management at Mead2 was identical to Mead1 (continuous maize, fall conservation tillage, etc). Management settings of the simulations were based on site records. In this study, Mead1 site is used for model evaluation.

2.3 Deciduous broad-leaved forest

The Jastrebarsko site (45.62 °N 15.69 °E, 115 m a.s.l.) is a forest study site situated in a lowland oak forest that is part of the state-owned Pokupsko basin forest complex, located approximately 35 km SW of Zagreb (Croatia). Forest compartment where the EC tower for CO₂ flux measurement is located was a 37 years old mixed stand dominated by *Quercus robur* L. (58 %) accompanied by other tree species, namely *Alnus glutinosa* (L.) Geartn. (19%), *Carpinus betulus* L. (14%), *Fraxinus angustifolia* Vahl. (8%), and other (1%). *Corylus avellana* L. and *Crataegus monogyna* Jacq. are common in the understory. Oak forests in this area are managed in 140 year long
rotations. Stands are thinned once every 10 years ending with regeneration cuts during the last 10 years of the rotation (two or three), aimed at facilitating natural regeneration of the stand and continuous cover of the soil.

Annual mean temperature was 10.6 °C and average annual precipitation was 962 mm during the period of 1981–2010 (data from the National Meteorological and Hydrological Service for the Jastrebarsko meteorological station). The average annual depth to the groundwater ranges from 60 to 200 cm (Mayer, 1996). Groundwater level in a 4 m deep piezometer was measured weekly during the vegetation season from 2008 onwards. The During winter and early spring, parts of the forest are partly waterlogged or flooded with stagnating water during winter and early spring due to the heavy soil present at the site. Soil is generally mainly gleysoil with low vertical water conductivity (Mayer, 1996), and according to the WRB, it is classified as luvic stagnosol. The soil texture is dominantly clay with 18% of sand and 28% of silt fraction in the 0-30 cm top soil layer (Mayer, 1996).

Carbon dioxide and latent heat flux have been measured by the EC technique since September 2007 (Marjanović et al., 2011a, b). The measurement height at the time of installation was 23 m above ground (3–5 m above the top of the canopy). Since the forest stand grew, the measurement height was elevated to 27 m in April, 2011. The EC system was made up of a sonic anemometer (81,000 V, R.M. Young, USA) and an open path IRGA (LI-7500, LI-COR Inc., Lincoln, NE) with a sampling rate of 20 Hz. Meteorological measurements included soil temperature, incoming short wave radiation, incoming and outgoing PPFD, net radiation, air temperature and humidity, soil heat flux and total rainfall. Soil water content was measured at 0–30 cm depth using two time-domain reflectometers (Marjanović et al., 2011a).

Raw data processing of EC data was made using EdiRe Data Software (University of Edinburgh, United Kingdom) according to the methodology based on the Euro Flux protocol (Aubinet et al., 2000) with a further adjustment such as the WPL correction (Webb et al., 1980). Quality control was performed after assessment and quality check analysis (QA and QC) have been applied according to Foken and Vichura (1996). Net ecosystem exchange (NEE) was obtained after taking into account the storage term which was calculated using a profile system designed to make sequential CO₂ concentration measurements (IRGA, SBA-4, PPSystems) from 6 heights in a 6 minute cycle. Quality assessment and quality control was made according to Foken and Vichura (1996). Gap-filling of missing data and NEE flux partitioning to gross primary production (GPP) and total ecosystem respiration (TER) was made using online EC data gap filling and flux partitioning tools (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/) using the method of Reichstein et al. (2005).

Jastrebarsko forest stand characteristics data include diameter at breast height (dbh) and volume distribution by tree species, weekly tree stem and height increment, tree mortality, phenology data, annual litterfall, litterfall C and N content, fine root biomass, net annual root-derived carbon input, soil texture and carbon content (Marjanović et al., 2011b; Ostrogović, 2013; Alberti et al., 2014). Data were used either as input in modeling (e.g. groundwater level), for assessing some of the model parameters (e.g. phenology data) or model evaluation (e.g. EC fluxes, tree increment measurements).

3 Description of base model: Biome-BGC 4.1.1 MPI

Our model developments started before Biome-BGC 4.2 was published. The starting point was Biome-BGC v4.1.1 with modifications described in Trusilova et al. (2009). We refer to this model as Biome-BGC v4.1.1 MPI.
version (MPI refers to the Max Planck Institute in Jena, Germany) or original Biome-BGC. Biome-BGC v4.1.1

MPI version was developed from the Biome-BGC family of models (Thornton, 2000). Biome-BGC is the
extension and generalization of the Forest-BGC model to describe different vegetation types including C3 and
C4 grasslands (Running and Coughlan, 1988; Running and Gower, 1991; Running and Hunt, 1993; Thornton,
2000; White et al., 2000; Trusilova et al., 2009).

Biome-BGC uses a daily time step, the model and is driven by daily values of maximum and minimum and
maximum temperatures, precipitation, daytime mean global solar radiation, and daylight average vapour pressure
deficit (VPD). In addition to meteorological data, Biome-BGC uses site specific data (e.g., soil texture, site
elevation, latitude), and ecophysiological data (e.g., maximum stomatal conductance, specific leaf area, C:N mass
ratios in different plant compartments, allocation related parameters, etc.) to simulate the biogeochemical
processes of the given biome. The main simulated processes are photosynthesis, evapotranspiration, allocation,
litterfall, C, N and water dynamics in the litter and soil (Thornton, 2000).

The three most important blocks of the model are the phenological, the carbon flux, and the soil flux block. The
phenological block calculates foliage development and therefore affects the accumulation of C and N in leaf,
stem (if present), root and consequently the amount of litter. In the carbon flux block gross primary production
of the biome is calculated using Farquhar’s photosynthesis routine (Farquhar et al., 1980) and the enzyme
kinetics model based on Woodrow and Berry (1988). Autotrophic respiration is separated into maintenance and
growth respirations. In addition to temperature, maintenance respiration is calculated as the function of the N
content of living plant pools/biomass, while growth respiration is a fixed proportion of calculated proportionally
to the daily GPP carbon allocated to the different plant compartments. The soil block describes the
decomposition of dead plant material (litter) and soil organic matter, N mineralization and N balance in general
(Running and Gower, 1991). The soil block uses the so-called converging cascade model (Thornton and
Rosenbloom, 2005).

In Biome-BGC, the main parts of the simulated ecosystem are defined as plant, soil and litter. AsSince Biome-
BGC explicitly simulates the water, carbon and N balance of cycles of C3 and C4 plants, the soil-plant system,
the most important pools include following main pools are defined: leaf (C, N and water), fine root (C, N), soil
(C, N and water) and litter (C, N). C and N pools have additional sub-pools (i.e., so-called actual pools, storage
pools and transfer pools). The actual Sub-pools contain the amount of C or N available on the simulation day.
Storage sub-pools are defined to store the amount of C and N that is available for growth on a given day. The
storage sub-pools contain the amount of C and N that will appear during the next year’s growing season (in this
sense they are a year, like a core or bud), while the transfer sub-pools store the virtualization of cores or buds. The
transfer sub-pools inherit the entire whole content of the storage pools at pool after the end of a given year.
actual transfer period until the next one, and what will be transferred gradually into the leaf carbon pool (like a
germ) in the next transfer period.

The model simulation has two phases. The first is the spinup simulation (or in other words self-initialization or
equilibrium run), which starts with very low initial level of soil C and N and runs until a steady state is reached
with the climate in order to estimate the initial values of the state variables (Thornton, 2000; Thornton and
Rosenbloom, 2005). In the second phase, the normal simulation uses the results of the spinup simulation as
initial values for the C and N pools. This simulation is performed for a given, predetermined time period.
4 Methodological results: model adjustments

Some improvements focusing primarily on the development of the model to simulate carbon and water balance of managed herbaceous ecosystems have already been published (Hidy et al., 2012). Previous model developments included structural improvements on soil hydrology and plant phenology. Additionally, several management modules were implemented in order to provide more realistic fluxes for managed grasslands. We refer this model version as modified Biome-BGC (this is the predecessor of the current model).

Several developments have been made since the publication of the Hidy et al. (2012) study. The developments were motivated by multiple factors. Poor agreement of the modified Biome-BGC with available eddy covariance measurements made in Hungary over two grassland sites (see Hidy et al., 2012) clearly revealed the need for more sophisticated representation of soil hydrology, especially at the drought-prone, sandy Bugac site. Implementation and benchmarking of the multilayer soil module resulted in several additional developments related e.g. to the N balance, soil temperature, root profile, soil water deficit effect on plant functioning and decomposition of soil organic matter. Lack of management descriptor within the original Biome-BGC motivated the development of a broad array of possible management techniques covering typical grassland, cropland and forest management practices. Modeling exercises within international projects revealed additional problems that needed a solution related e.g. to stomatal conductance (Sándor et al., 2016). Recently published findings (e.g. simulation of temperature acclimation of respiration; Smith and Dukes, 2012) also motivated our work on model development. Addressing the known issues with the Biome-BGC model required diverse directions but this was necessary due to the complex nature of the biogeochemical cycles of the soil-plant system. Our overarching aim was to provide a state-of-the-art biogeochemical model that is in the same league as currently available models, such as LPJmL, ORCHIDEE, CLM, JULES, CASA and others.

The model that we present in this study is referred to as Biome-BGCMuSo (abbreviated as BBGCMuSo, where MuSo refers to MUltiLayer SOil module). Currently, BBGCMuSo has several versions but hereafter only the latest version (4.0) is discussed.

In this paper, we provide detailed documentation of all changes made in the model logic compared to the original model (Biome-BGC v4.1.1). Here we briefly mention the previously published developments and we provide detailed description concerning the new features. In order to illustrate the effect and the importance of the developments, model evaluations are presented for three contrasting sites equipped with EC measurement systems in Section 5.

Due to the modifications of the model structure and the implementation of the new management modules, it was necessary to modify the structure of the input and output files of the model. Technical details are discussed in the User's Guide of BBGCMuSo v4.0 (Hidy et al., 2015; http://nimbus.elte.hu/bbgc/files/Manual_BBGCMuSo_v4.0.pdf).

We summarized the model adjustments in Table 1. Within the table the implemented processes are grouped for clarity. Below we document the adjustments in detail.
4.1 Multilayer soil

The predecessor of Biome-BGC (FOREST-BGC) was developed to simulate the carbon and water budgets of forests where soil moisture limitation is probably less important due to the deeper rooting zone. Therefore, its soil sub-model was simple and included only a one-layer budget model. Due to the recognized importance of soil hydrology on the carbon and water balance, state-of-the-art biogeochemical models include multilayer soil module (e.g. Schwalm et al., 2015).

In order to improve the simulation quality of water and carbon fluxes with Biome-BGC, a seven-layer soil sub-model was implemented. Higher number of soil layers might be useful to better represent the soil profile in terms of soil texture and bulk density. This should be beneficial for sites with complex hydrology (see e.g. the Jastrebarsko case study in section 5.3). Additional layers also improve the representation of soil water content profile as the upper, thinner soil layers typically dry out more than the deeper layers, which affects soil and plant processes. As rooting depth can be quite variable, additional layers might support the proper representation of soil water stress on plant functioning. Seven layers provide an optimal compromise between simulation accuracy and computational cost. In accordance with the soil layers, we also defined new fluxes within the model. Note that in the Hidy et al. (2012) publication the developed Biome-BGC had only 4 soil layers, so the 7-layer module is an improvement.

The first layer is located at depth of 0-10 cm; the second is at 10-30 cm, the third is at 30-60 cm, the fourth is at 60-100 cm, the fifth is at 100-200 cm, and the sixth is at 200-300 cm. The bottom (7th, hydrologically and thermally inactive) layer is located at depth 300-1000 cm. The depth of a given soil layer is represented by the center of the given layer. Below 5 meters the soil temperature can be assumed equal to the annual average air temperature of the site (Florides and Kalogirou, 2016). Furthermore, in the bottom layer we assume that soil water content (SWC) is equal to the field capacity (constant value) and soil mineral content has a small, constant value (1 kg N ha⁻¹ within the 7 m deep soil column). The percolated water (and soluble N) to the bottom, hydrologically inactive layer is a net loss, while the water (and soluble N) diffused upward from the bottom layer is a net gain for the simulated soil system.

Soil texture and soil bulk density can be defined by the user layer by layer. If the maximum rooting zone (defined by user) is greater than 3 m, the roots reach the constant boundary soil layer and water uptake can occur from that layer, as well. In previous BBGCMuSo model versions, the soil texture was constant with depth and the maximum possible rooting depth was 5 m.

4.1.1 Soil thermodynamics

Since some of the soil processes depend on the actual soil temperature (e.g. decomposition of soil organic matter), it is necessary to calculate soil temperature for each active layer. Given the importance of soil temperature (e.g. Sándor et al., 2016), the soil module was also reconsidered in BBGCMuSo. The daily soil surface temperature is determined after (Zheng et al., 1993). The basic equations are detailed in Hidy et al. (2012). An important modification in BBGCMuSo is that the average temperature of the top soil layer (with thickness of 10 cm) is not equal to the above mentioned daily surface temperature. Instead, temperature of the active layers is estimated based on an empirical equation with daily time step.
Two optional empirical estimation methods are implemented in BBGCMuSo. The first is a simple method, assuming a logarithmic temperature gradient between the surface and the constant temperature boundary layer. This is an improvement compared to the modified Biome-BGC where a linear gradient was assumed. The second method is based on the soil temperature estimation method of the DSSAT model family (Ritchie 1998) and the 4M model (Sándor and Fodor, 2012).

### 4.1.2 Soil hydrology

The C and the hydrological cycles of the ecosystems are strongly coupled due to interactions between soil moisture and stomatal conductance, soil organic matter decomposition, N mineralization and other processes. Accurate estimation of the soil water balance is thus essential.

Among soil hydrological processes, the original Biome-BGC only takes into account plant uptake, canopy interception, snowmelt, outflow (drainage) and bare soil evaporation. We have added the simulation of runoff, diffusion, percolation, pond water formation and enhanced the simulation of the transpiration processes in order to improve the soil water balance simulation. Optional handling of seasonally changing groundwater depth (i.e., possible flooding due to elevated water table) is also implemented. In the Hidy et al. (2012) study, only runoff, diffusion and percolation were implemented (the simulation of these processes has been further developed since then). Pond water formation and simulation of groundwater movement are new features in BBGCMuSo 4.0.

#### Estimation of characteristic soil water content values

There are four significant characteristic points of the soil water retention curve: saturation, field capacity, permanent wilting point and hygroscopic water. Beside volumetric SWC, soil moisture status can also be described by soil water potential (PSI; MPa). The Clapp-Hornberger parameter (B; dimensionless) and the bulk density (BD; g cm$^{-3}$), are also important in soil hydrological calculations (Clapp and Hornberger, 1978). Soil texture information (fraction of sand and silt within the soil; clay fraction is calculated by the model internally as a residual) for each soil layers are input data for BBGCMuSo. Based on soil texture other soil properties (characteristic points of SWC, B, BD) can be estimated internally by the model using pedotransfer functions (Fodor and Rajkai, 2011). The default values are listed in Table 2, which can be adjusted by the user within their plausible ranges.

As in the original Biome-BGC, the PSI at saturation is the function of soil texture in BBGCMuSo:

$$\text{PSI}_{sat} = - \exp\left(\left[1.54 \cdot 0.0095 \cdot \text{SAND} + 0.0063 \cdot \text{SILT}\right] \cdot \ln(10)\right) \cdot 9.8 \cdot 10^{-5}$$ \hspace{1cm} (1)

where SAND and SILT are the sand and silt percent fractions of the soil, respectively. In BBGCMuSo, PSI for unsaturated soils is calculated from SWC using the saturation value of SWC (SWC$_{sat}$) and the B parameter:

$$\text{PSI} = \exp\left(\frac{\text{SWC}_{sat}}{\text{SWC}} \cdot \ln(B)\right) \cdot \text{PSI}_{sat}.$$ \hspace{1cm} (2)

#### Pond water and hygroscopic water

In case of intensive rainfall events, when not all of the precipitation can infiltrate, pond water is formulated at the surface. Water from the pond can infiltrate into the soil after water content of the top soil layer decreases below saturation. Evaporation of the pond water is assumed to be equal to potential soil evaporation.
SWC (as well as C and N content) is not allowed to become negative. The theoretical lower limit of SWC is the hygroscopic water, i.e., the water content of air-dried soil. Therefore, in case of large calculated evapotranspiration (calculated based on the Penman-Monteith equation as driven by meteorological data) and dry soil, the soil water pool of the top layer can be depleted (approaching hygroscopic water content). In this case evaporation and transpiration fluxes are limited in BBGCMuSo. Hygroscopic water content is also the lower limit in decomposition calculations (see below).

**Runoff**

Our runoff simulation method is semi-empirical and uses the precipitation amount and the Soil Conservation Service (SCS) runoff curve number (Williams, 1991). If the precipitation is greater than a critical amount which depends on the water content of the topsoil, a fixed part of the precipitation is lost due to runoff and the rest infiltrates into the soil. The runoff curve number can be set by the user or can be estimated by the model (Table 2).

**Percolation and diffusion**

In BBGCMuSo, two calculation methods of vertical soil water movement are implemented. The first method is based on Richards' equation (Chen and Dudhia, 2001; Balsamo et al., 2009) Detailed description and equations for this method can be found in Hidy et al. (2012). The second method is the so-called 'tipping bucket method' (Ritchie, 1998) which is based on semi-empirical estimation of percolation and diffusion fluxes and has a long tradition in crop modelling.

In case of the first method hydraulic conductivity and hydraulic diffusivity are used in diffusion and percolation calculations. These variables change rapidly and significantly upon changes in SWC. As we already mentioned, for the calculation of Though the main processes are calculated on daily time-step is used, For within the model, the calculation of the soil hydrological processes parameters required finer temporal resolution; therefore a nested variable time-step based calculation was implemented introduced into the soil hydrology sub-module in case of the first calculation method (in case of the tipping bucket method, a daily time-step is used).

In BBGCMuSo, the time-step (TS; seconds) of the soil water module integration is dynamically changed. In contrast to the modified Biome-BGC (Hidy et al., 2012) the TS is based on the theoretical maximum of soil water flux instead of the amount of precipitation.

As a first step we calculate water flux data for a short, 1-second TS for all soil layers based on their actual SWC. The most important problem here is the selection of the optimal TS: too small TS values result in slow model run, while too large TS values lead to overestimation of water fluxes. TS is estimated based on the magnitude of the maximal soil moisture content change in 1 second ($\Delta SWC_{max}$; $m^3 m^{-3} s^{-1}$). Equation (3)-(4) describes the calculation of TS:

$$TS = 10^{EXPON}.$$  

(3)

where

$$EXPON = \begin{cases} \text{abs}[LV + (DL + 3)] & \text{if } DL + LV < 0 \\ 0 & \text{if } DL + LV \geq 0 \end{cases}$$  

(4)

LV is the rounded local value of the maximal soil moisture content change, and DL is the discretization level, which can be 0, 1 or 2 (low, medium or high discretization level which can be set by the user).
Therefore, if the magnitude of $\Delta \text{SWC}_{\text{max}}$ is $10^{-3} \text{m}^3 \text{m}^{-3} \text{s}^{-1}$ (e.g. SWC increases from $0.400 \text{m}^3 \text{m}^{-3}$ to $0.401 \text{m}^3 \text{m}^{-3}$ in 1 second), then LV is -3, so TS is 100 = 1 second (if DL=0). The 1-second TS is necessary if $\Delta \text{SWC}_{\text{max}}$ is above $10^{-1} \text{m}^3 \text{m}^{-3} \text{s}^{-1}$. Using daily TS proved to be adequate when $\Delta \text{SWC}_{\text{max}}$ was below $10^{-8} \text{m}^3 \text{m}^{-3} \text{s}^{-1}$.

After calculating the first TS (TSstep1 = 1 seconds), water fluxes are determined by using the pre-calculated time steps, and the SWC of the layers are updated accordingly. In the next n steps the calculations are repeated until reaching a threshold (86400, the number of the seconds in a day). This method helps to avoid the overestimation of the water fluxes while also decreasing the computation time of the model.

**Groundwater**

Poorly drained forests (e.g. in boreal regions or in lowland areas) are special ecosystems where groundwater and flooding play an important role in soil hydrology and plant growth (Bond-Lamberty et al., 2007a; Pietsch et al., 2003). In order to enable groundwater effects (vertically varying soil water saturation), we implemented an option in BBGCMuSo to supply external information about the depth of the water table. Groundwater depth is controlled by prescribing the depth of saturated zone (groundwater) within the soil. We note that the groundwater implementations by Pietsch et al. (2003) and by Bond-Lamberty et al. (2007a) are different from our approach as they calculate water table depth internally by the modified Biome-BGC. During the spinup phase of the simulation, the model can only use daily average data for one typical simulation year (i.e., multi-annual mean water table depth). During the normal phase, the model can read daily groundwater information defined externally.

The handling of the externally supplied, near-surface groundwater information is done as follows. If the upward moving water table reaches the bottom border of a simulated soil layer, part of the given layer becomes “quasi-saturated” (99% of the saturation value) and thus the average soil moisture content of the given layer increases. If the water table reaches the upper border of the given soil layer, then the given layer becomes quasi-saturated. The quasi-saturation state allows for the downward flow of water through a saturation soil layer, particularly through the last layer. This approach was necessary because of the discrete size of soil layers and the fact that the input groundwater level data constitute a net groundwater level. Namely, groundwater level is partly affected by lateral groundwater flows (which are unknown) and corresponding changes in hydraulic pressure that can push the water up; as well it is partly affected by draining of the upper soil layers. While soil is draining it is possible that the groundwater level remains unchanged, or that its level decreases slower because the drained water from the upper layer replaces the water that leaves the system (i.e., drains to below 10 m, which is the bottom of the last soil layer). With implementation of quasi-saturation state we allowed for the water to flow through saturated layers, in particular through the bottom one. Otherwise the water could become “trapped” because the model routine could not allow downward movement of water from an upper soil layer to a lower layer that is already saturated (because that layer would have already been “full”).

Groundwater level affects soil water content and in turn affects stomatal conductance and soil organic matter decomposition (see below).
4.1.3 Root distribution

Water becomes available to the plant through water uptake by the roots. The maximum depth of the rooting zone is a user-defined parameter in the model. For herbaceous vegetation, the temporally changing depth of the root is simulated based on an empirical, sigmoid function (Campbell and Diaz, 1988). In forests, fine root growth is assumed to occur in the entire root zone and rooting depth does not change with time. This latter logic is used due to the presence of coarse roots in forests which are assumed to change depth slowly (in juvenile forests this approach might be problematic).

In order to weight the relative importance of the soil layers (i.e., to distribute total transpiration or root respiration among soil layers), it is necessary to calculate the distribution of roots in the soil layers. The proportion of the total root mass in the given layer ($R_{layer}$) is calculated based on empirical exponential root profile approximation after Jarvis (1989):

$$R_{layer} = f \left( \frac{\Delta z_{layer}}{z_{f}} \right) \exp \left[ -f \left( \frac{z_{layer}}{z_{f}} \right) \right].$$  \hspace{1cm} (5)

In Eq. (5), $f$ is an empirical root distribution parameter (its proposed value is 3.67 after Jarvis, 1989), $\Delta z_{layer}$ and $z_{layer}$ is the thickness and the midpoint of the given soil layer, respectively, and $z_{f}$ is the actual rooting depth.

Rooting depth and root distribution are taken into account by all ecophysiological processes which are affected by soil moisture content (transpiration), soil carbon content (maintenance respiration) and soil N content (decomposition).

4.1.4 Nitrogen budget

In previous model versions, uniform distribution of mineral N was assumed within the soil profile. In BBGCvMuSo, we hypothesize that varying amounts of mineralized N are available within the different soil layers and are available for root uptake and other losses. The change of soil mineral N content is calculated layer by layer in each day. In the root zone (i.e., within soil layers containing roots), the changes of mineralized N-content are caused by soil processes (decomposition, microbial immobilization, denitrification), plant uptake, leaching, atmospheric deposition and biological N fixation. The produced/consumed mineralized N (calculated by decomposition and daily allocation functions) is distributed within the layers depending on their soil mineral N content. Mineralized N from atmospheric N deposition (Ndep) increases the N content of the first (0-10 cm) soil layer. Biological N fixation is divided between root zone layers as a function of the root fraction in the given layer. In soil layers without roots, N content is affected by transport (e.g. leaching) only. Leaching is calculated based on empirical function using the proportion of soluble N that is subject to mobilization (an adjustable ecophysiological parameter in the model), mineral N content and the water fluxes (percolation and diffusion) of the different soil layers.

There is an additional mechanism for N loss within the soil. According to the model logic (Thornton and Rosenbloom, 2005) if there is excess mineral nitrogen in the soil following microbial immobilization and plant N uptake, it is subject to volatilization and denitrification as a constant proportion of the excess mineral nitrogen pool for a given day. In the original Biome-BGC (v4.1.1) this proportion was defined by a fixed parameter within the model code. In Biome-BGC v4.2 two parameters were introduced that control bulk denitrification:
one for the wet and one for dry case (the wet case is defined when SWC is greater than the 95% of saturation). In BBGCMuSo we implemented the Biome-BGC v4.2 logic which means that these values can be adjusted as part of the ecophysiological model parameterization.

4.1.5 Soil moisture stress index

Stomatal closure occurs due to low relative atmospheric moisture content (high VPD), and insufficient soil moisture (drought stress; Damour et al., 2010) but also due to anoxic conditions (e.g. presence of elevated groundwater or high soil moisture content during and after large precipitation events; Bond-Lamberty et al., 2007a). The original Biome-BGC had a relatively simple soil moisture stress function which was not adjustable and was unable to consider anoxic conditions.

In order to create a generalized model logic for BBGCMuSo, the soil moisture limitation calculation was improved, and the use of the stress function on stomatal conductance (and consequently transpiration and senescence) calculations was extended taking into account both types of limitations mentioned above (limit1: drought, limit2: anoxic condition close to soil saturation). The start and end of the water stress period are determined by comparing actual and predefined, characteristic points of SWC and calculating a novel soil moisture stress index (SMSI; dimensionless). Characteristic points of soil water status can be defined using relative SWC (relative SWC to field capacity in case of limit1 and to saturation in case of limit2) or soil water potential (see Section 3.4 of Hidy et al., 2015).

SMSI is the function of normalized soil water content (NSWC) (in contrast to original model, where SMSI was the function of soil water potential). NSWC is defined by the following equation:

$$\text{NSWC} = \begin{cases} \frac{\text{SWC} - \text{SWC}_{wp}}{\text{SWC}_{sat} - \text{SWC}_{wp}}, & \text{if } \text{SWC}_{wp} < \text{SWC} \\ 0, & \text{if } \text{SWC}_{wp} \geq \text{SWC} \end{cases}$$

(6)

where SWC is the soil water content of the given soil layer (m$^3$ m$^{-3}$). SWC$_{wp}$ and SWC$_{sat}$ are the wilting point and the saturation value of soil water content, respectively. Parameters can either be set by the user or calculated by the model internally (see Table 2).

The NSWC and the soil water potential as function of SWC are presented in Fig. 1 for three different soil types: sand soil (SAND: 90%, SILT: 5%), sandy clay loam (SAND: 50%, SILT: 20%), and clay soil (SAND: 8%, SILT: 45%).

According to our definition SMSI is a function of NSWC and can vary between 0 (maximum stress) and 1 (minimum stress).

The general form of SMSI is defined by the following equations:

$$\text{SMSI} = \frac{\text{NSWC}}{\text{NSWC}_{crit1}}, \quad \text{if } \text{NSWC} < \text{NSWC}_{crit1}$$

$$\text{SMSI} = 1, \quad \text{if } \text{NSWC}_{crit1} < \text{NSWC} \leq \text{NSWC}_{crit2}$$

$$\text{SMSI} = \frac{1 - \text{NSWC}}{1 - \text{NSWC}_{crit2}}, \quad \text{if } \text{NSWC}_{crit2} < \text{NSWC}$$

(7)
where \( \text{NSWC}_{\text{crit1}} \) and \( \text{NSWC}_{\text{crit2}} \) (\( \text{NSWC}_{\text{crit1}} < \text{NSWC}_{\text{crit2}} \)) are the characteristic points of the normalized soil water curve, calculated from the relative soil water content or soil water potential values or relative soil water content defined by ecophysiological parameters. Conversion from relative values to NSWC is made within the model. Characteristic point \( \text{NSWC}_{\text{crit1}} \) is used to control drought related limitation, while \( \text{NSWC}_{\text{crit2}} \) is used to control excess water related limitation (e.g. anoxic soil related stomatal closure).

The shape of the soil stress function in the original model (based on soil water potential) and in BBGCMuSo (based on NSWC) are presented in Fig. 2.

The value of the SMSI is zero in case of full soil water stress (below the wilting point). It starts to increase at the wilting point (which depends on soil type; Table 1) and reaches its maximum (1) at the SWC where water stress ends. This latter characteristic value can be set by the user. In this example (Fig. 2), field capacity was used as the characteristic value. The new feature of the BBGCMuSo is that beyond the optimal soil moisture content range, the soil stress can decrease again (i.e., increasing stress) due to saturation. This second characteristic value (limit2) can also be set by a model parameter. In the example of Fig. 2 95% of the saturation value was used as the second characteristic value.

Though soil water status is calculated layer by layer, the model requires only a single soil moisture stress function to calculate stomatal conductance. To satisfy this need, while soil water status is calculated layer by layer. Therefore, an average stress function for the total rootzone is necessary, which is the average of the layer factors weighted by root fraction in each layer.

Beside stomatal conductance, SMSI is used in the transpiration calculation in the multilayer soil. Instead of the averaged soil water status of the whole soil column (as in original Biome-BGC), in BBGCMuSo, the transpiration flux is calculated layer by layer. The transpiration flux of the ecosystem is assumed to be equal to the total root water uptake on a given day (\( \text{TRP}_{\text{sum}} \)). The transpiration calculation is based on the Penman-Monteith equation using stomatal conductance (this feature is the same as in the original Biome-BGC method). The transpiration fluxes are divided between layers (\( \text{TRP}_{\text{layer}} \)) according to the soil moisture limitation of the given layer (\( \text{SMSI}_{\text{layer}} \)) and the root fraction in the given layer (\( \text{R}_{\text{layer}} \) in Eq. 5):

\[
\text{TRP}_{\text{layer}} = \frac{\text{TRP}_{\text{sum}} \cdot \text{SMSI}_{\text{layer}} \cdot \text{R}_{\text{layer}}}{\text{SMSI}_{\text{sum}}} \tag{8}
\]

where \( \text{SMSI}_{\text{sum}} \) is the sum of the \( \text{SMSI}_{\text{layer}} \) values in the rootzone.

According to the modifications, if the soil moisture limitation is full (SMSI=0), no transpiration can occur.

### 4.1.6 Senescence calculation

The original Biome-BGC ignores plant wilting and associated senescence (where the latter is an irreversible process) caused by prolonged drought. In order to solve this problem, a new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. A senescence simulation has already been implemented in developed Biome-BGC (Hidy et al., 2012) and it was further improved in BBGCMuSo following a different approach. In BBGCMuSo, if the plant available SWC decreases below a critical value, the new module starts to calculate the number of the days under drought stress. Due to low SWC during a prolonged...
drought period, aboveground and belowground plant material senescence is occurring (actual, transfer and storage C and N pools) and the wilted biomass is translocated into the litter pool.

A so-called “soil stress effect” (SSE\textsubscript{total}) is defined to calculate the amount of plant material that wilts due to cell death in one day due to drought stress. The SSE\textsubscript{total} quantifies the severity of the drought for a given day. Severity of drought is a function of the number of days since soil moisture stress is present (NDWS). Soil water stress is assumed if the averaged SMSI of the root zone is less than a critical value (which is an adjustable ecophysiological parameter in the model). It is assumed that after a longer time period with soil moisture stress, the senescence is complete and no living non-woody plant material remains. This longer time period is quantified by an ecophysiological parameter, which is the “critical number of stress days after which senescence mortality is complete”.

The SSE\textsubscript{total} varies between 0 (no stress) and 1 (total stress). According to the BBGCMuSo logic, the SSE\textsubscript{total} is the function of SMSI, NDWS, NDWS\textsubscript{crit}, and SMSI\textsubscript{crit}:

\begin{align*}
\text{SSE}_{\text{total}} &= \text{SSE}_{\text{SMSI}} \cdot \text{SSE}_{\text{NDWS}} \\
\text{SSE}_{\text{SMSI}} &= \begin{cases} 
1 - \frac{\text{SMSI}}{\text{SMSI}_{\text{crit}}} & \text{if } \text{SMSI} < \text{SMSI}_{\text{crit}} \\
0 & \text{if } \text{SMSI} \geq \text{SMSI}_{\text{crit}} 
\end{cases} \\
\text{SSE}_{\text{NDWS}} &= \frac{\text{NDWS}}{\text{NDWS}_{\text{crit}}} \quad \text{if } \text{NDWS} < \text{NDWS}_{\text{crit}} \\
\text{SSE}_{\text{NDWS}} &= 1 \quad \text{if } \text{NDWS} \geq \text{NDWS}_{\text{crit}}
\end{align*}

The SSE\textsubscript{total} is used to calculate the actual value of non-woody aboveground and belowground mortality defined by SMCA and SMCB, respectively. SMCA defines the fraction of living C and N that dies in one day within leaves and herbaceous stems. SMCB does the same for fine roots. SMCA and SMCB are calculated using two additional ecophysiological parameters: minimum mortality coefficient (minSMC) of non-woody aboveground (A) and belowground (B) plant material senescence (minSMCA and minSMCB, respectively):

\begin{align*}
\text{SMCA} &= \text{minSMCA} + (1 - \text{minSMCA}) \cdot \text{SSE}_{\text{total}} \\
\text{SMCB} &= \text{minSMCB} + (1 - \text{minSMCB}) \cdot \text{SSE}_{\text{total}}
\end{align*}

Parameters minSMCA and minSMCB can vary between 0 and 1. In case of 0, no senescence occurs. In case of 1, all living C and N will die within one day after the occurrence of drought stress. In this sense SMCA and SMCB can vary between their minimum value (minSMCA and minSMCB, respectively, if SSE\textsubscript{total} is zero) and 1 (if SSE\textsubscript{total} is 1). This latter case occurs when NDWS>NDWS\textsubscript{crit} and SMSI=1.

SMCA is used to calculate the amount of non-woody aboveground plant material (leaves and soft stem) transferred to the standing dead biomass pool (STDB; kgC m\textsuperscript{-2}) due to soil moisture stress related mortality on a given day. Note that STDB is a temporary pool from which C and N contents transfer to the litter pool gradually; the concept of STDB is a novel feature in the model. In case of belowground mortality, it defines the amount of fine root that goes to the litter pool directly. The actual senescence ratio is calculated as SMCA (and SMCB) multiplied with the actual living C and N pool.

Fig. 3 demonstrates the senescence calculation with an example. The figure shows the connections between the change of SWC, normalized soil water content, SMSI, different types of soil stress effects (SSE\textsubscript{SMSI}, SSE\textsubscript{NDWS},...).
SSE\textsubscript{total}) and senescence mortality coefficient as function of number of days since water stress is present. The figure shows a theoretical situation in which SWC decreases from field capacity to hygroscopic water within 30 days. The calculation refers to a sandy soil (SWC\textsubscript{sat} = 0.44 m\textsuperscript{3} m\textsuperscript{-3}, SWC\textsubscript{fc} = 0.25 m\textsuperscript{3} m\textsuperscript{-3}, SWC\textsubscript{wp} = 0.09 m\textsuperscript{3} m\textsuperscript{-3}; SWC\textsubscript{fc} refers to SWC at field capacity). In this example, we assumed that relSWC\textsubscript{crit1} is 1.0 (field capacity) and relSWC\textsubscript{crit2} = 0.9 (10% below saturation), the critical number of stress days after which senescence mortality is complete (NDWS\textsubscript{crit}) is 30 and the critical soil moisture stress index (SMSI\textsubscript{crit}) is 0.3.

4.1.7 Decomposition and respiration processes

Within Biome-BGC, decomposition processes of litter and soil organic matter are influenced by soil temperature, soil water status, soil and litter C and N content, while root maintenance respiration is affected by soil temperature and root C and N content. In BBGCMuSo, the soil moisture and temperature limitation effects are calculated layer by layer based on the SWC and soil temperature of the given soil layer (instead of the averaged soil water status or soil temperature of the whole soil column as in the original model). The C and N contents are also calculated layer by layer from the total C and N content of the soil column weighted by the proportion of the total root mass in the given layer.

The maintenance root respiration flux is calculated based on the following equation:

\[
MR(\text{root}) = \sum_{\text{layer}=1}^{n_r} \left( N_{\text{root}} \cdot R_{\text{layer}} \cdot mr\text{pern} \cdot Q_{10} \cdot \frac{T(\text{soil})_{\text{root}}-20}{10} \right)
\]  

(11)

where \( n_r \) is the number of the soil layers which contain root, \( N_{\text{root}} \) is the total N content of the soil, \( R_{\text{layer}} \) is the proportion of the total root mass in the given layer, \( mr\text{pern} \) is an adjustable ecophysiological parameter (maintenance respiration per kg of tissue N), \( Q_{10} \) is the fractional change in respiration with a 10°C temperature change and \( T(\text{soil})_{\text{layer}} \) is the soil temperature of the given layer. There are eight types of non-N limited fluxes between litter and soil compartments. These fluxes are the function of soil and litter C or N content, soil moisture and soil temperature stress functions. The most important innovation is that total decomposition fluxes are calculated as the sum of partial fluxes regarding to the given layer similarly to respiration flux. The soil temperature function is the same as in the original Biome-BGC. The soil moisture stress function is a linear function of SWC in contrast to a logarithmic function of soil water potential in the original Biome-BGC. A major development here is that beside drought effect, anoxic stress is also taken into account because anoxic condition caused by saturation can affect decomposition of soil organic matter (thus N mineralization; Bond-Lamberty et al., 2007a). The shape of the modified stress index (SMSI\textsubscript{decomp}) is similar to the one presented in Bond-Lamberty et al. (2007a).

BBGCMuSo uses the following stress index (with value between 0 and 1) to control decomposition in response to changing SWC in a given layer:

\[
\text{SMSI}_{\text{decomp}} = \begin{cases} 
\frac{\text{SWC} - \text{SWC}_{\text{hyg}}}{\text{SWC}_{\text{opt}} - \text{SWC}_{\text{hyg}}}, & \text{if } \text{SWC} \leq \text{SWC}_{\text{opt}} \\
\frac{\text{SWC}_{\text{sat}} - \text{SWC}}{\text{SWC}_{\text{sat}} - \text{SWC}_{\text{opt}}}, & \text{if } \text{SWC}_{\text{opt}} < \text{SWC}
\end{cases}
\]  

(12)
where SWC, SWC_{hyg} and SWC_{sat} is the actual soil water content, hygroscopic water and the saturation values of the given soil layer, respectively. SWC_{opt} is calculated from the relative SWC for soil moisture limitation which is a user supplied ecophysiological input parameter. The limitation function of decomposition in the original Biome-BGC (based on PSI) and in BBGCMuSo (based on SWC) are presented in Fig. 4.

In case of the original model soil stress index starts to increase at -10 MPa (this value is fixed in the model) and reaches its maximum at saturation. In the case of BBGCMuSo, soil stress index starts to increase at hygroscopic water and reaches its maximum at optimal SWC (which is equal to the NSWC_{crit2} from Eq. 7). The new feature of BBGCMuSo is that after the optimal soil moisture content, soil stress index can decrease due to saturation soil stress (anoxic soil).

4.2 Management modules

The original Biome-BGC was developed to simulate natural ecosystems with very limited options to disturbance or human intervention (fire effect is an exception). Lack of management options limited the applicability of Biome-BGC in croplands and grasslands, but also in managed forests.

One major feature of BBGCMuSo is the implementation of several management options. For grasslands, grazing and mowing modules were already published as part of the developed Biome-BGC (Hidy et al., 2012).

Since the release of the developed Biome-BGC, we improved the model's ability to simulate management. In BBGCMuSo, the user can define 7 different events for each management activity, and additionally annually varying management activities can be defined. Further technical information about using annually varying management activities is detailed in Section 3.2. of the User's Guide (Hidy et al., 2015). Additionally, new management modules were implemented and the existing modules were further developed and extended. The detailed description of mowing and grazing can be found in Hidy et al. (2012).

4.2.1 Harvest

In arable crops, the effect of harvest is similar to the effect of mowing in grasslands but the fate of the cut-down fraction of aboveground biomass is different. We assume that after harvest, snags (stubble) remain on the field as part of the accumulated biomass, and part of the plant residue may be left on the field (in the form of litter typically to improve soil quality). Yield is always transported away from the field, while stem and leaves may be transported away (and utilized e.g. as animal bedding) or may be left at the site. The ratio of harvested aboveground biomass that is taken away from the field (harvest index) has to be defined as an input.

If residue is left at the site after harvest, the cut-down plant material first goes into a temporary pool that gradually enters the litter pool. The turnover rate of mown/harvested biomass to litter can be set as an ecophysiological parameter. Although harvest is not possible outside the growing season, this temporary pool can contain plant material also in the dormant period (depending on the amount of the cut-down material and the turnover rate of the pool). The plant material turning into litter compartment is divided between the different types of litter pools according to the parameterization (based on unstable, cellulose and lignin fractions). The water stored in the canopy of the cut-down fraction is assumed to be evaporated.
4.2.2 Ploughing

As a management practise, ploughing may be carried out in preparation for sowing or following harvest. Three types of ploughing can be defined in BBGCMuSo: shallow, medium and deep (first; first and second; first, second and third soil layers are affected, respectively). Ploughing affects the predefined soil texture as it homogenizes the soil (in terms of texture, temperature and moisture content) for the depth of the ploughing. We assume that due to the plough the snag or stubble turns into a temporary ploughing pool on the same day. A fixed proportion of the temporary ploughing pool (an ecophysiological parameter) enters the litter pool on a given day after ploughing. The plant material turning into the litter compartment is divided between the different types of litter pools (labile, unshielded cellulose, shielded cellulose and lignin).

A new feature of Biome-BGCMuSo is that aboveground and belowground (buried) litter is handled separately in order to support future applications of the model in cropland related simulations (presence of crop residues at the surface affects runoff and soil evaporation). As a consequence of litterfall during the growing season and the result of harvest, litter accumulates at the surface. In case of ploughing the content of aboveground litter turns into the belowground litter pool. In this way aboveground/belowground litter amount can be quantified.

4.2.3 Fertilization

The most important effect of fertilization in BBGCMuSo is the increase of mineralized soil nitrogen. We define an actual pool which contains the amount of fertilizer’s nitrogen content put out onto the ground on a given fertilizing day (actual pool of fertilizer; APF). A fixed proportion of the fertilizer enters the top soil layer on a given day after fertilizing. It is not the entire fraction that enters the soil because a given proportion is leached (this is determined by the efficiency of utilization that can be set as input parameter). Nitrate content of the fertilizer (that has to be set by the user) can be taken up by the plant directly; therefore we assume that it goes into the soil mineral N pool. Ammonium content of the fertilizer (that also has to be set by the user) has to be nitrified before being taken up by plant, therefore it turns into the litter nitrogen pool. C content of fertilizer turns into the litter C pool. As a result, APF decreases day-by-day after fertilizing until it becomes empty, which means that the effect of the fertilization ends (in terms of N input to the ecosystem).

4.2.4 Planting

In BBGCMuSo transfer pools are defined to contain plant material as germ (or bud, or non-structural carbohydrate) in the dormant season from which C and N gets to the normal pools (leaf, stem, and root) in the beginning of the subsequent growing season. In order to simulate the effect of sowing we assume that the plant material which is in the planted seed goes into the transfer pools thus increasing its content. Allocation of leaf, stem and root from seed is calculated based on allocation parameters in the ecophysiological input data. We assume that a given part of the seed is destroyed before sprouting (this can be adjusted by the user).

4.2.5 Thinning

Forest thinning is a new management option in BBGCMuSo. We assume that based on a thinning rate (the proportion of the removed trees), the decrease of leaf, stem and root biomass pools can be determined. After
thinning, the cut-down fraction of the aboveground biomass can be taken away or can be left at the site. The rate of transported stem and/or leaf biomass can be set by the user. The transported plant material is excluded from further calculations. The plant material translocated into coarse woody debris (CWD) or litter compartments are divided between the different types of litter pools according to parameterization (coarse root and stem biomass go into the CWD pool; if harvested stem biomass is taken away from the site, only coarse root biomass goes to CWD). Note that storage and transfer pools of woody harvested material are translocated into the litter pool. The handling of the cut down, non-removed pools differs for stem, root and leaf biomass. Stem biomass (live and deadwood; see Thornton, 2000 for definition of deadwood in case of Biome-BGC) is immediately translocated into CWD without any delay. However, for stump and leaf biomass implementation, an intermediate turnover process was necessary to avoid C and N balance errors caused by sudden changes between specific pools. The parameter “Turnover rate of cut-down non-removed non-woody biomass to litter” (ecophysiological input parameter) controls the fate of (previously living) leaves on cut down trees, and it also controls the turnover rate of dead coarse root (stump) into CWD.

4.2.6 Irrigation

In case of the novel irrigation implementation we assume that the sprinkled water reaches the plant and the soil similarly to precipitation. Depending on the amount of the water reaching the soil (canopy water interception is also considered) and the soil type, the water can flow away by surface runoff process while the rest infiltrates into the top soil layer. Irrigation amount and timing can be set by the user.

4.2.7 Management related plant mortality

In case of mowing, grazing, harvest and thinning, the main effect of the management activity is the decrease of the aboveground plant material. It can be hypothesized that due to the disturbance related mortality of the aboveground plant material, the belowground living plant material also decreases but at a lower (and hardly measurable) rate. Therefore, in BBGCMuSo we included an option to simulate the decrease of the belowground plant material due to management that affects aboveground biomass. The rate of the belowground decrease to the mortality rate of the aboveground plant material can be set by the user. As an example, if this parameter is set to 0.1, the mortality rate of the belowground plant material is 10% of the mortality of the aboveground material on a given management day. Aboveground material refers to actual pool of leaf, stem and fruit biomass while belowground material refers to actual pool of root biomass and all the storage-transfer pools.

4.3 Other plant related model processes

The original Biome-BGC had a number of static features that limited its applicability in some simulations. In Biome-BGC we added new features that can support model applications in a wider context, e.g. in climate change related studies, e.g. modelling exercises comparing free air CO₂ enrichment (FACE) experiment data with simulations (Franks et al., 2013)
4.3.1 Phenology

To determine the start and end of the growing season, the phenological state simulated by the model can be used (White et al., 1999). We have enhanced the phenology module of the original Biome-BGC keeping the original logic and providing the new method as an alternative. We developed the so-called a special growing season index (heat sum growing season index (HSGSI; Hidy et al., 2012), which is the extension of the GSI index proposed introduced by Jolly et al. (2005). More details about HSGSI can be found in Hidy et al. (2012).

In the original, as well as in the modified Biome-BGC model versions, snow cover did not affect the start of the vegetation period and photosynthesis. We implemented a new, dual snow cover limitation method in BBGCMuSo. First, the growing season can only start if the snowpack is less than a critical amount (given as mm of water content stored in the snowpack). Second, the same critical value can also limit photosynthesis during the growing season (no C uptake is possible above the critical snow cover; we simply assume that in case of low vegetation, no radiation reaches the surface if snow depth is above a pre-defined threshold). The snow cover estimation is based on precipitation, mean temperature and incoming shortwave radiation (original model logic is used here). The critical amount of snow can be defined by the user.

4.3.2 Genetically programmed leaf senescence

Besides drought stress related leaf senescence, an optional secondary leaf senescence algorithm was implemented in BBGCMuSo. For certain crops (e.g. maize and wheat), leaf senescence is the genetically programmed final stage of leaf development as it is related to the age of the plant tissue in leaves. In crop models, this process is traditionally determined based on the growing degree-day (GDD) sum. GDD sum is a measure of heat accumulation to predict plant development stages such as flowering as well as the beginning and end of grain filling. GDD is calculated using the cumulative difference between mean daily temperature and base temperature (the latter is an ecophysiological input parameter in BBGCMuSo). In case of planting (i.e., in crop related simulations), GDD is calculated from the day of planting. In other cases, GDD is calculated from the beginning of the year. After reaching the predefined GDD threshold leaf mortality rates are calculated based on a mortality coefficient of genetically programmed leaf senescence (ecophysiological input parameter).

4.3.3 New plant pools: fruit and soft stem simulation

In order to enable C and N budget simulation of croplands and explicit yield estimation with BBGCMuSo, fruit simulation was implemented (which is grain in the case of croplands). Start of the fruit allocation is estimated based on GDD. After reaching a predefined GDD value (supplied by the user as an input parameter), fruit starts to grow (allocation is modified). Besides critical GDD there are four additional ecophysiological parameters that have to be defined by the user related to allocation, C:N ratio of fruit, and labile and cellulose proportion of litter.

In order to support C and N budget simulation of non-woody biomass in BBGCMuSo, a soft stem simulation was implemented (soft stem is non-photosynthesizing, aboveground, non-woody biomass). Soft stem allocation is parallel to fine root and leaf allocation (and fruit allocation, if applicable). Four additional ecophysiological parameters are defined due to soft stem simulation. The primary purpose of our soft stem implementation is to decrease the overestimation of LAI in herbaceous vegetation calculations. In the original model structure, in the
case of herbaceous vegetation, all aboveground plant material is allocated to leaves, which causes unrealistically high LAI in many cases. Soft stem allocation (a significant pool in e.g. grasses and crops) enables more realistic leaf C and LAI values.

4.3.4 New C4 photosynthesis routine

In the original and modified Biome-BGC models, C4 photosynthesis was expressed as a sub-version of C3 photosynthesis. It was implemented in a way that only one parameter differed (photons absorbed by transmembrane protein complex per electron transported; mol mol\(^{-1}\)) for C3 and C4 plants (Collatz et al., 1991). Based on the work of Di Vittorio et al. (2010), we implemented a new, enzyme-driven C4 photosynthesis routine into the photosynthesis module. A new ecophysiological parameter (fraction of leaf N in PEP Carboxylase) was defined in BBGCMuSo to support the C4 routine. The ecophysiological parameter "fraction of leaf N in Rubisco" still affects the process of C4 photosynthesis (see Di Vittorio et al., 2010 for details).

4.3.5 Dynamic response and temperature acclimation of respiration

Due to the changing environmental conditions, photosynthesis and respiration acclimation and dynamic response of plants could affect the carbon exchange rates, but this mechanism is missing from many biogeochemical models (Smith and Dukes, 2012).

In order to implement acclimation and short term temperature dependence of maintenance respiration in BBGCMuSo, the respiration module was modified in two steps. The maintenance respiration in Biome-BGC is based on a constant Q\(_{10}\) factor. In our approach, first the constant Q\(_{10}\) value was modified based on Tjoelker et al. (2001) who proposed an equation for the short-term temperature dependence of the Q\(_{10}\) factor (dynamic response), and showed how this relationship could improve the accuracy of the modeled respiration. We use the following equation:

\[ Q_{10} = 3.22 - 0.046 \times T_{air}, \]  
\[ (13) \]

where \( T_{air} \) is the daily average air temperature (°C).

This modification results in a temperature optimum at which respiration peaks. The main influence of using a temperature-dependent Q\(_{10}\) value can be detected at high temperature values. In case of a constant Q\(_{10}\), overestimation of respiration can occur at higher temperatures (Lombardozzi et al., 2015). The model of Tjoelker et al. (2001) is a more realistic method to calculate respiration but it does not take into account acclimation to the longer term changes in thermal conditions.

Long-term responses of respiration rates to the temperature (i.e., acclimation) were implemented in the second step based on Atkin et al. (2008) who developed a method using the relationship between leaf respiration, leaf mass-to-area ratio, and leaf nitrogen content in 19 species of plants grown at four different temperatures. The proposed equation is the following:

\[ R_{A} = R_{T} * 10^{A(T_{10days}-T_{ref})}, \]  
\[ (14) \]

where \( R_{T} \) is the non-acclimated rate of respiration, \( T_{ref} \) is the reference temperature, \( T_{10days} \) is the average daily temperature in the preceding 10 days, and \( A \) is a constant, which was set to 0.0079 based on Atkin et al. (2008).

The acclimated and non-acclimated day and night leaf maintenance respiration functions are presented in Fig. 5.
Photosynthesis acclimation is in a test phase. It is simulated in a very simple way by modifying the relationship between \( V_{\text{cmax}} \) (maximum rate of carboxylation) and \( J_{\text{max}} \) (maximum electron transport rate) that was temperature-independent in the original code. Temperature dependency is calculated based on average temperature for the previous 30 days (Knorr and Kattge, 2005). This simple photosynthesis method is not a complete representation of the acclimation of the photosynthetic machinery (Smith and Dukes, 2012) but a first step towards a more complete implementation. This feature can be enabled or disabled by the user.

4.3.6 LAI-dependent albedo

In order to improve the shortwave radiative flux estimation of BBGCMuSo, an LAI-dependent albedo estimation was implemented based on the method of Ritchie (1998). Actual albedo is calculated by the following equation:

\[
\alpha_{\text{act}} = \alpha_{\text{crit}} - (\alpha_{\text{crit}} - \alpha_{\text{BS}}) \cdot \exp(-0.75 \cdot \text{LAI}_{\text{act}}),
\]

where \( \alpha_{\text{crit}} \) is an empirical estimate of the albedo maximum (0.23), \( \alpha_{\text{BS}} \) is the albedo of the bare soil that has to be supplied by the user, and \( \text{LAI}_{\text{act}} \) is the actual value of leaf area index as estimated by the model.

4.3.7 Stomatal conductance regulation

Although there are many alternative formulations for stomatal conductance calculation within biogeochemical models (e.g., Damour et al., 2010), there is no standard method in the scientific community. Many state-of-the-art ESMs use a variant of the Ball-Woodrow-Berry model (Ball et al., 1987), the Leuning (1995) method, and the Jarvis (1976) method. There is no proof that one method is significantly better than the other (Damour et al., 2010).

Traditionally, Biome-BGC uses the empirical, multiplicative Jarvis method for stomatal conductance calculations (Jarvis, 1976). In this method, stomatal conductance is calculated as the product of the maximum stomatal conductance (model parameter) and limiting stress functions based on minimum temperature, VPD, and soil water status (Trusilova et al., 2009).

In BBGCMuSo, we kept this logic as its applicability was demonstrated in many studies (see Introduction). In contrast to the original model, the stress function of soil water status is currently based on relative soil water content and the introduced SMSI (instead of soil water potential) (Hidy et al., 2012). Beyond this, we modified the original method of calculation to take into account the changes in ambient CO\(_2\) concentration. It was demonstrated that the stomatal response of Biome-BGC to increasing atmospheric CO\(_2\) concentration is not consistent with observations (Sándor et al., 2015; note the latter study used BBGCMuSo 2.2 for which the modification was not yet implemented). Therefore, we implemented an additional multiplicative factor in the calculations in BBGCMuSo 4.0.

In Biome-BGC, stomatal conductance is the function of maximum stomatal conductance (that is an input ecophysiological parameter) and a set of limitation factors. These multiplicative limitation factors summarize the effects of SWC, minimum soil temperature, VPD and photosynthetic photon flux density. As we mentioned above (Section 3.2.1), we modified the limitation function of SWC on stomatal conductance. Besides this modification, a new CO\(_2\) concentration dependent adjustment factor was implemented in order to improve stomatal calculation based on Franks et al. (2013). They demonstrated a significantly similar dependence of
stomatal conductance on ambient CO\textsubscript{2} concentration from hourly to geological time scales. Though the Franks et al. (2013) paper presents results for stomatal conductance in general (as opposed to maximum stomatal conductance), we use the assumption that the same function describes changes in maximum stomatal conductance as well. This assumption is acceptable since stomatal conductance has an upper limit which is present in conditions without environmental stress and with maximum illumination. In our approach, data from Franks et al. (2013; Table S1) was used to fit a power function to describe the quantitative relationship between relative change of stomatal conductance ($g_{\text{w(rel)}}$; in fact this is stomatal conductance to water vapour but this is proportional to stomatal conductance to CO\textsubscript{2}) to changes of ambient CO\textsubscript{2} mixing ratio (Fig. 7b in Franks et al., 2013). The changes are expressed relative to standard conditions:

$$g_{\text{w(rel)}} = 39.43 \cdot [\text{CO}_2]^{-0.64}$$

(16)

where [CO\textsubscript{2}] is atmospheric CO\textsubscript{2} mixing ratio in ppm. In BBGCMuSo v4.0, maximum stomatal conductance is first re-calculated according to the actual CO\textsubscript{2} concentration (this latter is supplied by the user for each simulation year). As maximum stomatal conductance is no longer constant (which was the case in the original Biome-BGC and also in BBGCMuSo up to version 3.0), it is assumed that the maximum stomatal conductance defined by the user represents end of the 20\textsuperscript{th} century conditions (at ~360 ppm mixing ratio representing ~ year 1995 conditions; $g_{\text{smax,EPC}}$).

To calculate actual maximum stomatal conductance, first $g_{\text{w(rel)}}$ is calculated at 360 ppm according to Eq. 13

($g_{\text{w(rel)}[360\text{ppm}]} = 39.43 \times 360^{-0.64} = 0.9116$; note that this value is not exactly one because of the scatter of data used to fit the power function). Next, $g_{\text{w(rel)}}$ is calculated for the given [CO\textsubscript{2}] value according to Eq. 16. The final maximum stomatal conductance ($g_{\text{smax}}$) is calculated as:

$$g_{\text{smax}} = g_{\text{w(rel)}} / 0.9116 \cdot g_{\text{smax,EPC}}$$

(17)

The final maximum stomatal conductance is used for subsequent calculations for evapotranspiration and photosynthesis. This modification is essential for climate-change related simulations.

4.4 Modification in the model run

4.4.1 Dynamic mortality

Annual whole-plant mortality fraction (WPM) is part of the ecophysiological parameterization of Biome-BGC (user supplied value) which is assumed to be constant throughout the simulation. From the point of view of forest growth, constant mortality can be considered as a rough assumption. Ecological knowledge suggests that WPM varies dynamically within the lifecycle of forest stands due to competition for resources or due to competition within tree species (plus many other causes; Hlásny et al., 2014).

In order to enable more realistic forest stand development simulation, we implemented an option for supplying annually varying WPM to BBGCMuSo (this option can also be used with other biome types with known, annually varying disturbance level). During the normal phase of the simulation, the model can either use constant mortality or it can use annually varying WPM defined by the user. Technical details about the application of this option can be found in Section 3.6 of the BBGCMuSo v4.0 User's Guide (Hidy et al., 2015).
4.4.2 Optional transient run

Model spinup in Biome-BGC typically represents steady-state conditions before the industrial revolution (without changing atmospheric CO$_2$ concentration and N deposition). Therefore, the usual strategy for spinup is to use constant (preindustrial) CO$_2$ and N$_{dep}$ values during the spinup followed by annually varying values for the entire normal simulation (representative to present day conditions or to 20$^{th}$ century conditions). This strategy might be used due to unknown site history or a lack of driving data. However, this logic can lead to undesired transient behavior of the model results as the user may introduce a sharp change by the inconsistent CO$_2$ and/or N$_{dep}$ data between the spinup and normal phase (note that both CO$_2$ and N$_{dep}$ are important drivers of plant growth).

In order to avoid this phenomena (and more importantly, to take into account site history), some model users performed one or more transient simulations to enable smooth transition from one simulation phase to the other (mainly, from the spinup phase to the normal phase; Thornton et al., 2002; Vetter et al., 2005; Hlásny et al., 2014). However, this procedure means that the users have to perform a 3rd model run (and sometimes even more), using the output of the spinup phase, and create the input that the normal phase can use.

In BBGCMuSo, we implemented a novel approach to eliminate the effect of sharp changes in the environmental conditions between the spinup and normal phase. According to the modifications, now it is possible to make an automatic transient simulation after the spinup phase. To initiate the transient run, the user can adjust the settings of the spinup run. If needed, a regular spinup will first be performed with constant CO$_2$ and N deposition values followed by a second run to be performed using the same meteorological time series defined for the spinup. In this way, the length of the transient run is always equal to the length of the meteorology data used for the spinup phase. During the transient run, annually varying CO$_2$ concentration data can be used (but it should be constructed to provide transition from preindustrial to industrial CO$_2$ concentrations). Utilization of annually varying N-deposition data is optional but it is preferred. The input data of transient run is the output of the spinup phase, and the output of the transition run is the input of the normal phase. Technical details about the transient run can be found in Section 2.2 of the User's Guide (Hidy et al., 2015).

As management might play an important role in site history (and consequently in biogeochemical cycles), the new transient simulation in BBGCMuSo can include management in an annually varying fashion (management is described below).

4.4.3 Land-use-change simulations

Another new feature was added to BBGCMuSo that is also related with the proper simulation of site history. As the spinup phase is usually associated with preindustrial conditions, the normal phase might represent a plant functional type that is different from the one present in the spinup phase. For example, present-day croplands can occupy land that was originally forest or grassland, so in this case spinup will simulate forest in equilibrium, and then the normal phase will simulate croplands. Another example is the simulation of afforestation that might require spinup for grasslands, and normal phase for woody vegetation. We may refer to these scenarios as land use change (LUC) related simulations.
One problem that was associated with LUC in earlier model versions was the frequent crash of the model with the error 'negative nitrogen pool' during the beginning of the normal phase. This error was typical if the
spinup and normal ecophysiological parameterization differed in terms of plant C:N ratios and could occur for
some of (due to the internal model logic; inconsistency might arise between available mineralized N and N
demand by the plant actual, transfer and storage pools (e.g. leaf, fine root, soft stem, fruit, live root, dead root,
live stem or dead stem). Equilibrium pools of soil C and N, which are the most important elements for the initial
conditions of the normal run, did not suffer from this error.

In order to avoid this error, we have implemented the following automatic procedure in BBGCMuS-

so. According to the changes, after the spinup phase has ended, only the equilibrium plant C pools are passed to the normal
phase after the spinup phase has ended. The plant equilibrium nitrogen pools are calculated by the model code,
so that the resulting C:N ratios are harmonized with the C:N ratio of the different plant compartments presented
in the ecophysiological parameterization of the normal phase. This modification means that spinup
plant equilibrium nitrogen pools are not passed to the normal phase, but in. We believe this issue is compensated
with the fact this is not needed because LUC means change in the existing plant functional type, so new plant
C:N ratios will inevitably be realized. Implementation of this routine has enabled that LUC and site history can
be simulated properly.

4.5 Empirical estimation of other greenhouse gases

Quantification of the full greenhouse gas (GHG) balance of ecosystems was not possible with the original
Biome-BGC. Non-CO2 greenhouse gases (GHGs) are important elements of the biogeochemistry of the soil-
plant system. Nitrous oxide (N2O) and methane (CH4) are strong GHGs that can eventually compensate the CO2
sink capacity of ecosystems resulting in GHG-neutral or GHG source activity (Schulze et al., 2009). We
established the first steps towards improved modeling possibilities with Biome-BGC that includes soil efflux
estimation of non-CO2 GHGs.

4.5.1 Estimation of nitrous oxide and methane flux of unmanaged soil

Due to their importance, an empirical estimation of N2O and CH4 emission from soils was implemented in
BBGCMuSo based on the method of Hashimoto et al. (2011). Gas fluxes are described in terms of three
functions: soil physiochemical properties (C:N ratio for N2O; bulk density of top soil layer for CH4), water-filled
pore space (WFPS) of top soil layer, and soil temperature of top soil layer.

The Hashimoto et al. (2011) method was developed for unmanaged ecosystems. We adapted it to managed
ecosystems by including emission estimates from livestock and manure management using Tier 1 methods of

4.5.2 Estimation of nitrous oxide and methane flux from grazing and fertilizing

The IPCC (2006) Tier 1 method was implemented in BBGCMuSo to give a first estimation to CH4 and N2O
emissions due to grazing and fertilizing.
Due to their large population and high CH$_4$ emission rate, cattle are an important source of CH$_4$. Methane emissions of cattle originate from manure management (including both dung and urine) and enteric emissions. Methane emission from enteric fermentation is estimated using the number of the animals and the regional-specific methane emission factor from enteric fermentation (IPCC, 2006; Chapter 10, Table 10.11). Another mode of methane production is the emission during the storage of manure. Methane emission from manure management is estimated using the number of animals and the regional-specific methane emission factor from manure management (IPCC, 2006; Chapter 10, Table 10.14).

In summary, the flux of the methane (F$_{CH_4}$; mg CH$_4$ m$^{-2}$ day$^{-1}$) is the sum of soil flux, flux from fermentation and from manure management:

$$F_{CH_4}^{\text{total}} = F_{CH_4}^{\text{soil}} + F_{CH_4}^{\text{fermentation}} + F_{CH_4}^{\text{manure}}$$ (18)

The emissions of N$_2$O that result from anthropogenic N inputs or N mineralization occur through both direct and indirect pathways (directly from the soils to/from which the N is added/released – grazing and fertilization), and through implemented into BBGCMuSo. Direct emissions of N$_2$O from managed soils consist of the emission from animal excretion and from fertilization. The former is estimated based on multiplying the total amount of N excretion by an emission factor for that type of manure management system (IPCC, 2006; Chapter 10, Table 10.21). The latter is estimated using emission factors developed for N$_2$O emissions from synthetic fertilizer and organic N application (IPCC, 2006; Chapter 11, Table 10.21).

In summary, the flux of the nitrous oxide (F$_{N_2O}$; mg N$_2$O m$^{-2}$ day$^{-1}$) is the sum of soil flux, flux from fermentation and from manure management:

$$F_{N_2O}^{\text{total}} = F_{N_2O}^{\text{soil}} + F_{N_2O}^{\text{fermentation}} + F_{N_2O}^{\text{fertilizing}}$$ (19)

5 Simulation results: model evaluations

In order to examine and evaluate the functioning of BBGCMuSo, case studies are presented in this section regarding different vegetation types: C$_3$ grassland (Bugac, Hungary), C$_4$ maize (Mead, Nebraska, United States of America) and C$_3$ oak forest (Jastrebarsko, Croatia).

The model behavior is evaluated by visual comparison of measured and simulated data and by quantitative measures such as root mean squared error (RMSE), normalized root mean squared error (RMSE weighted by the difference of maximum and minimum of the measured data), bias (average difference between simulated and measured variables, where positive bias means systematic overestimation and negative bias means overall underestimation), coefficient of determination ($R^2$) of the regression between measured and modeled data, and Nash–Sutcliffe modeling efficiency (NSE). The range of NSE is between 1.0 (perfect fit) and $-\infty$. An efficiency of lower than zero means that the mean of the observed time series would have been a better predictor than the model. NSE and $R^2$ are dimensionless. The dimension of RMSE and bias is the dimension of the variable to which it refers. The dimension of NRMSE is %.

In this study, model parameters were taken from the literature, and also from previous parameterization of Biome-BGC. For the newly introduced parameters, we use values that provided reasonable results during model
development. The number of parameters in the original model (Biome-BGC v4.1.1 MPI) and BBGCMuSo (Biome-BGCMS v4.0) is not the same (MuSo has more ecophysiological parameters than original model, while a few parameters of the original model are no longer used in BBGCMuSo) but the same values were set in case of common parameters.

The simulation results of the original Biome-BGC and BBGCMuSo are compared to the measurements. Different model features such as the senescence mechanism, management, and groundwater effects are illustrated in the Supplementary material (S2-S1-S9).

BBGCMuSo has more than 600 different output variables. In this study, we focus on the variables relevant for the evaluation of model performance: that are GPP, TER, net ecosystem exchange (NEE), LHF, LAI, C content of aboveground biomass (abgC), and SWC in the 10-30 cm soil layer.

5.1 C3 grassland/pasture

Measured data at Bugac are available from 2003 to 2015. In order to present model behavior, only three consecutive years were selected (2009-2011) that represented different meteorological conditions. In 2009, the annual sum of precipitations was 14% lower, and mean annual temperature was 10% higher than the long term mean. In 2010, precipitation was 65% higher and temperature was near average (2% lower). In 2011, precipitation was 22% lower than average and temperature was close to the long term mean.

For the Bugac simulation, several novel features were used from BBGCMuSo v4.0. The HSGSI-based phenology, transient simulation, drought related plant senescence, standing dead biomass pool, grazing settings (see Hidy et al. (2015) for grazing related input data), non-zero soft stem allocation, management-related decrease of storage and the actual pool, and acclimation were all used in the simulation.

Both during spinup and normal phase of the simulation we assumed that the vegetation type is grassland, therefore the C3 grass parameterization was used (see Supplementary material Table S1 for parameterization).

Fig. 6 shows that the original Biome-BGC overestimates GPP, TER, LAI and LHF. Due to the implementation of grazing and plant senescence processes, the overestimation of GPP, TER and LHF were decreased at the Bugac site where drought is a common phenomenon frequently occurs. The average observed maximum LAI is about 4-5 m² m⁻² at Bugac. Therefore, due to model improvements simulated LAI is more realistic using BBGCMuSo. This was possible due to the implementation of the new soft stem pool that now can contain part of the aboveground C (in the original model, all aboveground C formed leaf biomass for grasses).

Model evaluation The results are presented in Table 3 for of the quantitative model evaluation are presented in Table 3 for Bugac site using the original Biome-BGC and the BBGCMuSo. The statistical indicators show that with the exception of SWC, the simulation quality typically improved with BBGCMuSo due to the model developments. The error metrics are usually smaller, R² is higher than in case of the original model using the original parameter set. BBGCMuSo-simulated LHF has higher bias (in absolute sense) than the original model, but the other error metrics perform better. It is notable that NSE became positive for GPP, TER and LHF while it was negative for all three variables with the original Biome-BGC.

The SWC estimation by the original model was closer to the observations than the result with BBGCMuSo. However, as the original Biome-BGC has a simple, one-layer bucket module for soil hydrology, SWC estimation
by the original model and topsoil SWC simulation by Biome-BGCMuSo are not comparable. SWC provided by
the original model has no vertical profile, which means that it is not expected that the simulation will match
observation. Nevertheless, although the errors are higher in case of BBGCMuSo (RMSE, NRMSE, NSE, BIAS),
the correlation is higher. This is relevant because in the BBGCMuSo simulation, the relative change of soil water
content significantly impacts the senescence and decomposition fluxes (see Section 3.2). Therefore, if the
relative change of the soil water content is realistic, the soil moisture limited processes can still be realistic in
spite of the obvious bias in the measurements.

Supplementary material S2 contains additional simulation results for Bugac demonstrating the effect of the long
lasting drought on plant state, the senescence effect on plant processes and carbon balance and the effect of
grazing.

5.2 C4 cropland

Measured data and simulated results are presented for the 2003-2006 period for the Mead1 site (Fig. 7).
For Mead, the applied novel features with BBGCMuSo included C$_4$ enzyme-driven photosynthesis, transient
simulation, planting, harvest, irrigation, drought related plant senescence, genetically programmed leaf
senescence, standing dead biomass pool, fruit pool (in this case maize yield), non-zero soft stem allocation, and
acclimation. Note that the allocation related “current growth proportion” parameter that controls the content of
the storage pool (non-structured carbohydrate reserve for next year’s new growth) was zeroed here in order to
avoid natural plant growth in the spring. In other words, in case of planting, the storage pool has to be turned off
as maize growth is only possible after sowing.

During the spinup phase, we assumed that the vegetation type was grassland before cropland establishment.
Therefore C$_3$ grass parameterization was used. In the normal phase, maize parameterization was used. Note that
change in ecophysiological parameterization was possible due to the developments (see Section 2).
Supplementary material Table S1 contains the complete parameterization for the maize simulation.
As noted (Section 3.5.2), there is a high chance for model error if the spinup and normal ecophysiological
parameterization differ in terms of plant C:N ratios (due to the internal model logic). To avoid this error, in the
case of original Biome-BGC, the C:N ratios of maize were used in the spinup phase. Mead1 is under
management including irrigation, fertilization, harvest, and ploughing. The original model assumes that the
vegetation is undisturbed, so no management practices could be set. For BBGCMuSo, management was set
according to information taken from the site PI.

Fig. 7 shows that the original model underestimated GPP in the vegetation period (in contrast to BBGCMuSo)
because it cannot take into account the effect of irrigation and fertilization, which support the growth of
agricultural crops. The original model overestimated GPP following harvest because plant material was not
removed from the site. Using BBGCMuSo, the overestimation of TER and LAI decreased compared to the
original model due to the simulated harvest. For BBGCMuSo this overestimation decreased also due to the novel
fruit and soft stem simulations (in the original model, aboveground plant material apportiones biomass to leaves
only).
The results of the quantitative model evaluation are presented in Table 4 for Mead using the original Biome-
BGC and the BBGCMuSo. According to the error metrics the simulation quality improved due to the model
developments for GPP, TER, LAI and abgC, and also for SWC. For BBGCMuSo, the square of correlation are higher and the errors (both RMSE and bias) are smaller and square of correlations are higher than in case of the original model using the original parameters. Values of NSE are close to 1.0 using BBGCMuSo indicating a good match of the modeled values and the observed data. For the original model, NSE values are much smaller or negative. NSE is negative for SWC both for the original and the BBGCMuSo version in spite of the lower bias of the latter. Again, due to the very simplistic SWC module of the original model, its SWC results are not directly comparable with observations.

Supplementary material S3 presents additional simulation results for the Mead1 site demonstrating the effect of new model developments like irrigation fertilization, and the genetically programmed leaf senescence.

5.3 Deciduous broad-leaved forest

For Jastrebarsko forest site measurement data were available for the period from 2008 to 2014. But, as the measurement height was changed in spring 2011 (flux tower was upgraded due to tree growth), to assure the homogeneity of the measurement data we used data from 2008-2010 only. For simulation at Jastrebarsko, several novel features were used from BBGCMuSo v4.0. For example, transient simulation, alternative tipping bucket soil water balance calculation, groundwater effect on stomatal conductance and decomposition, drought related plant senescence, thinning, fruit allocation, bulk denitrification, soil moisture limitation calculation, soil stress index, soil texture change through the soil profile, and respiration acclimation were all used in the simulation. We also used the possibility to adjust the parameter for maintenance respiration, which is fixed within the source code in the original Biome-BGC model. We used the value of 0.4 kg C kg N⁻¹ day⁻¹ based on newly available data (Cannell and Thornley, 2000).

During both spinup and normal phase we assume that the vegetation type was pedunculate oak forest, therefore oak parameterization was used (see Supplementary material Table S1 for parameterization).

Fig. 8 shows that the original Biome-BGC overestimates GPP, TER, NPP and LAI. The probable reason for this is high N fixation parameter value, estimated to 0.0036 g N m⁻² yr⁻¹, resulting from the presence of N-fixer species *Alnus glutinosa* (see Supplement for details) and, at the same time, the lack of denitrification process in the original Biome-BGC version. Due to the implementation of dry and wet bulk denitrification processes, effects of groundwater, and soil moisture stress in the BBGCMuSo version the overestimation of GPP, TER, and NPP was no longer present and simulation results significantly improved. Jastrebarsko forest site is a lowland oak forest with complex soil hydrology which cannot easily be simulated using simple soil bucket approach, as it is a case in original Biome-BGC model. Soil at Jastrebarsko site is stagnic luvisol, with impermeable clay horizon at 2-3 m depth and poor vertical water conductivity, resulting with parts of the forest being partly waterlogged or even flooded with stagnating water during winter and early spring. Flooding leads to increased denitrification (Groffman and Tiedje, 1989; Kulkarni et al., 2014) and, in combination with hypoxic conditions in the root zone, reflects negatively on GPP and TER (Fig. 8a,b).

Soil water content simulation in BBGCMuSo version shows improvement for the leaf-off season (Nov-Apr) when, unlike the original version, soil water saturation in BBGCMuSo simulation becomes evident (Fig. 8c). BBGCMuSo still overestimates soil moisture status in the summer. According to the original Biome-BGC the forest never experiences soil saturation which is contrary to the actual situation in winter and early spring. The
Original Biome-BGC provides only SWC data for one layer of the entire rooting zone (0-100 cm in this case) and therefore it cannot be directly compared with the actual measurements or output from BBGCMuSo which correspond to 0-30 cm soil layer. Also, it should be emphasized that the parameters soil bulk density, SWC of saturation, field capacity, and wilting point for soil layers were not available. BBGCMuSo calculated those parameters based only on the provided parameters for soil texture.

Simulated LAI value also decreased to more realistic values in BBGCMuSo due to model improvements (Fig. 8d). Based on litterfall data (0.408 kg m$^{-2}$; Marjanović et al. (2011b)) and average specific leaf area of 15 m$^{2}$ kg$^{-1}$ for oak (Morecroft and Roberts, 1999), the average maximum LAI at Jastrebarsko is estimated to be 6.1 m$^{2}$ m$^{-2}$, just slightly above what is estimated by BBGCMuSo. BBGCMuso NPP estimates are also in good agreement with those from field observation (Marjanović et al., 2011a), unlike those of the original version which overestimate NPP (Fig. 8e).

The results of the quantitative model evaluation are presented in Table 5 for Jastrebarsko site using the original Biome-BGC and the BBGCMuSo. The quality of simulation usually improved with BBGCMuSo due to the model developments (R$^2$ for SWC is an exception, but see the notes above about the SWC simulation of the original Biome-BGC). Key variables’ errors and biases are smaller in comparison to the original model using the original parameter set.

Supplementary material S4 contains additional simulation results for the Jastrebarsko site demonstrating the effect of new model developments.

### Discussion and conclusions

Biogeochemical models inevitably need continuous improvement to improve their ability to simulate ecosystem C balance. In spite of the considerable development in our understanding of the C balance of terrestrial ecosystems (Baldocchi et al., 2001; Friend et al., 2006; Williams et al., 2009), current biogeochemical models still have inherent uncertainties. The major sources of uncertainties are internal variability, initial and boundary conditions (e.g. equilibrium soil organic matter pool estimation), parameterization and model formulation (process representation) (Schwalm et al., 2015; Sándor et al., 2016).

In this study, our objective was to address model structure related uncertainties in the widely used Biome-BGC model.

The interactions between water availability and ecosystem C balance are widely documented in the literature. In a recent study, Ahlström et al. (2015) showed that semi-arid ecosystems have strong contribution to the trend and interannual variability of the terrestrial C sink. This finding emphasizes the need to accurately simulate soil water related processes and plant senescence due to prolonged drought. In earlier model versions, drought could not cause plant death (i.e., LAI decrease) which resulted in a quick recovery of the vegetation after a prolonged drought. In our implementation, long lasting drought can cause irreversible plant senescence which is more realistic than the original implementation.

The role of management as the primary driver of biomass production efficiency in terrestrial ecosystems was shown by Campioli et al. (2015). The study clearly demonstrates that management cannot be neglected if proper representation of the ecosystem C balance is needed. The management modules built into BBGCMuSo
cover, on a global basis, the majority of human interventions in managed ecosystems. As management practises require prescribed input data for BBGCMuSo, accuracy of the simulations will clearly depend on the quality of management description which calls for proper data to drive the model.

Representation of acclimation of plant respiration and photosynthesis was shown to be one major uncertainty in global biogeochemical models (Lombardozzi et al., 2015). We introduced acclimation of autotrophic respiration in BBGCMuSo which is a major step towards more realistic climate change related simulations. Representation of photosynthesis acclimation (Medlyn et al., 2002) is needed in future modifications as another major development.

Due the implementation of many novel model features, the model logic became more complex. Thus, process interactions became even more complicated which means that extensive testing is needed to find problems and limitations.

The earlier version of BBGCMuSo (v2.2) was already used in a major model intercomparison project (FACCE MACSUR – Modelling European Agriculture with Climate Change for Food Security, a FACCE JPI knowledge hub; Ma et al., 2014; Sándor et al., 2016). Within MACSUR, nine grassland models were used and their performance was tested against EC and biomass measurements. BBGCMuSo v2.2 results were comparable with other models like LPJmL, CARAIB, STICS, EPIC, PaSim, and others. In spite of the successful application of the predecessor of BBGCMuSo v4.0, SWC simulations were still problematic (Sándor et al., 2016). Developments are clearly needed in terms of soil water balance and ecosystem scale hydrology in general.

Other developments are still needed to improve simulations with dynamic C and N allocation within the plant compartments (Friedlingstein et al., 1999; Olin et al., 2015). Complete representation of ammonium and nitrate pools with associated nitrification and denitrification is also needed to avoid ill-defined, N balance related parameters (Thomas et al., 2013). Even further model development will require the addition of other nutrient limitations (phosphorus, potassium).

In the present paper three case studies were presented to demonstrate the effect of model structural improvements on the simulation quality. Clearly, extensive testing is required at multiple EC sites to evaluate the performance of the model and to make adjustments if needed.

Parameter uncertainty also needs further investigations. Model parameterization based on observed plant traits is possible today thanks to new datasets (e.g., White et al., 2000; Kattge et al., 2011; van Bodegom et al., 2012). However, in some cases, imperfect model structure may cause distortion owing to compensation of errors (Martre et al., 2015). Additionally, plant traits (e.g. specific leaf area, leaf C:N ratio, photosynthesis-related parameters) vary considerably in space so even though plant trait datasets are available they might not capture the site-level parameters. These issues raise the need for proper infrastructure for parameter estimation (or in other words, calibration or model inversion). The need for model calibration is also emphasized as we introduced a couple of empirical parameters in BBGCMuSo (e.g. those related to plant senescence, water stress thresholds and denitrification drivers, disturbance-related mortality parameters) that need optimization using measurement data from multiple sites. In other words, though BBGCMuSo parameterization is mostly based on observable plant traits, model calibration can not be avoided in the majority of the cases (Hidy et al., 2012).

To address this problem we created a computer-based open infrastructure based on the workflow concept that can help a wide array of users in the application of the new model. The infrastructure is similar to PEcAn (Dietze...
et al., 2014) which is a collection of modules in a workflow that uses the Ecosystem Demography (ED v2.2) model. We followed the concept of model-data fusion (MDF; Williams et al., 2009) when developing the so-called “Biome-BGC Projects Database and Management System” (BBGCDB; http://ecos.okologia.mta.hu/bbgcdb/) and the BioVeL Portal (http://portal.biovel.eu) as a virtual research environment and collaborative tool. BBGCDB and the BioVeL portal help sensitivity analysis and parameter optimization of BBGCMuSo by a computer cluster-based Monte Carlo experiment and GLUE methodology (Beven and Binley, 1992). Further integration is planned using an alternative a Bayesian calibration algorithms (Hartig et al., 2012), that will provide extended calibration options to the parameters of BBGCMuSo.

We would like to support BBGCMuSo application for the wider scientific community as much as possible. For users of the original Biome-BGC, the question is of course the following: should I move to BBGCMuSo? Does it need a long learning process to move to the improved model? We would like to stress that users of the original Biome-BGC will have a smooth transition to BBGCMuSo, as we mainly preserved the structure of the input files. The majority of changes are related to the 7-layer soil module and to the implementation of management modules. The ecophysiological parameter file is similar to the original but it was extended considerably. This may raise issues but as it is emphasized in our User’s Guide (Hidy et al., 2015), we extended the ecophysiological parameter file with many parameters that will not need adjustment in the majority of the cases. We simply moved some 'burned-in' parameters into the ecophysiological parameter in order to allow easy adjustment if needed in the future.

**Code availability**

The source code, the Windows model executable, sample simulation input files and documentation are available at the BBGCMuSo website (http://nimbus.elte.hu/bbgc). The source code is also available at GitHub (https://github.com/bpbond/Biome-BGC/tree/Biome-BGCMuSo_v4.0).

**Authors’ Contributions**

Hidy developed Biome-BGCMuSo with modifying Biome-BGC 4.1.1 MPI version. The study was conceived and designed by Hidy and Barcza, with assistance from Marjanović, Churkina, Fodor, Horváth, and Running. It was directed by Barcza and Hidy. Marjanović, Ostrogović Sever, Pintér, Nagy, Gelybó, Dobor and Suyker contributed with simulations, measurement data and its post-processing and ideas on interpretation of the model validation. Hidy, Barcza and Marjanović prepared the manuscript and the supplement with contributions from all co-authors. All authors reviewed and approved the present article and the supplement.
Acknowledgements

The research was funded by the Hungarian Academy of Sciences (MTA PD 450012), the Hungarian Scientific Research Fund (OTKA K104816), the BioVeL project (Biodiversity Virtual e-Laboratory Project, FP7-INFRASTRUCTURES-2011-2, project number 283359), the EU FP7 WHEALBI Project (Wheat and Barley Legacy for Breeding Improvement; project No. 613556), the Croatian Science Foundation Installation Research Project EFFEctivity (HRZZ-UIP-11-2013-2492), and metaprogramme Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA). We acknowledge the international research project titled “FACCE MACSUR – Modelling European Agriculture with Climate Change for Food Security, a FACCE JPI knowledge hub”. Biome-BGC version 4.1.1 (the predecessor of BBGCMuSo) was provided by the Numerical Terradynamic Simulation Group (NTSG) at the University of Montana, Missoula MT (USA), which assumes no responsibility for the proper use by others. We are grateful to the Laboratory of Parallel and Distributed Systems, Institute for Computer Science and Control (MTA SZTAKI), that provided consultation, technical expertise and access to the EDGeS@home volunteer desk top grid system in computationally demanding analysis. We thank Ben Bond-Lamberty and one Anonymous Referee for the valuable comments on the manuscript.
References


Churkina, G., Zaehle, S., Hughes, J., Viovy, N., Chen, Y., Jung, M., Heumann, B. W., Ramankutty, N.,
Heimann, M. and Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change
determine the contemporary carbon balance of Europe, Biogeosciences, 7, 2749–2764, doi:10.5194/bg-7-2749-
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J.,
Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and Other
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change edited by T. F. Stocker, D.
Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley,
Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A.,
Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W.,
Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H. and Schulze, E. D.:
Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems 9, 1041–1050, doi:10.1007/s10021-
005-0105-7, 2006.
Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J.: Physiological and environmental regulation of stomatal
conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer, Agric. For.
Damour, G., Simonneau, T., Cochard, H. and Urban, L.: An overview of models of stomatal conductance at the
Dietze, M., Serbin, S., Davidson, C., Desai, A., Feng, X., Kelly, R., Kooper, R., Lebauer, D., Mantooth, J.,
Mchenry, K. and Wang, D.: A quantitative assessment of a terrestrial biosphere model’s data needs across North
Driessen, P., Deckers, J., Spaargaren, O. and Nachtergaele, F.: Lecture notes on the major soils of the world,
edited by P. Driessen, J. Deckers, O. Spaargaren, and F. Nachtergaele, Food and Agriculture Organization
Eastaugh, C. S., Pötzelsberger, E. and Hasenauer, H.: Assessing the impacts of climate change and nitrogen
deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC, Tree Physiol., 31,
Florides, G. and Kalogirou, S.: Annual ground temperature measurements at various depth, Available online:
Fodor, N. and Rajkai, K.: Computer program (SOILarium 1.0) for estimating the physical and hydrophysical
properties of soils from other soil characteristics, Agrokémia és Talajt., 60, 27–40, 2011.


Ostrogović, M. Z.: Carbon stocks and carbon balance of an even-aged pedunculate oak (Quercus robur L.) forest in Kupa river basin, doctoral thesis, Faculty of forestry, University of Zagreb, 2013. (in Croatian with English summary)


48
Figure 1. Dependence of normalized soil water content (upper part) and soil water potential (lower part) on soil water content in case of three different soil types.
Figure 2. Dependence of the soil moisture stress index on soil water content for three different soil types: sand (a), sandy clay soil (b) and clay (c). Soil stress index based on soil water potential (dotted lines) is used by the original model, while soil stress index based on normalized soil water content is used by BBGCMuSo (dashed lines).
Figure 3. Demonstration of the senescence calculation with an example. a) Soil water content (SWC; black dots), normalized soil water content (NSWC; white dots) and soil moisture stress index (SMSI; black triangles) during 30 days of a hypothetical drought event. b) Soil stress effect based on soil moisture stress index (SSE_{SMSI}; black dots), soil stress effect based on number of days since water stress (SSE_{NDWS}) and total soil stress effect (SSE_{total}). c) Aboveground senescence mortality coefficient (SMCA).
Figure 4. Soil moisture stress index used by decomposition for three different soil types: sand (a), sandy clay soil (b) and clay (c). Soil stress index based on soil water potential (dotted lines) is used by the original model, while soil stress index based on soil water content is used by BBGCMuSo (dashed grey lines).
Figure 5. Acclimated and non-acclimated (noacclim) daytime maintenance respiration of leaf as a function of air temperature. Acclimated respiration values were calculated based on different average daily temperatures during the previous 30 days ($T_{30\text{days}}$: 10, 13, 16, 19, 22, 25, 28, 31, 34, and 37 Celsius). In case without acclimation, the respiration is independent of average daily temperature, therefore only one line is presented (this refers to the original model logic).
Figure 6. Measured (black dots) and simulated variables (a) GPP, b) TER, c) SWC, d) LAI, e) LHF) using the original Biome-BGC (dark grey lines) and BBGCMuSo (light grey lines) models for grassland at the Bugac site between 2009 and 2011. Measured LAI was not available at Bugac.
Figure 7. Measured (black dots) and simulated variables (a) GPP, b) TER, c) SWC, d) LAI, e) abgC using original Biome-BGC (dark grey lines) and BBGCMuSo (light grey lines) models for maize simulation at the Mead1 site, between 2003 and 2006.
Figure 8. Measured (black dots) and simulated variables using original Biome-BGC (dark grey lines) and BBGCMuSo (light grey lines) regarding deciduous broad-leaved forest at the Jastrebarsko site between 2008 and 2010. a) GPP, b) TER, c) SWC (note: original Biome-BGC provides simulation results only for one layer, namely ‘the rooting depth’, which is 0-100 cm in this case), d) LAI, e) cumulative NPP. Note that measured LAI is not available.
<table>
<thead>
<tr>
<th>Group</th>
<th>Sub-group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Multilayer soil</strong></td>
<td>Thermodynamics</td>
<td>Two methods to calculate soil temperature layer by layer: logarithmic and the Ritchie (1998) method</td>
</tr>
<tr>
<td></td>
<td>Hydrology</td>
<td>Calculation of soil water content and soil properties layer by layer. New processes: percolation, diffusion, runoff, diffusion, and pond water formation.</td>
</tr>
<tr>
<td></td>
<td>Root distribution</td>
<td>Calculation of root mass proportion layer by layer based on empirical function after Jarvis (1989)</td>
</tr>
<tr>
<td></td>
<td>Nitrogen budget</td>
<td>Instead of uniform distribution, calculation of soil mineral nitrogen content layer by layer</td>
</tr>
<tr>
<td></td>
<td>Soil moisture stress index</td>
<td>Soil moisture stress index based on normalized soil water content calculated layer by layer</td>
</tr>
<tr>
<td></td>
<td>Senescence</td>
<td>Senescence calculation based on soil moisture stress index and the number of days since stress is present</td>
</tr>
<tr>
<td></td>
<td>Decomposition and respiration</td>
<td>Maintenance root respiration flux is calculated layer by layer. Limitation of soil moisture stress index.</td>
</tr>
<tr>
<td><strong>Management</strong></td>
<td>Management modules</td>
<td>Mowing, grazing, harvest, ploughing, fertilization, plating, thinning, and irrigation. 7 different events for each management activity can be defined per year, even in annually varying fashion.</td>
</tr>
<tr>
<td></td>
<td>Management related plant mortality</td>
<td>Rate of the belowground decrease to the mortality rate of the aboveground plant material can be set optionally</td>
</tr>
<tr>
<td><strong>Other plant related processes</strong></td>
<td>Phenology</td>
<td>Alternative model based phenology. Calculating start and end of vegetation period using heat sum index for growing season (extension of index in Jolly et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Genetically programmed leaf senescence</td>
<td>Genetically programmed leaf senescence due to the age of the plant tissue</td>
</tr>
<tr>
<td></td>
<td>New plant pools</td>
<td>Fruit and soft stem</td>
</tr>
<tr>
<td></td>
<td>C₄ photosynthesis</td>
<td>Enzyme-driven C₄ photosynthesis routine based on the work of Di Vittorio et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Acclimation</td>
<td>Photosynthesis and respiration acclimation of plants, temperature-dependent Q10 (Smith and Dukes, 2012)</td>
</tr>
<tr>
<td></td>
<td>LAI-dependent albedo</td>
<td>LAI-dependent albedo estimation based on the method of Ritchie (1998)</td>
</tr>
<tr>
<td></td>
<td>Stomatal conductance regulation</td>
<td>CO₂ concentration is taken into account in stomatal conductance estimation based on the Franks et al. (2013)</td>
</tr>
<tr>
<td><strong>Model run</strong></td>
<td>Dynamic mortality</td>
<td>Ecophysiological parameter for whole-plant mortality fraction can be defined year by year</td>
</tr>
<tr>
<td></td>
<td>Transient run</td>
<td>Optional third model phase to enable smooth transition from the spinup phase to the normal phase</td>
</tr>
<tr>
<td></td>
<td>Possibility of land-use-change simulation</td>
<td>Avoiding frequent model crash in case of different ecophysiological parameters set in spinup and normal simulations</td>
</tr>
<tr>
<td><strong>Methane and nitrous oxide soil efflux</strong></td>
<td>Unmanaged soils</td>
<td>Empirical estimation based on Hashimoto et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Grazing and fertilization</td>
<td>Empirical estimation based on IPCC (2006) Tier 1 method</td>
</tr>
</tbody>
</table>
Table 2. Default values of parameters in BBGCMuSo for different soil types. Soil types are identified based on the used-defined sand, silt and clay fraction of the soil layers based on the soil triangle method.

<table>
<thead>
<tr>
<th></th>
<th>SAN D</th>
<th>LOAM</th>
<th>SAND Y SAND</th>
<th>SAND Y LOAM</th>
<th>SAND Y CLAY LOAM</th>
<th>LOA M</th>
<th>SILT LOA M</th>
<th>SILT</th>
<th>SILT Y CLAY LOA M</th>
<th>CLAY LOA M</th>
<th>SILT Y CLAY</th>
<th>CLAY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3.45</td>
<td>10.45</td>
<td>9.22</td>
<td>5.26</td>
<td>4.02</td>
<td>50</td>
<td>7.71</td>
<td>7.63</td>
<td>6.12</td>
<td>5.39</td>
<td>4.11</td>
<td>12.46</td>
<td></td>
</tr>
<tr>
<td>SWC_{sat}</td>
<td>0.4</td>
<td>0.52</td>
<td>0.515</td>
<td>0.44</td>
<td>0.49</td>
<td>0.51</td>
<td>0.505</td>
<td>0.5</td>
<td>0.46</td>
<td>0.48</td>
<td>0.42</td>
<td>0.525</td>
<td></td>
</tr>
<tr>
<td>SWC_{fc}</td>
<td>0.155</td>
<td>0.445</td>
<td>0.435</td>
<td>0.25</td>
<td>0.38</td>
<td>0.42</td>
<td>0.405</td>
<td>0.39</td>
<td>0.31</td>
<td>0.36</td>
<td>0.19</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>SWC_{wp}</td>
<td>0.03</td>
<td>0.275</td>
<td>0.26</td>
<td>0.09</td>
<td>0.19</td>
<td>0.24</td>
<td>0.22</td>
<td>0.20</td>
<td>0.13</td>
<td>0.17</td>
<td>0.05</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>1.60</td>
<td>1.4</td>
<td>1.42</td>
<td>1.56</td>
<td>1.5</td>
<td>1.44</td>
<td>1.46</td>
<td>1.48</td>
<td>1.54</td>
<td>1.52</td>
<td>1.58</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>RCN</td>
<td>50</td>
<td>70</td>
<td>68</td>
<td>54</td>
<td>56</td>
<td>64</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>60</td>
<td>52</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

B [dimensionless]: Clapp-Hornberger parameter; SWC_{sat}, SWC_{fc}, SWC_{wp} [m$^3$ m$^{-3}$]: SWCs at saturation, at the field capacity and at the wilting point, respectively; BD [g cm$^{-3}$]: bulk density; RCN [dimensionless]: runoff curve number.
Table 3. Quantitative evaluation of the original and adjusted models at the grassland site in Bugac using different error metrics. ORIG means the original Biome-BGC, while MuSo refers the BBGCMuSo. See text for the definition of the error metrics.

<table>
<thead>
<tr>
<th></th>
<th>R²</th>
<th>RMSE</th>
<th>NRMSE</th>
<th>NSE</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
</tr>
<tr>
<td>GPP</td>
<td>0.50</td>
<td>0.66</td>
<td>5.82</td>
<td>1.52</td>
<td>51.2</td>
</tr>
<tr>
<td>TER</td>
<td>0.65</td>
<td>0.64</td>
<td>3.21</td>
<td>0.98</td>
<td>38.1</td>
</tr>
<tr>
<td>LHF</td>
<td>0.24</td>
<td>0.62</td>
<td>1.89</td>
<td>0.83</td>
<td>33.2</td>
</tr>
<tr>
<td>SWC</td>
<td>0.60</td>
<td>0.64</td>
<td>0.04</td>
<td>0.09</td>
<td>34.6</td>
</tr>
</tbody>
</table>

*SWC simulated by the original Biome-BGC represents constant value within the entire root zone.
Table 4: Quantitative model evaluation regarding to maize simulation at the Mead1 site using different error metrics. ORIG means the original Biome-BGC, while MuSo refers to the BBGCMuSo. See text for the definition on the error metrics.

<table>
<thead>
<tr>
<th></th>
<th>$R^2$</th>
<th>RMSE</th>
<th>NRMSE</th>
<th>NSE</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
</tr>
<tr>
<td>GPP</td>
<td>0.61</td>
<td>0.87</td>
<td>5.83</td>
<td>3.44</td>
<td>19.0</td>
</tr>
<tr>
<td>TER</td>
<td>0.59</td>
<td>0.86</td>
<td>4.65</td>
<td>1.75</td>
<td>35.4</td>
</tr>
<tr>
<td>SWC</td>
<td>0.12*</td>
<td>0.01</td>
<td>0.13*</td>
<td>0.09</td>
<td>41.2*</td>
</tr>
<tr>
<td>LAI</td>
<td>0.26</td>
<td>0.59</td>
<td>5.81</td>
<td>1.61</td>
<td>97.6</td>
</tr>
<tr>
<td>agbC</td>
<td>0.36</td>
<td>0.82</td>
<td>296.5</td>
<td>159.6</td>
<td>27.4</td>
</tr>
</tbody>
</table>

* SWC simulated by the original Biome-BGC represents constant value within the entire root zone.
Table 5: Quantitative model evaluation of simulation for deciduous broad-leaved forest for the Jastrebarsko forest site using different error metrics. ORIG means the original Biome-BGC, while MuSo refers to the BBGCMuSo. See text for the definition on the error metrics.

<table>
<thead>
<tr>
<th></th>
<th>( R^2 )</th>
<th>( \text{RMSE} )</th>
<th>( \text{NRMSE} )</th>
<th>( \text{NSE} )</th>
<th>( \text{BIAS} )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
<td>MuSo</td>
<td>ORIG</td>
</tr>
<tr>
<td>GPP</td>
<td>0.84</td>
<td>0.84</td>
<td>3.67</td>
<td>1.77</td>
<td>27.3</td>
</tr>
<tr>
<td>TER</td>
<td>0.81</td>
<td>0.83</td>
<td>2.5</td>
<td>1.31</td>
<td>27.4</td>
</tr>
<tr>
<td>SWC</td>
<td>0.83*</td>
<td>0.67</td>
<td>0.11*</td>
<td>0.08</td>
<td>27.1*</td>
</tr>
<tr>
<td>NPP</td>
<td>0.99</td>
<td>0.99</td>
<td>240.9</td>
<td>70.3</td>
<td>30.5</td>
</tr>
</tbody>
</table>

* SWC simulated by the original Biome-BGC represents constant value within the entire root zone.
Interactive comment on “Terrestrial Ecosystem Process Model Biome-BGCMuSo: Summary of improvements and new modeling possibilities” by Dóra Hidy et al.

Dóra Hidy et al.
dori.hidy@gmail.com

Received and published: 18 June 2016

Reply to the interactive comment "RC2: 'Valuable step and contribution weakened by no repository', by Ben Bond-Lamberty (Referee 2), 09 Jun 2016" by Zoltán BARCZA and Dóra HIDY

First of all, we thank Ben Bond-Lamberty for reviewing the manuscript (gmd-2016-93), we are grateful for the positive and valuable notes. The comments of the Referee are shown below in between quotation marks in italic. Our detailed response to the comments and suggestions are presented below. We attached the revised manuscript to this interactive comment. The revised manuscript also contains modifications to fix
the issues raised by the Anonymous Referee #1.

"There are a few weaknesses, only one of which I consider critical. First, the processes that have been implemented or improved come across as something of a laundry list, and a bit random; it would be good to describe any common themes that unite them, and better talk about remaining areas of weakness the authors see in the model."

We agree with the Referee that the improvements might seem a bit random. In fact we are working on the developments for quite a long time, and during the years we faced different problems with the model, and we tried to fix them using our best knowledge. Three common themes emerge (two larger groups plus a group of heterogeneous fixes): soil processes (from different aspects), management (now it covers the majority of typical human interventions), and a number of additional fixes and adjustments to create a state-of-the are Biome-BGC (we can mention here acclimation, representation of the CO2 mixing ratio dependence of stomatal conductance, and estimation of other greenhouse gas fluxes). We truly hope that this is not a serious problem as the modeling community might find these diverse developments useful in many cases. Publication of partial adjustments is an option, but we decided to disseminate the developments as part of this major work for easier accessibility and reference.

Nevertheless, we added a few sentences to the revised manuscript (P9 L24-38) where we mention the main motivations for the adjustments: "The developments were motivated by multiple factors. Poor agreement of the modified Biome-BGC with available eddy covariance measurements made in Hungary over two grassland sites (see Hidy et al., 2012) clearly revealed the need for more sophisticated representation of soil hydrology, especially at the drought-prone, sandy Bugac site. Implementation and benchmarking of the multilayer soil module resulted in several additional developments related e.g. to the N balance, soil temperature, root profile, soil water deficit effect on plant functioning and decomposition of soil organic matter. Lack of management descriptor within the original Biome-BGC motivated the development of a broad array of possible management techniques covering typical grassland, cropland and forest..."
management practices. Modeling exercises within international projects revealed additional problems that needed a solution related e.g. to stomatal conductance (Sándor et al., 2016). Recently published findings (e.g. simulation of temperature acclimation of respiration; Smith and Dukes, 2012) also motivated our work on model development. Addressing the known issues with the Biome-BGC model required diverse directions but this was necessary due to the complex nature of the biogeochemical cycles of the soil-plant system. Our overarching aim was to provide a state-of-the-art biogeochemical model that is in the same league as currently available models, such as LPJmL, ORCHIDEE, CLM, JULES, CASA and others."

In the 'Discussion and conclusions' section we mention a few remaining areas where developments are needed in the future:

"Representation of photosynthesis acclimation (Medlyn et al., 2002) is needed in future modifications as another major development." (P32 L29-31 in the revised MS)

"Developments are clearly needed in terms of soil water balance and ecosystem scale hydrology in general. Other developments are still needed to improve simulations with dynamic C and N allocation within the plant compartments (Friedlingstein et al., 1999; Olin et al., 2015). Complete representation of ammonium and nitrate pools with associated nitrification and denitrification is also needed to avoid ill-defined, N balance related parameters (Thomas et al., 2013). Even further model development will require the addition of other nutrient limitations (phosphorus, potassium)." (P33 L3-8 in the revised MS)

"Clearly, extensive testing is required at multiple EC sites to evaluate the performance of the model and to make adjustments if needed." (P33 L10-11 in the revised MS)

"Second, there's no validation or testing of the individual changes. This isn't a showstopper, but it would have been really useful to run many more simulations with and without each of the new changes. That would have let you quantitatively assess their
individual value.”

We presented several additional simulation results in the Supplementary material (S2-S9): http://www.geosci-model-dev-discuss.net/gmd-2016-93/gmd-2016-93-supplement.pdf

In the Supplementary material we illustrate the effect of different model features such as senescence, management, and groundwater effects on the simulated results in a fashion that is mentioned by the Referee (switching on and off individual features to see its result on the simulated fluxes and pools). We hope that this is what the Referee proposed.

"Finally, and most seriously, I’m mystified that the authors are choosing to host the code on their own webserver. GitHub has become the standard for scientific software repositories, but even if you don’t use it, for permanence and reproducibility you HAVE to use version control (so, for example, people can send you pull requests or see commit histories) in an established repository. This would massively increase the utility of the new model, and enable it to become a true community-driven model (or, at least, a much more transparent one). I applaud all the work you’ve done here, including on this website, but really, really urge you to make use of GitHub or another web-based repository hosting service. Note that I have posted the Biome-BGC source code in such a repository (https://github.com/bpbond/Biome-BGC) and would be happy to make this available, and/or turn it over to you."

Thank you very much for this proposal. We did not use GitHub (or other source code repository) or other version control software previously. We have submitted the source code to GitHub, which is available online at https://github.com/bpbond/Biome-BGC/tree/Biome-BGCMuSo_v4.0

We have inserted a sentence into the manuscript into Code availability section about this possibility (P34 L5-6 in the revised manuscript).
Specific comments

"1. Page 3, line 4: probably ‘often is no longer’ (concentration-driven runs remain very common in ESM simulations)"

We have modified the sentence according to the Referee’s comment (P3 L3 in the revised manuscript).

"2. P. 3, l. 8-9: perhaps cite one of the Friedlingstein et al. papers (e.g. 10.1175/JCLI-D-12-00579.1)"

We have inserted the Friedlingstein et al. citation.


We have inserted the Thornton et al. citation.

"4. P. 4: wow, great summary of Biome-BGC history! One addition might be in line 12: ‘. . .and decomposition, and then simulated wildfire effects across a western Canadian forest landscape (Bond-Lamberty et al. 2007, 10.1038/nature06272).’ (Completely optional though.)"

Thank you for mentioning this paper. Somehow we overlooked this important paper. We have inserted the text and the citation that the Referee suggested into the revised manuscript.

"5. P. 5, l. 11-12: I think this is true, but would add that Biome-BGC also strikes a great balance between process fidelity and tractability: it’s relatively easy to use and run, even for non-specialists, but still yields interesting insights. If you agree, perhaps note this"

We have inserted this note to the manuscript. In the revised MS (P5 L11-14) the sentence reads as: “The success and widespread application of Biome-BGC can be
attributed to the fact that Biome-BGC strikes a great balance between process fidelity and tractability: it is relatively easy to use and run, even for non-specialists, but still yields interesting insights. The success can also be attributed to the open source nature of the model code."

"6. P. 10, l. 21-22: More dials and knobs aren’t always better. How do you know this is an improvement? Are four layers known to be too few?"

The motivation for the implementation of 7 soil layers can be summarized with the followings: - Using 7 layers the soil profile can be better described, which means that change of texture and bulk density with depth can be described in a more realistic fashion. Soil profile effect on soil hydrology was demonstrated in many cases (this feature is also used for the Jastrebarsko case study within the paper), and it can be important in many cases. - Implementation of thin soil layers close to the surface can support drying out the upper layers (due to surface evaporation and root water uptake which is strong close to the surface), so the resulting soil water content profile is closer to observations. Consequently, drought effect on plant functioning and soil microbial activity is better captured. - Usage of multiple layers (with thinner layers close to the soil surface) might be important for herbaceous vegetation due to the small rooting depth. - Cropland related developments have priority in the future within Hungarian research projects, and experience from crop models (e.g. from DSSAT) shows the necessity of a larger number of simulated soil layers.

In summary, we think that 4 soil layers are too few (even 7 layers might turn out to be too few) especially in case of herbaceous vegetation. Benchmarking and further development of the model is needed to find the optimal distribution of soil layers.

We have extended the manuscript summarizing the above reasoning (P10 L22-28 in the revised MS): "Higher number of soil layers might be useful to better represent the soil profile in terms of soil texture and bulk density. This should be beneficial for sites with complex hydrology (see e.g. the Jastrebarsko case study in section 5.3)."
Additional layers also improve the representation of soil water content profile as the upper, thinner soil layers typically dry out more than the deeper layers, which affects soil and plant processes. As rooting depth can be quite variable, additional layers might support the proper representation of soil water stress on plant functioning. Seven layers provide an optimal compromise between simulation accuracy and computational cost.

"7. P. 12, l. 36-37: a thought for the future: an adaptive-timestep algorithm that shrinks the timestep only when necessary"

Thank you for the note. In fact we implemented such solution that is suggested by the Referee. P13 L1-15 in the original manuscript described this feature.

"9. P. 31, l. 19: 'he probable'"

Thank you for the language corrections. We modified the sentence.

"10. P. 31, l. 35: 'The original'"

We have corrected this.

"11. P. 32, l. 32: 'The role'"

We made the correction.

"12. P. 33, l. 34-: consider mentioning/discussing PEcAn ’ see Dietze et al. (2014) 10.1002/2013JG002392"

Thank you for mentioning PEcAn, this workflow based system is indeed similar to the one we implemented. We have inserted a sentence to the revised manuscript (P33 L24-26) mentioning PEcAn and the ED model: "The infrastructure is similar to PEcAn (Dietze et al., 2014) which is a collection of modules in a workflow that uses the Ecosystem Demography (ED v2.2) model."

Please also note the supplement to this comment: http://www.geosci-model-dev-discuss.net/gmd-2016-93/gmd-2016-93-AC1-C7
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-93, 2016.
Interactive comment on “Terrestrial Ecosystem Process Model Biome-BGCMuSo: Summary of improvements and new modeling possibilities” by Dóra Hidy et al.

D. Hidy
dori.hidy@gmail.com

Received and published: 15 June 2016

Reply to the interactive comment "RC1: 'Improper compensation between nitrogen cycle and management module', by Anonymous Referee 1, 09 Jun 2016" by Dóra HIDY and Zoltán BARCZA

We thank the Anonymous Referee for the valuable comments on our manuscript (gmd-2016-93). The notes of the Referee are inserted below in between quotation marks in italic. Our detailed response to the comments and suggestions are presented below.
"A major problem is that the authors left the issue of negative nitrogen pool unresolved, in favor of the management module (P27 L3-12). This is a red flag in ecosystem modelling! If the authors are anticipated to employ the MuSo as a part of ESM in near future (P3 L2-13), this issue definitely need to be resolved with a more proper approach. Otherwise, the future projection of nitrogen cycle will be biased by non-equilibrium state."

We believe that this is a misunderstanding. In Biome-BGCMuSo v4.0, and also during the development of earlier Biome-BGCMuSo versions, we have fixed the issue of negative nitrogen (N) pool. In other words, the negative nitrogen pool issue is completely resolved in the model version that we describe in the manuscript. Negative nitrogen pool was an issue in earlier model versions in some cases during land use change simulations (LUC; when normal phase represent a different plant functional type than the spinup phase) that we mention in the original manuscript (P27 L3-12). We realized that the original text could be misunderstood, as we wrote the following: "One problem that is associated with LUC is the frequent crash of the model with the error 'negative nitrogen pool' during the beginning of the normal phase." It would have been better to write it as "....One problem that was associated with LUC in earlier model versions was the frequent...". In the revised manuscript we will rephrase this sentence to avoid misunderstanding.

Below we provide a brief description of the logic that is used in the LUC simulations for clarity. This implementation can be traced by checking the model code which is available at the model’s website at http://nimbus.elte.hu/bbgc/files/biome-bgc-muso_4.0_2016_03_03_Linux_src.tar

The core logic of all Biome-BGC versions is that the N flux calculations of the plant compartments are based on the carbon fluxes of the corresponding plant compartments and the C:N ratios of the plant compartments. The logic for the carbon fluxes is different because they are based on the content of the carbon pools and the environmental drivers. If the C:N ratio of a given plant compartment in the normal phase..."
is lower than in the spinup phase, it can happen that the N flux calculated from the C flux using the new C:N ratio is higher than the content of the N pool. In earlier model versions this caused negative N pool thus crashing of the simulation. In order to avoid this error we have implemented an automatic procedure (in the source code this is implemented in restart_io.c): in the normal phase, instead of using the result of the spinup phase, the nitrogen content of the plant compartments are calculated internally by the model code based on the final (equilibrium) carbon pools and the new C:N ratios of the plant compartments, so that the resulting N pools of the plant compartments are harmonized with the C:N ratio of the plant compartments presented in the ecophysiological parameterization.

It is important to note that soil and litter pools (litter labile, unshielded cellulose, shielded cellulose and lignin C and N) are not affected by this LUC handler, only the actual, transfer and storage pools of leaf, fine root, soft stem, fruit, liveroot, deadroot, livestem and deadstem. It means that equilibrium C and N soil pools (which are the most important elements for the initial conditions of the normal run) remain intact. In the manuscript we stated that the equilibrium N pools are adjusted, but the word "plant" was missing, thus it was ambiguous. In the revised manuscript we will correct this problem ("equilibrium carbon pools" in P27 L8 will be replaced with "equilibrium plant carbon pools", and the same for nitrogen).

In case of the Mead simulation (presented in our manuscript) where the spinup phase used C3grass parameterization and the normal phase used maize parameterization this modification resulted 0.49 g N m-2 N-surplus in transfer N pool of fine root (because the fine root C:N ratio of maize was lower than the fine root C:N ratio of C3grass). The magnitude of the change is similar in case of other LUC types such as forest-herbaceous, herbaceous-forest, and herbaceous-herbaceous. But most importantly in all possible LUC cases the plant N pools that are adjusted are not important anymore, since they are replaced by new vegetation in the normal phase with new C:N stoichiometry. We added a new sentence to the revised manuscript to
explain this logic: "This modification means that equilibrium plant nitrogen pools are not passed to the normal phase, but in fact this is not needed because LUC means change in the existing plant functional type, so new plant C:N ratios will inevitably be realized."

All in all, the equilibrium soil carbon and nitrogen pools are not changed during LUC, only the plant compartments that are in fact replaced by a new plant functional type during the first year of the normal run. Most importantly, this handler resolves the negative nitrogen pool issue that was possible in earlier model versions. We truly believe that this is a remarkable improvement as previous, published and widely used Biome-BGC model versions frequently crashed in such situations.

"Most importantly, with the current version of MuSo, the authors cannot claim legitimacy of carbon cycle as well. Biome-BGC is a carbon/nitrogen coupled model. Therefore, distorted nitrogen cycle affects carbon cycle, especially in long-term simulations. The manuscript provided many good pieces of information about the validation of the modified model, but they are rather meaningless without a proper treatment of carbon/nitrogen cycles. So I don’t comment on them at this stage."

We kindly ask the Referee to comment on the validation of the model (if he/she accepts our explanation on the negative nitrogen pool). We appreciate any comments about the case studies and about the rest of the manuscript.

"The full modification of the model would take time, so I recommend to withdraw the current manuscript and resubmit a new one later."

We hope that the Referee agrees that it is not necessary to withdraw the manuscript as the negative nitrogen pool issue does not exist in Biome-BGCMuSo v4.0.

Interactive comment on Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-93, 2016.