Please find below a point-by-point response to the reviews from Reviewer #1 and Reviewer #2, a list of all relevant changes made in the manuscript, as well as a marked-up manuscript version.

Additionally to the changes suggested by Reviewers #1 and #2 few typos have been corrected and the following references, that were under review, updated:

Sincerely

Clément Albergel, on behalf on co-authors

RESPONSE TO REVIEWER #1

"[...] This paper presents the LDAS-Monde data assimilation system and it evaluate results over Europe. Results are well presented, showing interesting consistent impact of the data assimilation on soil moisture, LAI and hydrological variables such as discharge. It is a innovative study of high interest for the community because it presents multi-variate data assimilation in a coupled land surface and river routing model. The paper is very clearly written and very well presented. I recommend the paper to be published after the minor comments below are accounted for."

The authors thank anonymous Reviewer 1 for his/her review of the manuscript and for the fruitful comments. Responses to the Reviewer 1 are structured as follow: (1) 1.X: comments from Reviewer 1, (2) Response to 1.X: author's response and author's changes in manuscript when any. For sake of clarity, line and page numbering from the first submission is used.

1.1 [Page 1, lines 12-13: The first sentence of the abstract should be reformulated to clarify the two objectives of the paper which are testing LDAS-Monde and improving monitoring. It does not make sense to says that LDAS-Monde "is tested ... to increase monitoring accuracy...". Testing itself only allows to evaluate and to asses monitoring accuracy.]

Response to 1.1

Agreed, the first sentence on the abstract has now been reformulated.
“In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables.” Is now: “In this study, a global Land Data Assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables.”

1.2 [Page 2 line 31: Replace "Assimilation impact shows that" by "results show that"]

Response to 1.2

Agreed, it has now been changed in the revised version of the manuscript.

Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. Is now: “Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM.”

1.3 [Page 2 line 33: "The assimilation impact’s evaluation is succesfully carried out using...". It is not clear what succesfully means here. Is it that it worked technically or that it is a comprehensive evaluation using different data sets, or the results show good performance?]. I would just replace by "A comprehensive evaluation of the assimilation impact is conducted using …"]

Response to 1.3

Agreed, it has now been changed in the revised version of the manuscript.

“The assimilation impact’s evaluation is successfully carried out using […]” Is now: “A comprehensive evaluation of the assimilation impact is conducted using […]”

1.4 [Page 6, line 147: replace "depth" by "deep"]

Response to 1.4

Agreed.

1.5 [Page 8 equation 5: it is not clear what ti and ti+1 are. ti must be the analysis time, but "+1" needs to be clarified: time step? analysis window length?]

Response to 1.5

It is now clarify in the revised version of the manuscript, it represents the end of the 24-hour assimilation window.
“The control vector evolution from time t_i to time t_{i+1} is then [...]” is now “The control vector evolution from time t_i to the end of the 24-hour assimilation window (t_{i+1}) is then [...]”

1.6 [Page 8, 219: "WFDEI originates from the ECMWF ERA-Interim reanalysis (Dee et al., 2011) with a spatial resolution of 0.5": replace with by "interpolated to" otherwise it gives the impression that ERA-Interim is at 0.5 degrees resolution which is wrong.]

Response to 1.6

Agreed, “WFDEI is based on the ECMWF ERA-Interim reanalysis (Dee et al., 2011) with a spatial resolution of 0.5°, and is corrected [...]” is now “WFDEI is based on the ECMWF ERA-Interim reanalysis (Dee et al., 2011) interpolated to a spatial resolution of 0.5°, and is corrected [...]”

1.7 [Page 9, line 3: reformulate the sentence to avoid parenthesis (confusing because they do not correspond to mathematical formulation in this case): Where SSMm, SSMo, σ_m and σ_o correspond to the model and observation means and standard deviations, respectively.]

Response to 1.7

Agreed, considered sentence has been replaced by: “Where SSM_m, SSM_o, σ_m and σ_o correspond to the model and observation means and standard deviations, respectively.”

1.8 [Page 11 line 310: Here the time is a mean time for a given month, whereas earlier in the paper "t" was used for instantaneous time. Replace "time t" by "month mt" or something like that.]

Response to 1.8

Agreed, “[...] where Q_s^{i} is the simulated river discharge (or analysed) at time t and Q_o^{i} is observed river discharge at time t.” is now: “[...] where Q_s^{i} is the simulated river discharge (or analysed) at time t and Q_o^{i} is observed river discharge at month mt”. It has also been changed in equation 8.

1.9 [Page 11 line 310, and page 19 lines 518, 521: replace " Eff. " by "Eff"]

Response to 1.9

Agreed

1.10 [Page 13 line 356: "])"]
Response to 1.10
This typo has now been corrected.

1.11 [Page 13 lines368-370: "Soil moisture observational and background errors are also scaled by the model soil moisture range, assuming that there is linear relationship between the soil moisture errors and the dynamic range. This was already said lines 354-356. Avoid repetition.]

Response to 1.11
Agreed, “[…], assuming that there is linear relationship between the soil moisture errors and the dynamic range” has now been deleted.

1.12 [Page 14 table1: "Earth2Observe" by "EartH2Observe" and define NIT.]

Response to 1.12
Agreed, "Earth2Observe" is now "EartH2Observe" and NIT has been defined as “the biomass option selected for the ISBA LSM” in the caption as well as “Dif” indicating the diffusion scheme of ISBA LSM.

New caption is: “Summary of the experimental setup used in this study. “Dif” indicates that the diffusion scheme of the ISBA LSM is used, ‘NIT’ represents the biomass option selected.”

1.13 [Page 14 line 377-380: This is not clear. The Jacobian values study could be done using the background forecasts of the analysis experiment. Please clarify.]

Response to 1.13
We agree that the Jacobian values study could be done using the background forecasts of the analysis experiment. In the literature diagnostic studies of the Jacobian values have usually been performed before including (new) observations types (Chevallier and Mahfouf, 2001, Fillion and Mahfouf, 2003, Garand et al., 2001 and Rudiger et al., 2010). In this study it has been decided to follow the same approach as in Rudiger et al., 2010.

We also agree that the sentence pointed out by Reviewer #1 (line 377-380) needs clarifications, it has now been changed in the revised version of the manuscript:

“Prior to these runs, an analysis experiment without assimilating any observations has also been run over 2000-2012 to study the model sensitivity to the observations through the Jacobians. Studies of the Jacobians values have to be performed before including observations because it is essential to understand the sensitivity of the assimilation system before combining it with
“Diagnostic studies of the Jacobian values have usually been performed before including new observations types (Chevallier and Mahfouf, 2001, Fillion and Mahfouf, 2003, Garand et al., 2001 and Rudiger et al., 2010). That is why, following Rudiger et al., 2010, an analysis experiment without assimilating any observations has also been run over 2000-2012 to study the model sensitivity to the observations through the Jacobians.”

The following references have been added to the revised version of the manuscript:

Response to 1.14 [Page 14 line 390: "section 222" by "section 2.2.2"]

Agreed.

Response to 1.15 [Page 14 392-395 and figure 2: It is not clear how the monthly LAI correlation are computed with one observation every ten days.]

Reviewer #1 highlights a part of the text that needs to be clarified, thanks for pointing this out. First, scores are provided for each year. For LAI (available every 10 days) they are based on a maximum of 36 values for each pixels. Then with figure 2 seasonal scores are provided: values for LAI for a considered month encompass all the 2000-2012 period, i.e. for January we have used values of all January months within 2000-2012 (i.e. a maximum of 13 x 3 LAI values). It is now clarify in the revised version of the manuscript by referring to seasonal scores instead of monthly scores (in the text and in the caption of figure 2).

“RMSD exhibits however a strong seasonal dependency as illustrated by Figure 2 (blue line) with values close to $1 \text{ m}^2\text{m}^{-2}$ from June to October” is now “Figure 2 (blue line) illustrates seasonal RMSDs (fig. 2a) and correlations (fig. 2b) between LAI from the open-loop and the GEOV1 LAI estimates over 2000-2012. From fig. 2a, a strong seasonal dependency of RMSD is noticeable with values close to $1 \text{ m}^2\text{m}^{-2}$ from June to October.”
Caption of figure 2 is now: “Seasonal a) RMSD and b) correlation values between leaf area index (LAI) from the open-loop, analysis and GEOV1 LAI estimates from the Copernicus Global Land Service project over 2000-2012.”

1.16 [Page 16 lines 426-429: "Sensitivity of LAI to changes in soil moisture (Table 2, bottom rows) is generally weaker than that of SSM (Table 2 top rows) suggesting that although control variables related to soil moisture will be impacted by the assimilation of LAI, they would be even more impacted by the assimilation of SSM." It is not possible to directly compare jacobians values of dSSM/dW (top row) and dLAI/dw (bottom) as they don’t have the same unit at all. So, the logic of this sentence does not work. The authors should elaborate the analysis of the table results to come to the conclusion that SSM assimilation should have more impact than LAI assimilation.]

Response to 1.16
Reviewer #1 is absolutely right, the logic of this sentence doesn’t work at all and it is removed from the revised version of the manuscript. Impact of each observation-types, LAI and surface soil moisture on the analysis is currently underway at Météo-France.

“Sensitivity of LAI to changes in soil moisture (Table 2, bottom rows) is generally weaker than that of SSM (Table 2 top rows) suggesting that although control variables related to soil moisture will be impacted by the assimilation of LAI, they would be even more impacted by the assimilation of SSM.” is now: “Sensitivity of LAI to changes in soil moisture (Table 2, bottom rows) suggests that control variables related to soil moisture will also be impacted by the assimilation of LAI.”

1.18 [Page 17: lines 451-452: just say "January", "June" and "October" to be consistent with the wording used just above (eg line 444) to present this figure. The figure caption makes it clear that it is for the multi-year period.]

Response to 1.18
Agreed.

1.19 [Page 18: line 500: "Areas where positive analysis increments were found for LAI (Figure 5) are marked by a decrease in drainage and runoff (in red on Figure 9) while evapotranspiration increases (in blue Figure 9)." It is not that systematic: drainage and runoff impact is more patchy than LAI increments. I would replace "are marked by" by "tend to correspond to"

Response to 1.19
Reviewer #1 is right, this statement has to be smoothed: "are marked by" is replaced by "tend to"
1.20 [Page 19, line 516 and Figure 10 caption: "46.0858 N-3.21641E" is it necessary to give 5 digits? It is finer than the model resolution and if the purpose is the traceability of the observed GY location is there an site id number that could be used instead? It would be clearer in the paper to stick to two digits latitude-longitude information (as in line 523 for the discharge).]

Response to 1.20

Agreed, to our knowledge Agreste does not provide id number. New caption is: “a) Correlation values for the above ground biomass from the open-loop with grain yields estimates from Agreste French agricultural statistics portal (http://agreste.agriculture.gouv.fr) over 45 sites in France plotted against correlations between the same quantities but above ground biomass from the analysis; b) same as a) for RMSD values; c) scaled anomalies time-series of above ground biomass from the open-loop (black dashed line) the analysis (black solid line) and grain yields observations (red solid) for one site in Allier, France (46.09N-3.21E).”

1.21 [Figure 14: not discussed in the paper]

Response to 1.21

Corrected, it was a typo referring to the wrong figure when discussing GPP evaluation. Also, figure 14 is now Figure 15 as Reviewer #2 suggested to split figure 12 in two figures.

1.22 [Page 20 line 552-555 and Figure 12: I would expect figure 12 d and l to be identical as they are both indicated to show 'analysis-Model' evapotranspiration. Please clarify.]

Response to 1.22

Figure 12 has now been split into two figures (as suggested by Reviewer #2), one representing evapotranspiration (using estimates from both GLEAM, top row, and FLUXNET-MTE, bottom row projects) and one for Gross Primary Production (using estimates from the FLUXNET-MTE project). When referring to the labelling of the current version of the manuscript, if figure 12 d) and i) represent the same information, not the same period is considered: 2000-2012 for 12 d) and 2000-2011 for 12 i). It explains that even if geographical patterns are similar color intensity is slightly different.

1.23 [Page 21: line 569: ‘the observation operator is the very thin top layer’ this is not correct. Replace by ‘the model equivalent was the very thin top layer’. Also replace "that is a thick layer" by "that was a thick layer" to be consistent with the first part of the sentence line 568.]

Response to 1.23

"correspond to".
Agreed, it is now corrected in the revised version of the manuscript.
RESPONSE TO REVIEWER #2

“In the paper "Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area", the authors are motivated "to increase monitoring accuracy" of land surface variables such as soil moisture (SM) and leaf area index (LAI) over the European Mediterranean region. They use a global Land Surface Assimilation system called "LDAS-Monde" to assimilate both SM and LAI in experiments to assess the effects on the model land surface variables. The model results are compared to independent observations of river discharge, land evapo-transpiration and different agricultural statistics and measures. I recommend that this paper undergo major revisions.[…]"

The authors thank anonymous Reviewer 2 for his/her review of the manuscript and for the fruitful comments. Responses to the Reviewer 2 are structured as follow: (1) 2.X: comments from Reviewer 2, (2) Response to 2.X: author's response and author's changes in manuscript when any. For sake of clarity, line and page numbering from the first submission is used.

2.1 [The last few sections are not clearly organised or written. The abstract and introduction are very clear about the purpose of the paper, however, the sections from 3.4 onwards lack clarity and do not lead the reader to a direct interpretation of the results as stated in the abstract. The reader would have difficulty coming to the conclusions that are put forward in the abstract. I recommend that these sections be carefully re-written.]

Response to 2.1

Agreed, section 3.4 on evaluation of the analysis impact as well as the discussion section were carefully re-written, according to Reviewer #2 comment 2.1 but also to comments 2.3 to 2.5, 2.7 and 2.8. Responses to technical corrections (see Responses to comments 2.32 to 2.54) also helped re-writing section 3.4 onwards. Should a revised version of this paper be accepted in GMD, a copy editing work will be performed.

Section 3.4 (L.493-544) is now:

“First, the evaluation of the analysis impact is effectuated over France using straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal. Only the ‘département’ administrative units corresponding to a high proportion of straw cereals are considered. Yearly maximal above ground biomass (B_{ag}) values from the open-loop and analysis are compared to GY over 2000-2010. Yearly-scaled anomalies from the mean and the standard deviation for observations, open-loop (i.e model) and analysis are used for 45 sites over France as in Dewaele et al. (2017). Figure 10a and 10b present correlations and RMSD values, respectively and Figure 10c time-series for one site illustrating the inter-annual variability. After assimilation of SSM and LAI, correlation as well as RMSD between B_{ag} and GY is clearly improved for 43 and 41 sites, respectively, out of 45 sites showing the added value of the analysis compared to the open-loop. Figure 10c presents B_{ag} from the open-loop (black dashed line) and analysis (black solid line) as
well as observed GY (red solid line) scaled anomaly times-series for one site in Allier, France (46.09°N-3.21°E). Correlations and RMSD for open-loop and analysis experiments are 0.45 and 0.99, 0.78 and 0.63, respectively.

Over 2000-2010, 48 of 83 gauge stations present E_f values greater than 0 and 22 gauge stations report E_f greater than 0.5. As suggested in the previous section, the analysis impact on river discharge is rather small. If the analysis generally leads to an improvement in river discharge representation, only 8 stations present an E_f increase greater than 0.05 (3 stations report a decrease greater than 0.05). E_f, R and RMSD histograms of differences are presented in Figure 11(b, c and d) along with a hydro-graph (Fig.11a) for the Loire River in France (47.25°N, 1.52°W). Although the assimilation impact is relatively small, evaluation results suggest that they are neutral to positive. Analysis impact on other CTRIP variables (e.g., floodplain fraction and storage, groundwater height) is rather neutral.

Evapotranspiration from both the open-loop and the analysis are compared to monthly values of GLEAM satellite-derived estimates over 2000-2012 for vegetated grid points (>90%). As for the river discharge, the assimilation impact on evapotranspiration is small. However the comparison with the GLEAM satellite-derived estimates is rather positive, as illustrated in Figure 12 representing evapotranspiration from the open-loop (Fig.12a), GLEAM estimates (Fig.12b), the analysis (Fig.12c) and their differences (Fig.12d). Open-loop simulation of evapotranspiration tends to over-estimate the GLEAM product over most of Europe, particularly over France and the Iberian Peninsula, North Africa. Analysis is able to reduce this bias (Figure 12d). Figure 14 shows maps of RMSD (Fig.14a) and correlations (Fig.14b) differences: scores between the analysis and the GLEAM estimates minus scores between the open-loop and the GLEAM estimates. Most of the pixels present negative values for differences in RMSD (76% fig.14 a) indicating that for those pixels RMSDs from the analysis are smaller than those from the open-loop. Most of the pixels present positive values for differences in correlations (80% fig.14 b) indicating that for those pixels correlations from the analysis are higher than those from the open-loop. It shows the added value of the analysis when compared to the open-loop. Evapotranspiration from the open-loop and analysis has also been evaluated using FLUXNET-MTE estimates of evapotranspiration (2000-2011). Results are illustrated by Figure 12e to h and Figure 14e and f. They are similar of those obtained using GLEAM estimates: over the whole domain most of the pixels present negative values for differences in RMSD (70%), most of the pixels present positive values for differences in correlation (79%).

As for evapotranspiration, GPP from both the open-loop and the analysis are compared to monthly GPP estimates from FLUXNET-MTE dataset. Figure 12 illustrates averaged carbon uptake by GPP over land for 2000-2011 from the open-loop (Fig.13a), FLUXNET-MTE (Fig.13b) and the analysis (Fig.13c) as well as differences between the analysis and the model (Fig.13d). Also, Figures 14 c) and d) show RMSD and correlation differences between the open-loop or the analysis and FLUXNET-MET dataset (analysis minus open-loop). Finally Figure 15 presents seasonal scores over the same period (fig. 15a: RMSD values and fig. 15b: Correlation values). Compared to the FLUXNET-MTE estimates, the open-loop tends to underestimate GPP over the Scandinavian countries, the northwestern part of France, UK and Ireland, north of the Caspian Sea while an overestimation is visible over most of the Iberian peninsula, Eastern Europe as well as the north-eastern part of the domain (Figure 14, a, b). From Figures 14 d) and e) and Figure 15 one may notice that after assimilation of SSM and LAI there is a clear improvement in the GPP representation for RMSD and correlation with a systematic seasonal decrease and increase of the
scores, respectively. Over the whole domain, 79% and 90% of the grid points present better RMSD and correlation values, respectively, after assimilation with respect to the FLUXNET-MTE estimates of GPP.”

2.2 [The title includes acronyms that should be spelled out in full if they really need to be used at all. Not everyone is familiar with the acronym "LDAS" or "SURFEX". Is it necessary to put a specific version number of "SURFEX" in the title?]

Response to 2.2

Global Model Development journal (GMD) proposes different manuscript types including Model Description Paper where it is a requirement to give the model name and version number (or other unique identifier) in the title, please see: https://www.geoscientific-model-development.net/about/manuscript_types.html#item5

Although our manuscript has been submitted as a Model Evaluation Paper, and because it is part of the SURFEX special issue we find it useful to indicate the specific version number of the SURFEX modelling platform.

2.3 [In many places the RMSD and correlations computed are discussed in the same sentence and this creates confusion. It would be simpler to have two or more shorter sentences that are more explicit about which measure is being used for the comparison. I think that overall the authors have chosen brevity over clarity.]

Response to 2.3

Agreed, the considered sections (mainly sections 3.1 and 3.4) has been revised, please see Response to comments 2.1, 2.5 and 2.32.

2.4 [Also, the sign (positive or negative) of a change in the metric used is given without explaining what the change means in terms of the variables or the models. A physical interpretation of such results would be helpful.]

Response to 2.4

Agreed, Authors believe that Reviewer #2 refers to the description of figure 13 (now figure 14) it has been revised, please see also Response to comments 2.1 and 2.5.

It is now: “Figure 14 shows maps of RMSD (Fig.14a) and correlations (Fig.14b) differences: scores between the analysis and the GLEAM estimates minus scores between the open-loop and the GLEAM estimates. Most of the pixels present negative values for differences in RMSD (76% fig.14 a) indicating that for those pixels RMSDs from the analysis are smaller than those from the open-loop. Most of the pixels present positive values differences in correlations (80% fig.14 b)
indicating that for those pixels correlations from the analysis are higher than those from the open-loop. It shows the added value of the analysis when compared to the open-loop. Evapotranspiration from the open-loop and analysis has also been evaluated using FLUXNET-MTE estimates of evapotranspiration (2000-2011). Results are illustrated by Figure 12e to h and Figure 14e and f. They are similar of those obtained using GLEAM estimates: over the whole domain most of the pixels present negative values for differences in RMSD (70%), most of the pixels present positive values for differences in correlation (79%)."

2.5 [Please rewrite the sentence in 535-536 "Most of the differences in RMSD are negative..."

RMSD is a strictly positive or zero value. Are the differences in RMSD between two different data sets being compared? Could the authors please write two sentences that explain this point more explicitly? It appears to be an important point as it is going to "show the added value of the analysis".]

Response to 2.5

Agreed, the whole paragraph has been revised for a better understanding. It is now: “However the comparison with the GLEAM satellite-derived estimates is rather positive, as illustrated in Figure 12 representing evapotranspiration from the open-loop (Fig.12a), GLEAM estimates (Fig.12b), the analysis (Fig.12c) and their differences (Fig.12d). Open-loop simulation of evapotranspiration tends to over-estimate the GLEAM product over most of Europe, particularly over France and the Iberian Peninsula, North Africa. Analysis is able to reduce this bias (Figure 12d). Figure 14 shows maps of RMSD (Fig.14a) and correlations (Fig.14b) differences: scores between the analysis and the GLEAM estimates minus scores between the open-loop and the GLEAM estimates. Most of the pixels present negative values for differences in RMSD (76% fig.14 a) indicating that for those pixels RMSDs from the analysis are smaller than those from the open-loop. Most of the pixels present positive values for differences in correlations (80% fig.14 b) indicating that for those pixels correlations from the analysis are higher than those from the open-loop. It shows the added value of the analysis when compared to the open-loop.”

2.6 [The figures (details are given in the technical comments below) need work as well. For example, in Figure 8: What is N? You don’t really need a legend for the red and green lines on each of the 6 month plots. Just define this in the caption. Panels need labels a, b, c and they need to be referenced as such in the caption. Please label the x axis with variable name and units. Most importantly, the y-axis is not a probability but a frequency of occurrence (the caption even says "histogram" which is correct). The integral of the probability distribution function should be equal to one by definition.]

Response to 2.6

Agreed, figures have been improved accordingly. Please see also Responses to technical comments 2.56 to 2.68. Regarding the y-axis of figure 8, it should be labelled ‘Probability density’, it represents the counts normalized to form a probability density, i.e., the area (or integral) under the histogram will sum to 1. This is achieved dividing the count by the number of observations times the bin width
and not dividing by the total number of observations. Y-labels on figures 4, 8 and 11 (b, c and d) are now ‘Probability density’.

2.7 [The last two paragraphs of section 3.4 are very unclear. The sentence "From Figures 13 d and e and Figure 13 one may notice...seasonal decrease and increase of the scores." does not make sense. Perhaps the authors need several sentences here that are more precise about which figures support which conclusions. Again, the RMSD and correlation should be discussed separately to make the evidence clearer. Line 555 contains another confusing sentence. "differences in RMSD and correlations are negative and positive; 70\% and 79\%. This just doesn’t make any sense. Are there percent changes in a particular direction? If so, what are the implications for the model output or the physical system?]

Response to 2.7
Agreed, the considered section (section 3.4) has been revised, please see Response to comments 2.1 and 2.5 as well.

2.8 [Section 4.1 is called "Can different data assimilation techniques improve the analysis?" I don’t believe that this particular question has been answered in this section by the work presented here. I think that alternative methods are proposed and discussed but the actual results in the paper do not answer the question whether one techniques is better than another. If the section could be renamed, that would be more clear.]

Response to 2.8
Agreed, section 4.1 has been renamed, it is now: “Towards different data assimilation techniques to improve the analysis”

2.9 [Abstract: SM is defined but later in the main body SSM is used. Perhaps should just define SSM in abstract and stick to it?]

Response to 2.9
Agreed, SSM is now defined from the abstract.

2.10 [Introduction: Define acronyms MODCOU and SAFRAN]

Response to 2.10
Agreed, both acronyms are in French, MODCOU stands for: “MODèle COUplé” , SAFRAN stands for: “Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige”.

13
2.11 [Section 3.1 Should be "Consistency between the model and observations"]

Response to 2.11
Agreed.

2.12 [Need to state what is consistent with what. "Observations consistency over time..." is not clear. Do you mean that one set of observations are consistent with another observation set? or with the model output?]

Response to 2.12
Those dataset have been evaluated/compared against long term in situ measurements/re-analysis of soil moisture and LAI with no decrease of quality over time. That is what authors mean by ‘consistency over time’. For instance, Albergel et al., 2013a have compared the ESA CCI soil moisture product against the ERA-Interim/Land re-analysis over 1979-2010 for all the 3-yr periods within 1979-2010. Correlations values were found rather stable with a small increase over time. Also time-series do not present any spurious jumps or drifts.

In the context of our evaluation and for sake of clarity, it is now emphasise that the data-set consistency against the open-loop is evaluated: “Observations consistency over time is crucial when assimilating long-term datasets. Several authors assessed the consistency of the ESA CCI soil moisture product with respect to re-analysis products (e.g., Loew et. al., 2013; Albergel et. al., 2013a; 2013b) and in-situ measurements (Dorigo et. al., 2015, 2017). […] To verify the results from literature for the spatial and temporal domain considered in this study a consistency evaluation both for SSM and LAI has been performed” is now: “Consistency over time is crucial when assimilating long-term datasets. Several authors assessed the consistency of the ESA CCI soil moisture product with respect to re-analysis products (e.g., Loew et. al., 2013; Albergel et. al., 2013a; 2013b) and in-situ measurements (Dorigo et. al., 2015, 2017). […] To verify the results from literature for the spatial and temporal domain considered in this study a consistency evaluation both for SSM and LAI against the open-loop experiment has been performed”.

2.13 [lines 61-63: should read "perform best for plant productivity...to used soil moisture and vegetation observations together to improve..."]

Response to 2.13
Agreed.

2.14 [line 91: WFDEI is defined in section 2 but should be defined here as well or instead of
Response to 2.14

Agreed, it is now defined in the introduction only.

2.15 [lines 97-103 Sentence is much too long. Please break up into separate sentences.]

Response to 2.15

Agreed, it is now two sentences: “Section 2 presents the LDAS-Monde system, i.e. (i) the CO₂ responsive version of the ISBA LSM and the soil diffusion scheme, (ii) the CTRIP hydrological model and its coupling with ISBA, (iii) the atmospheric forcing used to drive the system, (iv) the equations of the SEKF and (v) the assimilated remotely sensed observations dataset as well as the datasets used to assess the analysis impact. The latter is evaluated using agricultural statistics over France, river discharge, satellite-derived estimates of land transpiration and spatially gridded estimates of up-scaled gross primary production from the FLUXNET network.”

2.16 [line 115 CTRIP should be defined.]

Response to 2.16

CTRIP has already been defined in the introduction 1.94-96: “Having a daily interactive coupling between ISBA and the CNRM (Centre National de Recherches Météorologiques) version of the TRIP (Total Runoff Integrating Pathways, Oki et al., 1998) river routing model (CTRIP hereafter)”.

2.17 [line 119 "detailed hereafter" should be "described in the following sections."]

Response to 2.17

Agreed.

2.18 [line 122 "They" what is it? Is it the model parameters in the previous sentence? Please be specific.]

Response to 2.18

Agreed, “ISBA models the basic land surface physics requiring only a small number of model parameters. They depend on the soil and vegetation types.” Is now: “ISBA models the basic land
surface physics requiring only a small number of model parameters. The latter depend on the soil and vegetation types.”

2.19 [line 128-129 "net assimilation of CO2" Because the word assimilation is also used in the context of data assimilation, perhaps a different work could be used here? Like "uptake" or "intake"? I just think that using the word assimilation used in the 2 different contexts might confuse the readers.]

Response to 2.19
Agreed, “net assimilation of CO₂” has been replaced by “CO₂ uptake”.

2.20 [line 132 "evaporation of"? Or should it read "evaporation due to (i) plant transpiration"?]

Response to 2.20
Agreed, “evaporation of” is now “evaporation due to”.

2.21 [line 140 What is "it"? Snow scheme or soil diffusion scheme?]

Response to 2.21
It is now clarify: “The multi-layer soil diffusion scheme version is based on the mixed form of the Richards’ equation (Richards, 1931) and explicitly solves the one-dimensional Fourier law. Additionally, it incorporates soil freezing processes developed by Boone et al. (2000) and Decharme et al. (2013).” is now “The multi-layer soil diffusion scheme version (ISBA-Dif) is based on the mixed form of the Richards’ equation (Richards, 1931) and explicitly solves the one-dimensional Fourier law. Additionally, ISBA-Dif incorporates soil freezing processes developed by Boone et al. (2000) and Decharme et al. (2013).”

2.22 [line 140 "Richard’s " should be "Richards’ " (apostrophe after the s) and you need a reference: Richards, L.A., 1931. Capillary conduction of liquids in porous mediums. Physics 1, 318 – 333]

Response to 2.22
Agreed, reference to Richards, 1931 has now been added to the manuscript.

2.23 [line 143 Need a reference for the Brooks and Corey model.]
Response to 2.23

Agreed, the following reference has now been added to the revised version of the manuscript:

2.24 [line 187 The LSM is represented by the letter M, but that is not used until eqn. 5. Perhaps better to name M closer to eqn. 5 in the text.]

Response to 2.24

Authors prefer not to change this sentence as it is important to indicate at this stage that x is the control vector that represents the prognostic equations of the LSM M. If M is also mentioned close to Equation 5, it will be redundant.

2.25 [line 237 Should "harmonies" be "harmonious"?]

Response to 2.25

Authors thanks Reviewer #2 for pointing out this typo, it is now corrected.

2.26 [line 297 Is "discharge" "river discharge"? If so please state this.]

Response to 2.26

Agreed, it is now corrected.

2.27 [line 307 "model ability" should be "model’s ability"]

Response to 2.27

Agreed, it is now corrected.

2.28 [line 341-345 This is a long sentence and should be broken up. The last bit "...LAI (for SSM and LAI)." doesn’t make sense to me, please clarify how LAI is for SSM and LAI? Please make sure that LAI is defined.]

Response to 2.28
The considered sentence is now reduced and clarified, “The LDAS used in this study is designed as follow; x is the 8-dimensional control vector including soil layers 2 to 8 (representing a depth from 1 cm of 100cm) and LAI propagated by ISBA LSM. y_0 is the 2-dimensional observation vector (SSM, LAI) and the model counterparts of the observations are the second layer of soil of ISBA LSM (w_2 between 1 and 4 cm) and LAI (for SSM and LAI).” is now: “The LDAS used in this study is designed as follow; x is the 8-dimensional control vector including soil layers 2 to 8 (representing a depth from 1 cm to 100cm) and LAI propagated by ISBA LSM. y_0 is the 2-dimensional observation vector (SSM, LAI). The model counterparts of the observations are the second layer of soil of ISBA LSM (w_2 between 1 and 4 cm) and LAI for SSM and LAI observations, respectively.”

2.29 [line 386 is also unclear with "data set is consistent over time" consistent with what exactly?]

Response to 2.29
Please see Response to 2.12.

2.30 [Section 3.3 title could be "Impact of the Analysis".]

Response to 2.30
Agreed.

2.31 [line 390 section 222 should be 2.2.2]

Response to 2.31
Agreed.

2.32 [Line 400. "Correlation (RMSD)" Please explain what RMSD is it the root mean square deviation, the difference or the sample standard deviation?]

Response to 2.32
It is now clarify in the text. “Over the same period, correlation (RMSD) between GEOVI LAI and [...]” is now “Over the same period, correlation and Root Mean Square Differences (RMSD) between GEOVI LAI and SURFEX-CTRIP LAI estimates is 0.75 and 0.85 m^2/m^2”

2.33 [line 411 "good values" is vague. Do you mean "high correlation values"?]

Response to 2.33

Agreed, “Low correlations values are found in desert areas (over the Sahara), high elevation (e.g. over the Alps) and at high latitudes whereas good values [...]” is now “Low correlations values are found in desert areas (over the Sahara), high elevation (e.g. over the Alps) and at high latitudes whereas high correlations values [...]”

2.34 [In the text, the differential terms such as delta (SSM)/ delta (LAI) are missing the superscript that is included in equation 9. Line 450 the lack of superscripts renders that term particularly unhelpful.]

Response to 2.34

Agreed, it is now corrected in Table 2 and through the whole manuscript.

2.35 [line 425 should be "higher than those" not higher compared to"]

Response to 2.35

Agreed.

2.36 [line 469 Should be "Jacobian's" not "Jacobians"]

Response to 2.36

Agreed.

2.37 [line 518 Where is "Eff." defined? I would change sentence to "greater than 0 and with 22 gauge stations reporting Eff greater than 0.5."]

Response to 2.37

It is defined in section “2.2.4 Evaluation data sets and strategies”: “Impact on Q is evaluated using correlation, RMSD as well as the efficiency score (Eff) (Nash and Sutcliff, 1970). Eff evaluates the model’s ability to represent the monthly discharge dynamics and is given by:

\[\text{Eff} = 1 - \frac{\sum_{t=1}^{T} (Q_{s}^{t} - Q_{o}^{t})^2}{\sum_{t=1}^{T} (Q_{o}^{t} - Q_{o}^{t})^2} \] (8)

where \(Q_{s}^{t} \) is the simulated river discharge (or analysed) at time \(t \) and \(Q_{o}^{t} \) is observed river discharge at month \(m_t \). The Eff can vary between \(-\infty \) and 1. A value of 1 corresponds to identical model predictions and observed data. A value of 0 implies that the model predictions have the same accuracy as the the mean of the observed data. Negative values indicate that the observed mean is
a more accurate predictor than the model simulation.”

“Over 2000-2010, 48 of 83 gauge station present E_{1f} values greater than 0, 22 greater than 0.5” is now “Over 2000-2010, 48 of 83 gauge station present E_{1f} values greater than 0 and 22 gauge stations report E_{1f} greater than 0.5”

2.38 [line 521 Change "superior" to "greater than" or use the mathematical symbol ">"] in this paragraph.

Response to 2.38

Agreed, “superior” is now “greater than”.

2.39 [line 521 Change to "(3 stations report a decrease > 0.05)""]

Response to 2.39

Agreed, “(3 present a decrease superior to 0.05)” is now “(3 stations report a decrease greater than 0.05)”

2.40 [line 532 Where is "open-loop" defined?]

Response to 2.40

It is defined in the introduction. L.80 “However, the assimilation was not successful in improving the representation of river discharge within MODCOU compared to an open-loop (i.e. no assimilation) simulation.”

For sake of clarity, it now is repeated in section 2.3 on experimental setup: “SURFEX-CTRIP was spun up by cycling twenty times through the year 1990, then a 10-yr model run is allowed before considering both an open-loop (a model run with no assimilation) and an analysis experiment over 2000-2012.”

2.41 [Line 544 MTE needs to be defined.]

Response to 2.41

MTE is defined L.322-323, section 2.2.4 on Evaluation data sets and strategy: “The up-scaled FLUXNET GPP and evapotranspiration were derived from the FLUXNET network using a model tree ensemble (FLUXNET-MTE hereafter) approach as described in Jung et al. (2009).”
Response to 2.42
Wording is indeed not clear, by ‘excessive’ Authors meant ‘outliers’. It is now corrected (please see also Response to 2.43).

Response to 2.43
For sake of clarity, “They were however obtained using the force-restore version with three layers of soil.” is now “Those outliers in the Jacobian’s values were however obtained using the force-restore version of the ISBA LSM with three layers of soil and not with the diffusion soil scheme: ISBA-Dif.”

Response to 2.44
For sake of clarity, “Soil moisture observations and background errors were scaled using the model dynamic range. It accounts for texture-based spatial variability in the error and assumes that the soil moisture errors and the dynamic range have a linear relationship.” is now “Soil moisture observations and background errors were scaled using the open-loop soil moisture dynamical range. The scaling accounts for texture-based spatial variability in the error and assumes that the soil moisture errors and the dynamic range have a linear relationship.”

Response to 2.45
Agreed, “The SEKF is also limited in correcting errors from the atmospheric forcing uncertainty making the system relying too much on the chosen forcing.” is now “The SEKF is also limited in correcting errors from the atmospheric forcing uncertainty making the system too reliant on the chosen forcing.”

For sake of clarity, “they” is now “\(\frac{\partial S_{\text{SSM}}}{\partial w_{2-R^2}} \text{Jacobians} \)”
2.47 [Line 595 "elaborated methods" doesn’t make sense.]

Response to 2.47
Agreed, “elaborated” is replaced by “statistical”

2.48 [Line 601 Again the term from the Jacobian matrix is missing sub or superscripts.]

Response to 2.48
Corrected here and through the whole manuscript.

2.49 [Line 609 Should be "Can better use of" not "Can a better use of"]

Response to 2.49
Agreed.

2.50 [Line 630 "too large" could be better as "such large"]

Response to 2.50
Agreed, “too large” is now “such large”

2.51 [Line 643 "suggest an added value on vegetation variables" is unclear. how do these variables add value and what exactly is the value added?]

Response to 2.51
For sake of clarity, “Preliminary results from assimilating disaggregated LAI time series and using new LAI minimum values (not shown) suggest an added value on vegetation variables like above-ground biomass and on the representation of river discharge.” is now “Preliminary results from assimilating disaggregated LAI time series and using new LAI minimum values (not shown) suggest better representation of vegetation variables like LAI and above-ground biomass as well as an enhanced representation of river discharge compared to an open-loop simulation using the former LAI minimum values.”

2.52 [Line 652 should be "assimilating retrieved soil moisture"]
Response to 2.52
Agreed, it is now corrected in the revised version of the manuscript: “Despite the proven record of assimilating soil moisture retrieval from [...]” is now “Despite the proven record of assimilating retrieved soil moisture from [...]”.

2.53 [Line 655 "Tb" needs "b" as a subscript.]
Response to 2.53
Agreed.

2.54 [Line 666 Better to write "at Meteo-France; it will account for "]
Response to 2.54
Agreed.

2.55 [Table 1. Under "Model" what do DIF and NIT mean?]
Response to 2.55
It is now clarify in the caption of Table 1, new caption is “Summary of the experimental setup used in this study. ‘Dif’ indicates that the diffusion scheme of the ISBA LSM is used, ‘NIT’ represents the biomass option selected.”

2.56 [Figure 1. typo "rigth" should be "right"]
Response to 2.56
Agreed, new caption is: “Averaged (left) surface soil moisture from the Climate Change Initiative project of ESA (right) GEOVI Leaf Area Index from the Copernicus Global Land Service project (for pixels covered by more than 90% of vegetation) over 2000-2012.”

2.57 [Figure 2: What does the shaded area represent? Should explain in the caption. Need full stop at end of sentence.]
Response to 2.57
The shaded area highlights the analysis impact for each considered metric: if the analysis is better than the open-loop then the area between the two lines (red and blue) is shaded in red and if the open-
loop is better than the analysis then it is shaded in blue. However as the analysis is systematically better than the open-loop there is no need to keep it and it is now remove from figure 2 (as well as from figure 14 now figure 15). Panels were also labelled and new caption is: “Seasonal a) RMSD and b) correlation values between leaf area index (LAI) from the open-loop, analysis and GEOV1 LAI estimates from the Copernicus Global Land Service project over 2000-2012.” New figure 2 is presented below.

2.58 [Figure 3: The panels are very small. I think that all panels should be labeled a, b, c etc. and then referred to in the caption by letter. The top 6 panels appear to be for the median R values and the bottom is for a mean RMSD. This is not mentioned in the caption. What times are used in the creation of the median and mean? "Averaged values are reported..." which values are being averaged? In caption state that w_2 is the second layer of soil.]

Response to 2.58
Agreed, all panels are now labelled and referred to in the caption which is now : “top row, yearly averaged correlations between satellite-derived surface soil moisture from the Climate Change Initiative project from ESA and the second layer of soil of SURFEX-CTRIP (w_2: 1 cm-4 cm depth) for a) 2000, b) 2006 and c) 2012. d), e) and f) yearly averaged correlation between the GEOV1 leaf area index from the Copernicus Global Land Service project and SURFEX-CTRIP for 2000, 2006 and 2012, respectively. g), h) and i) same as d), e) and f) for RMSD. ” New figure 3 is presented below.
2.59 [Figure 4: Needs a label for the x axis. N is not defined in the caption but a number is given for N in each panel. The Jacobian elements need to match equation 9. There is a lack of superscript on the LAI variable. What are the solid blue lines in the histogram? Only the lines are defined in caption. Is there a vertical line drawn at 0.0? That should be stated because it is hard to see.]

Response to 2.59

Indeed information on N is missing, it represents the sampling. For sake of clarity on figure 4, the 90% confidence interval was chosen to define the upper and lower values to exclude outliers on the histograms. In agreement with Reviewer #2 comment, y-label is now ‘Probability density’, x-label is now ‘Jacobians’ and the Jacobian elements match equation 9 and all panels are labelled. New caption is: “Jacobian values distribution: a) to f), \(\frac{\partial SSM^T}{\partial w_2} \) (red line), \(\frac{\partial SSM^T}{\partial w_4} \) (cyan line) and \(\frac{\partial SSM^T}{\partial w_8} \) (blue line) all months of January, March, June, August, October and December over 2000-2012, g) to i),
\(\frac{\partial L_{A}^{t}}{\partial L_{A}^{0}} \) (red line), \(\frac{\partial L_{A}^{t}}{\partial W_{4}^{t}} \) (cyan line) and \(\frac{\partial L_{A}^{t}}{\partial W_{6}^{t}} \) (blue line) for all months of January, June and October over 2000-2012. Black solid line represents a value of 0.” New figure 4 is presented below.

2.60 [Figure 5: State which column is which and which row is which. “Rows from top to bottom represent averaged analysis increments for all months Feb, May, Aug and Nov from 2000-2012....”]

Response to 2.60
Agreed, new caption is: “Rows from top to bottom represent averaged analysis increments for all months of February, May, August and November over 2000-2012. From left to right for 4 control variables are illustrated, leaf area index and soil moisture in the second (\(w_{2}, 1 \text{ cm- 4 cm} \)), fourth (\(w_{4}, 10 \text{ cm-20 cm} \)) and sixth (\(w_{6}, 40 \text{ cm – 60 cm} \)) layer of soil, respectively.”

2.61 [Figure 6: The y axis is not labeled correctly. It should be latitude not 200001-201212. If that is a year and month, it should be in the title or caption. Captial "S" needed. Change to "whole period 2000-2012".]

Response to 2.61
Agreed, 200001-201212 is now removed from the figure and the new caption is: “Averaged analysis increments for the whole period 2000-2012. Four control variables are illustrated: a) leaf area index and soil moisture in a) the second (\(w_{2}, 1 \text{ cm- 4 cm} \)), b) fourth (\(w_{4}, 10 \text{ cm-20 cm} \)) and c) sixth
(w6, 40 cm – 60 cm) layer of soil.” New figure 6 is presented below.

2.62 [Figure 7: Panels need labels a, b,c and they need to be referenced as such in the panels.]

Response to 2.62

Agreed, labels are now reported and all panels and captions has been changed accordingly: “RMSD maps between leaf area index from the open-loop (analysis) and that from the Copernicus Global Land Service project (GEOV1 index) for a(b) January, e(f) April, c(d) July and e(f) October over 2000-2012.” New figure 7 is presented below.
2.63 [Figure 8: What is N? You don’t really need a legend for Red and Green on each of the 6 month plots. Just define in the caption. Panels need labels a, b, c and they need to be referenced as such in the panels. Label the x axis. y-axis is not a probability but a frequency of occurrence. Integral of the Probability function should be equal to one.]

Response to 2.63

Information on N is indeed missing, it represents the sampling which is reported on each month plots. In agreement with Reviewer #2 comment legend for Red and Green are only reported on the first plot, panels are labelled a, b, c...etc, x-axis is now ‘Innovations or Residuals’ and y-axis is ‘Probability density’ (please see also response to comment 2.6). New caption is: “Probability density function of innovation (observations-open-loop in red) and residuals (observations –analysis, in green) for Leaf Area Index for a) February, b) April, c) June, d) August, e) October and f) December over 2000-2012. Sampling (N) is reported on each panel”. New figure 8 is presented below.
2.64 [Figure 9: Panels need labels a, b,c and they need to be referenced as such in the panels.]

Agreed, panels are now labeled and the new caption is: “Averaged analysis impact on land surface variables that are indirectly affected over the period 2000-2012: a) drainage, b) runoff, c) evapotranspiration and d) river discharge.” New figure 9 is presented below.
Response to 2.65

Agreed, new caption is: “a); Correlation values for the above ground biomass from the open-loop with grain yields estimates from Agreste French agricultural statistics portal (http://agreste.agriculture.gouv.fr) over 45 sites in France plotted against correlations between the same quantities but above ground biomass from the analysis; b) same as a) for RMSD values; c) scaled anomalies time-series of above ground biomass from the open-loop (black dashed line) the analysis (black solid line) and grain yields observations (red solid) for one site in Allier, France (46.09N-3.21E).”

2.66 [Figure 11: Panels need labels a, b,c and they need to be referenced as such in the panels.]
Agreed, new labels a, b, c and d are reported on panels, also y-axis is now ‘Probability density’ for panels b to d (please see also Response to comment 2.6). New figure 11 is presented below.

2.67 [Figure 12: The y axis is not labeled correctly. It should be latitude not 200001-201212. The multiple panels are very small and hard to see. I think that you could take the middle row and make it into a new figure. It is not about Evapotranspiration like the top and bottom rows. Please rewrite the second sentence. Be more explicit. For example: Maps of averaged taken over 2000-2012 of a) evapotranspiration…]

Agreed, y-label is removed and as suggested by Reviewer #2 this figure is now split into 2 figures, one for Evapotranspiration (new figure 12) and on for Gross Primary Production (new figure 13). It also makes them more visible for Readers. New captions and figures are:

“Figure 12: Top row: maps of averaged evapotranspiration taken over 2000-2012 from a) the model (i.e open-loop), b) the GLEAM estimates, c) the analysis and d) differences between the analysis and model. Bottom row: maps of averaged evapotranspiration taken over 2000-2011 from a) the model (i.e open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis and model.”
Figure 13: Maps of averaged Gross Primary Production taken over 2000-2011 from a) the model (i.e. open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis and model."

2.68 [Figure 13: Rewrite caption. Use full stops. For example: RMSD (a) and correlations (b) between analysed (modelled)Panels c and d show Carbon... Panels e and f compare...]

Response to 2.68
Agreed, also figure 13 is now figure 14, the new caption is:

RMSD (a) and Correlations (b) differences between analysed (modelled) evapotranspiration and GLEAM estimates over 2000-2012. c) and d) are similar to a) and b) for Carbon mass flux out of the atmosphere due to Gross Primary Production (GPP) from the analysis (model), and FLUXNET-MTE GPP estimates over 2000-2011. Finally e) and f) are similar to a) and b) for analysed (modelled) evapotranspiration and FLUXNET-MTE evapotranspiration estimates over

2.68 [Figure 14: Panels need labels a, b,c and they need to be referenced as such in the panels. What is the observation dataset being used? What is the red shaded area? Rewrite: "Monthly RMSD and correlation values between...."]

Response to 2.69

Agreed, panels are now labelled and the red shaded areas has been removed. Figure 14 is now figure 15. The new caption is: “Seasonal a) RMSD and b) correlation values between the Carbon mass flux out of the atmosphere due to Gross Primary Production on land (GPP) from the open-loop, analysis and FLUXNET-MTE estimates over 2000-2011.” New figure 15 is presented below.
Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area

Clément Albergel¹,*, Simon Munier¹, Delphine Jennifer Leroux¹, Hélène Dewaele¹, David Fairbairn¹,², Alina Lavinia Barbu¹, Emiliano Gelati¹,³, Wouter Dorigo⁴, Stéphanie Faroux¹, Catherine Meurey¹, Patrick Le Moigne¹, Bertrand Decharme¹, Jean-François Mahfouf⁴, Jean-Christophe Calvet¹

¹ CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
² Now at Imperial College, London, UK
³ Now at Joint Research Centre, European Commission, Ispra, Italy
⁴ Department of Geodesy and Geo-Information, TU Wien (Vienna University of Technology), Vienna, Austria

* Corresponding author, Clément Albergel: clement.albergel@meteo.fr

Abstract- In this study, a global Land Data Assimilation system (LDAS-Monde) is tested-applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SSM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO₂-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface-SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SSM have an impact on the different control variables. From the assimilation of surface SSM, the LDAS is more effective in modifying soil-moisture (SM) from the top layers of soil as model sensitivity to surface–SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring.
Assimilation impact results show that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of the assimilation impact is conducted using the assimilation impact’s evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.

1 Introduction

Land surface models (LSMs) forced by gridded atmospheric variables and their coupling with river routing models are important for understanding the terrestrial water and vegetation cycles (Dirmeyer et al., 2006). These LSMs need to simulate biogeophysical variables like surface and root zone soil moisture (SSM and RZSM, respectively), Leaf Area Index (LAI) in a way that is fully consistent with the representation of surface/energy flux and river discharge simulations. Soil Moisture (SM) is an essential component in partitioning incoming water and energy over land, thus affecting the variability of evapotranspiration, runoff and energy fluxes (Mohr et al., 2000). By controlling land surface temperature and plant water stress, evapotranspiration and infiltration of precipitation, soil moisture drives ecosystem dynamics, biodiversity and food production, regulates CO$_2$ emissions (uptake) by the land surface and impacts natural hazards such as floods and droughts (Seneviratne et al., 2010). The role of soil moisture as a regulator for various processes in the terrestrial ecosystem such as plant phenology, photosynthesis, biomass allocation, soil respiration, hence the terrestrial carbon balance, has also clearly been established (Ciais et al., 2005; Van der Molen et al., 2012; Carvalhais et al., 2014; Reichstein et al., 2013). The seasonal dynamics of vegetation properties, like LAI, are connected to soil moisture dynamics (Kochendorfer and Ramirez, 2010). Both the simulation of hydrological processes and the exchange of water vapour and CO$_2$ between the vegetation canopy and atmosphere interface are strongly influenced by LAI (Jarlan et al., 2008; Szczypta et al., 2014).

Global observations of land surface variables are now operationally available from spaceborne instruments and they can be used to constrain LSMs through Data Assimilation (DA) techniques as demonstrated by several authors (e.g., Reichle et al., 2002; Draper et al., 2011, 2012; Dharssi et al., 2011; Barbu et al., 2011; de Rosnay et al., 2013, 2014; Barbu et al., 2014; Boussetta et al., 2015;
Fairbain et al., 2017). Recent studies (e.g., Traore et al., 2014) have demonstrated that a model that best-performs for soil moisture does not necessarily best perform for plant productivity, highlighting the need to jointly use soil moisture and vegetation observations to improve global and continental eco-hydrological/carbon cycle models (Wang et al., 2012; Kaminski et al., 2013). Several studies demonstrated the benefit of jointly assimilating SSM and LAI on the representation of RZSM (e.g., Sabater et al., 2008) and CO$_2$ flux (e.g., Albergel et al., 2010, Barbu et al., 2011).

Within the SURFEX modelling system (SURFace EXternalisée, Masson et al. 2013) the CO$_2$-responsive version of ISBA (Interaction between Soil Biosphere and Atmosphere) LSM (Noilhan and Mahfouf, 1996; Calvet et al., 1998, 2004; Gibelin et al., 2006) allows the representation of various land surface processes, including evapotranspiration and SM evolution. It is also capable of modelling photosynthesis and vegetation growth. The evolution of the simulated LAI and vegetation biomass changes in response to the meteorological forcing conditions. In previous studies, Barbu et al. (2014), Fairbairn et al. (2017) tested a combined assimilation of SSM and LAI in this CO$_2$ responsive version of ISBA over France within SURFEX. They used the force-restore version of ISBA (with three layers of soil), a Simplified formulation of an Extended Kalman Filter (SEKF) with a 24-h assimilation window and hourly meteorological forcing from the SAFRAN reanalysis (Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige, Quintana-Seguí et al., 2008; Habets et al., 2008) at 8km scale. Fairbairn et al. (2017), also made a posterior offline use of runoff and drainage fields from ISBA to run the MODCOU hydrological model (MODèle COUplé, Habets et al., 2008) to evaluate the added value of the joint assimilation of LAI and SSM on the representation of river discharge over France. However, the assimilation was not successful in improving the representation of river discharge within MODCOU compared to an open-loop (i.e. no assimilation) simulation. Following their work, the present study tests the assimilation of both satellite derived SSM and LAI at the continental scale. Further steps are made by:

- Using the most recent SURFEX_v8.0 Offline Data Assimilation implementation,
- Considering a much larger domain, Europe and the Mediterranean basin as well as a longer time period; 2000-2012,
- Using the multi-layer soil diffusion scheme of ISBA developed by Decharme et al. (2011).

Using the modified version of WFDEI (WATCH-Forcing-Data-ERA-Interim) observation-based atmospheric forcing dataset (Weedon et al., 2011, 2014) from the eartH2Observe project (Schellekens et al., 2017),

Having a daily interactive coupling between ISBA and the CNRM (Centre National de Recherches Météorologiques) version of the TRIP (Total Runoff Integrating Pathways, Oki et al., 1998) river routing model (CTRP hereafter) to simulate hydrological variables such as the river flow (Decharme et al. 2010).

Section 2 presents the LDAS-Monde system, i.e. (i) the CO$_2$ responsive version of the ISBA LSM and the soil diffusion scheme, (ii) the CTRIP hydrological model and its coupling with ISBA, (iii) the atmospheric forcing used to drive the system, (iv) the equations of the SEKF and (v) the assimilated remotely sensed observations dataset as well as the datasets used to evaluate the analysis impact. The latter is evaluated using (agricultural statistics over France, river discharge, satellite-derived estimates of land transpiration and spatially gridded estimates of up-scaled gross primary production from the FLUXNET network). Section 3 investigates and discusses the model sensitivity to the assimilated observations and provides a set of statistical diagnostics to assess and evaluate the analysis impact. Finally section 4 provides perspective and future research directions.

2 Materials and Method

2.1 SURFEX offline data assimilation

The SURFEX modelling system includes the ISBA land surface model (Noilhan and Mahfouf, 1996) to calculate the soil/vegetation/snow energy and water budgets and is coupled to the TRIP (Total Runoff Integrating Pathways, Oki et al., 1998) river routing model in order to simulate the streamflow (SURFEX-CTRP hereafter). SURFEX offline data assimilation implementation is used to set up a Land Data Assimilation System (LDAS) over Europe and the Mediterranean basin (longitudes from 11.75°W to 62.50°E, latitudes from 25.00°N to 75.50°N). It is defined as an offline sequential data assimilation system based on the ISBA LSM. It is capable of ingesting information from various satellite-derived observations to analyse and update SM and LAI simulated by ISBA. Analysis of ISBA prognostic variables then have an impact on the CTRIP variables (e.g., river discharge) through
an interactive daily coupling (Voldoire et al. 2017). The system is driven by WFDEI (WATCH-Forcing-Data-ERA-Interim)-observations based atmospheric forcing dataset (Weedon et al., 2011, 2014). The main components of the LDAS (LSM, river routing system, analysis scheme and atmospheric forcing) are detailed hereafter described in the following sections.

2.1.1 ISBA Land Surface Model,

ISBA models the basic land surface physics requiring only a small number of model parameters. The latter depend on the soil and vegetation types. This study uses of the CO$_2$-responsive version of ISBA which is able to simulate the interaction between water and carbon cycles, photosynthesis and its coupling to stomatal conductance (Calvet et al., 1998, 2004; Gibelin et al., 2006). The CO$_2$-responsive version of ISBA has been developed to allow for different biomass reservoirs for the simulation of photosynthesis and the vegetation growth. The dynamic evolution of the vegetation biomass and LAI variables is driven by photosynthesis in response to atmospheric and climate conditions. Photosynthesis enables vegetation growth resulting from the net assimilation of CO$_2$ uptake. During the growing phase, enhanced photosynthesis corresponds to a net assimilation of CO$_2$ uptake which results in vegetation growth from the LAI minimum threshold (prescribed as 1 m2m$^{-2}$ for coniferous forest or 0.3 m2m$^{-2}$ for other vegetation types). In contrast, a deficit of photosynthesis leads to higher mortality rates. The total evaporative flux represents the combination of the evaporation due to (i) plant transpiration, (ii) liquid water intercepted by leaves, (iii) liquid water contained in top soil layers, and (iv) the sublimation of the snow and soil ice. The CO$_2$ uptake from photosynthesis is defined as the gross primary production (GPP) and the release of CO$_2$ is called the ecosystem respiration (RECO). The Net ecosystem CO$_2$ exchange (NEE) measures the difference between these two quantities.

ISBA has an explicit snow scheme (with 12 layers) as detailed in Bonne and Etchevers (2001) and Decharme et al. (2016). The multi-layer soil diffusion scheme version (ISBA-Dif) is based on the mixed form of the Richard’s’ equation (Richards, 1931) and explicitly solves the one-dimensional Fourier law. Additionally, ISBA-Dif incorporates soil freezing processes developed by Boone et al. (2000) and Decharme et al. (2013). The total soil profile is vertically discretised and the temperature and the moisture of each layer are computed according to the textural and hydrological characteristics. The Brookes and Corey model (Brooks and Corey, 1966) determines the closed-form equations between the soil moisture and the soil hydrodynamic parameters, including the hydraulic
conductivity and the soil matrix potential (Decharme et al. 2013). A discretization with 14 layers over 12m depth is used. The lower boundary of each layer is: 0.01, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 5, 8 and 12 m depth (see figure 1 of Decharme et. al., 2011). The amount of clay, sand and organic carbon present in the soil are determined by thermal and hydrodynamic soil properties (Decharme et al., 2016) and are taken from the Harmonised World Soil Database (HWSD, Wieder et al., 2014). As for hydrology, the infiltration, surface evaporation and total runoff are accounted for in the soil water balance. The discrepancy between the surface runoff and the throughfall rate is defined by the infiltration rate.

The throughfall rate is defined as the sum of rainfall that is not intercepted by the canopy, dripping from the canopy (interception reservoir) and snow melt water. Evaporation only affects the superficial layer, which represents the top 1 cm of soil. The soil evaporation is proportional to the relative humidity of the superficial layer. Transpiration water from the root zone (the region where the roots are asymptotically distributed) following the equations in Jackson et al. (1996). More information on the root density profile is available in Canal et al. (2014). ISBA total runoff has two contributions: the surface runoff (the lateral subsurface flow in the topsoil) and a free drainage condition at the bottom layer. A basic TOPMODEL approach is used to compute the Dunne runoff and lateral subsurface flow from a subgrid distribution of the topography. The Horton runoff is estimated from the maximum soil infiltration capacity and a subgrid exponential distribution of the rainfall intensity.

2.1.2 CTRIP river routing

The present CTRIP version consists of a global streamflow network at 0.5° spatial resolution. The CTRIP model is driven by the three prognostic equations corresponding to the groundwater, the surface stream water and the seasonal floodplains. Streamflow velocity is computed using the Manning's formula (Decharme et al., 2010). The floodplain reservoir fills when the river water level overtops the riverbank and empties again when the water level drops below this threshold (Decharme et al., 2012). Flooding impacts the ISBA soil hydrology through infiltration. It also influences the overlying atmosphere via free surface water evaporation and precipitation interception.

At last, the groundwater scheme (Vergnes and Decharme, 2012) is based on the two-dimensional groundwater flow equation for the piezometric head. Its coupling with ISBA permits accounting for the presence of a water table under the soil moisture column allowing upward capillary fluxes into the soil (Vergnes et al., 2014). CTRIP is coupled to ISBA through OASIS-MCT (Voldoire et al.
Once a day, ISBA provides CTRIP with updates on runoff, drainage, groundwater and floodplain recharges, CTRIP returns to ISBA the water table depth/rise, floodplain fraction, flood potential infiltration.

2.1.3 Extended Kalman Filter

This section describes the analysis update of the Extended Kalman Filter while its application setup is described in section 2.3.

The analysis update equation of the Extended Kalman Filter is:

\[x_a(t_i) = x_f(t_i) + K_i (y_o(t_i) - h_i[x_f]) \]

(1)

The “a”, “f” and “o” subscripts stand for analysis, forecast and observation, respectively. \(x \) is the control vector of dimension \(N_x \), computed at time \(t_i \), that represents the prognostic equations of the LSM \(M \).

\(y_o \) is the observation vector of dimension \(N_y \). The Kalman gain matrix \(K_i \) is computed at time \(t_i \) as:

\[K_i = B H^T (H B H^T + R)^{-1} \]

(2)

A non-linear observation operator \(h \), enables the extraction of the model counterpart of the observations:

\[y(t_i) = h(x) \]

(3)

\(B \) and \(R \) are error covariance matrices characterising the forecast and observations vectors. The cross-correlated terms represent covariances. The operator \(H \) (and its transpose \(H^T \)) from Eq.2 is the Jacobian matrix: the linearized version of the observation operator (defined as \(N_y \) rows and \(N_x \) columns) that transforms the model states into the observations space. A numerical estimation of each Jacobian element is calculated by finite differences, by perturbing each component \(x_j \) of the control vector \(x \) by a specific amount \(\delta x_j \) resulting in a column of the matrix \(H \) for each integration:

\[H_{m \cdot j} = \frac{\partial y_m}{\partial x_j} \approx \frac{y_m(x+\delta x_j) - y_m}{\delta x_j} \]

(4)

The control vector evolution from time \(t_i \) to the end of the 24-hour assimilation window \((t_{i+1}) \) is then controlled by the following equation:
\[x_f(t_{i+1}) = M_i[x_n(t_i)] \]

(5)

In line with previous studies (e.g., Mahfouf et al., 2009; Albergel et al., 2010; Barbu et al., 2011; de Rosnay et al., 2013; Barbu et al., 2014; Fairbairn et al., 2015, 2017) a fixed estimate of the background-error variances and zero covariances at the start of each cycle are used leading to a Simplified version of the Extended Kalman Filter (SEKF hereafter). The initial state at the start of a 24-hour assimilation window is analysed by assimilating the observations available over the previous 24-hour assimilation window. This approach is similar to the “simplified 2-D-Var (2-dimensional variational data assimilation scheme)” proposed by Balsamo et al. (2004) but the increments are applied at the final timestep of the 24-hour assimilation window. Draper et al. (2009) found that the SEKF could generate flow-dependence from the 24-hour assimilation window and cycling the background-error covariance (as in the EKF) gave no additional benefit.

2.2 Data and data processing

2.2.1 WFDEI observations based atmospheric forcing dataset

Atmospheric forcing from the WFDEI dataset (Weedon et al., 2011, 2014) is used to drive the LDAS. It spans the period 1979-2012 and contains three-hourly time intervals of: wind speed, atmospheric pressure, air temperature, air humidity, incoming shortwave and longwave radiations and solid and liquid precipitation. WFDEI originates from the ECMWF ERA-Interim reanalysis (Dee et al., 2011) with interpolated to a spatial resolution of 0.5°, and is corrected with the CRU dataset (Climatic Research Unit, Harris et al., 2014) using a sequential elevation correction of surface meteorological variables plus monthly bias correction from gridded observations (e.g., precipitation data from the Global Precipitation Climatology Centre; GPCC). A more exhaustive description of the dataset is available in Schellekens et al. (2017).

2.2.2 ESA CCI surface soil moisture

This study makes use of a multi-sensor, long-term and global satellite-derived surface soil moisture dataset (Liu et al., 2011, 2012; Wagner et al., 2012; Dorigo et al., 2015, 2017) developed within The European Space Agency Water Cycle Multi-mission Observation Strategy (ESA-WACMOS) project and Climate Change Initiative (CCI, http://www.esa-soilmoisture-cci.org). Several authors (e.g., Albergel et al., 2013a, 2013b; Dorigo et al., 2015) have highlighted the quality and stability over time of the product. Despite some limitations, this data set has shown potential for assessing model
performance (Szczypta et al., 2014; van der Schrier, et al., 2013), for investigating the connection between soil moisture and atmosphere–ocean oscillations (Bauer-Marschallinger et al., 2013) as well as vegetation dynamics (Barichivich et al., 2014; Muñoz et al., 2014). This study uses the ESA CCI SM COMBINED latest version of the product (v03.2) which merges SM observations from seven microwave radiometers (SMMR, SSM/I, TMI, ASMR-E, WindSat, AMSR2, SMOS) and four scatterometers (ERS-1/2 AMI and MetOp-A/B ASCAT) into a harmonious dataset covering the period November 1978 to December 2015. For a more comprehensive overview of the ESA CCI SM see Dorigo et al, 2015, 2017 (under review for RSE).

To assimilate SM data, it is important to rescale the observations such that they are consistent with the model climatology (Reichle and Koster, 2004; Drusch et al., 2005). The climatology of the SM data set is defined by the specific mean value, variability and dynamical range. The ISBA model climatology for each gridpoint is dependent on the dynamical range, which is calculated from the wilting point and field capacity parameters (functions of soil texture types). It is necessary to transform the ESA CCI SSM product into model equivalent SSM to address possible mis-specification of physiographic parameters, such as the wilting point and the field capacity. The linear rescaling approach described in Scipal et al., 2008 (using the first two moments of the Cumulative Distribution Function, CDF) has been used in this study; it is a linear rescaling that enables a correction of the differences in the mean and variance of the distribution. The first two moments, the intercept a and the slope b are:

$$a = \overline{SSM_m} - b \times \overline{SSM_o}$$ (6)
$$b = \frac{\sigma_m}{\sigma_o}$$ (7)

Where $\overline{SSM_m}$ and $\overline{SSM_o}$, and (σ_m) and (σ_0) correspond to the model and observation means and (standard deviations), respectively. Barbu et al., 2014 and Draper et al., 2011 discussed the importance of allowing for seasonal variability in the CDF matching. a and b parameters vary spatially and were derived on a monthly basis by using a three-month moving window over 2000 to 2012 after screening for presence of ice and urban areas. The ESA CCI SSM observations are interpolated by an arithmetic average to the 0.5° model gridpoints.

2.2.3 GEOV1 Leaf Area Index

The GEOV1 LAI is produced by the European Copernicus Global Land Service project
The LAI observations are retrieved from the SPOT-VGT and PROBA-V (from 1999 to present) satellite data according to the methodology discussed in Baret et al. (2013). Following Barbu et al. (2014), the 1 km resolution observations are interpolated by an arithmetic average to the 0.5° model gridpoints, as long as 50% of the observation gridpoints are observed (half the maximum amount). LAI observations have a temporal frequency of 10 days. Both SSM and LAI observed data set are illustrated in Figure 1 presenting averaged values over 2000-2012. Figure 1 also illustrates the studied domain.

2.2.4 Evaluation data sets and strategies

A common diagnostic in data assimilation is to compute (1) differences between the assimilated observations and the model background, called the innovations, and (2) differences between the assimilated observations and the analysis, called the residuals (Barbu et al., 2011). Assuming that the system is working well, residuals have to be reduced compared to the innovations.

After evaluating innovations and residuals of SSM and LAI, analysis impact is assessed using (1) agricultural statistics over France, (2) observed river discharge over Europe, (3) satellite-derived estimates of terrestrial evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM, Martens et al., 2016, in review) and (4) spatially gridded estimates of up-scaled Gross Primary Production (GPP) and evapotranspiration from the FLUXNET network (Jung et al., 2009, 2011).

Smith et al. (2010a, b) demonstrated that crop simulations can be validated by agricultural statistics on a country scale. With a finer spatial scale over France, Calvet et al. (2012) benchmarked several configurations of the ISBA LSM using agricultural statistics (Agreste, 2016), namely the correlation between yield time series and above-ground biomass (B_{ag}) simulations. In ISBA, B_{ag} of herbaceous vegetation is made up of two components: the active biomass and the structural biomass. The former describes the photosynthetically active leaves and is linked to B_{ag} by a nitrogen dilution allometric logarithmic law (Calvet and Soussana, 2001). Calvet et al. (2012), found that B_{ag} simulated by the model is in agreement with the agricultural statistics, and therefore can be used to benchmark model/system development. Yearly statistical surveys over France are provided by the Agreste portal (http://agreste.agriculture.gouv.fr/). This has enabled a database of annual straw cereal grain yield (GY) values to be established. The GY estimates are available according to administrative unit (département) and per crop type. Following Calvet et al. (2012), Canal et al. (2014) and Dewaele et
al. (2017), the GY values for rainfed straw cereals over 45 départements are used, which include barley, oat, rye, triticale and wheat. Simulated and analysed annual maximum of B are compared to GY estimates following the methodology from Dewaele et al. (2017). Although SURFEX does not directly represent GY, it is assumed that the regional-scale simulations of above-ground biomass from a generic LSM can provide the inter-annual variability as a proxy for GY (Calvet et al., 2012; Canal et al., 2014).

Over 2000-2010, simulated and analysed river discharge are compared to gauging measurements from the Global Runoff Data Center (GRDC; http://grdc.sr.unh.edu/index.html) and the Banque Hydro (http://www.hydro.eaufrance.fr/) at a monthly time step. Data are chosen over the domain presented in Figure 1 for sub-basins with large drainage areas (10000km2 or greater) and with a long observation time series (4 years or more). It is common to express observed and simulated river discharge (Q) data in m3s$^{-1}$. However, given that the observed drainage areas may differ slightly from the simulated ones, scaled Q-values in mm.d$^{-1}$ (the ratio of Q to the drainage area) are used in this study. Stations with drainage areas differing by more than 15% from the simulated (analysed) ones are also discarded. This leads to 83 stations. Impact on Q is evaluated using correlation, RMSD as well as the efficiency score (Eff) (Nash and Sutcliff, 1970). Eff evaluates the model’s ability to represent the monthly discharge dynamics and is given by:

$$Eff = 1 - \frac{\sum_{t=1}^{T} (Q_{t}^{\text{mt}} - \bar{Q}_{t}^{\text{mt}})^2}{\sum_{m=1}^{M} (\bar{Q}_{t}^{\text{mt}} - \bar{Q}_{t}^{\text{mt}})^2}$$

where Q_{t}^{mt} is the simulated river discharge (or analysed) at time t and \bar{Q}_{t}^{mt} is observed river discharge at time-month mt. The Eff can vary between $-\infty$ and 1. A value of 1 corresponds to identical model predictions and observed data. A value of 0 implies that the model predictions have the same accuracy as the mean of the observed data. Negative values indicate that the observed mean is a more accurate predictor than the model simulation.

The GLEAM product uses a set of algorithms to estimate terrestrial evaporation and root-zone SM from satellite data (Miralles et al., 2011). It is a useful validation tool given that such quantities are difficult to measure directly at large scales. The global evaporation model in GLEAM is mainly driven by microwave remote sensing observations, while potential evaporation rates are constrained by satellite derived SM data. It is a well-established dataset that has been widely used to study trends
and spatial variability in the hydrological cycle (e.g., Jasechko et al., 2013; Greve et al., 2014; Miralles et al., 2014a; Zhang et al., 2016) and land–atmosphere feedbacks (e.g., Miralles et al., 2014b; Guillod et al., 2015). This study makes use of the latest version available, v3.0. It is a 35-year data set spanning from 1980 to 2014 and is derived from a variety of sources, namely vegetation optical depth (VOD) and snow water equivalents (SWE), satellite-derived soil moisture (SM), reanalysis air temperature and radiation and a multi-source precipitation product (Martens et al., 2016). It is available at a spatial resolution of 0.25°. Martens et al. (2016), provide a full description of the dataset including an extensive validation using measurements from 64 eddy-covariance towers worldwide.

The up-scaled FLUXNET GPP and evapotranspiration were derived from the FLUXNET network using a model tree ensemble (FLUXNET-MTE hereafter) approach as described in Jung et al. (2009). It is a machine learning technique that can be trained to ascertain land-atmosphere fluxes, providing a way of benchmarking LSMS at large scales (Jung et al., 2009, 2010; Beer et al., 2010; Bonan et al., 2011; Jung et al., 2011; Slevin et al., 2016 in review). The machine learning algorithm is trained using a combination of land cover data, observed meteorological data and remotely sensed vegetation properties (fraction of absorbed photosynthetic active radiation). The algorithm uses model tree ensembles to provide estimates of carbon fluxes at FLUXNET sites with available quality-filtered flux data, after which the trained model can be implemented globally using grids of the input data (Jung et al., 2009, 2011). It is limited to a 0.5° spatial resolution and a monthly temporal resolution over a 20-year period (1982-2011). It can be found in the Max Planck Institute for Biogeochemistry Data Portal (https://www.bgc-jena.mpg.de/geodb/projects/Home.php).

2.3 Experimental setup

The LDAS used in this study is designed as follow; \(x \) is the 8-dimensional control vector including soil layers 2 to 8 (representing a depth from 1 cm to 100 cm) and LAI propagated by ISBA LSM. \(y_o \) is the 2-dimensional observation vector (SSM, LAI) and the model counterparts of the observations are the second layer of soil of ISBA LSM (between 1 and 4 cm) and LAI (for SSM and LAI observations, respectively). A comparison between ESA CCI SM and the two top ISBA soil layers suggests that the second layer of soil better represents the satellite-derived product (not shown). Also the first layer of soil (1 cm depth) is discarded from the control vector as over a 24-hour window it is more reactive to the atmospheric forcing than to a small initial perturbation (Draper et al., 2011, Barbu et al, 2014). This leads to the following expression of the Jacobians matrices:
Several studies (e.g. Draper et al. 2009; Rüdiger et al., 2010) have demonstrated that small perturbations \((10^{-3} \text{ or less})\) lead to a good approximation of this linear behaviour, provided that computational round-off error is not significant. Following Draper et al. (2011), Mahfouf et al. (2009), the soil moisture errors are assumed to be proportional to the dynamic range (the difference between the volumetric field capacity \((w_{fc})\) and the wilting point \((w_{wilt})\), which is determined by the soil texture (Noilhan and Mahfouf [1996])); in this study the Jacobian perturbations were assigned values of \(1.10^{-4} \times (w_{fc} - w_{wilt})\). Following Rüdiger et al. (2010), the LAI perturbation was set to a fraction (0.001) of the LAI itself. In this configuration, for every 24-hour analysis cycle, the LSM is run several times; first to get the model trajectory (forecast), then perturbing the initial conditions of the various control variables, allowing computation of the various terms of the Jacobians (Eq.4).

For soil moisture in the second layer of soil, i.e. the model equivalent of the SSM observations, a mean volumetric standard deviation error of 0.04 m\(^3\)m\(^{-3}\) is prescribed. A smaller mean volumetric standard deviation error of 0.02 m\(^3\)m\(^{-3}\) is prescribed to the deeper layers, as suggested by several authors for RZSM (Mahfouf et al., 2009; Draper et al., 2011; Barbu et al., 2011, 2014). The observational SSM error is set to 0.05 m\(^3\)m\(^{-3}\) as in Barbu et al., 2014. This value is consistent with errors estimated from a range of remotely sensed soil moisture sources (e.g. de Jeu et al., 2008; Draper et al., 2011; Gruber et al., 2016). Soil moisture observational and background errors are also scaled by the model soil moisture range, assuming that there is linear relationship between the soil moisture errors and the dynamic range. The error standard deviations in the GEOV1 LAI and the modelled LAI (for modelled LAI values higher than 2 m\(^2\)m\(^{-2}\)) are both assumed to be equal to 20% of the LAI values. In accordance with a study by Barbu et al. (2011), the modelled LAI values lower than 2 m\(^2\)m\(^{-2}\) are assigned a constant error of 0.4 m\(^2\)m\(^{-2}\).

SURFEX-CTRIP was spun up by cycling twenty times through the year 1990, then a 10-yr model run is allowed before considering both an open-loop (a model run with no assimilation) and an analysis experiment over 2000-2012. Diagnostic studies of the Jacobian values have usually been performed before including new observations types (Chevallier and Mahfouf, 2001, Fillion and Mahfouf, 2003, Garand et al., 2001 and Rudiger et al., 2010). That is why, following Rudiger et al.,

\[
H = \begin{pmatrix}
\frac{\partial S_{SM}^t}{\partial L_{AI}^t} & \frac{\partial S_{SM}^t}{\partial w_2^t} & \cdots & \frac{\partial S_{SM}^t}{\partial w_n^t} \\
\frac{\partial L_{AI}^t}{\partial L_{AI}^t} & \frac{\partial L_{AI}^t}{\partial w_2^t} & \cdots & \frac{\partial L_{AI}^t}{\partial w_n^t} \\
\frac{\partial L_{AI}^t}{\partial L_{AI}^t} & \frac{\partial L_{AI}^t}{\partial w_2^t} & \cdots & \frac{\partial L_{AI}^t}{\partial w_n^t} \\
\end{pmatrix}
\]
2010, an analysis experiment without assimilating any observations has also been run over 2000-2012 to study the model sensitivity to the observations through the Jacobians. Prior to these runs, an analysis experiment without assimilating any observations has also been run over 2000-2012 to study the model sensitivity to the observations through the Jacobians. Studies of the Jacobian values have to be performed before assimilating observations because the validity of the linear assumptions in deriving the Jacobians is related to the sensitivity of the assimilation system. Table 1 summarizes the SURFEX-CTRIP set-up used in this study.

Table 1: Summary of the experimental setup used in this study. “Dif” indicates that the diffusion scheme of the ISBA LSM is used, ‘NIT’ represents the biomass option selected.

<table>
<thead>
<tr>
<th>Model</th>
<th>Domaine</th>
<th>Atm. Forcing</th>
<th>Data Assimilation Method</th>
<th>Assimilated Obs.</th>
<th>Observation Operator</th>
<th>Control Variables</th>
<th>Additional Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBA model, options Dif-Dif and NIT</td>
<td>Europe and the Mediterranean basin (0.5°)</td>
<td>Earth2Observe Earth2Observe/WFDEI</td>
<td>SEKF</td>
<td>SSM (http://www.esa-soilmoisture-cci.org) LAI (http://land.copernicus.eu/global/)</td>
<td>Second layer of soil (1-4cm), LAI</td>
<td>Layers of soil 2 to 8 (1-100cm), LAI</td>
<td>Coupling with CTRIP (0.5°)</td>
</tr>
</tbody>
</table>

3 Results

3.1 Consistency between the Model and observations consistency

Observations consistency over time is crucial when assimilating long-term datasets. Several authors assessed the consistency of the ESA CCI soil moisture product with respect to re-analysis products (e.g., Loew et. al., 2013; Albergel et. al., 2013a; 2013b) and in-situ measurements (Dorigo et. al., 2015, 2017). Lambin et al. (1999) found that the GEOV1 LAI data set is also consistent over time and can be used e.g. for detection of change and for providing information on shifting trends or trajectories in land use and cover change. To verify the results from literature for the spatial and temporal domain considered in this study a consistency evaluation both for SSM and LAI against the open-loop experiment has been performed. As observed SSM climatology is matched to the model climatology (see section 2.2.2.), consistency between observations and the model over time (2000-2012) is expressed as correlations on both absolute and anomaly time-series. The latter is computed using monthly sliding windows as described in Albergel et al. (2009). Only significant correlations values (at p-value<0.005) are retained. For LAI consistency is expressed both as correlations and...
Root Mean Square Differences (RMSD).

Median soil moisture correlation (anomaly correlation), of ESA CCI SSM with SURFEX-CTRIP second layer of soil, ω_2 between 1 and 4 cm, is 0.65 (0.47) over 2000-2012. Year-to-year correlation (anomaly correlation), which can potentially be impacted by the prevailing conditions in the given years, ranges from 0.62 (0.45) to 0.71 (0.48). Although many different sensors are used over time and space to retrieve ESA CCI SSM, the product can be considered stable. Over the same period, correlation and (Root Mean Square Differences (RMSD) between GEOV1 LAI and SURFEX-CTRIP is 0.75 and (0.85 m²m⁻²), correlations range from 0.72 in 2000 to 0.77 in 2012. RMSD values are relatively stable too with a minimum value of 0.76 m²m⁻² in 2002 and a maximum of 0.91 m²m⁻² in 2007. Figure 2 (blue line) illustrates seasonal RMSDs (fig. 2a) and correlations (fig. 2b) between LAI from the open-loop and the GEOV1 LAI estimates over 2000-2012. From fig. 2a, a strong seasonal dependency of RMSD is noticeable with values close to 1 m²m⁻² from June to October. RMSD exhibits however a strong seasonal dependency as illustrated by Figure 2 (blue line) with values close to 1 m²m⁻² from June to October. During these months correlation is better with values between 0.75 and 0.85. Too large RMSD values observed in winter time are not desirable since the vegetation is supposed to be dormant.

Overall both ESA CCI SSM and GEOV1 LAI were found stable over time with respect to SURFEX-CTRIP, as illustrated in Figure 3 for 2000, 2006 and 2012. Figure 3 top row illustrates correlations between ESA CCI SSM and SURFEX-CTRIP (ω_2). While in 2000 not all of Europe is covered, it is the case from 2003 onwards. Low correlations values are found in desert areas (over the Sahara), high elevation (e.g. over the Alps) and at high latitudes whereas good high correlations values are obtained over e.g., the Iberian Peninsula, France and Turkey. Figure 3 middle and bottom rows present the correlations and RMSD values respectively for GEOV1 LAI with SURFEX-CTRIP, only for vegetated grid points (>90%). Generally, LAI at high elevation is not represented well (low correlations and high RMSD) as well as in the northeastern part of the domain, which is mainly covered by broad-leaves trees. Conversely, the southern part of the domain presents high level of correlations and low RMSD values.

3.2 Model sensitivity to observations

The Jacobians, H (Eq.4) are dependent on the model physics. Their examination provides useful insight in explaining the data assimilation system performances (Barbu et al., 2011, Fairbairn et al., 2011).
Median values over 2000-2012 are presented in Table 2.

Table 2: Median Jacobians values for the eight control variables considered in this study over the whole spatial domain for 2000-2012.

<table>
<thead>
<tr>
<th>Depth</th>
<th>(\frac{\partial SSM}{\partial \text{LAI}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 cm</td>
<td>-0.0010</td>
<td>0.1719</td>
<td>0.1543</td>
<td>0.0694</td>
<td>0.0275</td>
<td>0.0043</td>
<td>0.0006</td>
</tr>
<tr>
<td>4-10 cm</td>
<td>0.0006</td>
<td>0.0015</td>
<td>0.0032</td>
<td>0.0068</td>
<td>0.0038</td>
<td>0.0011</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

The model equivalent of SSM is the second layer of soil (\(w_2 \) between 1 and 4 cm depth). It is then expected that the sensitivity of SSM to changes in soil moisture of that layer is higher compared to those of the other layers of soil. Sensitivity of LAI to changes in soil moisture (Table 2, bottom rows) is generally weaker than that of SSM (Table 2 top rows) suggesting that although control variables related to soil moisture will also be impacted by the assimilation of LAI, they would be even more impacted by the assimilation of SSM. The model sensitivity to SSM decreases with depth as presented in Table 2 revealing that the assimilation of SSM will be more effective in modifying soil moisture from the first layers. Over Europe, median values of \(H \) with respect to SSM observations (Table 2 top rows) range from 0.1719 to 0.0001 for layers \(w_2 \) to \(w_8 \), respectively and is –0.0001 for LAI. The negative value of \(\frac{\partial SSM}{\partial \text{LAI}} \) also indicates that a positive increments of LAI will generally lead to a decrease of SSM (\(w_2 \)). The depth impact is also illustrated in Figure 4 which represents histograms of \(H \) over Europe for three control variables (\(w_2 \) in red, \(w_4 \) in cyan and \(w_6 \) in blue) with respect to a change in SSM for six months (January, March, June, August, October,
December) over 2000-2012 (Figure 4, a to f). Additionally Figure 4 depicts a seasonal dependency. For instance, the histogram representing H of control variable w_2 (Figure 4, a) presents mainly three types, (1) values close or equal to 0 (type_A), (2) values between 0.2 and 0.8 (type_B) and (3) close to 1 (type_C). The values of type_C correspond to the situation in which the model dynamic is close to the identity i.e. the perturbation of the initial state is almost unchanged by the end of the assimilation window (24h). For values of type_B, the model dynamic is strongly dissipative and therefore the final offset is only a fraction of the initial perturbation. Distributions of types A, B, C vary in time; while for January they are 75%, 14% and 11%, for June they are 36%, 44% and 20% and for October 48%, 30% and 22%, respectively. It suggests a higher sensitivity of the first layers of soil to a change in SSM, particularly during late summer and autumn than during winter months. While a similar behaviour is observed up to the fourth layer of soil, the deepest layers of soil (e.g. w_8, blue line) do not show any seasonal dependency, and very small sensitivity with mainly Jacobian's values of type A.

The same typology can apply to H values $\frac{\partial \text{LAI}^a \partial \text{LAI}^f}{\partial \text{LAI}^o \partial \text{LAI}^i}$ (Figure 4, g, h, i), with an even stronger seasonal dependency. For all Januaries, distributions are 81%, 18% and 1%, while they are 22%, 77% and 1% for Junes and 27%, 45% and 28% for Octobers for types A, B and C, respectively. Assimilation of LAI will be more effective in modifying LAI from late spring to autumn. Finally, the assimilation of LAI will be more effective in modifying soil moisture from layers 4 to 6 (Table 2) where most of the roots are present for the different vegetation types from ISBA (between 20 cm and 60 cm, see Table 1 of Decharme et al., 2013).

3.3 Impact of the analysis on control variables

Control variables are directly impacted by the assimilation of LAI and SSM, Figure 5 illustrates averaged analysis increments for the period 2000-2012 for LAI and soil moisture in w_2 (between 1 cm and 4 cm), w_4 (between 10 cm and 20 cm) and w_6 (between 40 cm and 60 cm) for all months of February, May, August and October. Red (blue) colours indicate that the analysis removes (adds) LAI and soil moisture. At the beginning of the year vegetation is not very active, but on the very western part of the domain the analysis tends to add LAI over the United Kingdom, northwestern parts of France and it reduces LAI over the Iberian Peninsula. At the beginning of the year soil moisture is only slightly affected by the analysis. Later in spring and summer the analysis is more efficient: it removes LAI over a large part of Europe reducing the bias observed between open-loop 50
and observations. It mainly adds water in w_2 and remove water from layers w_4 to w_6. The seasonally marked impact of the analysis is consistent with the above description of the Jacobians behaviour. Analysis increments are also presented in Figure 6 for the entire period 2000-2012. Generally, the analysis tends to remove LAI, add water in w_2 but dries layers where the roots are mainly located (from w_4 to w_6). Its effect is however less pronounced at greater depths.

Figure 7 shows the averaged analysis impact on LAI for all months of January, April, July and October over 2000-2012 expressed in RMSD in the following way: GEOV1 LAI vs. open-loop and GEOV1 LAI vs. analysis. Only points where observed LAI is available (and assimilated) are retained. As this impact assessment is conducted against the observations that were assimilated, improvements from the analysis are expected and shows that the LDAS is working well. From Figure 7, this is mostly the case (e.g. in October). As indicated in section 3.2, the analysis is most efficient during late summer and autumn. The geographical patterns highlighted in section 3.1 are also observed with a clear improvement, e.g. in the northeastern part of the domain. Analysis improvement with respect to the observations is also visible in Figure 7.

Figure 8 illustrates histograms of innovations (in red) and residuals (in green) of LAI for all months of February, April, June, August, October and December over 2000-2012. As expected, the distribution of residuals is more centred on 0 than the distribution of the innovations. A seasonal pattern can be observed: during the growing phase (and up to June) both innovations and residuals present a right tail indicating that the model (and the analysis to a lesser extent) tends to underestimate LAI. In this period, similarities between innovations and residuals suggest that the analysis is not very efficient. At the end of summer and in autumn distributions present a left tail distribution; LAI is overestimated but this time the analysis is more efficient. Distributions of SSM residuals are even more centred on zero than those of innovations with no seasonal dependency and smaller differences (not shown). The common CDF-matching technique applied to SSM to remove systematic errors is responsible for this smaller impact as the LDAS can only correct SSM short term variability. Contrary to SSM, the LAI mismatch between the open-loop and the GEOV1 estimates concerns both magnitude and timing (see e.g. Figure 6 in Barbu et al. (2014)).

Figure 9 presents averaged differences over 2000-2012 between the open-loop and the analysis for other land surface variables that are indirectly impacted by the assimilation, namely: daily cumulated soil drainage flux, supersaturation runoff, evapotranspiration and daily mean river discharge.
Although the analysis impact is relatively weak on those variables (e.g. ~1% on the river discharge represented over the Danube) geographical patterns are observed. Areas where positive analysis increments were found for LAI (Figure 5) are marked to correspond to a decrease in drainage and runoff (in red on Figure 9) while evapotranspiration increases (in blue Figure 9). Changes in these, indirectly impacted land surface variables are in agreement with the analysis increments maps (Figure 6).

3.4 Evaluation of analysis impact

First, the evaluation of the analysis impact over France is effectuated over France using straw cereal grain yield (GY) values from the Agreste French agricultural statistics portal. Only the ‘département’ administrative units corresponding to a high proportion of straw cereals are considered. Yearly maximal above ground biomass (B_{ag}) values from the open-loop (i.e model) and analysis are compared to GY over 2000-2010. Yearly-scaled anomalies from the mean and the standard deviation for observations, open-loop and analysis are used for 45 sites over France as in Dewaele et al. (2017).

Figure 10a and 10b present correlations and RMSD values, respectively and Figure 10c time-series for one site illustrating the inter-annual variability. After assimilation of SSM and LAI, correlation as well as (RMSD) between B_{ag} and GY is clearly improved for 43 and 41(41) sites, respectively, out of 45 sites showing the added value of the analysis compared to the open-loop. Figure 10c presents B_{ag} from the open-loop (black dashed line) and analysis (black solid line) as well as observed GY (red solid line) scaled anomaly times-series for one site in Allier, France (46.09858°N-3.21641$^\circ$E).

Correlations and (RMSD) for open-loop and analysis experiments are 0.45 and (0.99_2) and 0.78 and (0.63_2), respectively.

Over 2000-2010, 48 of 83 gauge stations present Eff values greater than 0 and 22 gauge stations report Eff greater than 0.5. As suggested in the previous section, the analysis impact on river discharge is rather small. If the analysis generally leads to an improvement in river discharge representation, only 8 stations present an Eff increase superior greater than to 0.05 (3 stations present report a decrease superior to greater than 0.05). Eff, R and RMSD histograms of differences are presented in Figure 11 (b, c and d) along with a hydro-graph (Fig.11a) for the Loire River in France (47.25°N, 1.52$^\circ$W).

Although the assimilation impact is relatively small, evaluation results suggest that they are neutral to positive. Analysis impact on other CTRIP variables (e.g., floodplain fraction and storage,
groundwater height) is rather neutral.

Evapotranspiration from both the open-loop and the analysis are compared to monthly values of GLEAM satellite-derived estimates over 2000-2012 for vegetated grid points (>90%). As for the river discharge, the assimilation impact on evapotranspiration is small. However the comparison with the GLEAM satellite-derived estimates is rather positive, as illustrated in Figure 12 representing evapotranspiration from the open-loop (Fig.12a), GLEAM estimates (Fig.12b), the analysis (Fig.12c) and their differences (Fig.12d). Open-loop simulation of evapotranspiration tends to over-estimate the GLEAM product over most of Europe, particularly over France and the Iberian Peninsula, North Africa. Analysis is able to reduce this bias (Figure 12d). Figure 14 shows maps of RMSD (Fig.14a) and correlations (Fig.14b) differences: scores between the analysis and the GLEAM estimates minus scores between the open-loop and the GLEAM estimates. Most of the pixels present negative values for differences in RMSD (76% fig.14 a) indicating that for those pixels RMSDs from the analysis are smaller than those from the open-loop. Most of the pixels present positive values for differences in correlations (80% fig.14 b indicating that for those pixels correlations from the analysis are higher than those from the open-loop. It shows the added value of the analysis when compared to an open-loop. Evapotranspiration from the open-loop and analysis has also been evaluated using FLUXNET-MTE estimates of evapotranspiration (2000-2011). Results are illustrated by Figure 12e to h and Figure 14e and f. They are similar of those obtained using GLEAM estimates: over the whole domain most of the pixels present negative values for differences in RMSD (70%), most of the pixels present positive values for differences in correlation (79%).

However the comparison with the GLEAM satellite-derived estimates is rather positive, as illustrated in Figure 12 representing evapotranspiration from the open-loop (Fig.12a), GLEAM estimates (Fig.12b), the analysis (Fig.12c) and their differences (Fig.12d) and in Figure 13 showing differences in RMSD (Fig.13a) and correlations (Fig.13b) between the open-loop (analysis) and GLEAM estimates, respectively. Open-loop simulation of evapotranspiration tends to over estimate the GLEAM product over most of Europe, particularly over France and the Iberian Peninsula, North Africa. Analysis is able to reduce this bias (Figure 12d). Most of the differences in RMSD and correlations are negative and positive: 76% and 80% showing the added value of the analysis.

As for evapotranspiration, GPP from both the open-loop and the analysis are compared to monthly GPP estimates from FLUXNET-METE dataset. Figure 12 illustrates averaged carbon
uptake by GPP over land for 2000-2011 from the open-loop (i.e. model) (Fig. 1a2e), FLUXNET-METE (Fig. 1f13b) and the analysis (Fig. 1c2g) as well as differences between the analysis and the model (Fig. 1d2h). Also, Figures 1c and d show RMSD and correlation differences between the open-loop and the analysis and FLUXNET-MET dataset (analysis minus open-loop). Finally Figure 1 presents seasonal scores over the same period (Fig. 1a: RMSD values and Fig. 1b: Correlation values). Compared to the FLUXNET-MTE estimates, the open-loop tends to underestimate GPP over the Scandinavian countries, the northwestern part of France, UK and Ireland, north of the Caspian Sea while an overestimation is visible over most of the Iberian peninsula, Eastern Europe as well as the north-eastern part of the domain (Figure 1a, b). From Figures 1c and d and e) and Figure 15 one may notice that after assimilation of SSM and LAI there is a clear improvement in the GPP representation for RMSD and correlation with a systematic seasonal decrease and increase of the scores, respectively. Over the whole domain, 79% and 90% of the grid points present better RMSD and correlation values, respectively, after assimilation with respect to the FLUXNET-MTE estimates of GPP.

Evapotranspiration from the open-loop and analysis has also been evaluated using FLUXNET-MET estimates of evapotranspiration. Results are illustrated by Figure 12i to l and Figure 13e and f. They are similar of those obtained using GLEAM estimates: over the whole domain most of the differences in RMSD and correlations are negative and positive: 70% and 79%.

4 Discussion

4.1 Can-Towards different data assimilation techniques to improve the analysis?

This study introducing the LDAS-Monde is based on a Simplified version of an Extended Kalman filter. Although a version of an Ensemble Kalman Filter is available (EnKF, Evensen, 1994), to date SEKF is the most mature technique developed for land surface data assimilation within SURFEX. Many studies using SURFEX exposed the strengths and weaknesses of this technique (Mahfouf et al., 2009, Albergel et al., 2010., Draper et al., 2011, Barbu et al., 2011, 2014, Duerinckx et al., 2015, Fairbairn et al., 2015, 2017). The SEKF relies on accurate linear assumptions in deriving the Jacobians. Draper et al. (2009), Duerinckx et al. (2015) and Fairbairn et al. (2015) pointed out that excessive outliers in Jacobian’s values may occur under specific conditions (e.g. close to threshold values like the wilting point and field capacity for soil moisture) possibly leading to instabilities in the analysis. Those outliers in the Jacobian’s values were however obtained using the force-restore
version of the ISBA LSM with three layers of soil and not with the diffusion soil scheme: ISBA-Dif. In such configuration they used only one control variable related to soil moisture; the second layer of soil that is a thick layer representing all the root-zone (w_{2-RZ}) while the observation operator is model equivalent the very thin top layer (~ 1cm). Thus Jacobians, representing the impact of perturbing w_2 (i.e. the whole root-zone) on SSM (~ 1cm) can be quite different compared to those obtained using the soil diffusion scheme and presented in this study (e.g., where w_2 and SSM representing the same depth; 1-4 cm). For instance, $\frac{\partial SSM}{\partial w_2}$ they exhibit a rather large proportion of negative values as illustrated by Figure 10 of Fairbairn et al. (2017) and discussed in Parrens et al. (2014). Very few negative Jacobian values are obtained with the diffusion soil scheme (as in Figure 4) over Europe for 2000-2012. The SEKF is also limited in correcting errors from the atmospheric forcing uncertainty making the system relying too much on the chosen forcing. Alternatively an EnKF, which relies on the ensemble spread to capture background errors, can be modified to stochastically capture both model and precipitation errors (Maggioni et al., 2012; Carrera et al., 2015). The use of an EnKF within LDAS-Monde is currently under investigation at Meteo-France. Alternatively, particle filters could provide a means to capture non-Gaussian errors (e.g., Moradkhani et al., 2012).

The performance of an analysis scheme depends on appropriate statistics for background and observation errors. Wrongly specified error parameterisation may negatively affect the analysis. The main objective of this study was to present the newly developed LDAS-Monde while the statistics for background and observation errors were obtained from the literature. Soil moisture observations and background errors were scaled using the model open-loop soil moisture dynamic range. It accounts for texture-based spatial variability in the error and assumes that the soil moisture errors and the dynamic range have a linear relationship. Time correlations in the errors have also been neglected in this study, which are likely to occur in reality. It is also possible to employ an a-posteriori diagnostic to estimate observation errors, such as the statistics of the innovations (observations-minus-background) (Andersson, 2003; Mahfouf et al., 2007). This approach has been successfully applied by Barbu et al. (2011) on a point scale experiment to obtain seasonal error variability, the approach does not provide objective estimates of the observational errors but assesses the sub-optimality of the analysis. Future work will investigate having spatially and temporally variant observations errors, based on elaborated statistical methods already applied to the ESA CCI SSM dataset like triple...
collocation (Dorigo et al., 2015) or error decomposition (Su et al., 2016).

Having LAI estimates every 10 days while using 24h assimilation window may also trigger analysis discrepancies, as between two LAI assimilations the system relies only on SSM assimilation. When a large analysis update occurs on LAI (from the assimilation of LAI), it then tends to go back towards the model states in the successive days before being constrained again by the next observations. For instance, in winter most of the Jacobians are equal (or close) to zero and therefore the analysis update caused the LAI to return almost instantaneously to the incorrect LAI minimum value. This issue could be addressed using longer assimilation windows, from 10 days up to one month (e.g. as in Jarlan et al., 2008) where different data assimilation techniques could be used (e.g. variational methods to obtain a best fit between several observations). An alternative could be to keep a 1-day assimilation window and use smoothing techniques (e.g. Munier et al., 2014) to keep the benefit of the analysis update by propagating the error covariance forward up to the next available observation.

4.2 Can a better use of the observations improve the analysis?

SURFEX_v8.0 does not use any crop-specific parameterisation, which would be required to simulate the crop grain yield formation. In addition, the simulations of photosynthesis and vegetation growth do not take into account certain factors impacting the long-term agricultural production (e.g., changes in agricultural practices, diseases, pests, crop migration, the grain formation and crop cultivars). However, previous studies (Calvet et al., 2012, Canal et al., 2014) showed that agricultural statistics like grain yields can be used to benchmark SURFEX development in representing the above ground biomass inter-annual variability. A strong positive impact from the assimilation of SSM and LAI on the representation of above ground biomass inter-annual variability has been highlighted in this study. The impact on river discharge representation is only small (section 3.3). Improvements are however expected from a better representation in the model of vegetation parameter like LAI (e.g., Szczypta et al., 2014). Although the analysis is efficient in correcting LAI, high RMSD values remain, particularly during the senescence phase when SURFEX-CTRIP over-estimate LAI over a large part of Europe. RMSD and correlations with GEOV1 and SURFEX-CTRIP still expose a strong seasonal dependency after the analysis (red line on Figure 2) which is mainly attributed to model errors. The GEOV1 estimates have been shown to exhibit some realistic environmental features that are not, or
poorly, simulated by the model (Fairbairn et al., 2017). Therefore, it was decided not to rescale the GEOV1 estimates to the model climatology.

Figure 2 also suggests that the minimum LAI values used as model parameters (see section 2.1.1) should be revisited because too such large differences are not desirable particularly when the vegetation is dormant. Another caveat of this study is the use of a single LAI value for all vegetation types that are represented in SURFEX-CTRIP. As detailed in Barbu et al. (2014), the Kalman gain is calculated for each individual vegetation type (patch). The analysis increment is added to the background for each patch, producing a patch-dependent analysis update. The patch-dependence is introduced in the Kalman gain via the Jacobian elements. The possibility of having LAI estimates for each type of vegetation is under investigation and has the capacity of overcoming the two above-mentioned weaknesses. Recently, the GEOV1 LAI data has been disaggregated following a Kalman filtering technique developed by Carrer et al. (2014). This enables the LAI signal for each patch to be separated within the pixel, which provides a dynamic patch-dependent estimate of the assimilated LAI within the pixel (Munier et al., 2017, in prep.). From the individual estimates over 1999-2015, minimum LAI values have also been used to update the model parameterisation. Preliminary results from assimilating disaggregated LAI time series and using new LAI minimum values (not shown) suggest better representation of vegetation variables like LAI and above-ground biomass as well as an enhanced representation of river discharge compared to an open-loop simulation using the former LAI minimum values. Preliminary results from assimilating disaggregated LAI time series and using new LAI minimum values (not shown) suggest an added value on vegetation variables like above-ground biomass and on the representation of river discharge. Better performances from the assimilation of disaggregated LAI are also expected on the representation of evapotranspiration.

4.2.2 Towards a better use of microwave satellite observations for soil moisture

ESA CCI SM is based on multiple microwave sources from space, namely passive radiometer brightness temperature (T_b) observations and active radar backscatter (σ_o) observations. As they are both indirectly related to soil moisture, retrieval methods making use of e.g. radiative transfer model (for T_b, Kerr et al., 2012) or change-detection approaches (for σ_o, Wagner et al., 1999) are usually required to transform T_b and σ_o into soil moisture values that can be assimilated in LSMs. Despite the proven record of assimilating retrieved soil moisture retrieval from point scale to regional and continental scale (e.g. Albergel et al., 2010; Draper et al., 2012; Matgen et al., 2012; De Rosnay et
al., 2013; Barbu et al., 2014; Wanders et al., 2014; Ridler et al., 2014), there is an increasing tendency towards the direct assimilation of T_b and σ_o observations (De Lannoy et al., 2013; Han et al., 2014; Lievens et al., 2015, Lievens et al., 2017). Retrieval methods usually make use of land surface parameters and auxiliary information, like vegetation, texture and temperature, possibly proving inconsistencies with specific model simulations (which also include these parameters but potentially from different sources). Also, if retrievals and model simulations rely on similar types of auxiliary information, their errors may be cross-correlated, potentially degrading the system performance (De Lannoy and Reichle, 2016). The direct assimilation of T_b and σ_o observations requires that the LSM is coupled to a radiative transfer model that serves as a forward operator for predicting σ_o and/or T_b. It has the advantage of allowing for consistent parameters and auxiliary inputs between the model simulations and the radiative transfer model, avoiding cross-correlated errors. The development of a forward operator for σ_o from active microwave instruments is under-way at Meteo-France, it will allow accounting for vegetation effects in the signal and using the vegetation information content of σ_o.

5 Conclusions

This study provides an assessment of the LDAS-Monde implementation to increase monitoring accuracy for land surface variables over the Europe-Mediterranean area. Satellite-derived surface soil moisture and leaf area index are assimilated over 2000-2012 in the CO$_2$-responsive and multilayer diffusion scheme version of the ISBA land surface model coupled with the CTRIP hydrological system. Joint assimilation of leaf area index and surface soil moisture has been shown to efficiently improve the representation of above-ground biomass, gross primary production and evapotranspiration, while having a neutral to positive impact on river discharge. To our knowledge, LDAS-Monde is the only system able to sequentially assimilate vegetation products together with soil moisture observations. LDAS-Monde permits an efficient monitoring of various land surface variable and has a powerful potential in monitoring extreme events like agricultural droughts at a global scale.

The analysis of the Extended Kalman Filter observation operator Jacobians permitted to identifying both seasonal and soil depth effects of the assimilation on ISBA. A clear added value of the assimilation has been highlighted based on agricultural statistics over France, evapotranspiration and gross primary production observations based estimates over the whole domain. More analysis impact
could however be expected on variables like river discharge. Studies focusing on a better use of the observations along with other data assimilation techniques like the Ensemble Kalman Filter are currently under-way. Recent studies discussed in the previous section suggest that the direct assimilation of microwave observations of \(T_b \) and \(\sigma_0 \) instead of Level 2 or 3 soil moisture products could lead to better results. The development of a forward operator for \(\sigma_0 \) from active microwave instruments is under-way. The long-term confrontation of model and observations at continental scale prior to the assimilation has also highlighted parameterisation issues like the minimum leaf area index values used as threshold when the vegetation is dormant. The GEOV1 leaf area index estimates permit setting up new thresholds for the different vegetation patches used in ISBA thanks to the development of a disaggregated product resulting to new leaf area index estimates, different for each patch. The assimilation of this new product is also promising.

Acknowledgement – The work of Simon Munier was supported by European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 603608, "Global Earth Observation for integrated water resource assessment" (eartH2Observe). The work of Hélène Dewaele was supported by CNES and by Météo-France. The work of Emiliano Gelati was supported by the French REMEMBER project (ANR 2012 SOC&ENV 001) within the HYMEX initiative. Wouter Dorigo is co-funded by the "TU Wien Wissenschaftspreis 2015" a personal grant awarded by the Vienna University of Technology. The authors acknowledge ESA’s Climate Change Initiative for Soil Moisture (Contract No. 4000104814/11/I-NB and 4000112226/14/I-NB) and the EU FP7 Earth2Observe project (grant agreement number 331603608) for supporting the development and evolution of the ESA CCI SM product. The authors would like to thank the Copernicus Global Land service for providing the satellite-derived LAI products.

Code availability
LDAS-Monde is a part of the ISBA land surface model and is available as open source via the surface modelling platform called SURFEX. SURFEX can be downloaded freely at http://www.cnrm-game-meteo.fr/surfex/ using a CECILL-C Licence (a French equivalent to the L-GPL licence; http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.txt). It is updated at a relatively low frequency (every 3 to 6 months). If more frequent updates are needed, or if what is required is not in Open-SURFEX (DrHOOK, FA/LFI formats, GAUSSIAN grid), you are invited to follow the
procedure to get a SVN account and to access real-time modifications of the code (see the instructions at the first link). The developments presented in this study stemmed on SURFEX version 8.0 and are now part of the version 8.1 (revision number 4621).
Reference list

Boone, A., and P. Etchevers: An intercomparison of three snow schemes of varying complexity coupled to the same land-surface model: Local scale evaluation at an Alpine site. J. Hydrometeor., 2, 374-394, 2001,

Dorigo, W., Wagner, W., Albergel, C. et al.: ESA CCI Soil Moisture for improved Earth system

Fillion, L., and J.-F. Mahfouf: Jacobians of an operational prognostic cloud scheme, Mon. Weather

Loew, A., Stacke, T., Dorigo, W., de Jeu, R., and Hagemann, S.: Potential and limitations of

Scipal, K., Drusch, M., and Wagner, W.: Assimilation of a ERS scatterometer derived soil moisture

Figures

Figure 1: Averaged (left) surface soil moisture from the Climate Change Initiative project of ESA (right) GEOVI Leaf Area Index from the Copernicus Global Land Service project (for pixels covered by more than 90% of vegetation) over 2000-2012

Figure 2: Seasonal a) RMSD and b) correlation values between leaf area index (LAI) from the open-loop, analysis and GEOVI LAI estimates from the Copernicus Global Land Service project over 2000-2012. Monthly RMSD and correlation values between leaf area index (LAI) from the open-loop, analysis and GEOVI LAI estimates from the Copernicus Global Land Service project over 2000-
Figure 3: Top row, yearly averaged correlations between satellite-derived surface soil moisture from the Climate Change Initiative project from ESA and the second layer of soil of SURFEX-CTRIP (w2; 1 cm-4 cm depth) for a) 2000, b) 2006 and c) 2012, d), e) and f) yearly averaged correlation between the GEOV1 leaf area index from the Copernicus Global Land Service project and SURFEX-CTRIP for 2000, 2006 and 2012, respectively. g), h) and i) same as d), e) and f) for RMSD. Top row, correlations between satellite-derived surface soil moisture from the Climate Change Initiative project ESA and the second layer of soil (1 cm-4 cm depth) of SURFEX-CTRIP for 2000, 2006 and 2012. Middle row, same as top row for the GEOV1 leaf area index from the Copernicus Global Land Service project and SURFEX-CTRIP. Bottom row, same as middle row for RMSD. Averaged values are reported on maps.
Figure 4: Jacobian values distribution: a) to f), $\frac{\partial SSM^t}{\partial w_2}$ (red line), $\frac{\partial SSM^t}{\partial w_4}$ (cyan line) and $\frac{\partial SSM^t}{\partial w_8}$ (blue line) all months of January, March, June, August, October and December over 2000-2012, g) to i), $\frac{\partial LAI^t}{\partial w_2}$ (red line), $\frac{\partial LAI^t}{\partial w_4}$ (cyan line) and $\frac{\partial LAI^t}{\partial w_8}$ (blue line) for all months of January, June and October over 2000-2012. Black solid line represents a value of 0.
Figure 5: Rows from top to bottom represent averaged analysis increments for all months of February, May, August and November over 2000-2012. From left to right for 4 control variables are illustrated, leaf area index and soil moisture in the second (w₂, 1 cm-4 cm), fourth (w₄, 10 cm-20 cm) and sixth (w₆, 40 cm-60 cm) layer of soil, respectively. Averaged analysis increments for all months of February, May, August and November over 2000-2012 for 4 control variables; leaf area index and soil moisture in the second (1 cm-4 cm), fourth (10 cm-20 cm) and sixth (40 cm-60 cm) layer of soil, respectively.
Figure 6: Averaged analysis increments for the whole period 2000-2012. Four control variables are illustrated: a) leaf area index and soil moisture in a) the second (w_2, 1 cm-4 cm), b) fourth (w_4, 10 cm-20 cm) and c) sixth (w_6, 40 cm-60 cm) layer of soil, same as figure 5 for the whole 2000-2012.
Figure 7: RMSD maps between leaf area index from the open-loop (analysis) and that from the Copernicus Global Land Service project GEOV1 index for a(b) January, e(f) April, c(d) July and e(f) October over 2000-2012. RMSD maps between leaf area index from the open-loop (analysis) and that from the Copernicus Global Land Service project (GEOV1 index) for January, April, July and October over 2000-2012.
Figure 8: Probability density function of innovation (observations-open-loop in red) and residuals (observations-analysis, in green) for Leaf Area Index for a) February, b) April, c) June, d) August, e) October and f) December over 2000-2012. Sampling (N) is reported on each panel. Histograms of innovation and residuals are shown for each month.

Figure 9: Averaged analysis impact on land surface variables that are indirectly affected over the period 2000-2012: a) drainage, b) runoff, c) evapotranspiration and d) river discharge. Averaged analysis impact on land surface variables that are indirectly affected over the period 2000-2012.
Figure 10: a) Correlation values for the above ground biomass from the open-loop with grain yields estimates from Agreste French agricultural statistics portal (http://agreste.agriculture.gouv.fr) over 45 sites in France plotted against correlations between the same quantities but above ground biomass from the analysis; b) same as a) for RMSD values; c) scaled anomalies time-series of above ground biomass from the open-loop (black dashed line) the analysis (black solid line) and grain yields observations (red solid) for one site in Allier, France (46.09N-3.21E). a): Correlation values for the

Figure 11: a) hydrograph for the Loire River in France (47.25°N, 1.52°W) representing scaled river discharge Q (using either observed or simulated drainage areas), in situ data (blues dots), open-loop (green solid line) and analysis (red solid line); b) to d) histograms of Efficiency, Correlations and RMSDs differences between Q from the open-loop and the analysis compared to the observations for the 83 stations retained (see section 2.2.3 on evaluation strategy).
Figure 12: Top row: maps of averaged evapotranspiration taken over 2000-2012 from a) the model (i.e. open-loop), b) the GLEAM estimates, c) the analysis and d) differences between the analysis and model. Bottom row: maps of averaged evapotranspiration taken over 2000-2011 from a) the model (i.e. open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis and model.

e), f), g) and h) Averaged evapotranspiration from the model (i.e. open-loop), the GLEAM estimates, the analysis and differences between the analysis and model over 2000-2012, respectively.

i), j), k) and l) same as a), b), c) and d) for averaged carbon mass flux out of the atmosphere due to Gross Primary Production from the model, FLUXNET-MET GPP estimates, the analysis and differences between the analysis and model over 2000-2011.

Figure 13: Maps of averaged Gross Primary Production taken over 2000-2011 from a) the model (i.e. open-loop), b) FLUXNET-MTE estimates, c) the analysis and d) differences between the analysis and model.
Figure 14: RMSD (a) and Correlations (b) differences between analysed (modelled)
evapotranspiration and GLEAM estimates over 2000-2012. c) and d) are similar to a) and b) for Carbon mass flux out of the atmosphere due to Gross Primary Production (GPP) from the analysis (model), and FLUXNET-MTE GPP estimates over 2000-2011. Finally e) and f) are similar to a) and b) for analysed (modelled) evapotranspiration and FLUXNET-MTE evapotranspiration estimates over 2000-2011. a) and b) RMSD and Correlations differences between analysed (modelled) evapotranspiration and GLEAM estimates over 2000-2012, c) and d) same as a) and b) for Carbon mass flux out of the atmosphere due to Gross Primary Production from the analysis (model), and FLUXNET-MET GPP estimates over 2000-2011, e) and f) same as a) and b) for analysed (modelled) evapotranspiration and FLUXNET-MET evapotranspiration estimates over 2000-2011.

Figure 15: Seasonal a) RMSD and b) correlation values between the Carbon mass flux out of the atmosphere due to Gross Primary Production on land from the open-loop, analysis and FLUXNET-MTE estimates over 2000-2011. As figure 2 for Carbon mass flux out of the atmosphere due to Gross Primary Production on land over 2000-2011.