Revisions are good and the paper can be published subject to some more minor revisions. I think the explanation of section 2.3 could be improved to clarify how the concurrent executions are done. The idea is neat so is worth explaining well so others can see it too.

I put the following figure together to help me understand the approach. Suspect it is too much for the paper but something like it would help some readers assuming it is correct.

![Diagram showing the workflow](image)

Aim: Identify parameter values that only depend on current state and previous iterations.

- $g(1.1)$ with random $f(p(1.1))$
- $g(1.2)$ with random $f(p(1.2))$
- $g(1.3)$ with random $f(p(1.3))$
- $g(1.4)$ with random $f(p(1.4))$
- $g(1.5)$ with random $f(p(1.5))$

- $g(2.1)$ with random $f(p(2.1))$
- $g(2.2)$ with random $f(p(2.2))$
- $g(2.3)$ with random $f(p(2.3))$
- $g(2.4)$ with random $f(p(2.4))$
- $g(2.5)$ with random $f(p(2.5))$

- $g(3.1)$ with random $f(p(3.1))$
- $g(3.2)$ with random $f(p(3.2))$
- $g(3.3)$ with random $f(p(3.3))$
- $g(3.4)$ with random $f(p(3.4))$
- $g(3.5)$ with random $f(p(3.5))$

- $g(4.1)$ with random $f(p(4.1))$
- $g(4.2)$ with random $f(p(4.2))$
- $g(4.3)$ with random $f(p(4.3))$
- $g(4.4)$ with random $f(p(4.4))$
- $g(4.5)$ with random $f(p(4.5))$

- Run if ALL $g(X.1)$ the same
- Run if ALL $g(X.2)$ the same
- Run if ALL $g(X.3)$ the same
- Run if ALL $g(X.4)$ the same
- Run if ALL $g(X.5)$ the same

$p(X,Y)$ is a function of all earlier parameter values.