We warmly thank the anonymous reviewer #1 and Dr. Jeremy Fyke (reviewer #2) for their insightful comments. We did our best to follow the suggestions which greatly improved the manuscript to our opinion.

In the following, we reply point by point to each individual comment (referee’s comments are italicised). Following our responses, please find our new manuscript in which we highlighted changes from the original version.

Dr. Jeremy Fyke

This manuscript describes a method to downscale temperature and precipitation from a coarse EMIC grid to a higher resolution grid, such as (for example) that typical for ice sheet models, but also other aspects (e.g. mountainous environments). This is a very pertinent, needed, and surprisingly difficult topic, and it’s great the authors are tackling this in iLOVECLIM.

I think some work is still required before this can be published, so suggest a number of revisions. Some general themes that require improvement in my opinion, and that are reflected in my more detailed comments, are:

- Given the ‘EMIC’ nature of the model and simplifications within the downscaling scheme, I think greater emphasis on caveats associated with EMIC-embedded downscaling should be more clearly described, so that potential users are clearly aware of what aspects of their scientific simulations are a result of model simplifications, versus real processes.

 Following Referee #1’ suggestions, we have included a synthetic review of EMICs abilities and limitations. We hope this will help the reader and the potential users to grasp the field of application and its limits of such models. A side note is that even if the downscaling is indeed an important problem in EMIC, and more generally in Earth System Model, the different groups provide only limited information on how they deal with it.

- A clearer high-level, but technical overview of the scheme would be really useful in the Introduction, so the readers enter the details with a pre-existing, rough, mental construct of what to expect. E.g. ‘Briefly, the downscaling procedure reimplements the original ECBILT equations at 11 vertical levels, followed by: : : and: : :’. Also, repeat this overview at the end.

 Thank you for the suggestion. We have now added these sentences in the introduction:

 "The methodology chosen for the downscaling procedure is to first replicate the original model physics on artificial surfaces of a vertically extended grid. Then from the vertically extended grid, we compute the precipitation explicitly taken into account the sub-grid orography following the original model physics."

 And in the conclusion:

 "The methodology chosen for the downscaling procedure is to replicate the relevant parts of the model physics needed for the temperature and precipitation on the high resolution grid."

- Several important equations are presented without justification (e.g. ‘we used this formulation because: : :’). Even if Haarsma et al. (1997) is cited, it would still be useful to provide a physical reasoning for the equation form.

 Most of the equations have now been updated with a physical justification. Thanks for noting this caveat.

- Given the advertised capability of the downscaling, to enable science to be done at sub grid scales (e.g. GrIS ablation zones: : : it seems necessary to show some ‘zoomed-in’ plots of particular regions, for example, GrIS. As it stands, the reader has to squint to try and see the downscaled fields, as they are represented across the whole domain.

 The suggested maps have been added for the precipitation over Greenland and over Europe.

- Some evaluation concerns: ‘: : ’ there appears there is a non-monotonic saw-tooth or wave pattern in precipitation across Greenland, generated by the precipitation downscaling. This would be very problematic for actual SMB fields used for science. These features, and other potentially similar ‘native grid artefact’ features over non-ice-sheet regions (which I am less familiar with) need to be explained in more detail.

 We added a discussion on this native grid artefact when we first present the maps of simulated
temperatures (p. 9 l. 16-20):

“In many locations, the native grid is still visible on the NH40 model results. This is because our downscaling mostly redistribute the temperature within a coarse grid point according to the sub-grid elevation starting from the coarse grid information. This generates discontinuities when moving from two neighbouring cells. Only air advection, which tends to be larger along parallels than meridians, reduces the imprint of the coarse grid.”

This is indeed equivalent to the phenomenon you describe in the figure you kindly shared with us (mentioned in one of your later comment, p. 18). To our knowledge the only way to get rid off these artificial features is to perform some kind of interpolation on the coarse grid values prior any downscaling. However this approach is not suitable for conservative schemes since the interpolation would not be mass conservative with respect to humidity.

Regarding the SMB, this is indeed an issue as the fields presented in the manuscript are not suitable for an ice sheet model forcing. We are currently working on the coupling methodology and hopefully will come up with an hybrid solution that ensures mass conservation and smoothed SMB fields.

P2L20: Importantly, I don’t think the method is downscaling heat. It is downscaling temperature - which is not the same as heat.

It is fair to say that most of the terms in the energy balance are not downscaled in our methodology. Latent and sensible heat fluxes in iLOVECLIM are largely computed from temperature, but they also depend on winds, which are not downscaled. In the revised version of the manuscript we do no longer argue that we downscale heat.

P2L25: “closed water budget” -> “closed global water budget”

Done.

P2L29: The scheme could also be important for dynamic vegetation models (i.e. by resolving sub gridded elevation-dependent vegetation distribution envelopes)

Yes, we now explicitly mention vegetation dynamics here.

P3L23: Review the justification for basing the linear temperature profile on the log of pressure (even if already stated in Haarsma et al (1997) and/or basic knowledge)

We added the following:

“Assuming hydrostatic equilibrium and using the ideal gas law and hydrostatic equilibrium, the temperature varies linearly with the log of pressure. For this reason, from the 650 hPa and ...”

P4L1: why is the interpolated T500 used to obtain the near-surface temperature, instead of T650 (which is presumably closer to the surface)?

Using T500 or T650 will not change the computation at the surface because in any case we assume a linear profile passing exactly through T650. However, the altitude of the 500 hPa level is set constant and homogeneous in the model, whilst the altitude of the 650 hPa is not computed explicitly it is thus easier to compute from T500 while not changing the result.

P4L1: Explain why different treatments are applied to near-surface temperature, versus T(p). Does this result in a discontinuity in temperatures, when comparing near-surface temperatures to surface temperatures? Perhaps I’m just confused here.

Eq. 3 directly derives from Eq. 1 and 2, only expressed in term of altitude of the pressure level instead of pressure. As such, there are no discontinuities. We slightly modified the text to make this clearer:

“ As in Haarsma et al. (1997), the near-surface air temperature is computed from T500, using Eq. 1
to eliminate the pressure variable in the hydrostatic equilibrium equation:"

P4L9: “Due to orography, the atmospheric isotherms are shifted upwards”: is there a citation explaining this physical phenomenon? Given it’s role in motivating implementation of the \(f_s\) factor, it seems important to explain.

We agree that this sentence was confusing. The main physical reasoning behind this parameter is that the along-slope temperature lapse rate is generally smaller than the free-atmosphere temperature lapse rate (e.g. Marshall et al. 2007 or Gardner et al. 2009 from observational networks in the Arctic; Minder et al. 2010 for the Cascade Mountains). In ECBilt, the near-surface air temperatures for the virtual surfaces are retrieved using the free-atmosphere temperature lapse rate (Eq. 2 in the manuscript). The use of this lapse rate instead of the along-slope one lead to an overestimation of the range of sub-grid temperatures inside a coarse grid cell. In the model, the parameter \(f_s\) is specifically designed to reduce the value of the atmospheric temperature lapse rate.

In the revised manuscript, we do no longer mention the isotherms but we explain better the reasoning of this \(f_s\) parameter:

“The vertical lapse rate in temperature computed in the model in Eq. 2 is representative of the free-atmosphere temperature variations. Since the along-slope lapse rate is generally smaller than the free-atmosphere lapse rate (e.g. Marshall et al. 2007; Gardner et al. 2009; Minder et al. 2010), its use lead to an overestimation of the temperature changes with elevation. In order to artificially reduce the value of the vertical lapse rate in the model, we apply a global tunable correcting factor, \(f_s\) in Eq. 4 (typically ranging from 0.5 to 1.), to the orography on the vertically extended grid.”

Equations 3 and 4: nearly duplicative. Could the authors just present Equation 4, then say “\(f_s=1\), reduces to the original equation of Haarsma et al. (1997)”?

Eq. 3 and Eq. 4 are indeed nearly duplicative except that the altitude is in one case the elevation on the native grid \((z_h)\) and in the other it is the altitude of the vertically extended grid \((z_{h(l)}=1,11))\). We prefer to keep the two equations for sake of clarity, but we slightly modified the text around these sentences:

“In Haarsma et al. (1997) the near-surface air temperature of an atmospheric grid cell, \(T_i\), is computed from \(T_{500}\), using Eq. 1 to eliminate the pressure variable in the hydrostatic equilibrium equation:"

“With \(z_h\) is the grid-cell surface height and \(z_{500}\) the height of the 500 hPa levels (prescribed homogeneously at 5500 m)”

And later:

“This equation is used to assess the near-surface air temperature for the 11 artificial surfaces using explicitly their altitude, \(z_{h(l)=1,11})\), instead of the actual surface height of the grid cell:”

Equations 3 and 4: why is \(T^*\) over-barred in Eq 3, but not in Eq 4?

This is to make a distinction between the fields (temperature and altitude) on the native grid (over-barred) and on the vertical levels (regular). Again, the slight text modification presented in the previous comment hopefully facilitate the reading.

P4L13: For completeness, perhaps explicitly state these energy balance terms, indicating which ones use as input the downscaled near-surface air temperature.

We added this information as:

“From this near-surface air temperature for the artificial surfaces, we derive several surface energy balance terms (downward longwave radiation, latent and sensible heat flux) in the same way as Haarsma et al. (1997)”.

P4L19: “In ECBilt, : :” -> “In the idealized ECBilt representation of the atmosphere, : :”

Done.
We have added this information in the text at the beginning of Sect. 2.2:
“This grid consists in 11 vertical levels at 10, 250, 500, 750, 1000, 1250, 1500, 2000, 3000, 4000
and 5000 m.”

Equation 5: could g be taken out of the integral (also, in the original Haarsma equation)?

We have done so as g is indeed constant in the model.

General: suggest including web link for Haarsma et al. (1997) in reference, as it is not available by, e.g. DOI. As it is it
takes some brief Google searching to find a PDF copy.

Done.

General: how does scheme work for elevations greater than 5500m (500 hPa)? Since mountainous regions are of
specific interest, and many of these regions have elevations greater than 5500m, this would seem important to note.

It depends on which grid. On the native grid, elevations greater than 500hPa are not allowed and
any points above have to be cut-off. However, at T21 model resolution this situation is hardly
reached ; only when coupled to the ice sheet model with extreme ice sheet scenarios. On the 40
km grid, there is no computational limitation. However, we impose the value at the height of the last
level in the vertically extended grid to any sub-grid point with an elevation greater than that level.

Equation 6: it’s not immediately clear why the authors need to calculate surface pressure as a function of surface
temperature? Can’t the authors apply a more direct pressure/elevation relationship? If I’m wrong (quite possibly) -
perhaps a clearer description of why this equation form is used, could be useful.

To our knowledge, there is no direct formulation $p=f(z)$ that relates the pressure to the elevation.
Any correspondence between these two variables require an assumption on the temperature as
$p=f(z,T)$. Even in simple formulation, such as the barometric formula, an hypothesis on the vertical
profile of temperature has to be done. In our manuscript, Eq. 6 is simply Eq. 1 but expressed in
term of pressure instead of temperature, so the use of this form is entirely consistent with the
general formulation in the model. We slightly modified the text to clarify the link with Eq. 1:
“The surface pressure p_0 is computed rearranging Eq. 1 in term of pressure and using
Eq. 2.”

General: the switching between use of values at the 650 hPA and 500 hPa levels is somewhat confusing. Can
motivation/clarification be given on why this switching occurs?

Done.

Equation 7: is $s_a(k)$ ‘surface’ or ‘surface area’?

We replaced surface by ‘surface area’.

Equation 7: I’m not sure the initial 1/k_{max} term is correct here.

Thank you for spotting it ; mistake is corrected in the revised version.

Equation 7: the authors could just say ‘the surface elevation of the native grid comprises the area-weighted average of
all k sub-grid points.’, could they not?

Yes, we added this before the equation.

Equation 8: I’m not sure it’s necessary to write out the equation for linear interpolation here. I’d be OK with just saying
‘linearly interpolate from the bounding vertical levels’ or something similar.

We followed your suggestion and remove this equation from the text.
General: some devil's advocate points that might be worth addressing: why not just compute T^*, T_s, and q_{max} at each sub grid point, using the equations described earlier? What is the advantage of first calculating these at specified levels, then vertically interpolating? Related: others (e.g. in Fyke et al. 2011) didn’t use 11 globally constant levels, but rather calculated the range of levels at each point, based on the high resolution topography within each native grid cell. This significantly reduced computation times (for example, over large flat regions) and also allowed for finer vertical resolution in the sub gridded levels. Was this approach considered here?

The computation at each sub-grid point is a possibility. However, with the 40 km grid we have generally more than 100 sub-grid points for one native grid cell. In doing so, we will increase the computation time by a factor of ten, which is not negligible.

About the methodology, we went for the fixed levels approach mimicking the original ECBilt formulation that has fixed artificial levels for the radiative scheme. We acknowledge the fact that the adaptive vertical grid strategy of Fyke et al. is certainly better in principle. We consider this approach for further development of the downscaling methodology. However, one should keep in mind that the profiles computed in iLOVECLIM are relatively linear and thus a finer vertical resolution will not change drastically the behaviour of the model.

A first development version were we considered this possibility at an earlier stage would have required to bin sub-grid points by aspect related to wind direction at every atmospheric model time step. Since the quantified cost of the call to the sorting represent slightly more than 0.02% of the cost of one atmospheric year, this initial version would have represented something like 50% of the atmosphere. We considered this at the time to be excessive and did not go down that road. Now thinking about it, a reasonable approximation might be to pre-compute a certain number of defined, wind directions related, bin aspects and project the wind at each atmospheric time step to the closest one. Using a 8 to 10 wind directions would increase the computational cost of the atmosphere by roughly 0.5%. This is certainly doable and we are considering it, though it will take some time to implement correctly for any sub-grid provided. We feel it is thus beyond the reach of the present reviewing process but thank the reviewer of the stimulating thoughts that have arisen from his review. As a conclusion, the implementation of such a parametrisation of winds is planned, at least for testing its importance on the final fields.

In fact, the lowest elevation grid points have more precipitable water but their saturation is more difficult to reach because of higher temperature. It is thus not straightforward that our methodology bias precipitation towards low levels with respect to the mid-levels. It may also well depend on the context: seashore bordering mountains may tend to get more precipitation at low level than mid-altitude level in some specific context (e.g. Norway). Also, given the simplicity of the scheme (relying on large scale saturation), certainly do not depict all the processes that would be needed for the discrimination of precipitation of low to mid levels. One example is the fact that the model has no diurnal cycle and that for low to mid levels of the atmosphere this has a very strong impact for the actual vertical structure in temperature. We agree nonetheless that more discussion is needed and therefore added the following in the manuscript:

"As we compute precipitation for a sorted sub-grid point, we remove available precipitable water from the amount of total precipitable water of the previous grid point. In doing so, we assume that the mountain edges (lowest elevations) are the first affected by moisture influx. However, in our approach two points at the same altitude will have the same amount of precipitation, independently
from the wind direction. The model is thus intrinsically unable to reproduce high precipitation on
windward slopes and conversely low precipitation on leeward slopes. A foreseen model
development will be to sort the sub-grid points depending on wind direction.”

Section 2.3.2: ‘Dynamic precipitation’ is an unknown term to me (a non-meteorologist). If it isn’t a common meteorological term, perhaps re-name, or explicitly define.

Dynamic precipitation is also known as stratiform precipitation. We now use this terminology in the manuscript.

P5L26: if the local topography exists above 500 hPA, does it receive any precipitation at all in the model?

As explained in a previous comment, in the T21 grid the topography can not go beyond 500 hPa. In the fine grid, a point with a topography higher than 500 hPa can receive precipitation, computed from the higher vertically extended point.

P5L27: “expended”->“expanded”

Replaced by “extended” for consistency with the rest of the manuscript.

Equation 12: it’s not clear what the physical justification is for the form of this equation. Please describe in greater detail, with citations.

This parameter is introduced in order to artificially mimic the elevation desertification (less precipitation due to lower moisture content), an aspect commonly observed over large orographic features such as ice-sheets. This notion is hardly represented in iLOVECLIM because of the intrinsic model assumptions. Given that in the model all the moisture exceeding the saturation is used to form precipitation and that saturation is lower at high altitude because of lower temperature, the model tends to produce higher precipitation over elevated region. For large orographic features, the air masses tend to become drier from the edges towards the interior. However, because of the coarse resolution of the model, there is still a large moisture advection within the large orographic features. As such, this parameter is introduced to somehow tune the modelled precipitation, changing the distribution between low lying areas (which present a dry bias generally) and mountains (wet bias).

General: which of the 3 contributors to precipitation (2x dynamic, and convective) is generally the dominant term? This would be useful for readers to know.

Convective precipitation represents roughly 10% of the total precipitation. This is now explicitly mentioned in the manuscript:

“Convective precipitation is assumed to be an adjustment term to reach stability in the atmospheric column. They represent roughly 10% of the total precipitation in the model.”

P7L2: It’s not clear to me how the convective precipitation scheme works. For example, given the repeated use of Eq. 13, where does the assessment of stability come in? I think a clearer description is needed here.

We largely changed the text in the description of the convective scheme with clarity in mind. The new version reads:

“We compute convective precipitation after the stratiform precipitation. If the moisture availability $q_a(k=1,k_{\text{max}})$ is still greater than $q_a(k)$ $q_{\text{max}}(k)$ then the amount of convective precipitation, $p_{\text{conv}}(k=1,k_{\text{max}})$, is computed with the same formulation as in Eq. 12. As for the stratiform precipitation, the convective precipitation is associated with a local heat release affecting the temperature at 350 hPa, $T_{350}(k=1,k_{\text{max}})$. After this convective precipitation, we assess stability comparing the moist adiabatic lapse rate to the local potential temperature at 500-hPa, $\theta(k=1,k_{\text{max}})$, computed from the potential temperatures at 350 hPa and 650 hPa. The stability is assessed for each individual sub-grid points. If the stability is not reached, we allow a new convective precipitation term computed from $q_a(k=1,k_{\text{max}})$. The heat release in the upper atmosphere at each
precipitation event tends to increase stability. This is an iterative process and we only go to the next sub-grid point when we reach stability locally."

P8L2: by 40%, for the whole coupled model? Or just the atmospheric component?

For the whole (standard) coupled model: atmosphere, ocean, vegetation (no carbon cycle nor ice sheet models). This is clarified in the text.

Section 3.1.1/3.2: note the caveat that the authors are comparing a preindustrial simulation to recent historical climatologies (or describe why this isn’t a caveat, e.g., why recent historical climatology is close enough to preindustrial climatology for the fields in question, to warrant direct comparison)

We agree than it would have been ideally better to use modern simulations in order to have atmospheric fields more directly comparable to observations. However, the modern climate is far from equilibrium and in such modern simulations it would have been more difficult to isolate the sole effect of the downscaling compared to the combined effects of the different forcing acting together. In addition, the model biases are generally much larger than the temperature and precipitation differences from a modern and pre-industrial simulations.

P7L16: given ‘continentality’ is usually associated with sub-annual ranges in temperatures, what does it mean to interpret ‘continentality’ over Siberia, when using annual mean fields? Furthermore, it is unclear how this relates to other regions (as it is written, it seems to indicate that increased Siberian continentality causes biases elsewhere)?

We acknowledge the improper use of continentality here. We changed it for: “Whilst the model reproduces the cold temperatures in Siberia, it is elsewhere generally largely too warm, in particular over North America, Greenland and Western Europe.”

P7L18: “does not imply important changes in surface temperature”: relative to the default CTRL case? Perhaps reword for clarity.

Rephrased to: “On the other hand, at the continental scale, our downscaling procedure does not imply important changes in surface temperature relative to the CTRL experiment.”

P7L30: Given the ‘ijk’ indexing is hardly used in the manuscript (as figures mostly show the results only from one ensemble), I’m wondering how useful it is to describe this indexing scheme? It would become more useful, if plots of results as a function of parameter space, were shown:

A plot of the metrics (correlation, standard deviation and root mean square errors) in the parameter space has been now added in the manuscript. Also, following your suggestion, we removed the ijk notation, and mention the parameter values explicitly.

Figure 2/4/5/6: why was DOWN020 chosen as the representative plot? How much do the different ensemble members look, and why/why not?

DOWN020 was chosen because it produces a good compromise in terms of the various metrics. We now hope that the plot you suggested (metrics in the parameter space) gives more information on the different ensemble members look like and why our choice is a good compromise.

Figure 2, ‘DOWN NH40’ panel: it is surprising to see remnants of the native grid in many places, though I suspect I know why. I think a description of why this remaining imprinting occurs should be clearly explained to readers.

We hope that we have answered your comment when replying to your previous concern on this native grid artefact (p. 1-2 on this document). Also, we have added the following discussion when describing this figures (p. 9 l. 16-20):

"[However, the downscaling induces important local temperature changes, particularly visible on the NH40 grid.] In many locations, the native grid is still visible on the NH40 model results. This is because our downscaling mostly redistribute the temperature of a coarse grid point according to
the sub-grid elevation starting from the coarse grid information. This generates discontinuities when moving from two neighbouring cells. Only air advection, which tends to be larger along parallels than meridians, reduces the imprint of the coarse grid.”

Figure 3: The green/blue shading is quite confusing to parse, visually. Could shaded ‘clouds’ be more visually accessible?

We apologize but we did not understand what “shaded clouds” are in this comment. Therefore we kept the current color shading which presents the advantage of consistency and allows distinguishing between \(f_s = 0.6 \) (green) and \(f_s = 1.0 \) (blue).

P8L26: “: : to correct the model bias: : :” -> “: : to correct broader region model biases that are unrelated to topographic forcing: : :”

Done, thank you for the suggestion.

Done.

General: given the advertised ability of the scheme to downscale high-resolution mapview T/P fields, and the intention of the authors that the downscaling will improve ‘regional’ studies, it would be useful to see regional subset plots of Figure 2, ERA-interim and DOWN NH40. For example, given my background, I’d like a closer look at GrIS precipitation!

We have followed your suggestion and added regional maps of precipitation for Greenland and Western Europe.

Figure 4: A better description of the Taylor diagram scheme would be good. For example, is ‘standard deviation’ the standard deviation in mean annual values, for the long-term climatology (or is it describing the standard deviation in temporal variability?). Similarly for the correlation axis.

We added the following information in the caption of the two Taylor Diagram:

“In this figure, the metrics (standard deviation, correlation and root mean square error) are computed from the annual mean climatic variables. The standard deviation in the observations is used to normalise the standard deviations and the root mean square error.”

P9L8: describe why the lack of impact on native-grid model performance is a good/bad thing.

The original model has been generally tuned on various variables (not only T and P). A drastic change in the model response could require to perform the global tuning again. This is explicitly mentioned at the end of Sect. 3.

General: a more robust description of the analysis of the full 50-member analysis is warranted. For example, which varied parameter makes the most difference? Is it possible to identify parameter combinations that are optimal, for particular locations?

We now discuss the impact of the different parameters in more details through the description of the figure showing the metrics in the parameter space. All parameters influence the results while the \(f_s \) parameter may be seen as slightly more important than the others. It is indeed possible to find a set of parameters that work better for a specific region of interest but might provide poorer score in different region. In particular in regions with a dry bias in the model, a set of parameters that produce more precipitation will generally also produce more precipitation in regions with a wet bias. As stated in the manuscript, this is because the downscaling have only a limited impact on the large scale behaviour of the model.

We added the following:

“The downscaling performance with respect to CRU–CL-v2 is also shown in Fig. 11 in which we present quantitative metrics (spatial correlation, standard deviation and root mean square error) as a function of parameter values. The parameters that have the strongest influence on the simulated
precipitation are \(f_s \) and \(\alpha_{\text{min}} \). A lower value for these parameters tend to produce higher spatial correlation, lower standard deviation and lower root mean square error. However, for \(z_q = 2000 \)m, low values for the two other parameters can lead to an underestimation of the standard deviation. The standard deviation and the root mean square error have a similar response to a change in parameters, whilst the spatial correlation is mostly sensitive to the \(\alpha_{\text{min}} \) parameter, with higher correlation for lower value of this parameter."

Figure 5: contrary to the text, it looks to me like DOWN NH40 *does* better resolve the Norwegian/W. North America high-precipitation bands. :

We produce indeed more precipitation over the mountains in these areas but we fail at reproducing the strong increased just at the coast. The text in this section has been largely modified.

General: A stronger justification is needed that downscaling does indeed produce 'scientifically useful' high-resolution precipitation fields. As it is, the reader is somewhat left to their own devices to piece together the various impacts of precipitation downscaling into a coherent story on how well the precipitation downscaling scheme (perhaps the most important but tenuous aspect of the whole procedure) performs, and whether it would help/hinder their scientific simulations.

As stated in the introduction of the manuscript, this downscaling has been initially developed for a better coupling between the atmosphere and the ice sheet model. The downscaled climatic fields we compute in the methodology outlined in the current manuscript are being used to develop a downscaled SMB. This new SMB will take explicitly into account the sub-grid temperature and precipitation according to the local orography. With this, we aim at better reproducing the non-linear nature of the SMB and in particular the position of the ablation zone at the margin. However, as you also mention, due to the imprint of the coarse resolution model into the current downscaled fields, the latter cannot be used directly into the SMB and need additional steps beyond the scope of the current study that should be seen as a first necessary step. We believe also that the present study is “scientifically useful” in that it reproduces better the large spatial variability over marked orographic features such as the Alps.

We added in the conclusion, first paragraph:

“We have shown that the inclusion of the downscaling allows for a better representation of the precipitation, especially for mountainous region.”

And in the last paragraph of the discussion:

“[From the downscaled atmospheric fields, we are now able to compute the surface mass balance required by the ice sheet model embeded in iLOVECLIM]. This downscaled surface mass balance explicitly take into account the sub-grid temperature and precipitation according to the local orography. With this, we aim at better reproducing the non-linear nature of the SMB and in particular the position of the ablation zone at the margin. Foreseen applications include ice sheet - climate interactively coupled thanks to the downscaled atmospheric fields. ”

Figure 6: The GrIS cross section highlights some concerning ‘sawtooth/wave’ behavior, whereby the downscaled precipitation field changes across the boundaries of the native grid. To be honest, we have struggled with a similar (?) thing in CESM, and I ended up putting together this Google-based schematic that tries to explain our particular problem: https://docs.google.com/presentation/d/1gyaiZ5ypZ3XWxT2VTThu8mkpl9Qf18Cq5w_gpbzPm6s/edit#slide=id.p Non-monotonic SMB fields that could certainly overwhelm the positive impacts of downscaling over GrIS, and preclude use of the downscaling scheme for science, where the GrIS-wide SMB field is important. Please comment on why the ‘sawtooth/wave’ pattern occurs in the downscaling, and why the authors consider it acceptable for subsequent science using downscaled SMB fields.

Thank you for kindly sharing this figure with us. This is exactly the problem we are facing. We have addressed your concern on p. 1-2 in this document when describing Fig.3 (temperature maps) as these features also arise for the temperature field.

Figure 7: as with figure 4: a better description and interpretation of the Taylor diagram would seem important. Also, it's quite hard to pick out salient differences and understand them in a broader context, given the selection of what seems like an arbitrary subsample the whole ensemble.
We have provided more information on the construction of normalised Taylor diagrams. Also, we think that the figure you suggested (metrics in the parameter space) provide now the broader context to interpret the model response.

Figure 7: It's not clear now, the 'spatial correlation is greatly improved', via inspection of the Taylor diagrams. Which dots should the reader compare, to see this impact? Perhaps this is just my eternal personal struggle with Taylor diagrams, though :).

To improve the correlation in the Taylor diagram you have to move along a circle, clockwise. We add the values in the text, for the reader to spot where to look at:

"The spatial correlation is in particular generally greatly improved (from about 0.25 to more than 0.4)."

Figure 4: Why not use the same set of ensemble members, as in Figure 7 (for consistency, and perhaps just to show that temperature downscaling is not as parametrically sensitive as precipitation downscaling)?

This was our first version of this figure. However, the dots were all almost superposed and it was impossible to distinguish between them. We prefer to keep the figure this way for clarity of the figure.

P10L20: Yes, it is notable how downscaling significantly impacts precipitation on the native grid (e.g. CTRL T21 vs. DOWN T21). For example, it appears North America as a whole receives quite a bit more precipitation when downscaling is utilized. Yet this important aspect is not clearly mechanistically explained. A physical reasoning behind this non-negligible impact should be described in the manuscript.

On the one hand, a large part of North America present a rough topography. Because of the exponential shape of the saturation function as a function of temperature, we can expect greater precipitation even if the T21 topography is unchanged. On the other hand, we also modified the $\alpha_{q_{\text{min}}}$ parameter which controls how much saturated we should be to initiate precipitation for low land points. The CTRL version of the model has a similar parameter, which is set to 0.9. To illustrate the effect of this parameter, we show below (Fig. A3), a similar figure than Fig. 6 but with $\alpha_{q_{\text{min}}} = 0.9$.
Figure B1: Northern Hemisphere annual mean precipitation rate (m/yr) in: CRU CL-v2 (top), the iLOVECLIM that includes a downscaling (middle, with $z_c=2000$ m, $\alpha_{\text{min}}=0.9$ and $f_s=0.6$) and the standard version of iLOVECLIM (bottom, CTRL). The left panel corresponds to data on the high resolution grid, whilst on the right data are aggregated to T21 resolution. The dashed purple lines stand for the selected transects used for discussion.
Section 4: I think noting some of the caveats of the scheme would be appropriate to clearly reiterate in this section.

We added the following:
“Our downscaling mostly relies on the internal physics of the original ECBilt model. Given the relative simplicity of the scheme, the small scale processes are not explicitly taken into account. As such, the methodology presented here might not be always suitable for high resolution modelling where the small scale processes can become dominant. Also, in our approach, winds are not used for the precipitation distribution within a coarse grid. A foreseen future model development is to implement a scheme to increase the precipitation for windward points relative to the leeward ones.”

P11L13: Given the advertised importance of downscaling for iLOVECLIM simulations of Greenland, again it would seem appropriate to show ‘zoomed-in’ downscaled T/P (or better yet, actual SMB?) over Greenland.

These plots have been included in the manuscript, for the Alps and for Greenland.

P11L13: Is the iLOVECLIM SMB energy-balance-based? It seems all the ingredients are available, at least on the ‘l’ levels. If PDD-based, conversely, I’m not sure the authors can claim anymore to be globally conservative, since the empirical nature of the energy flux calculations in PDD schemes does not track conservation (unlike EBM models, which are premised on a balance of actual energy fluxes)

We are still currently working on the coupling with the ice sheet. The SMB is computed with the insolation-temperature-melt method (van de Berg et al. 2008). Using a more comprehensive approach requires more model development as some important processes are currently only calculated at the coarse grid level (such as albedo and snow depth). A better procedure would need to first downscale those two and then improve the mass-balance itself.

General: I think it would be very useful to technically contrast this subgridding scheme with other previously published schemes, to allow readers some greater contrast on similarities/differences.

If the downscaling is indeed an important problem in EMIC, and more generally in Earth System Model, the different groups unfortunately provide only limited information on how they deal with it. As such, it is somehow difficult for us to expand more on this topic than the paragraph shown in our manuscript on page 2, lines 17 to 30.

General: provide a brief overview of the technical stages of the scheme, either at the start, or the end, of the manuscript. As it stands it's rather easy to get lost in the details.

Before Sec. 2.2, we have this general overview:
“The main idea of the downsampling procedure is to replicate the processes governing precipitation formation and surface temperature computation on a refined vertical extended grid in order to assess these variables at any altitude for any given sub-grid.”
And we added at the beginning of Sec. 2.3:
“From the climatic variables computed on the artificial surfaces on the vertically extended grid, we can compute the precipitation and temperature at the sub-grid orography.”

General: I think some plots of characteristic T/P/precipitation vertical profiles would be very useful for the reader, to see the equations ‘put into action’ for some representative cases. As it is, I had to spend some time at the whiteboard to get a sense of what the equations actually produced, in terms of actual profiles.

To answer one of your previous comment, we have added a scheme of the different levels used in the model, along with typical profiles in a log(P) scale (linear for temperature and exponential for humidity).

References:

van den Berg, J., van de Wal, R. S., and Oerlemans, J.: A mass balance model for the Eurasian Ice Sheet for the last 120000 years, Global Planet. Change, 61, 194–208,

Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

Aurélien Quiquet1, Didier M. Roche1,2, Christophe Dumas1, and Didier Paillard1

1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
2Earth and Climate Cluster, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Correspondence to: A. Quiquet (aurelien.quiquet@lsce.ipsl.fr)

Abstract.

In this paper, we present the inclusion of an online dynamical downscaling of heat and moisture temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the followed methodology to generate temperature and precipitation fields on a 40 km x 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is non grid-specific and conserves energy and moisture. We show that we are able to generate a high resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Whilst the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature includes ice sheet model coupling and high-resolution land surface model.

1 Introduction

In recent decades, the Earth is undergoing a sustained global warming due to a rapid rise of greenhouse gases, unprecedented over the last million years (Luthi et al., 2008; Wolff, 2011). Some components of the Earth system, such as the oceanic and terrestrial carbon cycles or the continental ice sheets, present feedbacks acting over long timescales, i.e. pluri-millenial, and are suspected to play an important role for the climate in the future (Archer and Brovkin, 2008). Earth models of intermediate complexity (EMICs) are powerful tools to investigate the long-term transient response of the climate system (Claussen et al., 2002). The advantage of these models is to include most of the major climatic components in a unified and coupled framework. They are also computationally inexpensive compared to more comprehensive general circulation models (GCMs) because of a simplified physics and a coarser resolution. As such, they can be used to perform numerous simulations to assess model sensitivities (e.g. Loutre et al., 2011) or multi-millenia integrations to study slow feedbacks (e.g. Calov et al., 2005). EMICs have been initially developed as computationally cheap alternatives to general circulation model especially in the context of studying the role of orbital and carbon dioxide forcing and feedback within the context of glacial-interglacial cycles (e.g. Weaver et al., 1998; Berger et al., 1998; Ganopolski et al., 1998). The addition of interactive ice sheets models allowed for the study of ice sheet dynamics in term of retreat, advance and stability as a key component of the climate system (e.g. Calov et al., 2002; Huybrechts et al., 2002; Charbit et al., 2005). Also, some EMICs
include an interactive carbon cycle which allows the investigation of the mechanisms behind the atmospheric carbon dioxide fluctuations during the Quaternary (e.g. Brovkin et al., 2007; Ridgwell and Hargreaves, 2007; Bouttes et al., 2011). With the increasing computing facilities, the EMICs are generally becoming more comprehensive than they used to be. From zonally averaged atmosphere or ocean (e.g. Gallée et al., 1992; Petoukhov et al., 2000), they now often include a three dimensional ocean (e.g. Edwards and Marsh, 2005; Weaver et al., 2001). The atmospheric component has remained a simplified component in EMICs even though they may be sometimes three dimensional but with only a limited number of vertical levels and slightly simplified base equations (e.g. Goosse et al., 2010).

However, the relative simplicity and coarse resolution of such climate models result in an approximative representation of land surface climatic variables that are affected by variability at high spatial resolution show a high spatial variability. Precipitation is an example of such a variable, being a key component of the climate system and nonetheless generally poorly represented in atmospheric models. In particular, EMICs are unable by design to reproduce correctly meso-scale atmospheric processes induced by sub-grid topography. This have relatively fine-scale topographic features such as mountain ranges. This has important consequences for the sub-components of the climate system that depend on the atmospheric water cycle such as surface hydrology and vegetation or water isotopes. High resolution is a particularly dire requirement necessary for components whose physical description require a high spatial gridding large-scale physical behavior depends highly on processes occurring at small spatial scales. It has been been a recurrent issue in climate-hydrology studies at basin scale (e.g. Vetter et al., 2015) as well as in ice sheet - climate coupling studies (e.g. Charbit et al., 2005; Fyke et al., 2011).

In particular, ice sheet models need a high resolution to represent grounding line dynamics (Schoof, 2007) and to account for narrow ablation zones at the margins (Ettema et al., 2009). To account for it, ice sheet – climate coupled models have often preferred to use their own anomalies regridded on top of a reference climate to force the ice sheet model (e.g. Vizcaíno et al., 2008; Goelzer et al., 2016). The anomalies are then linearly interpolated and superimposed added to well-constrained and high-resolution present-day climate fields. Such a strategy implicitly assumes that the model biases remain unchanged through time, independently from the imposed external forcings, and also remain unchanged as ice sheet geometry changes significantly. Alternatively, another another strategy is to use absolute fields, but downscaled to the needed resolution. The complexity of such downscaling approaches ranges from simple bi-linear interpolations (e.g. Vizcaíno et al., 2010; Gregory et al., 2012) to more physically based approaches. To achieve temperature downscaling, Charbit et al. (2005) duplicate the energy budget calculation on 15 artificial levels in order to retrieve surface temperature on a vertically extended grid. Fyke et al. (2011) go a step further as not only temperature but also precipitation is re-computed on selected artificial levels follow a similar strategy but in addition they also derive the precipitation on the vertical extended grid. Alternatively, Robinson et al. (2010) embed a simplified regional energy-moisture balance model in an EMIC in order to assess sub-grid processes unresolved by their native atmospheric model. Although statistical downscaling has been applied to EMIC outputs (Vrac et al., 2007; Levavasseur et al., 2011), these techniques were not used to couple different components of models.
Here, we present the inclusion of a relatively unexpensive online and conservative dynamical downscaling of heat and moisture temperature and precipitation in the iLOVECLIM coupled climate model (version 1.1). The downscaling is done from the native T21 grid (≈5.625° spatial resolution) towards a cartesian 40 km x 40 km grid of the Northern Hemisphere. The chosen high resolution grid arises from the ice sheet model grid embedded in iLOVECLIM (Roche et al., 2014). The methodology chosen for the downscaling procedure is to first replicate the original model physics on artificial surfaces of a vertically extended grid. Then from the vertically extended grid, we compute the precipitation explicitly taken into account the sub-grid orography following the original model physics. Computed on each atmospheric timestep, the downscaling accounts for the feedback of sub-grid precipitation on large scale energy and water budget, thus being energy and moisture conservative. This property, i.e. a closed global water budget, is particularly important for multi-millenia simulations. The downscaling methodology is not grid-specific and could be applied in the future to any grid having a higher resolution than the native T21 grid. In particular, downscaling over only a certain region (e.g. Europe or the Andes) is possible with our implementation. Foreseen applications include ice-sheet surface mass balance computation and land surface modelling (hydrology, permafrost, vegetation dynamics and land carbon) at continental scale and high resolution.

In Sec. 2 we describe the implementation of the dynamical downscaling of heat and moisture temperature and precipitation in the atmospheric component of the iLOVECLIM model. In Sec. 3 we discuss the performance of both the standard and downscaled temperature and precipitation fields in representing present-day climatological fields. We list concluding remarks and perspectives in Sec. 4.

2 Methodology

2.1 the iLOVECLIM model

iLOVECLIM (here in version 1.1) is a code fork of the LOVECLIM 1.2 model, extensively described in Goosse et al. (2010). Whilst the physics in the atmosphere, ocean and land surface has remained mostly unchanged, the major bifurcations from Goosse et al. (2010) consist in the addition of a water oxygen isotope cycle (Roche, 2013; Roche and Caley, 2013), an oceanic carbon model (Bouttes et al., 2015), an alternative ice sheet model (Roche et al., 2014), the reimplementation of the initial iceberg model (Bügelmayer et al., 2015), and a permafrost model (Kitover et al., 2015). The LOVECLIM family models contain a free surface ocean general circulation model with an approximately three degrees spatial resolution resolution and 20 vertical layers. It is coupled to a thermo-dynamical sea ice model operating on the same spatial grid. The atmospheric component of main concern here, ECBilt, is a quasi-geostrophic model, solved on a T21 spectral grid. For a complete description of ECBilt, the reader is referred to Haarsma et al. (1997) and Opsteegh et al. (1998) and references therein. The dynamics, i.e. the resolution of the potential vorticity equation, is computed for three vertical levels: 800 hPa, 500 hPa and 200 hPa. The equations for temperature and vertical motion are computed on two intermediate levels at 650 hPa and 350 hPa. A schematic representation of the vertical structure of the atmosphere in ECBilt is shown in Fig. 1.
The main idea of the downscaling procedure is to replicate the processes governing precipitation formation and surface temperature computation on a refined vertical extended grid in order to assess these variables at any altitude for any given sub-grid.

2.2 Vertical profiles of heat-temperature and moisture

The first steps of the downscaling is to recompute heat-temperature and moisture variables on artificial surfaces of a vertically extended grid of the atmosphere. This grid consists in 11 vertical levels at 10, 250, 500, 750, 1000, 1250, 1500, 2000, 3000, 4000 and 5000 m. In the following, we present the equations already described in Haarsma et al. (1997), which are needed for the vertically extended grid.

2.2.1 Temperature profile

In ECBilt, due to the lack of a proper representation of the atmospheric boundary layer, an idealised vertical profile is used to compute heat, moisture and momentum fluxes at the Earth surface. Above 200 hPa, the atmosphere is assumed to be isothermal. From the Assumption hydrostatic equilibrium and using the ideal gas law, the temperature varies linearly with the logarithm of pressure. For this reason, from the 650 hPa and 350 Pa intermediate levels, we compute a this linear temperature profile in the logarithm of pressure from 200 hPa to the surface.

Thus, for any pressure level \(p \), the temperature is:

\[
T(p) = T_{650} + \gamma \ln \left(\frac{p}{p_{650}} \right)
\]

(1)

With \(\gamma \) the atmospheric temperature lapse rate as:

\[
\gamma = \frac{T_{350} - T_{650}}{\ln(p_{350}/p_{650})}
\]

(2)

As in Haarsma et al. (1997), the near-surface air temperature of an atmospheric grid cell, \(\bar{T}_{s} \), is computed from \(T_{500} \), using Eq. 2 and assuming hydrostatic equilibrium and ideal gas law to eliminate the pressure variable in the hydrostatic equilibrium equation:

\[
\bar{T}_{s} = \sqrt{T_{500}^2 - \frac{2\gamma g}{R} (\bar{z}_{h} - z_{500})}
\]

(3)

With \(\bar{z}_{h} \) is the model grid-cell surface height and \(z_{500} \) the height of the 500 hPa levels (prescribed homogeneously at 5500 m). For the implementation of the downscaling, we define:

This equation is used to assess the near-surface air temperature for the 11 artificial surfaces at fixed vertical height using explicitly their altitude, \(z_{h} \) (\(l = 1, 11 \)), on which the near-surface air temperature is calculated as instead of the actual surface height of the grid cell:

\[
T_{s}(l = 1, 11) = \sqrt{T_{500}^2 - \frac{2\gamma g}{R} (f_{s} z_{h}(l) - z_{500})}
\]

(4)

The vertical lapse rate in temperature computed in the model in Eq. 2 is representative of the free-atmosphere temperature variations. Due to orography, the atmospheric isotherms are shifted upwards. As such, the temperature retrieved at the
surface using the. Since the along-slope lapse rate is generally smaller than the free-atmosphere lapse rate over-estimate (e.g., Marshall et al., 2007; Gardner et al., 2009; Minder et al., 2010), its use lead to an overestimation of the temperature changes with elevation. To account for this known effect, in order to artificially reduce the value of the vertical lapse rate in the model, we apply a global tunable correcting factor, f_s in Eq. 4 (typically ranging from 0.5 to 1.), to the orography on the vertically extended grid.

From this near-surface air temperature for the artificial surfaces, we derive the different several surface energy balance terms as described in (downward longwave radiation, latent and sensible heat flux) in the same way as Haarsma et al. (1997). Surface temperatures at the artificial surfaces $T_s (l = 1, 11)$ are computed iteratively from the energy balance, assuming a zero heat capacity of the surface. We assume no change in surface types, and consequently albedo, between the different artificial layers. Because the latent heat flux depends on the evaporation, we also need to assess the specific humidity at the 11 artificial surface levels.

2.2.2 Moisture profile

In ECBilt, the idealised ECBilt representation of the atmosphere, only the lower part of the atmosphere (i.e. below 500 hPa) contains water. A single equation is used to compute the evolution of total precipitable water q_0 from advection, precipitation and evaporation. In our version of the model, precipitation occurs when the total amount of precipitable water is greater than a fraction ($\alpha_q = 90\%$) of the vertically integrated saturation specific humidity q_{max}. For each artificial level, the expression of $q_{max} (l = 1, 11)$ is computed as in Haarsma et al. (1997) as the vertical integral of the saturation specific humidity in the pressure coordinate:

$$q_{max} (l = 1, 11) = \frac{1}{\rho_w \rho_e g} \int_{p_0(l)}^{500 hPa} q_s (T, p) \frac{dp}{dp}$$

(5)

Where ρ_w is the water density, and g is the gravitational acceleration. The surface pressure $p_0 (l = 1, 11)$ is computed rearranging Eq. 1 in term of pressure and using Eq. 2:

$$p_0 (l = 1, 11) = p_{650} \exp \left(\frac{T_s (l) - T_{650}}{\gamma} \right)$$

(6)

The saturation specific humidity at a given level, $q_s (T, p)$, is given by a Clausius-Clapeyron expression of the saturation vapour pressure. The vertical profile of specific humidity is retrieved assuming a constant relative humidity for the whole atmospheric column below 500 hPa.

2.3 Sub-grid precipitation and coarse grid upscaling

From the climatic variables computed on the artificial surfaces on the vertically extended grid, we can compute the precipitation and temperature at the sub-grid orography.
2.3.1 From the vertically extended grid to the sub-grid

For a given native coarse-grid point at a given surface height z_h, we have a certain numbers of sub-grid points k of different surface heights $z_h (k = 1, k_{\text{max}})$. The surface elevation in of the native grid can be computed as: comprises the area-weighted average of all k sub-grid points:

$$
\bar{z}_h = \frac{1}{k_{\text{max}}} \sum_{k=1}^{k_{\text{max}}} (z_h(k) s_a(k)) \sum_{k=1}^{k_{\text{max}}} s_a(k)
$$

(7)

Where $s_a(k)$ is the surface area of the sub-grid cell.

In order to compute the heat and moisture budget on a sub-grid point k, we linearly interpolate a needed surface variable ϕ from the two neighbouring vertical artificial bounding vertical levels l and $l + 1$:

$$
\phi(k = 1, k_{\text{max}}) = \frac{z_h(l) - z_h(k)}{z_h(l) - z_h(l+1)} \phi(l) + \left(1 - \frac{z_h(l) - z_h(k)}{z_h(l) - z_h(l+1)}\right) \phi(l + 1)
$$

Thus, from the variables computed on the vertically extended grid, we recompute on the sub-grid: the near-surface air temperature T_s, the surface temperature T_s and integrated saturation specific humidity q_{max}.

Winds are not downscaled in our approach. In the real world, orographic precipitation mostly occurs on wind-faced slopes whilst the other side is generally much drier. On the native grid of ECBilt, winds transport humidity and thus affect precipitation amounts. For our downscaling approach, because winds are not downscaled, in order to mimic the enhancement of precipitation on wind-faced slopes, we could sort the sub-grid points depending on winds. We discarded this approach computationally expensive. Instead, we sort the sub-grid points by elevation for a given coarse grid point so that the lowlands before the mountain ranges are treated before the higher altitudes. The lowest grid point is initialized with the coarse-grid value: $q_{a}(k = 1) = q_{a}$. As we compute precipitation for a sorted sub-grid point, we remove available precipitable water from the amount of total precipitable water of the previous grid point. In doing so, we assume that the mountain edges (lowest elevations) are the first affected by moisture influx. However, in our approach two points at the same altitude will have the same amount of precipitation, independantly from the wind direction. The model is thus intrinsically unable to reproduce high precipitation on windward slopes and conversely low precipitation on leeward slopes. A foreseen model development will be to sort the sub-grid points depending on wind direction.

2.3.2 Dynamic-Stratiform precipitation

Two processes are responsible for dynamic stratiform precipitation in ECBilt. First, since the upper atmospheric layer (above 500 hPa) is assumed to be dry, any vertical moisture export through the 500 hPa level is converted into precipitation. The amount of this export is calculated from the moisture availability at 500 hPa, which depends of the local surface topography. For this reason, we expand the computation of moisture export on the vertically expanded grid. Following a similar
expression as in Haarsma et al. (1997), in case of a negative vertical velocity at 500 hPa, ω, the amount of precipitation on an atmospheric timestep (4 hours) is computed as the export of moisture outside the 500 hPa level:

$$p_{\text{dyn,ve}}(l = 1, 11) = -\omega q_s(l)/\rho_w g$$

where q_s the precipitable water given by:

$$q_s(l = 1, 11) = r(l) q_s(p = 500 \text{ hPa})$$

with r the relative humidity, which For a given grid point, the relative humidity shows a constant vertical profile. However, its value depends on the local topography since its computation is derived from the vertically integrated saturated specific humidity (Eq. 5):

$$r(l = 1, 11) = q_a/q_{\text{max}}(l)$$

From the dynamic stratiform precipitation on the vertically extended grid, $p_{\text{dyn,ve}}(l = 1, 11)$, we compute the corresponding sub-grid precipitation, $p_{\text{dyn,ve}}(k = 1, k_{\text{max}})$, with a linear interpolation from the bounding vertical levels.

Another contribution to dynamic-Another contribution to stratiform precipitation is due to moisture excess. In the version of ECBilt included in iLOVECLIM v1.1, dynamic stratiform precipitation occurs when the total amount of precipitable water, is greater than $\alpha_q = 90\%$ of the vertically integrated saturation specific humidity. On the sub-grid points a similar condition is checked, based on the local total amount of precipitable water, $q_a(k = 1, k_{\text{max}})$, and the local vertically integrated saturation specific humidity $q_{\text{max}}(k = 1, k_{\text{max}})$. In the original version of ECBilt, the value for α_q has been tuned to reproduce the global scale precipitation pattern. Because of the higher spatial variability in topography, the downscaling induces a change in the precipitation pattern. There is no reason why this tuned α_q should be kept unchanged from the original model. In addition, because of the strong non-linearity of the precipitation to elevation, we add the possibility to modify the value of α_q depending on the local elevation $z_h(l = 1, k_{\text{max}})$:

$$\alpha_q(k = 1, k_{\text{max}}) = \min\left(\alpha_{\text{min}}^q + (1 - \alpha_{\text{min}}^q) \frac{z_h(k)}{z_q}, 1\right)$$

where α_{min}^q is the value for a point at sea level and z_q is the altitude above which the precipitation occurs only if the total precipitable water reaches 100% saturation. As in Haarsma et al. (1997), dynamic stratiform precipitation due to moisture excess is expressed as:

$$p_{\text{dyn,mc}}(k = 1, k_{\text{max}}) = \frac{q_a - \alpha_q(k) q_{\text{max}}(k)}{C_{\text{th}}(k) * dt}$$

With dt the atmospheric model timestep (4 hours) and C_{th} a corrective term to account for latent heat release in the atmosphere associated with the precipitation:

$$C_{\text{th}}(k = 1, k_{\text{max}}) = 1.0 + \frac{\rho_w L_{\text{c}} g}{c_p \Delta p} \left(\frac{dq_{\text{max}}}{dT_{650}} \right)(k)$$
With \(L_e \) the latent heat of condensation, \(c_p \) the specific heat capacity and \(\Delta p_l \) the lower layer depth (500 hPa), \(\frac{dq_{\text{max}}}{dT_{350}} \) is obtained from tabulated values of Eq. 5.

For the two contributions of dynamic-stratiform precipitation, the near-surface air temperature of the sub-grid, \(T_* (k = 1, k_{\text{max}}) \), is used to determine snow and rain partition with an abrupt transition at 0 °C. Similarly to what is done for coarse grid precipitation in the standard version of ECBilt (Haarsma et al., 1997; Opsteegh et al., 1998), the sub-grid dynamic-stratiform precipitations, either snow and rain, are associated with a local release of heat at 350 hPa, modifying \(T_{350} (k = 1, k_{\text{max}}) \).

2.3.3 Convective precipitation

Convective precipitation is assumed to be an adjustment term to reach stability in the atmospheric column. After a first dynamic precipitation removal, we compute convective precipitation only if after the stratiform precipitation. If the moisture availability \(g_a (k = 1, k_{\text{max}}) \) is still greater than \(\alpha_q (k) g_{\text{max}} (k) \), then the amount of convective precipitation, \(p_{\text{conv}} (k = 1, k_{\text{max}}) \), is computed with the same formulation as in Eq. 12. We As for the stratiform precipitation, the convective precipitation is associated with a local heat release affecting the temperature at 350 hPa, \(T_{350} (k = 1, k_{\text{max}}) \). After this convective precipitation, we assess stability comparing the moist adiabatic lapse rate to the local potential temperature at 500 hPa, \(\theta (k = 1, k_{\text{max}}) \), computed from the potential temperatures at 350 hPa and 650 hPa. Because The stability is assessed for each individual sub-grid precipitation affects the local vertical lapse rate due to latent heat release, we need to compute the convective columns for each individual sub-grid points. If the stability is not reached, we allow a new convective precipitation term computed from \(g_a (k = 1, k_{\text{max}}) \). The heat release in the upper atmosphere at each precipitation event tends to increase stability. This is an iterative process and we only go to the next sub-grid point when we reach stability locally.

2.3.4 Upscaling to the coarse grid

Following the dynamic-stratiform and convective iterations on the sub-grid, moisture and energy on the native grid have to be updated. On the one hand, the initial coarse-grid moisture is simply reduced by the sum of sub-grid total precipitations, hence readily conserving water. On the other hand, the temperatures at 350 hPa and 650 hPa are recomputed as the mean of the sub-grid temperatures at these levels.

3 Application and validation

3.1 Sub-grid of the Northern Hemisphere

As an example application, we use a sub-grid domain covering a large part of the Northern Hemisphere (hereafter NH40, Fig. 2). The sub-grid topography comes from ETOPO1 (Amante and Eakins, 2009), projected with a Lambert equal-area projection onto a squared 40 km x 40 km Cartesian grid. The grid contains 241x241 points with more than half of the domain
being continental areas. This grid was chosen because it corresponds to the ice sheet model grid embedded in iLOVECLIM. The T21 topography depicted in Fig. 2 corresponds to the NH40 topography aggregated to the native model resolution. This is the topography seen by the model when the downscaling is not performed.

3.1.1 Experimental design

For model evaluation, we define a control simulation (hereafter CTRL) as a 100 years of iLOVECLIM integration under constant pre-industrial external forcing, branched to the standard long-term equilibrated pre-industrial restart. With the same experimental design, we define a series of downscaling experiments (hereafter DOWN) in which we compute the heat and moisture budgets—temperature and precipitation on the NH40 grid. For these experiments, we test the importance of three selected parameters: the elevation from which 100% saturation is needed to initiate precipitation \(z_q \) in Eq. 11 (2000 and 3500 m), the minimum fraction of saturation to initiate precipitation \(\alpha_{q \text{ min}} \) in Eq. 11 (0.7, 0.75, 0.8, 0.85, 0.9) and the mountain lapse rate scaling factor \(f_s \) in Eq. 4 (0.6, 0.7, 0.8, 0.9 and 1.). We explore the whole matrix of runs, which corresponds to 50 model realisations. For notations purposes, the downscaling experiments are noted DOWN\(_{ijk}\), with: \(i = 0, 1 \) for \(z_q = 2000 \text{m} \) or \(z_q = 3500 \text{m} \); \(j = 0, 1, 2, 3, 4 \) for \(\alpha_{q \text{ min}} \) from 0.7 to 0.9, by 0.5; \(k = 0, 1, 2, 3, 4 \) for \(f_s \) from 0.6 to 1.0, by 1.0. For example, DOWN\(_{023}\) uses \(z_q = 2000 \text{m} \), \(\alpha_{q \text{ min}} = 0.8 \), \(f_s = 0.9 \). The downscaling increases the computation time by roughly 40%.

3.2 Model evaluation

For model evaluation, we compare the modelled annual mean climatic fields, namely surface temperature and precipitation rate, to observation-derived dataset. For this, we use a 1970-1999 climatological mean of annual surface temperature of ERA-interim reanalysis (Dee et al., 2011) and the long-term mean climatology of annual precipitation of CRU CL-v2 (New et al., 2002). We use ERA-interim on the 0.125°x0.125° resolution for the whole Northern Hemisphere, whilst CRU CL-v2 covers the whole continental areas on a 10 min grid. We use bilinear interpolation to generate this data on the NH40 grid. For diagnostic purposes we also aggregate this data on the T21 grid with the same grid correspondance already used in Roche et al. (2014).

3.2.1 Surface temperature

The annual mean surface temperature for ERA-interim and model outputs on the NH40 and T21 grids is presented in Fig. 3. On the one hand, the general pattern, i.e. the strong latitudinal cooling, is generally well represented in the CTRL experiment. Whilst the model reproduces the cold temperatures in Siberia, it is elsewhere generally largely too warm, in particular over North America, Greenland and Western Europe. The temperature anomaly induced by local topography in the CTRL experiment is also largely underestimated. On the other hand, at the continental scale, our downscaling procedure does not imply important changes in surface temperature relative to the CTRL experiment. This suggests that the downscaling has only a minor impact on atmospheric circulation. However, the downscaling induces important local temperature changes, particularly visible on the NH40 grid. At this resolution, the temperature is
reduced according to the local elevation. In many locations, the native grid is still visible on the NH40 model results. This is because our downscaling mostly redistribute the temperature of a coarse grid point according to the sub-grid elevation starting from the coarse grid information. This generates discontinuities when moving from two neighbouring cells. Only air advection, which tends to be larger along parallels than meridians, reduces the imprint of the coarse grid.

In Fig. 4, we present the annual mean surface temperature for a selection of downscaling experiments across selected transects: West to East for Europe and North America and South to North for Greenland (dashed purple lines in Fig. 3). ERA-interim temperature shows a strong dependency to elevation. This dependency is remarkably well reproduced for the European transect. However, the warm model bias is only reduced for elevated areas, with only a very limited change at lower elevation. This is because our downscaling methodology strongly relies on topography and is thus not designed to correct the model bias in lowland areas. Broader region model biases that are unrelated to topographic forcing. For the other transects, even if the horizontal temperature gradients are generally better reproduced with the downscaling, the large model bias in the original model induces large errors, only slightly corrected by the downscaling.

To assess general model performance, we present in Fig. 5 a normalised Taylor diagram computed from ERA-interim and several model outputs. In this figure, we present one selected downscaling experiment (namely DOWN$_{2000}$ (with parameter values: $z_q = 2000 m$, $\alpha_q^{min} = 0.8$, $f_s = 0.6$), as the sensitivity of the Taylor diagram to model parameters is very limited. Overall, the model generally shows very good skills in reproducing annual mean surface temperatures, for both the CTRL and DOWN experiments (filled circles). In particular, the model presents a good spatial correlation (greater than 0.9) with a standard deviation generally slightly overestimated. Because the downscaling does not directly affect the climatic fields at low elevation, we also present in Fig. 5 a normalised Taylor diagram computed from the montainous grid points (elevation greater than 800 m – triangles) only. With this, we see that the downscaling increases the agreement with ERA-interim for montainous grid points whilst its impact for the whole grid is relatively limited. Interestingly, with and without the downscaling, the performance of the model is better when the lowlands are discarded. This is because the major model biases are located in low land areas (e.g. more than 10 degrees around Hudson Bay). Finally, on the native model grid (outlined-only circles), the downscaling does not impact significantly the model performance.

3.2.2 Precipitation

The annual mean precipitation rate for CRU CL-v2 and the model is shown in Fig. 6. The model reproduces some of the major large scale structures: East to West decrease in precipitation from the Eastern coast of North America, wet Rocky mountains and relatively wet Western Europe. However, the model presents important biases in some places. In particular, Eastern Siberia, the Southern part of the Rocky mountains and Eastern North America are largely too wet compared to the CRU CL-v2 dataset. The model is conversely too dry in Eastern Europe or central North America. CRU CL-v2 presents a very narrow band (less than 200 km) of extremely high precipitation rate on the Western part of North America. Similarly, a narrow band of high precipitation is observed along the Norwegian coast. These fine scale structures are not captured by the model, in its control
version CTRL nor in the downscaling experiments. Generally, the CTRL simulation fails at reproducing the precipitation maxima over topographic features. The downsampling produces much more spatial variability in better agreement with CRU CL-v2. Generally, the main effect of the downsampling is to increase the precipitation over elevated areas. As such, we are able to mimic the precipitation pattern in Western Europe with precipitation maxima over the Alps, the Scandinavian mountains, or the British Highlands. However, the corresponding precipitation maxima in the observations do not necessarily perfectly coincide with the simulated ones: in the observations, the wind-faced coasts present generally more precipitation than the interior grid cells. This is particularly visible in the very narrow band (less than 200 km) of extremely high precipitation rate on the Western part of North America and along the Norwegian coast in the CRU CL-v2 dataset. Because, we do not take into account the winds in our approach, the main effect of the downsampling is to redistribute the precipitation according to the local topography within a native T21 grid cell. In order to better resolve the fine scale structures, a redistribution of precipitation according to the wind direction could be a significant improvement. Over Greenland, the pattern obtained with the downsampling is much better than in the standard version with an increased South to North precipitation decrease. Even if the Northern part of Greenland is still wetter than the observations, it is drier than in the standard version of the model. Over the Rocky mountains, the downsampling reproduces some of the local features (Columbia mountains high precipitation), however, the intrinsic model biases are generally not corrected. Where the model tends to be too wet (Eastern Siberia, Alaska or Southern Rocky mountains) the downsampling experiments are generally also too wet. This is particularly true where the topography is pronounced (Southern Rocky mountains). This means that the model large scale structures are generally stable and are only slightly impacted by the downsampling. In fact, the first order effect of the downsampling is to redistribute the precipitation according to the topography in a physically consistent way. In fact, there is only a relatively small change in the total amount of precipitation when using the downsampling as the 30N to 90N averaged precipitation in the experiments presented in Fig. 6 is only decreased by 2% in this case.

In Fig. 9, we present the annual mean precipitation rate accross selected transects. For all the selected transects, but in particular in Europe, the CTRL experiment presents too smooth variations of the precipitation. The different downsampling versions simulate much more variability, coinciding with topography variations. The fit with observations is relatively good in Europe. This could be explained by the relatively small bias in the CTRL experiment in this region. In North America, the downsampling is improving the precipitation in the Eastern part. In the West, the downsampling tends to increase the wet bias present in the CTRL experiment. For Greenland, the CTRL simulations produce a precipitation maxima at the summit of the ice sheet which corresponds to the precipitation minima in CRU CL-v2. Conversely, the Western flank of the ice sheet for this transect is too dry in the CTRL experiment. The downsampling considerably increases the precipitation at the West margin and produces a meridional precipitation gradient in better agreement with the observations. Also, for specific parameter combinations, we are able to reduce the wet bias in the central part of the ice sheet. However, the model is largely too wet over central Greenland. This might be due to dynamical features not captured by the T21 grid: the coarse resolution facilitates the advection of warm
and moist air at the summit of the ice sheet.

A quantitative analysis of model performance is shown on Fig. 10 in which we present normalised Taylor diagrams for the CTRL and a selection of \texttt{DOWN} experiments against CRU CL-v2. On the NH40 grid (filled circles), most of \texttt{DOWN} improves the downscaling experiments improve model performance on one specific metric but not necessarily the others. In particular, a lower value for α_q^{min} tends to reduce the RMSE and to increase the spatial correlation, whilst the standard deviation is reduced. A lower value for f_s also reduces the RMSE and the standard deviation but has almost no impact on the correlation. The parameter z_q has a similar effect, but smaller in amplitude, than f_s in the range tested (not shown). The real addition benefit of the downscaling is the better representation of precipitation for mountainous grid cells (elevation greater than 800 m – filled triangles). In this case, all the downscaling experiments present a better agreement with CRU CL-v2.

The spatial correlation is in particular generally greatly improved (from about 0.25 to more than 0.4). On the original model resolution (outlined-only symbols), some selected downscaling experiments present an overall improvement. Generally, the downscaling has a non negligible impact on the precipitation fields on the T21 grid. For multi-millenia integrations, these changes on the hydrological cycle can have important feedbacks on the simulated climate. This means that a new tuning of the model parameters should be performed. In order to avoid this, for further applications the parameters of the \texttt{DOWN} experiment are the parameter combination $z_q = 2000m$, $\alpha_q^{\text{min}} = 0.8$ and $f_s = 0.6$ is preferred because they produce an overall improvement of all metrics on the NH40 grid whilst they have a very minor changes from the CTRL experiment on the T21 grid.

The downscaling performance with respect to CRU CL-v2 is also shown in Fig. 11 in which we present quantitative metrics (spatial correlation, standard deviation and root mean square error) as a function of parameter values. The parameters that have the strongest influence on the simulated precipitation are f_s and α_q^{min}. A lower value for these parameters tend to produce higher spatial correlation, lower standard deviation and lower root mean square error. However, for $z_q = 2000m$, low values for the two other parameters can lead to an underestimation of the standard deviation. The standard deviation and the root mean square error have a similar response to a change in parameters, whilst the spatial correlation is mostly sensitive to the α_q^{min} parameter, with higher correlation for lower value of this parameter.

4 Summary and perspectives

We have presented the inclusion of a dynamical downscaling of heat, temperature and moisture temperature and precipitation on a 40kmx40km grid of the Northern Hemisphere into a T21 resolution atmospheric model of intermediate complexity. The methodology chosen for the downscaling procedure is to replicate the relevant parts of the model physics needed for the temperature and precipitation are duplicated on the high resolution grid. An upscaling is performed from the high resolution precipitation and temperature, which takes into account the climatic feedback of sub-grid precipitation on the native grid cli-
mate. The scheme is conservative and, as such, is suitable for long-term integration.

We tested various parameters related to the temperature and precipitation at high resolution. The temperature is only locally impacted by the downscaling with a cooling over montainous areas. For the precipitation, we have shown that we are able to generate a field at high resolution which presents a better agreement with observations compared to the native coarse resolution atmosphere for mountainous region. The downscaling drastically increases spatial variability compared to the standard version of the model. The model performance is best when the biases in the standard version are low. The downscaling is thus unable to correct for large scale model biases. These biases include biases in atmospheric circulation and model simplification. In particular, the model presents only one moist layer and has no explicit representation of clouds. Further development could include an iterative scheme for clouds and relate clouds to precipitation. Such a development could be tested in the high resolution grid with a specific calibration of convective clouds based on topography. Another model limitation is the lack of diurnal cycle. This can be a reason for the relatively large precipitation data-model mismatch for coastal areas where sea breeze can initiate convection.

From the downscaled atmospheric fields, we are now able to compute the surface mass balance required by the ice sheet model embdeded in iLOVECLIM. Our downscaling mostly relies on the internal physics of the original ECBilt model. Given the relative simplicity of the scheme, the small scale processes are not explicitly taken into account. As such, the methodology presented here might not be always suitable for high resolution modelling where the small scale processes can become dominant. Also, in our approach, winds are not used for the precipitation distribution within a coarse grid. A foreseen future model development is to implement a scheme to increase the precipitation for windward points relative to the leeward ones.

We have shown that the downscaling has only a limited impact on the temperature field at T21 resolution. This is partly due to the fact that the large-scale atmospheric circulation remains mostly unchanged whilst using the downscaling (not shown). However, at T21 resolution, there are some local changes in precipitation, mostly located over mountainous areas. Thus, some components of the model, such as continental runoff and ultimately ocean, or vegetation, are impacted by the inclusion of the downscaling. In one simulation of 1,000 years we integrated for one particular parameter combination we obtained a modified state for the ocean and the vegetation. Though the total amount of precipitation in the northern hemisphere is not modified substantially the spatial distribution of the precipitation in the different runoff basins led to a reduction of the Atlantic meridional overturning circulation strength and to a shallower branch of the upper branch of the thermohaline circulation in that particular simulation. To avoid this global climate drift from the CTRL experiment, we present only 100 years of model integration ensuring a limited role of the downscaling feedbacks on the global climate. However, for longer integration, the model might need some adjustment in order to correctly reproduce the present-day state of the climate system.

In earlier version of the ice sheet coupled version, Roche et al. (2014) show the poor performance of the surface mass balance computed from bilinearly interpolated precipitation in simulating the present-day Greenland ice sheet topography.
The same model validation has now to be done again with the downscaling methodology presented here. However, from the downscaled atmospheric fields, we are now able to compute the surface mass balance required by the ice sheet model embedded in iLOVECLIM. This downscaled surface mass balance will explicitly take into account the sub-grid temperature and precipitation according to the local orography. With this, we aim at better reproducing the non-linear nature of the SMB and in particular the position of the ablation zone at the margin. Foreseen applications include ice sheet - climate interactively coupled thanks to the downscaled atmospheric fields. However ice sheet mass balance is not the only possible application as our methodology is not grid-specific and can be used to compute high resolution temperature and precipitation required for any submodel. Thus, foreseen applications include the computation of high resolution terrestrial water cycle, in particular for permafrost dynamics.

5 Code availability

The iLOVECLIM source code is based on the LOVECLIM model version 1.2 whose code is accessible at http://www.elic.ucl.ac.be/modx/elic/index.php?id=289. The developments on the iLOVECLIM source code are hosted at https://forge.ipsl.jussieu.fr/ludus, but are not publicly available due to copyright restrictions. Access can be granted on demand by request to D. M. Roche (didier.roche@lsce.ipsl.fr) to those who conduct research in collaboration with the iLOVECLIM users group. For this work we used the model at revision 706.

Author contributions. A. Quiquet and D.M. Roche designed the project. D. Paillard and C. Dumas contributed to the discussions on practical implementation. A. Quiquet and D.M. Roche implemented the new functionality in the climate model. A. Quiquet performed the simulations. All authors participated in the analysis of model outputs and the manuscript writing.

Acknowledgements. This is a contribution to ERC project ACCLIMATE; the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 339108. The authors gratefully thank M. Vrac and K. Izumi for fruitful discussions. We acknowledge the Institut Pierre Simon Laplace for hosting the iLOVECLIM model code under the LUDUS framework project (https://forge.ipsl.jussieu.fr/ludus).
References

Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memo-
randum NESDIS NGDC-24, National Geophysical Data Center, NOAA, 2009.

Archer, D. and Brovkin, V.: The millennial atmospheric lifetime of anthropogenic CO2, Climatic Change, 90, 283–297, doi:10.1007/s10584-
008-9413-1, 2008.

Berger, A., Loutre, M. F., and Gallée, H.: Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky,

Bouttes, N., Roche, D. M., Mariotti, V., and Bopp, L.: Including an ocean carbon cycle model into iLOVECLIM (v1.0), Geosci. Model Dev.,

Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO2 in response to changes in oceanic circu-

Bügelmayer, M., Roche, D. M., and Renssen, H.: Representing icebergs in the iLOVECLIM model (version 1.0) – a sensitivity study, Geosci.

Calov, R., Ganopolski, A., Petoukhov, V., Claussen, M., and Greve, R.: Large-scale instabilities of the Laurentide ice sheet simulated in a

Charbit, S., Kageyama, M., Roche, D., Ritz, C., and Ramstein, G.: Investigating the mechanisms leading to the deglaciation of past continental

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer,
P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haim-
berger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz,
configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137, 553–597,

Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model, Climate Dynam-

Roche, D. M. and Caley, T.: $\delta^{18}O$ water isotope in the iLOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed $\delta^{18}O$ in water samples, Geosci. Model Dev., 6, 1493–1504, doi:10.5194/gmd-6-1493-2013, 2013.

Figure 1. Schematic representation of the atmosphere in ECBilt. The three levels for the vorticity equation are 200, 500 and 850 hPa. The temperature is effectively computed for 350 and 650 hPa, and then linearly interpolated on a log scale to any other pressure level. The saturation profile in the moist layer (below 500 hPa) is computed from tabulated values.

Figure 2. Northern Hemisphere topography from ETOPO1 projected with a Lambert equal area on a Cartesian 40kmx40km grid (left) and in the native ECBilt grid (right).
Figure 3. Northern Hemisphere annual mean surface temperature (°C) in: ERA-interim (top), the iLOVECLIM that includes a downscaling (middle, with \(z_q = 2000 \text{m} \), \(\alpha_{q_{\text{min}}} = 0.8 \) and \(f_s = 0.6 \)) and the standard version of iLOVECLIM (bottom, CTRL). The left panel corresponds to data on the high resolution grid, whilst on the right data are aggregated to T21 resolution. The dashed purple lines stand for the selected transects used for discussion.
Figure 4. Transects for selected regions: Europe (top panel), America (middle panel) and Greenland (bottom panel). The upper part of each panel shows the elevation along the transects. The lower part of each panel depicts the annual mean surface temperature along the transects for: ERA-interim (red), the standard iLOVECLIM (CTRL, orange), the iLOVECLIM including a downscaling with $f_s = 1.0$ (blue), the iLOVECLIM including a downscaling with $f_s = 0.6$ (green). The different shades of blue and green correspond to $\alpha_{\text{min}}^{\text{q}}$ ranging from 0.7 (dark) to 0.9 (light). The downscaling experiments presented in this figure use $z_q = 2000\text{m}$ and a change to $z_q = 3500\text{m}$ has only a very limited effect.
Figure 5. Normalised Taylor diagrams on the ERA-interim annual mean surface temperature for the standard CTRL experiment (red) and a selected downscaling experiment (with $z_q = 2000m$, $\alpha_q^{min} = 0.8$ and $f_s = 0.6$) (blue). The circles depict the score when all grid points are considered, whilst the triangles stand for points with an elevation greater than 800 m. The filled symbols correspond to the Taylor Diagram computed on the high resolution grid whilst the symbols outlined-only are for the T21 grid. In this figure, the metrics (standard deviation, correlation and root mean square error) are computed from the annual mean climatic variables. The standard deviation in the observations is used to normalise the standard deviations and the root mean square error.
Figure 6. Northern Hemisphere annual mean precipitation rate (m/yr) in: CRU CL-v2 (top), the iLOVECLIM that includes a downscaling (middle, with $z_q = 2000\, m$, $\alpha_q^{min} = 0.8$ and $f_s = 0.6$) and the standard version of iLOVECLIM (bottom, CTRL). The left panel corresponds to data on the high resolution grid, whilst on the right data are aggregated to T21 resolution. The dashed purple lines stand for the selected transects used for discussion.
Figure 7. Same as Fig. 6 but zoomed over Europe.
Figure 8. Same as Fig. 6 but zoomed over Greenland.
Figure 9. Transects for selected regions: Europe (top panel), America (middle panel) and Greenland (bottom panel). The upper part of each panel shows the elevation along the transects. The lower part of each panel depicts the annual mean precipitation along the transects for: CRU CL-V2 (red), the standard iLOVECLIM (CTRL, orange), the iLOVECLIM including a downscaling with $f_s = 1.0$ (blue), the iLOVECLIM including a downscaling with $f_s = 0.6$ (green). The different shades of blue and green correspond to α_{min}^{q} ranging from 0.7 (dark) to 0.9 (light). The downscaling experiments presented in this figure use $z_q = 2000m$ and a change to $z_q = 3500m$ has only a very limited effect.
Figure 10. Normalised Taylor diagrams on the CRU CL-V2 annual mean precipitation rate for the standard CTRL experiment (red) and a series of DOWN experiments (grey and blue). The circles depict the score when all grid points are considered, whilst the triangles stand for points with an elevation greater than 800 m. The filled symbols correspond to the Taylor Diagram computed on the high resolution grid whilst the symbols outlined-only are for the T21 grid. All the DOWN experiments presented here use $z_q = 2000\text{m}$. The different shades of greys are for different α_q^{min} ranging from 0.75 (dark) to 0.9 (light), for $f_s = 1.0$ (left) and $f_s = 0.6$ (right). DOWN with $z_q = 2000\text{m}$, $\alpha_q^{\text{min}} = 0.7$ and $f_s = 1.0$ (left) and DOWN with $z_q = 2000\text{m}$, $\alpha_q^{\text{min}} = 0.7$ and $f_s = 0.6$ (right) are in blue. In this figure, the metrics (standard deviation, correlation and root mean square error) are computed from the annual mean climatic variables. The standard deviation in the observations is used to normalise the standard deviations and the root mean square error.
Figure 11. Correlation, normalised standard deviation and normalised root mean square error computed from annual mean precipitation as a function of the parameter values for the downscaling experiments. The normalisation is done by dividing the modelled metric (either standard deviation or root mean square error) by the standard deviation in the observations.