Authors’ reply to comments of anonymous referees on the manuscript “Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model by coupling MUNICH and Polair3D”

Youngseob Kim¹, You Wu², Christian Seigneur¹, and Yelva Roustan¹
¹CEREA, Joint Laboratory École des Ponts ParisTech / EDF R&D, Université Paris-Est, 77455 Champs-sur-Marne, France
²EDF R&D China, 100005 Beijing, China

Correspondence to: Youngseob Kim (youngseob.kim@enpc.fr)

We appreciate the reviewers for reading the manuscript attentively and giving helpful comments to improve our manuscript.

1 Reply to anonymous referee #1’s comments

General comments

This is a paper to describe the development of a new Street-in-Grid (SinG) model and its initial application over a Paris suburb. Because of their inherent limitations, most current regional air quality models cannot accurately simulate the pollutant concentrations at the urban street levels. On the other hand, very few urban street network models aiming at improving urban street-level predictions of pollutant concentrations have been developed thus far. This work fills in this critical gap through developing an urban street network model (MUNICH) and bridging it with a regional air quality model (Polair3D), it thus represents a significant scientific contribution in urban air quality modeling. The development of SinG is technical sound and represents the state-of-the-science. SinG should be applicable to other cities in the world and can improve not only the air quality predictions at urban scale but also the accuracy of human exposure and associated health effects. The paper is well written and organized. The assumptions used in the development of MUNICH were clearly stated. For its application over a Paris suburb, SinG showed enhanced capability in representing urban street-level concentrations of major pollutants such as NO₂ and O₃. I would recommend acceptance of this paper for publication on GMD with minor revisions as suggested below and in the specific comments.

It would be useful to discuss uncertainties (or inaccuracies in some input data) associated with the model formulations/assumptions, input data, and the boundary conditions estimated based on limited measurements that may contribute to the underpredictions in NO₂ concentrations by MUNICH and Polair3D and in NOₓ concentrations by MUNICH, SinG, and Polair3D. In some cases, sensitivity simulations can help pin-point the causes and estimate the relative contributions of such uncertainties to the model bias (e.g., in the application of MUNICH to a Paris suburb).

Our response:
We agree with the reviewer concerning the interest of sensitivity simulations. This was the aim of the discussion relative to the simulation “SinG-s” introduced in Section 5.3. With this simulation we try to emphasize the main sources of uncertainties we have identified for SinG. It is true that several of them are also relevant for MUNICH. New sensitivity simulations performed with MUNICH are then presented to illustrate this point. However through the comparison between MUNICH and SinG we show the nearest available urban background observation sites are not really representative of the air mass concentration above Boulevard Alsace Lorraine. This issue remains one of the main sources of uncertainties for MUNICH.

As the urban background concentrations of NO\textsubscript{x} appear simulated without any strong bias with SinG (statistical indicators of comparison to observation are now provided in Table B3), the uncertainties at the street level are supposed mainly related to the evaluation of the vertical transfer at roof top and to the traffic emissions data. The vertical transfer at roof top is controlled by the concentration gradient and the turbulent vertical transfer coefficient. We show that an increase of NO\textsubscript{x} emissions and a decrease of the turbulent transfer coefficient improve the simulated NO\textsubscript{x} concentrations at the street level. This modification of the model parameter also improves the concentrations simulated with MUNICH (sensitivity results for MUNICH are now included in Table 1 in the revised manuscript). The sensitivity of the model results to the turbulent transfer coefficient implies that the choice between the formulation by Salizzoni et al. (2009) and the one proposed in Schulte et al. (2015) can have an impact for streets with an aspect ratio far from 1. More studies need to be conducted for these conditions of higher aspect ratio (e.g., Paris center).

To discuss the NO\textsubscript{2} concentration simulated with SinG, we have to consider that the model in the reference configuration overestimates the O\textsubscript{3} background concentration. This overestimation of O\textsubscript{3} concentrations contributes to the overestimation of the NO\textsubscript{2} / NO\textsubscript{x} ratio. Another possible reason is the use of a too high NO\textsubscript{2} / NO\textsubscript{x} ratio for emissions. We show with the sensitivity simulation (SinG-s) that unbiased boundary conditions for O\textsubscript{3} concentrations largely improve the simulated O\textsubscript{3} background concentrations (statistical indicators of comparison to observation are now provided in Table B3). The simultaneous use of unbiased boundary conditions for O\textsubscript{3} concentrations and of a lower NO\textsubscript{2} / NO\textsubscript{x} emission ratio lead to improve the concentration ratio of NO\textsubscript{2} / NO\textsubscript{x} at the street level.

We have reorganized the discussion in Sections 4.6 and 5.3 to be more explicit concerning the main sources of uncertainties identified in this work.

Specific comments:

1. Page 4, Section 2.1.1 described two methods to calculate the turbulent vertical mass transfer coefficients, which one is used in SinG?

Our response:

The method proposed by Schulte et al. (2015) is used in this study. The following text has been added in the revised manuscript:

“Here, we use the parametrization proposed by Schulte et al. (2015) for the vertical flux at roof and the exponential wind vertical profile proposed by Lemonsu et al. (2004) for the mean wind speed within the street-canyon.”
2. Page 6, there are large differences in the average wind speed calculated by SIRANE and MUNICH, which one is more accurate? Have they been evaluated with observations?

Our response:

Unfortunately there is no observation data available within the framework of the TrafiPollu project to compare the results of the two methods. However, due to the relatively low aspect ratio of the street considered in this study ($\sim 1/3$), we do not expect to have a strong sensitivity to the choice of the formulation for the average wind speed. This point could become more crucial for streets with higher aspect ratio and should be considered for future applications.

This point is now mentioned in the text of the revised manuscript.

“Wind speed observations were not available to compare the results of the two methods. However, due to the relatively low aspect ratio of the street considered in this study ($a_r \sim 1/3$ for Boulevard Alsace-Lorraine), we do not expect to have a strong sensitivity to the choice of the formulation for the average wind speed. This point could become more crucial for streets with higher aspect ratio and should be considered for future applications.”

3. Page 7, line 23, change “photolyses” to “photolytic reactions”

Our response:

The text has been corrected following the reviewer’s comment.

4. Page 7, line 25, Leighton photostationary state may not hold in urban air when VOCs emissions are high (e.g., morning time), this needs to be pointed out.

Our response:

The following text has been added in the revised manuscript:

“However the Leighton photostationary state may not hold even in urban environment when VOC emissions are high (Trebs et al., 2012; Matsumoto et al., 2006).”

5. Page 8, at the end of section 2, it would be useful to briefly summarize the main differences between SIRANE and MUNICH, in particular the strength of MUNICH over SIRANE. Also, has MUNICH been evaluated against a CFD model?

Our response:

A new section has been added in the revised manuscript to summarize MUNICH main characteristics and the differences with SIRANE. The concept of the street-network model MUNICH is close to the one used in SIRANE to represent concentration at the street level. We have introduced different parametrization for the vertical turbulent flux and the average wind speed. It is however not possible to definitively advocate a specific choice for these parametrization with the set of observations available within the framework of the TrafiPollu project (http://www.agence-nationale-recherche.fr/?Project=ANR-12-VBDU-0002). MUNICH is designed as a stand-alone street-network model and does not aim to
represent concentrations over the urban canopy not as SIRANE. The main strength of MUNICH over SIRANE relies on
the possibility to represent a complex chemistry in the street. It also allows the interactive connection with an Eulerian
chemistry transport model.

“Summary of MUNICH characteristics

The concept of the street-network model MUNICH is close to the one used in SIRANE to represent concentration at
the street level. We have introduced several parametrizations for the vertical turbulent flux and the average wind speed.
It is however not possible to definitively advocate a specific choice for these parametrizations with the set of obser-
vations available within the framework of the TrafiPollu project (http://www.agence-nationale-recherche.fr/?Project=
ANR-12-VBDU-0002). MUNICH is then kept modular, the model can rely on the different parametrizations following
user choices. MUNICH is designed as a stand-alone street-network model and does not aim to represent concentrations
over the urban canopy not as SIRANE. Beyond its modularity the main strength of MUNICH over SIRANE relies on
the possibility to represent a complex chemistry in the street. It also allows the interactive connection with an Eulerian
chemistry transport model.”

A comparison of SinG against a CFD model (Code_Saturne) is presented in the PhD thesis of Laëtitia Thouron (http:
//cerea.enpc.fr/fich/theses/theses_soutenues_2017/Thouron2017.pdf). Both SinG and Code_Saturne are in good agree-
ment with the observations for averaged concentrations. SinG shows some weaknessess in reproducing the levels of
concentrations when the wind speed is low (less than 1 ms$^{-1}$). An article for this comparison between SinG and
Code_Saturne has been submitted to Environmental Modeling and Assessment.

6. Page 8, line 29, is 10 min sufficiently short to represent the interactions between urban street emissions and background.
Under what cases, should a shorter or longer time should be used?

Our response:

In the current version, MUNICH, as SIRANE, is a stationary model. Without any change in input data, simulation
results do not change with different time step. A 10 min time step for the Eulerian model appears short enough to
describe the hourly evolution of the background concentrations. The other input data (emissions and meteorological
fields) are available at a hourly frequency. It appears then not useful to increase the temporal resolution for the present
application. It would be relevant to use finer temporal resolution with finer input data (for instance if the traffic emissions
were evaluated with a shorter time step). However the time step should not be too short since the intrinsic average
representation of the street-network model could become not relevant. As far as hourly emission data are available and
necessary to describe the temporal evolution of hourly concentrations, we believe that a larger time step should not be
considered as far as possible even in case of steady meteorological conditions.

7. Page 9, lines 7-16, more details on the dynamic traffic emission model used should be provided. For example, what are
the species emitted from the traffic? Why was only NO$_x$ emission considered in this work? What are the uncertainties
associated with calculated traffic emissions? What are the unique aspects of the dynamic traffic emission model used, comparing to static traffic emission model? Can SinG use both types of traffic emission models?

Our response:

Traffic emissions are calculated for the species NO\(_x\), CO and VOC using the dynamic traffic model and the COPERT4 emission factor. The text has been modified as follows to precise this point:

“Simulations for gas-phase species including NO\(_x\), CO, VOC emissions were conducted during the period from March 24 to June 14, 2014.”

We mention the traffic model and the emission factors used in the framework of the TrafiPollu project to generate the traffic emission inventory. But we have not performed this work. For this reason we do not aim to have a comprehensive discussion on the difference between dynamic and static traffic model. We have reformulate the sentence to clarify this and add some information in the revised manuscript:

“The traffic emission inventory used for the simulation domain was built for the TrafiPollu project. This emission inventory rely on the use of the dynamic traffic model Symuvia (Leclercq et al., 2007) and the COPERT 4 emission factors (http://emisia.com/products/copert-4/versions). The dynamic traffic model Symuvia calculates the vehicle trajectories, the number of vehicles and the averaged speed on a given time period for each street segment of the simulated street network. Dynamic traffic models represent vehicle flow at smaller spatio-temporal scale than static traffic models and potentially allow an explicit representation of traffic congestion. A discussion on the differences between dynamic and static traffic models in link with water and air quality studies can be found in Shorshani et al. (2015). However for the current work the Symuvia outputs were averaged and combined with COPERT 4 emission factors to generate hourly emission rates for each street segment. The emission rates depend on the averaged vehicle speed and composition of the vehicle fleet. This latter was determined through video monitoring (André et al., 2017). It is however important to notice that the vehicle fleet composition appears to be a sensitive input data (Carteret et al., 2014; Chen et al., 2017).”

As an input of SinG (MUNICH) traffic emissions can be provided by any type of traffic emission data source as far as an information is provided for each street segment. There is no explicit link between a given emission modelling chain or database and the dispersion model presented here.

Concerning the uncertainties associated with calculated traffic emissions we add the following text:

“Since the traffic model is calibrated with flow observation and the vehicle fleet composition determined through video monitoring, the remaining uncertainties in the emission data lie in the use of only two typical days to represent the whole period and in COPERT 4 emission factors.”

8. Page 9, lines 13-14, “Surface areas of intersections are not taken explicitly into account in MUNICH”, what impact will this have on the predictions from MUNICH? Can surface areas of intersections be accounted for in future work?
Our response:

We add the following text to emphasize this point:

“The geometry of the intersection can influence the mass exchange (Salem et al., 2015). In particular, when intersections are large, vertical mixing with the overlying atmosphere becomes more important. As this phenomenon is not taken into account in the current version of the model it leads to underestimate the exchanges through such open space in the street network. There is a need here to extend the modeling framework to better represent this type of urban space.”

To our knowledge no specific parametrization is currently proposed to represent intersections. Such a parametrization could probably be developed from field or physical model experiments and CFD modeling studies as it has been done to develop SIRANE for instance. However due to the complexity of the flow and the diversity of situations it would not be straightforward.

9. Pages 10 and 15, sections 4.4 and 4.5, which version of WRF was used? “Satisfactory results” sounds too vague. A brief summary of the meteorological performance with some quantitative measures (e.g., NMBs, FBs, correlations) should be provided. What are the meteorological variables evaluated using observations, does it include PBLH?

Our response:

WRF version 3.6.1 is used. The version is cited in the revised manuscript. The modeled PBLH is not compared because observation data are not available for the monitoring stations.

The following text has been added in the revised manuscript.

“The root-mean square error (RMSE), the fractional bias (FB), and the correlation coefficient (R) are the statistical indicators used in Thouron et al. (2017) to evaluate the meteorological fields. The WRF simulation slightly overestimates the temperature (RMSE: 0.2 ∼ 1.1 °C, FB: 0.02 ∼ 0.07 and R: 0.9) and overestimate the wind speed (RMSE: 0.8 ∼ 1.1 ms⁻¹, FB: 0.2 ∼ 0.3 and R: 0.6 ∼ 0.7). The modeled wind direction is biased by an angular differences of about 15°. An important error in the precipitation modeling is obtained (RMSE: 0.04 mm h⁻¹, FB: -0.6, R: 0.1) but this model error has not a strong impact on the concentration of the poorly soluble species simulated.”

10. Page 12, lines 5-8, based on section 4.4, the meteorological performance is satisfactory, what specific meteorological data may still contribute to the large discrepancies in obs. vs. sim. NO2 concentrations? Is it possible to set up a sensitivity simulation to estimate the relative contributions from uncertainties associated with calculated traffic emissions? In line 5, add “uncertainties in” before “to the model formulation or the input”? Also, since measured conc. were used to set up the background conc., the uncertainties in measured conc. may contribute to the discrepancies reported here, this should be added to the list of possible reasons.

Our response:

The NOₓ transport into the overlying atmosphere at roof top appears as an important source of uncertainties. The standard deviation of the vertical wind velocity (σ_w) at roof level is necessary to compute the vertical transport. σ_w depends on
the friction velocity, the Monin-Obukhov length and PBLH which contribute to the global uncertainty. However, as no observation are available for these fields, it is difficult to propose more than a global sensitivity test through the turbulent dispersion coefficient.

As previously mentioned, a new simulation (MUNICH-s) has been performed and the text has been modified and reorganised to follow the reviewer’s comment. We have reorganised the discussion in Sections 4.6 and 5.3 to be more explicit concerning the main sources of uncertainties identified in this work.

11. Page 12, lines 8-13 and page 14, lines 1-4. Given the importance of background conc. and a large uncertainty in the measured conc., it may be useful to set up a sensitivity simulation to estimate the relative contributions from the uncertainties in the background conc. derived from measurements (e.g., instead of using the mean of concentrations measured at two urban background stations, using the higher conc. observed at the two stations to set up the background conc.). At minimal, some discussions on the uncertainties in limited measurements used to set up the background conc. should be discussed.

Our response:

Following the reviewer’s comment, two additional simulations were conducted and the text below has been added in the section:

“Two additional simulations were conducted to assess the relative contributions from the uncertainties in the background concentrations derived from measurements. For NO₂, NOₓ, and O₃ the standard deviations over the simulated period of the differences between the measured concentrations at the two monitoring stations are calculated (σ(NO): 8.1 µg m⁻³, σ(NO₂): 6.5 µg m⁻³ and σ(O₃): 5.1 µg m⁻³). The first simulation was run with O₃ concentrations increased by σ(O₃) and NO and NO₂ concentrations lowered by σ(NO) and σ(NO₂), respectively. In the second simulation, reduced O₃ concentration and increased NO and NO₂ concentrations are used. Differences between the averaged NO₂ concentrations for these simulations and the reference simulation are up to 30%.”

12. Page 13, Table 1, need to define the configurations used SinG-s comparing to those used in SinG in the footnote of this table.

Our response:

The footnote of the table for the SinG-s configurations is added in the revised manuscript as follows:

“***: For the simulation "SinG-s" a 25% decrease of the turbulent transfer coefficient, a 33% reduction of the O₃ boundary conditions, a one-third increase of NOₓ emissions from traffic and a reduction from 20% to 9% of the NO₂/NOₓ emissions ratio (in mass of NO₂ equivalent) are applied.”

13. Page 15, line 2, which version of MEGAN was used?

Our response:

The version of MEGAN is 2.04 and it is added in the revised manuscript.
14. Page 16, lines 5-6, could you explain the meaning of “quasi-total O3 titration”? Also, what did you mean by “more limited O3 titration” which sounds confusing? Did you mean less O3 titration in SinG comparing to Polair3D?

Our response:

The text has been corrected as follows:

“It is due to less O₃ titration in SinG than in Polair3D. In SinG, vertical dispersion of NOₓ is constrained by the urban canopy. Therefore, O₃ titration is less in SinG in comparison to Polair3D due to lower NO concentrations above the urban canopy.”

15. Page 16, lines 9-15, Figure 7 showed that SinG tends to overpredict NO2 conc. during several time periods, what are the likely causes for those overpredictions? What are the main reasons that change the underpredictions in MUNICH to the overpredictions in SinG?

Our response:

Since the NO₂/NOₓ concentration ratio in the street with MUNICH and SinG are very similar (0.75 and 0.78 respectively), we can think that the overestimation in NO₂ concentrations results of the “same” error compensation than MUNICH but with higher NOₓ concentrations.

The following text has been added in the revised manuscript.

“The NO₂ concentrations are overestimated by SinG during several time periods. Since the NO₂/NOₓ concentration ratio in the street with MUNICH and SinG are very similar (0.75 and 0.78 respectively) we can think that the overestimation in NO₂ concentrations results of the “same” error compensation than MUNICH but with higher NOₓ concentrations.”

16. Page 16, line 28, add a reference for “The turbulent transfer coefficient is decreased by 25%.”

Our response:

Due to the reorganisation of the discussion this point appear now in Section 4.6. The following text was added to explain the choice of a 25% decrease.

“The magnitude of the turbulent transfer coefficient decrease is somewhat arbitrary. It is however chosen consistent with the difference between the two parametrizations considered for the vertical turbulent transfer (Figure 1) for the aspect ratio of Boulevard Alsace-Lorraine.”

17. Page 17, Were MNE and MNB calculated against Polair3D or observations? A footnote should be added to clarify this.

Our response:

The statistical indicators for the NOₓ concentrations were calculated between the SinG simulation results and the observations at the monitoring stations at Boulevard Alsace-Lorraine. The footnote has been corrected as follows:

“*: FB (Fractional bias), NMSE (Normal mean square error), MFE (Mean fractional error), VG (Geometrical mean squared variance), MG (Mean geometrical bias), FAC2 (Fraction in a factor of 2), R (Correlation coefficient) (Chang
and Hanna, 2004; Yu et al., 2006). The statistical indicators were calculated against the observations at the monitoring stations at Boulevard Alsace-Lorraine.

18. Page 1, lines 12-14, Page 18, lines 9-11 and 24-26, this is true for the test case here, but may not be always true for other cases where the Leighton photostationary state may not hold (e.g., with high VOCs that breaks down this photostationary state, which may happen in morning urban air). The abstract and conclusions need to be modified to reflect this important point. Also, a test application over urban street networks where VOCs emissions are high (Leighton photostationary state may not hold) should be conducted in the future.

Our response:

The manuscript has been corrected following the reviewer’s comment.

For the abstract, “For the case study considered, the model performance for NO\textsubscript{x} concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO/NO\textsubscript{2}/O\textsubscript{3} set of reactions is sufficient.”

And the text,

“Using a comprehensive chemistry within the street-canyon does not influence the NO\textsubscript{x} concentrations notably in this study. Consequently, computational costs can be reduced significantly by using the Leighton photostationary state within the urban canopy. However an another test need to be conducted under the condition where VOC emissions are high. Further studies are needed to extend the model to simulate primary and secondary particulate matter in an urban canopy.”

19. Page 18, it would be useful to briefly discuss the appropriateness and applicability of the SinG over other urban areas worldwide and the implications of the SinG to the quantifications of the impacts of urban traffic emissions on air quality, human exposure, and resulting health impacts.

Our response:

The following text has been added in the revised manuscript.

“SinG is a useful tool to simulate both the concentrations of air pollutants in complex urban canopy configurations and the background concentrations in the overlying atmosphere. Beyond the data usually needed for CTM, traffic emissions data for street segments and urban/buildings morphology data are mandatory for a SinG simulation over an urban area. The urban/buildings morphology data are available for many major cities in the world (for example, ESRI ArcGIS for US, EMU for UK, OpenStreetMap). The traffic emissions may be less easily available than other data.”

20. Table B1, “The “O3 cor.” corresponds to the ozone concentrations from the second simulation using “corrected” boundary conditions.” Does the second simulation refer to “SinG-s”? if so, the correction is not just the boundary conditions of O3, there are additional adjustments, as described in Section 5.3. Also, the R values remain the same between O3 and “O3 cor.” Runs, a brief discussion on the reason should be added.
Our response:

The footnote in Table B1 (Table B3 in the revised manuscript) has been corrected as follows:

“Statistical indicators of the comparison of simulated hourly concentrations of NO₂, NOₓ and O₃ in the SinG simulation to the concentrations measured at the urban background air monitoring stations of Villemomble and Champigny. The “O₃ (SinG-s)” correspond to the ozone concentrations from the simulation SinG-s using the adjusted input data including “corrected” O₃ boundary conditions. MFB and MFE in the O₃ concentration of the SinG simulation are significantly reduced using the corrected boundary conditions. However, the correlation coefficients does not change between the SinG and SinG-s simulations because the O₃ concentrations in the two simulations show very similar temporal evolutions.”

2 Reply to anonymous referee #2’s comments

General comments

This work is focused on the coupling of a urban street network model (MUNICH) and a regional air quality model (Polair3D), in order to develop a new Street-in-Grid (SinG) model. It was applied over a Paris suburb for a limited period (from 24th March to 14th July 2014), excluding essentially the winter period which present critical conditions for pollutant dispersion. Although the grid step size of 1 km adopted in this work is not appropriate for urban air quality modeling, SinG could represent an alternative way to conduct it. The paper is well written and discussed. The hypothesis used in the development of MUNICH were clearly stated. I recommend acceptance of this paper for publication on GMD, but only after major revisions as suggested below.

Major revisions:

1. The addition of urban street network model is important for the spatial pattern as well as for the temporal pattern. For this reason, long term average comparison between SinG outcomes and observations, including for instance winter months is also necessary.

Our response:

The first case study chosen to support the development of MUNICH and SinG correspond to a database built in the framework of the TrafiPollu project (http://www.agence-nationale-recherche.fr/?Project=ANR-12-VBDU-0002). We have used all the observations available within this framework to evaluate our model development. We fully agree that this evaluation is however not comprehensive, but we believe it is enough to prove the interest of the SinG concept. From this first evaluation our aim is of course to continue the model development and complete its evaluation over longer period. And including winter period is indeed relevant since peaks of pollutants concentrations during winter time are regularly observed over urban areas. This will be done in future project.

We have emphasized in the text and in the conclusion that further studies are needed to evaluate some modeling aspect (e.g. behavior of the model for street segment with higher aspect ratio) or simply enlarge the possible application (e.g. include the treatment of particulate matter).
2. Comparison between the meteorological model (WRF) and observations, as well as between CTM (Polair3D) and measures are not clearly discussed. Measurements network included in domain 2 (Northern and Central France) could help to ascribe discrepancies during final comment about SinG results.

Our response:

A discussion for the comparison between WRF and observations has been added in the revised manuscript as follows:

“The root-mean square error (RMSE), the fractional bias (FB), and the correlation coefficient (R) are the statistical indicators used in Thouron et al. (2017) to evaluate the meteorological fields. The WRF simulation slightly overestimates the temperature (RMSE: 0.2 ~ 1.1 °C, FB: 0.02 ~ 0.07 and R: 0.9) and overestimate the wind speed (RMSE: 0.8 ~ 1.1 ms⁻¹, FB: 0.2 ~ 0.3 and R: 0.6 ~ 0.7). The modeled wind direction is biased by an angular differences of about 15°.

An important error in the precipitation modeling is obtained (RMSE: 0.04 mm h⁻¹, FB: -0.6, R: 0.1) but this model error has not a strong impact on the concentration of the poorly soluble species simulated. ”

A discussion for the comparison between Polair3D and observations on Domain 2 has been added in the revised manuscript as follows:

“Simulated hourly concentrations of O₃ are compared to the concentrations measured at the background air monitoring stations on domains 2 and 3. For domain 2, O₃ concentrations are measured at four air monitoring stations which are

![Figure 1.](image-url) Four simulation domains are simulated from the continental scale to the urban scale. In the left panel, the largest domain 1 covers western Europe. Domain 2 covers northern/central France. the red circles show the locations of the background air monitoring stations. In the right panel, domains 3 and 4 cover the Île-de-France region and the eastern Paris suburbs. the blue box corresponds to the modeling area in suburban Paris for the MUNICH simulations. The black stars and red circles show the locations of the urban background air monitoring stations. Measured data at the stations with the black stars are used for background concentrations in the MUNICH simulations. SinG is only used for domain 4.
operated by EMEP (see Figure 1a). Table 1 presents the comparison results. The O$_3$ concentrations are well estimated at a station which is located in Central France. However, the model significantly overestimates the O$_3$ concentrations at three other stations. This overestimation may be due to uncertainties in long-range O$_3$ transport. For domain 3, simulated O$_3$ concentrations are compared to the concentrations measured at six urban background monitoring stations (see Figure 1b). The modeled O$_3$ concentrations are also overestimated (MFB: 42% ~ 48%) at those stations. These overestimations of O$_3$ concentrations on domains 2 and 3 at the rural and urban background stations imply uncertainties in O$_3$ boundary conditions for domain 4.”

Minor revisions:

3. page 9, line 3. Could be useful to detail grid domain features

Our response:

The text has been corrected in the revised manuscript as follows:

“MUNICH was applied to simulate the concentrations of pollutants in a Paris suburb (Le Perreux-sur-Marne, 13km east of Paris). Figure 4 displays the location of the modeling domain. The street-network within the simulation domain consists of 577 street segments and is displayed in Figure 5.”

4. page 9, lines 9-16. Only NOx are associated to traffic sources or other pollutants are considered?

Our response:

Table 1. Statistical indicators of the comparison of simulated hourly concentrations of O$_3$ to the concentrations measured at the background air monitoring stations within domain 2 (see Figure 1).

<table>
<thead>
<tr>
<th>Station</th>
<th>Observation (µg m$^{-3}$)</th>
<th>Simulation (µg m$^{-3}$)</th>
<th>MFB*</th>
<th>MFE*</th>
<th>R*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revin</td>
<td>78.1</td>
<td>99.1</td>
<td>0.25</td>
<td>0.28</td>
<td>0.47</td>
</tr>
<tr>
<td>Morvan</td>
<td>77.0</td>
<td>97.0</td>
<td>0.26</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>Montfranc</td>
<td>92.0</td>
<td>96.6</td>
<td>0.05</td>
<td>0.13</td>
<td>0.38</td>
</tr>
<tr>
<td>Verneuil</td>
<td>63.7</td>
<td>92.7</td>
<td>0.43</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>Villemomble</td>
<td>55.0</td>
<td>94.6</td>
<td>0.61</td>
<td>0.61</td>
<td>0.59</td>
</tr>
<tr>
<td>Champigny</td>
<td>56.3</td>
<td>95.1</td>
<td>0.60</td>
<td>0.60</td>
<td>0.53</td>
</tr>
<tr>
<td>Les Ulis</td>
<td>62.0</td>
<td>94.7</td>
<td>0.47</td>
<td>0.48</td>
<td>0.61</td>
</tr>
<tr>
<td>Logne</td>
<td>58.3</td>
<td>96.5</td>
<td>0.57</td>
<td>0.58</td>
<td>0.55</td>
</tr>
<tr>
<td>Cergy</td>
<td>60.9</td>
<td>94.6</td>
<td>0.50</td>
<td>0.51</td>
<td>0.60</td>
</tr>
<tr>
<td>Neuilly-sur-Seine</td>
<td>49.6</td>
<td>92.1</td>
<td>0.68</td>
<td>0.69</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*: Mean fractional bias (MFB), mean fractional error (MFE) and correlation coefficient (R)
Traffic emissions are calculated for the species NO$_x$, CO and VOC using the dynamic traffic model and the COPERT4 emission factor.

The text has been corrected as follows:

“Simulations for gas-phase species including NO$_x$, CO, VOC emissions were conducted”

5. page 10, line 11. Which is the WRF version used in this work?

Our response:

WRF version 3.6.1 is used. The version is cited in the revised manuscript.

6. page 10, line 13. As described in the major comments, WRF validation phase could be described through BIAS, CORR, IOA (Index Of Agreement). "Satisfactory results" have to be supported by statistical indexes

Our response:

As previously mentioned a discussion on WRF validation has been added in the revised manuscript.

7. page 10, figure 4 - caption. Domain 1 and 2 are not clearly cited

Our response:

The caption of figure 4 has been corrected in the revised manuscript as follows:

“Four simulation domains for the continental scale to the urban scale. In the left panel, the largest domain 1 covers western Europe. Domain 2 covers northern/central France. The red circles show the locations of the background air monitoring stations. In the right panel, domains 3 and 4 cover the Île-de-France region and the eastern Paris suburbs. The blue box corresponds to the modeling area in suburban Paris for the MUNICH simulations. The black stars and red circles show the locations of the urban background air monitoring stations. SinG is only used for domain 4. Measured data at the stations with the black stars are used for background concentrations in the MUNICH simulations.”

8. page 13, table 1. SinG-s configuration is not defined.

Our response:

The footnote of the table for the SinG-s configurations is added in the revised manuscript as follows:

“***: For the simulation "SinG-s" a 25% decrease of the turbulent transfer coefficient, a 33% reduction of the O$_3$ boundary conditions, a one-third increase of NO$_x$ emissions from traffic and a reduction from 20% to 9% of the NO$_2$/NO$_x$ emissions ratio (in mass of NO$_2$ equivalent) are applied.”

9. page 15, line 2. Which is the MEGAN version?

Our response:

The version of MEGAN is 2.04 and it is added in the revised manuscript.
3 Reply to anonymous referee #3’s comments

General comments

The paper describes the newly developed Street-in-Grid (SinG) model, for which the street-network model MUNICH has been coupled with the CTM Polair3d. Air quality models for urban areas are either used for urban background scales or street canyon scales, and a coupling of different models for different scales is often not consistent. The advantages of the SinG model presented in this work are a consistent treatment of physical and chemical processes at the different scales as well as emission input data and the influence of street level on urban background concentrations and vice versa. The paper is well written and well structured, and I recommend publication in Geoscientific Model Development with minor revisions.

Minor revisions

1. Section 4.2: Please include a more thorough description of Figure 5. Where are the main differences?

 Our response:

 The following text has been added in the revised manuscript.

 “Figure 5 shows the NO\textsubscript{x} traffic emissions which were estimated using the dynamic traffic model with the COPERT 4 emission factors on the simulation domain in the Paris suburb. In the left panel, NO\textsubscript{x} emission rates during nighttime are presented. very low emission rates are estimated for all the streets even though those on the A86 highway are slightly higher. In the right panel, NO\textsubscript{x} emission rates during morning rush-hour increase more than 1400 \mu g m-1 s-1.”
2. Section 4.4: Please provide more detail on the model performance of the WRF simulations. What impact would the biases in meteorological variables have on the results? Is the setup used for WRF described somewhere? I would strongly recommend a more thorough evaluation of the WRF model results if not done within a different publication yet.

Our response:

A discussion for the comparison between WRF and observations has been added in the revised manuscript as follows:

“The root-mean square error (RMSE), the fractional bias (FB), and the correlation coefficient (R) are the statistical indicators used in Thouron et al. (2017) to evaluate the meteorological fields. The WRF simulation slightly overestimates the temperature (RMSE: 0.2 \sim 1.1 °C, FB: 0.02 \sim 0.07 and R: 0.9) and overestimate the wind speed (RMSE: 0.8 \sim 1.1 m s$^{-1}$, FB: 0.2 \sim 0.3 and R: 0.6 \sim 0.7). The modeled wind direction is biased by an angular differences of about 15°. An important error in the precipitation modeling is obtained (RMSE: 0.04 mm h$^{-1}$, FB: -0.6, R: 0.1) but this model error has not a strong impact on the concentration of the poorly soluble species simulated.”

3. Section 4.5: Please also describe the roadside measurements. Where are they located? It would be good if their location was indicated in Figure 4 or in an additional figure.

Our response:

The location of the air monitoring stations on the sidewalks is indicated in Figure 6.
4. Section 4.6: How do the modeled roadside peak concentrations mentioned on page 11, lines 8 and 9, compare to observed peak concentrations? How is the diurnal cycle simulated? (daytime vs. nighttime)

Our response:

The following figure and text for the diurnal cycle have been added in the revised manuscript.

Figure 2. Diurnal variation of NO$_2$ concentrations modeled with MUNICH (blue line), Polair3D (green line) and the SinG model (red line). They are compared to the measured concentrations (black line) at the stations nearby traffic on each sidewalks of Boulevard Alsace-Lorraine.

“Mean diurnal variations of NO$_2$ concentrations over this period are presented in Figure 2. Statistical indicators defined in Appendix 1 for the comparison of hourly concentrations are provided in Table 1. The NO$_2$ modeled concentrations using MUNICH generally underestimate the observations with a mean negative bias of 32%. Simulated morning and evening peaks are delayed compared to the observation. The morning peak of emissions data for the street segment of Boulevard Alsace-Lorraine corresponds in time to the peak of observed concentrations. It is also important to note that in average over the street network the morning peak of emissions data occurs one hour later than in Boulevard Alsace-Lorraine. It means that the delay in simulated concentrations is introduced by a transport process (advection in the street network or turbulent exchange with the background atmosphere). ”
5. Page 14, line 1: Please reformulate; in my opinion it is not possible to “replace” the measurements by simulated concentration. Rather, “base the calculations on simulated urban background concentrations” or something along those lines.

Our response:

The text has been reformulated as follows:

“As shown in the following the urban background concentrations can be estimated based on the concentrations simulated with an Eulerian model.”

6. Page 15, line 12: I would suggest only using the term “significant” if you have actually done a test for statistical significance. Otherwise it should be replaced with a different formulation (e.g. considerable). This also applies to later instances in the manuscript.

Our response:

The text has been reformulated following the reviewer’s suggestion.

7. Page 16, line 19: Which numbers are you comparing here in brackets? Please be more specific.

Our response:

The text has been rewritten as follows:

“(measurement: 148.5 μg m⁻³ and simulation with SinG: 76.8 μg m⁻³).”

8. Page 16, line 23: Please specify the settings (e.g. in the table mentioned above)

Our response:

The footnote of the table for the SinG-s configurations is added in the revised manuscript as follows:

“***: For the simulation "SinG-s" a 25% decrease of the turbulent transfer coefficient, a 33% reduction of the O₃ boundary conditions, a one-third increase of NOₓ emissions from traffic and a reduction from 20% to 9% of the NO₂/NOₓ emissions ratio (in mass of NO₂ equivalent) are applied.”

9. Page 18, line 9: Please provide more detail on the differences in model performance. The results could for example be included in Table 1.

Our response:

Table 1 (Table 2 in the manuscript) has been corrected in the revised manuscript.

10. Figure 5: please increase the line width and size of the legend

Our response:

The figure has been corrected following the reviewer’s suggestion.
11. Figure 6: please increase the size of the legend

Our response:

The figure has been corrected following the reviewer's suggestion.

Table 2. Comparison of the computational times and model performance for the simulated concentrations of NO\(x\) using SinG and Polair3D for the period from March 31 to April 6, 2014. Statistical indicators are calculated by the comparison of simulated hourly concentrations to the NO\(x\) concentrations measured at the air monitoring stations operated on the sidewalks of Boulevard Alsace-Lorraine.

<table>
<thead>
<tr>
<th></th>
<th>Polair3D</th>
<th>SinG-1</th>
<th>SinG-2</th>
<th>SinG-3</th>
<th>SinG-4</th>
<th>SinG-5</th>
<th>SinG-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error limit†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(</td>
<td>\Delta C</td>
<td>< 0.01) (\mu g m^{-3})</td>
<td>(</td>
<td>\Delta C</td>
<td>< 1) (\mu g m^{-3})</td>
</tr>
<tr>
<td>Chemistry kinetic mechanism</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>Leighton</td>
</tr>
<tr>
<td>Normalized computational time†</td>
<td>1.00</td>
<td>1.04</td>
<td>1.03</td>
<td>1.05</td>
<td>1.04</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>Observation ((\mu g m^{-3}))</td>
<td></td>
<td>146.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation ((\mu g m^{-3}))</td>
<td>-</td>
<td>128.5</td>
<td>128.5</td>
<td>128.5</td>
<td>128.5</td>
<td>130.0</td>
<td>130.0</td>
</tr>
<tr>
<td>FB*</td>
<td>-</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>(\sqrt{\text{NMSE}})*</td>
<td>-</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>MFE*</td>
<td>-</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>VG*</td>
<td>-</td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
<td>1.36</td>
<td>1.35</td>
</tr>
<tr>
<td>MG*</td>
<td>-</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>FAC2*</td>
<td>-</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>R*</td>
<td>-</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

†: \(\Delta C = \text{concentration at the current time step} (C_1) - \text{concentration at the previous time step} (C_0)\).

†: normalized time using Polair3D computational time as reference.

*: FB (Fractional bias), NMSE (Normal mean square error), MFE (Mean fractional error), VG (Geometrical mean squared variance), MG (Mean geometrical bias), FAC2 (Fraction in a factor of 2), R (Correlation coefficient) (Chang and Hanna, 2004; Yu et al., 2006).
References

Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3DPOLAIR3D (v1.8.1)

Youngseob Kim¹, You Wu², Christian Seigneur¹, and Yelva Roustan¹
¹CEREA, Joint Laboratory École des Ponts ParisTech / EDF R&D, Université Paris-Est, 77455 Champs-sur-Marne, France
²EDF R&D China, 100005 Beijing, China

Correspondence to: Youngseob Kim (youngseob.kim@enpc.fr)

Abstract. A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute a Street-in-Grid (SinG) model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above roof-tops is performed by Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NO\textsubscript{x}) and ozone (O\textsubscript{3}) in a Paris suburb. Simulated concentrations are compared to NO\textsubscript{x} concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO\textsubscript{2}) concentrations. However, both SinG and MUNICH underestimate NO\textsubscript{x}.

Model For the case study considered, the model performance for NO\textsubscript{x} concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO/NO\textsubscript{2}/O\textsubscript{3} set of reactions is sufficient.

1 Introduction

Urban air pollution has been a public health issue for many decades. Historically, the first urban air quality model with spatial and temporal resolution was developed for the Los Angeles basin in California, USA (Reynolds et al., 1973). This three-dimensional (3D) gridded Eulerian model used the atmospheric diffusion (mass-conserving) equation to calculate the change with respect to time of the relevant air pollutant concentrations due to emissions, transport, chemical transformation, and deposition. Because of the urban design of western U.S. cities, there was no need to take buildings into account explicitly.

European cities differ from the Los Angeles basin because of the presence of densely built districts with street-canyon configurations. Consequently, although air quality models such as the one initially used for the Los Angeles basin are commonly used to calculate urban background pollution, different types of air quality models are needed to calculate air pollution at the
street scale. The conceptual approach of the Operational Street Pollution Model (OSPM) has typically been used (Berkowicz, 2000). The air pollutant concentrations are calculated within a street-canyon assuming uniform traffic emissions across the street-canyon, but air pollutant concentrations can be calculated in ventilated and recirculated zones of the street-canyon. Mass transfer between the street and the urban background atmosphere at the top of the street (i.e., roof level) is simulated.

This initial concept has been extended to calculate air pollutant concentrations within a network of streets with the SIRANE model (Soulhac et al., 2011). Although the SIRANE formulation does not distinguish recirculation and ventilation zones and assumes a uniform concentration for each street segment, it provides a significantly better treatment of pollutant transport across street intersections. The development of the SIRANE formulation is based on a comprehensive investigation of airflow and mass transfer via wind tunnel experiments and computational fluid dynamics (CFD) simulations. SIRANE has been applied to various urban districts and has shown satisfactory performance when compared to ambient air pollutant concentrations (e.g. Soulhac et al., 2012). However, the treatment of the urban background above roof level in SIRANE is modeled using a Gaussian model formulation, which prevents the use of a comprehensive atmospheric chemistry. Consequently, it is not appropriate to simulate secondary air pollutants such as ozone (O_3) or fine particulate matter ($PM_{2.5}$), which require modeling the formation of secondary pollutants with a comprehensive chemical kinetic mechanism.

Therefore, there is a dire need to combine the advantages of 3D gridded Eulerian models, which can simulate urban background concentrations of all major air pollutants of interest, and those of street-network models, which can simulate the concentrations of air pollutants in complex urban canopy configurations. The multi-scale combination of Eulerian models with near-source models was developed initially for the treatment of plumes from tall stacks in the Los Angeles basin (Seigneur et al., 1983). Many other “Plume-in-Grid” (PinG) models have been developed over the following three decades (see Karamchandani et al., 2011, for an overview). Later PinG model development efforts have included PinG models for line sources, area sources, and volume sources using various modeling approaches (e.g., Cariolle et al., 2009; Karamchandani et al., 2009; Huszar et al., 2010; Jacobson et al., 2011; Briant and Seigneur, 2013; Holmes et al., 2014; Kim et al., 2014) in order to treat aircraft emissions, ship emissions, traffic emissions from roadways, and fugitive emissions from industrial sites. However, there is currently no integrated model that dynamically combines an Eulerian model with a street-network model. The objective of this work is to develop the formulation of such a Street-in-Grid model (SinG), fully consistent with the mass conservation principle, and present its initial application to an actual urban case study. The Eulerian host model selected for this work is POLAIR3D of the Polyphemus air quality modeling platform (Mallet et al., 2007), a 3D chemical-transport model (CTM), which has been widely applied in Europe, North America, South America, Asia, and Africa (e.g., Sartelet et al., 2012). The Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which is used to simulate subgrid concentrations in the urban canopy represented by the street network, is presented in the next section. Then, the coupling of MUNICH to POLAIR3D is described in Section 3. Finally, some initial applications of MUNICH and the SinG model to a Paris suburb are discussed.
2 Description of MUNICH

MUNICH is based conceptually on the SIRANE general formulation (Soulhac et al., 2011). We can distinguish two main components to MUNICH: (1) the street-canyon component, which represents the atmospheric processes in the volume of the urban canopy, and (2) the street-intersection component, which represents the processes in the volume of the intersection. These components are connected to the POLAIR3D model at roof level and are also interconnected. We describe each one of these components in turn.

2.1 Street-canyon component

For a street segment, which is defined as a street component bounded by intersections with other streets at each end, the following assumptions are used (Soulhac et al., 2011):

- Air pollutant concentrations are uniform within a street segment.
- The width of the street and the height of the buildings are uniform.
- Emissions of air pollutants and deposition of air pollutants are uniform along the street segment. However, deposition fluxes to different surfaces, including pavement, building walls, and roofs are distinguished using the urban dry deposition model of Cherin et al. (2015).
- The wind direction follows the street segment direction.
- The wind speed is uniform and is related to the wind speed at roof level, the angle between the wind direction at roof level and the street segment direction, and the street segment characteristics (width and height).
- Steady state is assumed for a given time step.

Assuming steady state, the mass flux (Q in $\mu g s^{-1}$) balance is applied to calculate the concentration of an air pollutant in a street segment.

$$Q_s + Q_{inflow} + Q_{chem} = Q_{vert} + Q_{outflow} + Q_{dep}$$

(1)

where Q_s is the source emission rate, Q_{inflow} is the inflow rate of the air pollutant entering the street from upwind (typically via an intersection), Q_{vert} is the vertical flux by turbulent diffusion at roof level (see Section 2.1.1), $Q_{outflow}$ is the outflow rate of the air pollutant leaving the street in the downwind direction, Q_{dep} is the pollutant loss rate due to atmospheric deposition, and Q_{chem} is the air pollutant chemical transformation rate (positive for formation and negative for destruction). The emission term, Q_s, is obtained typically from a traffic emission model. The inflow term, Q_{inflow}, is obtained from the street-intersection component (see Section 2.2). The outflow rate, $Q_{outflow}$, is calculated as follows:

$$Q_{outflow} = HWu_{street}C_{street}$$

(2)

where H is the mean building height in the street segment and W is the mean street width, u_{street} is the mean horizontal wind velocity in the street segment (see Section 2.1.2), and C_{street} is the air pollutant concentration in the street segment.
2.1.1 Turbulent vertical mass transfer at the top of the street segment

The vertical flux, Q_{vert}, as formulated in SIRANE does not depend on the building height in the street segment and is, therefore, defined by the external flow condition, based on Salizzoni et al. (2009).

$$Q_{\text{vert}} = \frac{\sigma_w W L}{\sqrt{2\pi}} (C_{\text{street}} - C_{\text{background}}) \quad (3)$$

where $C_{\text{background}}$ is the mean concentration above the street segment, L is the street length, and σ_w is the standard deviation of the vertical wind velocity at roof level, which depends on atmospheric stability. One notes that this approach represents the turbulent mass transfer rate using a mass transfer coefficient with unit of a velocity. Such an approach is routinely used in engineering where mass transfer coefficients are empirically defined and combined with concentration gradients to calculate mass transfer rates. In air quality modeling, this approach is also used to model dry deposition and turbulent mass transfer in the surface layer is typically approximated with a deposition velocity.

A slightly different parametrization was recently proposed by Schulte et al. (2015) who used a turbulent dispersion coefficient defined as follows:

$$K_m = \sigma_w l \quad (4)$$

where l is a characteristic mixing length within the street-canyon. By assuming that the size of the large turbulent eddies dominating vertical mixing is limited by the smaller size of the street width and height, l is proportional to the smaller of W and H as follows.

$$\frac{1}{l} \sim \left(\frac{1}{W} + \frac{1}{H} \right) \quad (5)$$

Then

$$l = \beta_1 \frac{WH}{W + H} = \beta_1 H \frac{1}{1 + a_r} \quad (6)$$

where β_1 is a constant and a_r is the aspect ratio (ratio of building height to street width, H/W) (Landsberg, 1981).

Then, the vertical flux at roof level is expressed using the turbulent dispersion coefficient as follows:

$$Q_{\text{vert}} = \beta_2 K_m \frac{WL}{H} (C_{\text{street}} - C_{\text{background}}) \quad (7)$$

By combing Equation 7 with Equations 4 and 6, we obtain

$$Q_{\text{vert}} = \beta \sigma_w W L \left(\frac{1}{1 + a_r} \right) (C_{\text{street}} - C_{\text{background}}) \quad (8)$$

where $\beta = \beta_1 \beta_2$.

The constant β can be estimated by comparison to Equation 3. Because the vertical flux in Equation 3 is estimated using the unity aspect ratio ($a_r = 1$), we assume that the computed vertical fluxes with Equations 3 and 8 are equal when $a_r = 1$.

We obtain $\beta = 0.45$. Figure 1 compares the vertical transfer coefficient estimated with Equations 3 and 8. If $a_r < 1$, i.e., in an area with low buildings, then the transfer coefficient is greater with the formulation of Schulte et al. (2015) than that of SIRANE. On the contrary, if $a_r > 1$, i.e., in a street-canyon configuration, then the vertical transfer is reduced compared to that of SIRANE.
Figure 1. Comparison of the turbulent transfer coefficients of the SIRANE formulation (dotted line) and the formulation of Schulte et al. (2015) (solid line).

2.1.2 Mean wind velocity within the street-canyon

Here, we use the exponential wind vertical profile proposed by Lemonsu et al. (2004) and used by Cherin et al. (2015) in their modeling of dry deposition within street-canyons. The corresponding formulas were modified here to be specific to the angle between the wind direction and the street-canyon direction (Lemonsu et al., 2004 and Cherin et al., 2015 averaged the wind profile over all possible angles).

– For narrow canyons, $a_r > 2/3$:

$$u_{street} = \frac{2}{\pi} u_H \cos(\varphi) \exp \left(\frac{a_r}{2} \left(\frac{z}{H} - 1 \right) \right)$$ \hspace{1cm} (9)

where φ is the angle between the wind direction above roof level and the street direction. u_H is the wind speed at the building height and is a function of the friction velocity.

– For the so-called intermediate case (i.e., moderate canyons), $1/3 \leq a_r \leq 2/3$:

$$u_{street} = \left[1 + 3 \left(\frac{2}{\pi} - 1 \right) \left(\frac{H}{W} - \frac{1}{3} \right) \right] u_H \cos(\varphi) \exp \left(\frac{a_r}{2} \left(\frac{z}{H} - 1 \right) \right)$$ \hspace{1cm} (10)

– For a wide configuration, $a_r < 1/3$:

$$u_{street} = u_H \cos(\varphi) \exp \left(\frac{a_r}{2} \left(\frac{z}{H} - 1 \right) \right)$$ \hspace{1cm} (11)

An average wind speed can be derived from these empirical wind profiles by integrating over the entire street-canyon height $(0 < z < H)$. These empirical wind profiles are exponential functions and are, therefore, qualitatively similar to the profile used in SIRANE (Soulhac et al., 2008) to derive the average wind velocity within the street-canyon. The wind speeds calculated
using these wind profiles and those in SIRANE are compared in Figure 2. This figure illustrates the differences in the mean wind speed obtained for different values of the aspect ratio ranging from 0.1 to 2. The largest differences are obtained when \(a_r = 2/3 \) and the angle between the wind direction and the street direction is lower. For \(\varphi = 0 \), the average wind speed of MUNICH is about 2/3 that of SIRANE.

Wind speed observations were not available to compare the results of the two methods. However, due to the relatively low aspect ratio of the street considered in this study \((a_r \sim 1/3 \text{ for Boulevard Alsace-Lorraine}) \), we do not expect to have a strong sensitivity to the choice of the formulation for the average wind speed. This point could become more crucial for streets with higher aspect ratio and should be considered for future applications.

2.2 Street-intersection component

The street-intersection component of MUNICH involves the following assumptions, also used in SIRANE (Soulhac et al., 2009):

- The air pollutant concentration is not uniform across the intersection (as it has sometimes been assumed in earlier work).
- The advective air flow in the street network is compensated by inflow or outflow at the top (roof level) of the intersection to ensure mass balance.
- The mean air flow follows the wind direction at roof level.
- The streamlines of the flow from a street to other streets across the intersection cannot cross one another.
- Fluctuations in wind direction are taken into account when constructing the air flows from one street to others across the intersection.

Accordingly, the air mass fluxes (and the associated pollutant mass fluxes) are computed for the streets that are connected to the intersection (entering or leaving the intersection) using Equation 1. The air mass fluxes for the streets are corrected by the computed vertical air flux in the intersection at roof level.

If one considers only the mean air flow, the air flow rates for the streets are determined solely based on the configuration of the streets, their intersection and the wind direction above roof level. However, experiments in a wind tunnel and CFD simulations have shown that fluctuations in wind direction influence significantly the air flow across an intersection (Soulhac et al., 2009). Accordingly, one must take into account these fluctuations to properly account for the transfer of air (and pollutant) mass across the intersection. Then, the computation of the air fluxes depends not only on the mean wind direction, but also on the wind fluctuation. The wind direction is assumed to follow a Gaussian distribution centered on its mean value.

2.3 Chemical reactions

In MUNICH, the CB05 chemical kinetic mechanism (Yarwood et al., 2005) is implemented to ensure consistency with PO-LAIR3D in the SinG configuration. CB05 consists of 53 species including volatile organic compounds (VOC) and inorganic species and 155 chemical reactions including 23 photolysis reactions. However, nitric oxide (NO) emissions in the urban canopy are likely to scavenge \(\text{O}_3 \) and other oxidants, thereby suppressing VOC chemistry. Accordingly, a simple three-reaction mechanism involving solely NO, nitrogen dioxide (NO\(_2\)) and \(\text{O}_3 \), known as the Leighton photostationary state
(Leighton, 1961), was also implemented. However the Leighton photostationary state may not hold even in urban environment when VOC emissions are high (Trebs et al., 2012; Matsumoto et al., 2006). These two mechanisms are compared below in terms of model performance and computational costs.

![Graphs showing comparison of mean horizontal wind velocity within street-canyon](image)

Figure 2. Comparison of the mean horizontal wind velocity (normalized with respect to the wind speed at roof level) within the street-canyon calculated with the profiles of SIRANE (Soulhac et al., 2008) (dotted lines) and MUNICH (Lemonsu et al., 2004) (solid lines) as a function of the street aspect ratio for three different angles between the wind direction and the street direction (a) 0°, (b) 30°, (c) 60°.
2.4 Dry and wet deposition

Dry deposition is computed using the approach developed for an urban canopy (Cherin et al., 2015). Surfaces available for dry deposition include pavement (street and sidewalks), building walls, and building roofs. The dry deposition fluxes (in \(\mu g m^{-2}s^{-1} \)) are calculated by multiplying the pollutant concentrations (in \(\mu g m^{-3} \)) and the pollutant deposition velocities (in \(m/s \)). The estimation of the deposition velocities depends on the atmospheric conditions and the surface properties, which differ among the surface types. For the building roofs, the background concentrations over the urban canopy are used, whereas the concentrations within the street network are used for the pavement and building walls.

Wet deposition consists of the scavenging by precipitation and deposition to pavement and building roofs. Wet deposition to the building roofs is estimated by the precipitation intensity and the background concentrations over the urban canopy. The scavenging and deposition to the pavement is computed for the entire atmospheric column and includes both the background concentrations above roof tops and the concentrations within the urban canopy:

\[
F_{\text{street}} = \Lambda (C_{\text{street}} H + C_{\text{background}} (z_c - H))
\]

where \(F_{\text{street}} \) is the wet deposition flux to the pavement (\(\mu g m^{-2}s^{-1} \)), \(\Lambda \) is the scavenging coefficient (\(s^{-1} \)), and \(z_c \) is the cloud base height (m). The in-cloud wet scavenging is supposed to have a weak impact for the species considered here.

2.5 Summary of MUNICH characteristics

The concept of the street-network model MUNICH is close to the one used in SIRANE to represent concentration at the street level. We have introduced several parametrizations for the vertical turbulent flux and the average wind speed. It is however not possible to definitively advocate a specific choice for these parametrizations with the set of observations available within the framework of the TrafiPollu project (http://www.agence-nationale-recherche.fr/?Project=ANR-12-VBDU-0002). MUNICH is then kept modular, the model can rely on the different parametrizations following user choices. MUNICH is designed as a stand-alone street-network model and does not aim to represent concentrations over the urban canopy. Beyond its modularity the main strength of MUNICH over SIRANE relies on the possibility to represent a complex chemistry in the street. It also allows the interactive connection with an Eulerian chemistry transport model.

3 Coupling of MUNICH with Polair3D

We describe here a new model, “Street-in-Grid” (SinG), which combines the MUNICH street-network model and the POLAIR3D CTM. SinG is conceived to conduct a multi-scale simulation, which estimates both grid-averaged concentrations at the urban scale and concentrations within each street segment. This combined model provides the following advantages.

– It allows one to estimate the influence of the background concentrations on the concentrations within the street network and vice-versa.

– There is no double counting of emissions, originating within the urban canopy: these emissions are input data to MUNICH and, therefore, they are removed from the grid-averaged emission inventory of POLAIR3D.
Figure 3. Schematic diagram of the Street-in-Grid model.

The interfacing between MUNICH and POLAIR3D is conducted at fixed time steps, which were set at 10 min in the following application, the integration time step of the Eulerian model.
4 Application of MUNICH to a street network in a Paris suburb

4.1 Simulation domain and setup

MUNICH was applied to simulate the concentrations of pollutants in a Paris suburb (Le Perreux-sur-Marne, 13 km east of Paris). Figure 4 displays the location of the modeling domain. The street-network within the simulation domain consists of 577 street segments and is displayed in Figure 5. Simulations for gas-phase species including NO\textsubscript{x}, CO, VOC emissions were conducted during the period from March 24 to June 14, 2014. Figure 4 displays the location of the modeling domain. Here, we use the parametrization proposed by Schulte et al. (2015) for the vertical flux at roof and the exponential wind vertical profile proposed by Lemonsu et al. (2004) for the mean wind speed within the street-canyon.

4.2 Traffic emissions

The traffic emission inventory used for the simulation domain were estimated using was built for the TrafiPollu project. This emission inventory rely on the use of the dynamic traffic model Symuvia (Leclercq et al., 2007) with and the COPERT 4 emission factors (http://emisia.com/products/copert-4/versions), as part of the TrafiPollu project. The dynamic traffic model Symuvia calculates the vehicle trajectories, the number of vehicles and the averaged speed on a given time period for each street segment of the simulated street network. Dynamic traffic models represent vehicle flow at smaller spatial and temporal scales.

Figure 4. Modeling. Four simulation domains for are simulated from the Street-in-Grid simulations continental scale to the urban scale. In the left panel, the largest domain 1 covers western Europe. Domain 2 covers northern central France, the red circles show the locations of the background air monitoring stations. In the right panel, domains 3 and 4 cover the Île-de-France region and the eastern Paris suburbs, the blue box corresponds to the modeling area in suburban Paris for the MUNICH simulations. The black stars and red circles show the locations of the urban background air monitoring stations. SinG is only used for domain 4. Measured data at the stations with the black stars are used for background concentrations in the MUNICH simulations. SinG is only used for domain 4.
temporal scale than static traffic models and potentially allow an explicit representation of traffic congestion. A discussion on the differences between dynamic and static traffic models in link with water and air quality studies can be found in Shorshani et al. (2015). However for the current work the Symuvia outputs were averaged and combined with COPERT 4 emission factors to generate hourly emission rates for each street segment. The emission rates depend on the averaged vehicle speed and composition of the fleet vehicle fleet. This latter was determined through video monitoring (André et al., 2017). It is however important to notice that the vehicle fleet composition appears to be a sensitive input data (Carteret et al., 2014; Chen et al., 2017).

Two typical days (March 25 for weekday and March 30 for weekend) were chosen for the traffic simulation.

The dynamic traffic model estimates the emission rates per vehicle flow for each traffic direction of a two-way street. The traffic emissions of a two-way street were then merged to obtain one emission rate for the street segment. Each simulated street segment, the basic input data needed by MUNICH.

Surface areas of intersections are not taken explicitly into account in MUNICH and streets are connected at the center of the intersection, i.e., an intersection is represented by a point using a latitude/longitude coordinate set. In this work, the geometry of the intersection can influence the mass exchange (Salem et al., 2015). In particular, when intersections are large, vertical mixing with the overlying atmosphere becomes more important. As this phenomenon is not taken into account in the current version of the model it leads to underestimate the exchanges through such open space in the street network. There is a need here to extend the modeling framework to better represent this type of urban space.

Figure 5 shows the NOx traffic emissions which were estimated for the traffic emissions were prepared for 577 street segments. The obtained emission data for the street network are presented in Figure 5 of the simulation domain in the Paris suburb. In the left panel, NOx emission rates during nighttime are presented. Very low emission rates are estimated for all the streets even though those on the A86 highway are slightly higher. In the right panel, NOx emission rates during morning rush-hour increase more than 1400 µg m\(^{-1}\) s\(^{-1}\). Since the traffic model is calibrated with flow observation and the vehicle fleet composition determined through video monitoring, the remaining uncertainties in the emission data lie in the use of only two typical days to represent the whole period and in COPERT 4 emission factors.

4.3 Geographic data

Traffic lane widths and building heights were obtained from the BD TOPO database (http://professionnels.ign.fr/bdtopo). Total street width includes the lane width, the sidewalk width or the highway shoulder width (the A86 highway passes through the modeling domain). For minor surface roads, a width of 3 m was used for sidewalks by default, which corresponds to 2 sidewalks (the minimum sidewalk width in France is 1.4 m). For the A86 highway, 20 m were added to the lane width including 2 shoulders (4 m), a median strip (1.5 m), and 2 urban-train lanes (4 m). Street widths and building heights of the 15 major streets were explicitly estimated. For the other streets, average street width (7.5 m) and building height (6.9 m) estimated for the modeling domain were used.
4.4 Meteorological data

Meteorological data, including wind direction/speed, planetary boundary layer (PBL) height, and friction velocity, were obtained from a Weather Research and Forecasting (WRF) model version 3.6.1 (Skamarock et al., 2008) simulation conducted with a horizontal resolution of 1.5×1.5 km² (Thouron et al., 2017). The simulated meteorological data were compared to the measurements at three urban-background meteorological stations near the simulation domain and showed satisfactory results. The root-mean square error (RMSE), the fractional bias (FB), and the correlation coefficient (R) are the statistical indicators used in Thouron et al. (2017) to evaluate the meteorological fields. The WRF simulation slightly overestimates the temperature (RMSE: 0.2 ∼ 1.1 °C, FB: 0.02 ∼ 0.07 and R: 0.9) and overestimate the wind speed (RMSE: 0.8 ∼ 1.1 m s⁻¹, FB: 0.2 ∼ 0.3 and R: 0.6 ∼ 0.7). The modeled wind direction is biased by an angular differences of about 15°. An important error in the precipitation modeling is obtained (RMSE: 0.04 mm h⁻¹, FB: -0.6, R: 0.1) but this model error has not a strong impact on the concentration of the poorly soluble species simulated.

Figure 5. NOₓ emission rates (µg m⁻¹ s⁻¹) used in MUNICH simulations for a week day (a) during nighttime at 1 AM (UTC) (b) in the morning rush-hour at 7 AM (UTC) on March 25, 2014.
4.5 Background concentrations

Background concentrations of NO, NO$_2$, and O$_3$ were obtained from two urban background air monitoring stations near the modeling area (5 to 7 km from the area, see Figure 4). Averaged values of the hourly measured concentrations at the two stations were used to compute the vertical mass transfer at the top of the street network in Equations 3 and 8. These stations are operated by AIRPARIF, the air quality agency of the Paris region (http://www.airparif.asso.fr/).

4.6 Results

Figure 6 shows that simulated concentrations of NO$_x$ are high in the streets where the emission rates are high (see Figure 5). The concentrations of NO$_x$ during nighttime on March 25 reach 160 μg m$^{-3}$ over the major streets. During the morning rush-hour on the same day, the concentrations of NO$_x$ increase to 600 μg m$^{-3}$. The modeled high concentrations during the rush-hour are due not only to high emission rates but also to stable meteorological conditions with low PBL height (520 m) and wind speed (2.5 m s$^{-1}$). One notes that there is a clear difference between the spatial patterns of the emission maps (Figure 5) and

![Figure 6](image_url)

Figure 6. Simulated NO$_x$ concentrations using MUNICH (a) during nighttime at 1 AM (UTC) (b) in the morning rush-hour at 7 AM (UTC) on March 25, 2014. The red rectangular box encompasses Boulevard Alsace-Lorraine and the cross mark corresponds to the location of the air monitoring stations on the sidewalks.
concentration maps (Figure 6). Streets with no or little NO$_x$ emissions display non-negligible NO$_x$ concentrations, thereby highlighting the importance of advective and turbulent transport in the street network.

Figure 7. Temporal evolution of NO$_2$ daily-averaged concentrations modeled with MUNICH (blue line), POLAIR3D (green line) and the SinG model (red line). They are compared to the measured concentrations (black shaded regions) at the stations nearby traffic on each sidewalks of the Boulevard Alsace-Lorraine. If the measurement is available at only one station, black line is used instead.

Figure 8. Diurnal variation of NO$_2$ concentrations modeled with MUNICH (blue line), POLAIR3D (green line) and the SinG model (red line). They are compared to the measured concentrations (black line) at the stations nearby traffic on each sidewalks of Boulevard Alsace-Lorraine.
Table 1. Statistical indicators of the comparison of simulated hourly concentrations to the NO$_2$ and NO$_x$ concentrations measured at the air monitoring stations operated on the sidewalks of Boulevard Alsace-Lorraine.

<table>
<thead>
<tr>
<th></th>
<th>NO$_2$</th>
<th>NO$_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUNICH</td>
<td>SinG</td>
<td>SinG-s</td>
</tr>
<tr>
<td>Observation (µg m$^{-3}$)</td>
<td>52.6</td>
<td>148.5</td>
</tr>
<tr>
<td>Simulation (µg m$^{-3}$)</td>
<td>38.1</td>
<td>42.2</td>
</tr>
<tr>
<td>FB*</td>
<td>-0.32</td>
<td>-0.22</td>
</tr>
<tr>
<td>$\sqrt{\text{NMSE}}^*$</td>
<td>0.47</td>
<td>0.40</td>
</tr>
<tr>
<td>MFE*</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>VG*</td>
<td>1.35</td>
<td>1.23</td>
</tr>
<tr>
<td>MG*</td>
<td>0.69</td>
<td>0.78</td>
</tr>
<tr>
<td>FAC2*</td>
<td>0.77</td>
<td>0.87</td>
</tr>
<tr>
<td>R*</td>
<td>0.67</td>
<td>0.68</td>
</tr>
</tbody>
</table>

*: FB (Fractional bias), NMSE (Normal mean square error), MFE (Mean fractional error), VG (Geometrical mean squared variance), MG (Mean geometrical bias), FAC2 (Fraction in a factor of 2), R (Correlation coefficient) (Chang and Hanna, 2004; Yu et al., 2006).

**: For the simulation "MUNICH-s" a 25% reduction of the turbulent transfer coefficient, a one-third increase of NO$_x$ emissions from traffic and a reduction from 20% to 9% of the NO$_2$/NO$_x$ emissions ratio (in mass of NO$_x$ equivalent) are applied.

**: For the simulation "SinG-s" a 25% reduction of the turbulent transfer coefficient, a 33% reduction of the O$_3$ boundary conditions, a one-third increase of NO$_x$ emissions from traffic and a reduction from 20% to 9% of the NO$_2$/NO$_x$ emissions ratio (in mass of NO$_x$ equivalent) are applied.

Figure 7 compares the modeled 24-h averaged concentrations of NO$_2$ with the concentrations measured at the air monitoring stations operated by AIRPARIF during the Trafipollu project on the two sidewalks of Boulevard Alsace-Lorraine for the period from April 6 to June 15. Mean diurnal variations of NO$_2$ concentrations over this period are presented in Figure 8. Statistical indicators defined in Appendix A for the comparison of hourly concentrations are provided in Table 1. The NO$_2$ modeled concentrations using MUNICH generally underestimate the observations with a mean negative bias of 32%. Simulated morning and evening peaks are delayed compared to the observation. The morning peak of emissions data for the street segment of Boulevard Alsace-Lorraine corresponds in time to the peak of observed concentrations. It is also important to note that in average over the street network the morning peak of emissions data occurs one hour later than in Boulevard Alsace-Lorraine. It means that the delay in simulated concentrations is introduced by a transport process (advection in the street network or turbulent exchange with the background atmosphere).
In addition to NO$_2$ concentrations, NO$_x$ concentrations (NO$_2$ equivalent) were measured at the monitoring stations at Boulevard Alsace-Lorraine. The comparison of the measured and simulated concentrations with MUNICH shows a large underestimation in the NO$_x$ concentrations (measurement: 148.5 µg m$^{-3}$ and simulation with MUNICH: 50.3 µg m$^{-3}$). Worse model performance for NO$_x$ than for NO$_2$ has also been reported in earlier studies (e.g. Ketzel et al., 2012), which suggests that NO$_2$ model performance may actually benefit from some error compensation. Here for example, the underestimation of NO$_x$ concentrations is partially compensated by an overestimation of the NO$_2$/NO$_x$ fraction.

It is not obvious to attribute these discrepancies in NO$_2$ simulations to and NO$_x$ simulations to uncertainties in the model formulation or the input data (background concentrations, meteorological data and emission data from the dynamic traffic model). Nevertheless the sensitivity to the choice of the background concentration is important. The reference simulation the background concentrations are estimated using the mean of concentrations measured at two urban background stations (see Figure 4). Figure 9 shows similar temporal evolution in the measured NO$_2$ and NO$_x$ daily concentrations between the two stations. However significant large discrepancies in their peak values are observed (up to a maximum difference of 300% in the hourly concentrations). It implies that the measured background concentrations certainly do not always correspond to the concentration above a given street. Two additional simulations were conducted to assess the relative contributions from the uncertainties in the background concentrations derived from measurements. For NO$_2$, NO$_x$ and O$_3$ the standard deviations over the simulated period of the differences between the measured concentrations at the two monitoring stations are calculated ($\sigma$$_{NO_2}$: 8.1 µg m$^{-3}$, $\sigma$$_{NO_x}$: 6.5 µg m$^{-3}$ and $\sigma$$_{O_3}$: 5.1 µg m$^{-3}$). The first simulation was run with O$_3$ concentrations increased by $\sigma$$_{O_3}$ and NO and NO$_2$ concentrations lowered by $\sigma$$_{NO}$ and $\sigma$$_{NO_2}$ respectively. In the second simulation reduced O$_3$ concentration and increased NO and NO$_2$ concentrations are used. Differences between the averaged NO$_2$ concentrations for these simulations and the reference simulation are up to 30%. This result points out the difficulty of identifying measurements that are truly representative of the “urban background” as wished-needed in the street-network model. As shown below it is possible to replace measurements by the concentration in the following the urban background concentrations can be estimated based on the concentrations simulated with an Eulerian model. This does not ensure a better representativity of the simulated background concentrations. However a dynamic coupling at least ensures a consistent treatment of the mass conservation. Furthermore it allows scenario analysis in a prospective framework with a consistent evolution of background and local concentrations.

Beyond the urban background concentrations the main remaining uncertainties are related to the evaluation of the vertical transfer at roof top and to the traffic emissions data. A sensitivity test was conducted for further investigation on the NO$_x$ underestimation and the NO$_2$/NO$_x$ ratio overestimation with a different configuration settings and input data set (MUNICH-s in Table 1). The aim is to propose a first illustration of the uncertainties. A potential underestimation of the NO$_x$ emissions from traffic and an overestimation of the vertical flux by turbulent diffusion at roof level were considered to explain the deficit of NO$_x$ concentrations within the street. The NO$_2$/NO$_x$ emission ratio is also considered to explain the too high concentration ratio:

- The turbulent transfer coefficient is decreased by 25%.
- A one-third increase of NO$_x$ emissions from traffic is applied in the street network.
A reduction from 20% to 9% of the NO$_2$/NO$_x$ ratio (in mass of NO$_2$ equivalent) in the emissions from traffic.

The magnitude of the turbulent transfer coefficient reduction is somewhat arbitrary. It is however chosen consistent with the difference between the two parametrizations considered for the vertical turbulent transfer (Figure 1) for the aspect ratio of Boulevard Alsace-Lorraine. It could account for the uncertainties in the meteorological fields since the standard deviation of the vertical wind velocity ($\sigma_{u,v}$) depends on the friction velocity, the Monin-Obukhov length and PBLH that also contribute to the global uncertainty. This reduction can also be seen as a stopgap to deal with the discrepancies due to the assumption of uniform concentration within each street segment. For NO$_x$, mainly emitted near from the street ground, this latter assumption certainly leads to overestimate the concentration at the roof level since the vertical profile of concentrations is rather supposed to be exponentially decreasing with height (Vardoulakis et al., 2003, due to chemistry this may be not the case for NO or NO$_2$ taken separately). This last assumption leads to overestimate the vertical turbulent flux computation for NO$_x$ as a whole. It is interesting to note that beyond the limitation of the NO$_x$ flux toward the background, the decrease of the turbulent transfer coefficient also improve the NO$_2$/NO$_x$ concentration ratio. It limits the O$_3$ flux from the background and the mix with an air mass with a larger NO$_2$/NO$_x$ concentration ratio (observed ratio~1/3 in the street against ~4/5 in the background).

The increase of emissions is consistent with the uncertainties concerning NO$_x$ emissions derived from COPERT 4 (Kouridis et al., 2010). The value chosen initially for the NO$_2$/NO$_x$ ratio in the emissions from traffic was determined from roadside concentration observed in Île-de-France (AIRPARIF, 2015). However, this value may not be really representative of the tailpipe ratio (Kimbrough et al., 2017). The 9% ratio (value applied for others emissions sectors, Sartelet et al., 2007) appears in the range of possible values reported by Carslaw and Rhys-Tyler (2013).

These modifications of the reference simulation setup improve the NO$_x$ and NO$_2$ concentrations but the NO$_2$ concentrations remain largely underestimated. The sensitivity of the model results to the turbulent transfer coefficient imply that the choice between the Salizzoni et al. (2009) formulation and the one proposed in Schulte et al. (2015) can have an impact for streets with an aspect ratio far from 1. More comprehensive studies need to be conducted for these conditions of aspect ratio (e.g., in Paris center).

5 Application of SinG to a street network in a Paris suburb

5.1 Simulation domains and input data

SinG is used to estimate the pollutant concentrations in both the 3D gridded domain and the street network. Four simulation domains are used from the continental scale to the urban scale (see Figure 4). Domain 1 covers western Europe with a horizontal resolution of 0.5°. Domains 2 and 3 cover northern/central France (0.15° resolution) and the Île-de-France region (0.04° resolution), respectively. The urban-scale domain 4 covers the eastern Paris suburbs (0.01° resolution) including the area where the street network is located. The horizontal resolution of domain 4 corresponds to about 1 km. The street network neighborhood is covered by 12 grid cells of domain 4 and corresponds to about 1% of the domain 4 area. The vertical resolution consists of 10 levels up to 6 km with the lowest level at 15 m.
For POLAIR3D, boundary conditions for the outer domain 1 were obtained from data simulated by the MOZART 4 global CTM (Emmons et al., 2010). Meteorological data were obtained from WRF simulations for all domains (Thouron et al., 2017). Anthropogenic emissions were calculated using the EMEP–European Monitoring and Evaluation Programme (EMEP) inventory for domains 1 and 2 (EMEP/CEIP 2014 present state of emissions as used in EMEP models) and the AIRPARIF inventory for domains 3 and 4. Biogenic emissions were calculated with MEGAN v2.04 (Guenther et al., 2006). For MUNICH, which here is the urban canopy model embedded into POLAIR3D, the input data presented in Section 4 were used, except for boundary conditions over roof top, which were obtained from the lowest layer of POLAIR3D in the SinG simulation.

5.2 Evaluation of the simulated background concentrations

Two simulations were performed over domain 4 from March 24 to June 14, 2014. POLAIR3D is used in the first simulation whereas SinG is used in the second simulation to estimate the influence of the subgrid-scale treatment of the urban canopy on the pollutant concentrations. The background concentrations in the simulation with SinG are modeled by the Eulerian model and updated every 10 min during the simulation to provide the needed upper boundary condition to the urban canopy module. The simulated background concentrations of O$_3$ and NO$_x$ by POLAIR3D and SinG are compared to the measured concentrations at the urban background air monitoring stations (Champigny and Villemomble). Because these stations are relatively far from the considered street network, the difference between the two models are not significant (see Figure 10). We obtained satisfactory results in the NO$_x$ and NO$_2$ concentrations but the O$_3$ concentrations are overestimated (∼25 µg m$^{-3}$ ~45%) at both stations (see Appendix B). The overestimation of ozone concentrations is partly related to an overestimation

![Figure 9](image_url)

Figure 9. Comparison of the daily-averaged measurements at the two air monitoring stations for (a) NO$_2$ and (b) NO$_x$. The first station is located at 5 km from the modeling area (Champigny) and the second station is located at 7 km from the modeling area (Villemomble).
of the boundary conditions. A comparison of simulated O_3 concentrations within domain 3 with the observations at six urban sites of the AIRPARIF network shows an overestimation of around $\sim 25 - 30 \mu g m^{-3} (\sim 33\%)$ (see Appendix B).

Figure 10 presents the differences between the two simulations in the mean concentrations over the whole simulated period of NO_x and O_3. Differences between POLAIR3D and SinG in the NO_x concentrations are at most 15%. These differences are due to different dispersion of NO_x emitted within the urban canopy in SinG and POLAIR3D. Since the wind speed is lower within the urban canopy than above it, advection is slower on average in SinG than in POLAIR3D for the grid cell, that are treated with the urban canopy module. An increase in the O_3 concentrations occurs with SinG compared to POLAIR3D (5%). It is due to a more limited titration in SinG than in POLAIR3D. **Because in SinG, there is a quasi-total O_3 titration within.** In SinG, vertical dispersion of NO_x is constrained by the urban canopy, but little titration above due to much lower NO levels. Therefore, O_3 titration is less in SinG in comparison to POLAIR3D due to lower NO concentrations above the urban canopy.

5.3 Evaluation of the simulated concentrations within the street

For the street segment where measurements are available, the temporal evolution of the modeled NO_2 concentrations using SinG is compared to those of MUNICH in Figure 7 and Table 1. Statistical scores in Table 1 show better performance for SinG than MUNICH using the statistical indicators. The simulated background concentrations significantly affect the concentrations in the street-canyon and lead to better performance with the current configuration. A similar conclusion was reached by Briant.
and Seigneur (2013) who compared a PinG model to a gaussian model for simulating NO\textsubscript{2} concentrations near roadways. Simulating the background can lead to better performance than using background concentrations from monitoring stations that may not be representative for the considered neighborhood. As expected, the concentrations simulated with the POLAIR3DCTM significantly underestimates the street-canyon NO\textsubscript{2} concentrations.

In addition to NO\textsubscript{2} concentrations, and NO\textsubscript{x} concentrations (NO\textsubscript{2} equivalent) were measured at the monitoring stations at Boulevard Alsace Lorraine.

The comparison of the measured and simulated concentrations with SinG shows a significant still show a large underestimation in the NO\textsubscript{x} concentrations (measurement: 148.5 µg m-3 vs. simulation with SinG: 76.8 µg m-3). Worse model performance for NO\textsubscript{x} than for NO\textsubscript{2} has also been reported in earlier studies, which suggests that NO\textsubscript{2} model performance may actually benefit from some error compensation. Here for example, the underestimation of NO\textsubscript{x} concentrations is partially compensated by an overestimation of the concentrations are overestimated by SinG during several time periods.

Since the NO\textsubscript{2}/NO\textsubscript{x} fraction concentration ratio in the street with MUNICH and SinG are very similar (0.75 and 0.78 respectively), we can think that the overestimation in NO\textsubscript{2} concentrations results of the “same” error compensation than MUNICH but with higher NO\textsubscript{x} concentrations.

A sensitivity test was conducted for further investigation on the NO\textsubscript{x} underestimation with a different configuration settings and input data set (SinG-s in Table 1). The aim is to propose a first illustration of the main uncertainties.

A potential underestimation of the NO\textsubscript{x} emissions from traffic and an overestimation of the the vertical flux by turbulent diffusion at roof level were considered to explain the deficit of NO\textsubscript{x} concentrations within the street. A one-third increase of As the urban background concentrations of NO\textsubscript{2} and NO\textsubscript{2}, emissions from traffic is applied in the street network. This increase is consistent with the uncertainties concerning NO\textsubscript{x} emissions derived from COPERT 4. The turbulent transfer coefficient is decreased by 25. Beyond the uncertainties on the value itself, this reduction can be seen as a stopgap to deal with the discrepancies due to the assumption of uniform concentration within each street segment. For NO\textsubscript{x}, mainly emitted near from the street ground, this latter assumption certainly leads to overestimate the concentration at the roof level since the vertical profile of concentrations is rather supposed to be exponentially decreasing with height. The vertical turbulent flux computation is then probably overestimated for NO\textsubscript{x} as a whole.

A 33% reduction of the O\textsubscript{3} boundary conditions and a reduction from 20 to 9 of appear simulated without any strong bias with SinG (see Table B3), the uncertainties at the street level are supposed mainly related to the evaluation of the vertical transfer coefficient at roof top and to the traffic emissions data. The same modifications concerning the emissions rates, the vertical turbulent coefficient and the NO\textsubscript{2}/NO\textsubscript{x} ratio (in mass of NO\textsubscript{2} equivalent) in the emissions from traffic are also considered applied to MUNICH-s are considered for SinG-s. Additionaly a 33% reduction of the O\textsubscript{3} boundary conditions is applied to reduce the NO\textsubscript{2}/NO\textsubscript{x} fraction in the simulated concentrations. The reduction of the O\textsubscript{3} boundary conditions is a pragmatic (and efficient) approach to reduce the bias in O\textsubscript{3} simulated background concentrations (see Appendix B). The value chosen initially for the NO\textsubscript{2}/NO\textsubscript{x} ratio in the emissions from traffic was determined from roadside concentration observed in Île de France. However this value may be not really representative of the tailpipe ratio. The 9 ratio (value applied for others emissions sectors) appears in the range of possible values reported by...
Table 2. Comparison of the computational times and model performance for the simulated concentrations of NO\textsubscript{x} using SinG and POLAIR3D for the period from March 31 to April 6, 2014. Statistical indicators are calculated by the comparison of simulated hourly concentrations to the NO\textsubscript{x} concentrations measured at the air monitoring stations operated on the sidewalks of Boulevard Alsace-Lorraine.

<table>
<thead>
<tr>
<th></th>
<th>POLAIR3D</th>
<th>SinG-1</th>
<th>SinG-2</th>
<th>SinG-3</th>
<th>SinG-4</th>
<th>SinG-5</th>
<th>SinG-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error limit(^{\ddagger})</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\Delta C < 0.01) (\mu \text{g m}-3)</td>
<td>(\Delta C < 1) (\mu \text{g m}-3)</td>
<td>(\Delta C/C_0 < 0.01)</td>
<td>(\Delta C/C_0 < 0.1)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Chemistry kinetic mechanism</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>CB05</td>
<td>Leighton</td>
</tr>
<tr>
<td>Normalized computational time(^{\dagger})</td>
<td>1.00</td>
<td>1.04</td>
<td>1.03</td>
<td>1.05</td>
<td>1.04</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>Observation ((\mu \text{g m}-3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>146.1</td>
</tr>
<tr>
<td>Simulation ((\mu \text{g m}-3))</td>
<td>-</td>
<td>128.5</td>
<td>128.5</td>
<td>128.5</td>
<td>128.5</td>
<td>130.0</td>
<td>130.0</td>
</tr>
<tr>
<td>FB(^{*})</td>
<td>-</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.13</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>(\sqrt{\text{NMSE}})</td>
<td>-</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>MFE(^{*})</td>
<td>-</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>VG(^{*})</td>
<td>-</td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
<td>1.36</td>
<td>1.35</td>
</tr>
<tr>
<td>MG(^{*})</td>
<td>-</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>FAC2(^{*})</td>
<td>-</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.83</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>R(^{*})</td>
<td>-</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

\(^{\ddagger}\): \(\Delta C = \) concentration at the current time step \((C_1)\) - concentration at the previous time step \((C_0)\).

\(^{\dagger}\): normalized time using POLAIR3D computational time as reference.

\(^{*}\): FB (Fractional bias), NMSE (Normal mean square error), MFE (Mean fractional error), VG (Geometrical mean squared variance), MG (Mean geometrical bias), FAC2 (Fraction in a factor of 2), R (Correlation coefficient) (Chang and Hanna, 2004; Yu et al., 2006). The statistical indicators were calculated against the observations at the monitoring stations at Boulevard Alsace-Lorraine.

The NO\textsubscript{x} concentrations of the second SinG simulation remain underestimated, however the statistical indicators are clearly improved (see Table 1). The parameters investigated deserve a more comprehensive sensitivity analysis that could be performed using a more extended observation database.
5.4 Analysis of SinG computational burdens

5.5 Analysis of SinG computational burdens

Additional simulations were conducted to estimate the increase in computational time using SinG compared to POLAIR3D. For the current case study the increase in computational burden remains limited. This is clearly due to the relatively limited fraction of the simulated domain concerned by the street-network model. The time increase using SinG is partly due to the number of iterations used to achieve steady state in MUNICH. The number of iterations depends on the set error criterion, which differs among the simulations listed as SinG-1 to SinG-5 (see Table 2). Steady state is assumed to be achieved when the errors satisfy the error criterion. This error criterion can be prescribed either in absolute terms (0.01 or 1 µg m\(^{-3}\)) or in relative terms (1 or 10%), with respect to the concentrations at the previous time step for all street segments of the urban canopy.

We examined the influence of the error criteria on the computational time and model results. Five additional simulations using SinG are thus compared to the one presented before using POLAIR3D as reference for the computational time. The increases of the computational time vary from 2% (SinG-5) when no error criterion is imposed (i.e., a single calculation step is conducted, for comparison it takes about 20 iterations to achieve steady state in SinG-1) to 5% (SinG-3) when a 1% error criterion is imposed. Model discrepancies are estimated by comparison with the observed NO\(_x\) street-canyon concentrations. Model results are not significantly influenced by changing the error limit.

The influence of the chemical kinetic mechanism on the computational time and model performance were also assessed (SinG-5 vs SinG-6). The increase of the computational time is halved when the Leighton photostationary state is used instead of CB05. Model performance is not degraded with the Leighton mechanism compared to CB05. Therefore, an operational version of SinG should use the Leighton mechanism within the urban canopy with either the SinG-2, SinG-4 or SinG-6 error criteria, depending of the accuracy desired.

6 Conclusions and implications

A new multi-scale model, Street-in-Grid (SinG), which combines a street-network model, Model of Urban Network of Intersecting Canyons and Highways (MUNICH), and a chemical-transport model, POLAIR3D, was developed to represent jointly the urban background and the local street-level pollution. These models were used to simulate NO\(_2\) and NO\(_x\) air concentrations for a Paris suburb. The simulation results were compared to background and street air concentrations measurements.

Simulation results using the street-network model MUNICH indicate that the temporal evolution of NO\(_2\) and NO\(_x\) concentrations in the Boulevard Alsace-Lorraine are well reproduced but NO\(_2\) and NO\(_x\) concentrations are underestimated. For this case study, the use of the multi-scale model leads to a significant reduction in the error and bias of the simulated concentrations in the street. Providing the background concentrations modeled by POLAIR3D to MUNICH improves the simulation results for NO\(_2\) concentrations. The NO\(_x\) concentrations are also improved with SinG, however both MUNICH and SinG simulated NO\(_x\) concentrations are significantly underestimated. This underestimation could be partly explained by uncertainties in NO\(_x\) emissions or an overestimation of NO\(_x\) transport into the overlying atmosphere at roof top. For this latter it would be of
interest to further investigate, with the support of appropriate observation data, the relative contribution of the uncertainties in the meteorological data and of the model assumption. The impact of the horizontal resolution of meteorological data on SinG simulations also need to be studied.

Using a comprehensive chemistry within the street-canyon does not influence the NO\textsubscript{x} concentrations notably. Consequently, computational costs can be reduced significantly by using the Leighton photostationary state within the urban canopy. However further propaganda

However this test would need to be renewed for new applications. The photostationary assumption cannot hold in condition with high VOC emissions. Further studies are needed to extend the model to simulate primary and secondary particulate matter in an urban canopy.

The observation database build within the framework of the TrafiPollu project was focused at the street level. We have not been able to evaluate the ability of the new model to represent background concentrations in comparison to traditional Eulerian chemical-transport model. An application of SinG to larger urban domains would allow this type of analyse and would complete the evaluation for street level concentrations.

SinG is a useful tool to simulate both the concentrations of air pollutants in complex urban canopy configurations and the background concentrations in the overlying atmosphere. Beyond the data usually needed for CTM, traffic emissions data for street segments and urban/buildings morphology data are mandatory for a SinG simulation over an urban area. The urban/buildings morphology data are available for many major cities in the world (for example, ESRI ArcGIS for US, EMU for UK, OpenStreetMap). The traffic emissions may be less easily available than other data.

Code availability. The source code of Street-in-Grid (v1.0) is available via Zenodo with the following DOI https://doi.org/10.5281/zenodo.1025629.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was funded by EDF R&D and EDF R&D China. The authors acknowledge our colleagues Luc Musson-Genon, CEREA/EDF R&D, and Jiesheng Min, EDF R&D China, for helpful discussions during the model development. We also thank AIRPARIF for providing the emission inventory and the measured concentration data, Laëtitia Thouron for providing the WRF meteorological outputs, and the TrafiPollu ANR project for making those data available for the model application and evaluation.
A Statistical indicators

Table A1. Definitions of the statistical indicators.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root mean square error (RMSE)</td>
<td>[\sqrt{\frac{1}{n} \sum_{i=1}^{n} (c_i - o_i)^2}]</td>
</tr>
<tr>
<td>Fractional bias (FB)</td>
<td>[\frac{c_i - o_i}{(c_i + o_i)/2}]</td>
</tr>
<tr>
<td>Mean fractional bias (MFB) and mean fractional error (MFE)</td>
<td>[\frac{1}{n} \sum_{i=1}^{n} \frac{c_i - o_i}{(c_i + o_i)/2}] and [\frac{1}{n} \sum_{i=1}^{n} \frac{</td>
</tr>
<tr>
<td>Mean normalized bias (MNB) and mean normalized error (MNE)</td>
<td>[\frac{\sum_{i=1}^{n} (c_i - o_i)^2}{\sum_{i=1}^{n} c_i o_i}] and [\frac{\sum_{i=1}^{n}</td>
</tr>
<tr>
<td>Normalized mean square error (NMSE)</td>
<td>[\frac{\sum_{i=1}^{n} (c_i - \bar{c})(o_i - \bar{o})}{\sqrt{\sum_{i=1}^{n} (c_i - \bar{c})^2} \sqrt{\sum_{i=1}^{n} (o_i - \bar{o})^2}}]</td>
</tr>
<tr>
<td>Correlation coefficient (R)</td>
<td>[\sqrt{\frac{\sum_{i=1}^{n} (c_i - \bar{c})(o_i - \bar{o})}{\sum_{i=1}^{n} (c_i - \bar{c})^2} \sqrt{\sum_{i=1}^{n} (o_i - \bar{o})^2}}]</td>
</tr>
<tr>
<td>Geometrical mean squared variance (VG)</td>
<td>[\exp \left(\frac{\sum_{i=1}^{n} ((\ln(c_i) - \ln(o_i))^2}{n} \right)]</td>
</tr>
<tr>
<td>Mean geometrical bias (MG)</td>
<td>[\exp \left(\frac{\sum_{i=1}^{n} (\ln(c_i) - \ln(o_i))}{n} \right)]</td>
</tr>
<tr>
<td>Fraction of modeled values within a factor of two of observations (FAC2)</td>
<td>[0.5 \leq \frac{c_i}{o_i} \leq 2]</td>
</tr>
</tbody>
</table>

\(c_i\): modeled values, \(o_i\): observed values, \(n\): number of data.

\[\bar{c} = \frac{1}{n} \sum_{i=1}^{n} o_i \quad \text{and} \quad \bar{c} = \frac{1}{n} \sum_{i=1}^{n} c_i \]
B Evaluation of simulated background concentrations

Simulated hourly concentrations of O_3 are compared to the concentrations measured at the background air monitoring stations on domains 2 and 3. For domain 2, O_3 concentrations are measured at four air monitoring stations which are operated by EMEP (see Figure 4a). Table B1 presents the comparison results. The O_3 concentrations are well estimated at a station which is located in Central France. However, the model largely overestimates the O_3 concentrations at three other stations. This overestimation may be due to uncertainties in long-range O_3 transport. For domain 3, simulated O_3 concentrations are compared to the concentrations measured at six urban background monitoring stations (see Figure 4b). The modeled O_3 concentrations are also overestimated (MFB: 42% ~ 48%) at those stations. These overestimations of O_3 concentrations on domains 2 and 3 at the rural and urban background stations imply uncertainties in O_3 boundary conditions for domain 4.

Table B1. Statistical indicators of the comparison of simulated hourly concentrations of NO_2, NO_3, and O_3 to the concentrations measured at the urban-background air monitoring stations of Villemomble and Champigny. The "O_3 cor." correspond to the ozone concentrations from the second simulation using "corrected" boundary conditions within domain 2 (see Figure 4).

<table>
<thead>
<tr>
<th>Station</th>
<th>Observation $\mu g m^{-3}$</th>
<th>Simulation $\mu g m^{-3}$</th>
<th>MFB*</th>
<th>MFE*</th>
<th>R*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revin</td>
<td>78.1</td>
<td>99.1</td>
<td>0.25</td>
<td>0.28</td>
<td>0.47</td>
</tr>
<tr>
<td>Morvan</td>
<td>77.0</td>
<td>97.0</td>
<td>0.26</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>Montfranc</td>
<td>92.0</td>
<td>96.6</td>
<td>0.05</td>
<td>0.13</td>
<td>0.38</td>
</tr>
<tr>
<td>Verneuil</td>
<td>63.7</td>
<td>92.7</td>
<td>0.43</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>Villemomble</td>
<td>55.0</td>
<td>94.6</td>
<td>0.61</td>
<td>0.61</td>
<td>0.59</td>
</tr>
<tr>
<td>Champigny</td>
<td>56.3</td>
<td>95.1</td>
<td>0.60</td>
<td>0.60</td>
<td>0.53</td>
</tr>
<tr>
<td>Les Ulis</td>
<td>62.0</td>
<td>94.7</td>
<td>0.47</td>
<td>0.48</td>
<td>0.61</td>
</tr>
<tr>
<td>Logne</td>
<td>58.3</td>
<td>96.5</td>
<td>0.57</td>
<td>0.58</td>
<td>0.55</td>
</tr>
<tr>
<td>Cergy</td>
<td>60.9</td>
<td>94.6</td>
<td>0.50</td>
<td>0.51</td>
<td>0.60</td>
</tr>
<tr>
<td>Neuilly-sur-Seine</td>
<td>49.6</td>
<td>92.1</td>
<td>0.68</td>
<td>0.69</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*: Mean fractional bias (MFB), mean fractional error (MFE) and correlation coefficient (R)
Table B2. Statistical indicators of the comparison of simulated hourly concentrations of O_3 to the concentrations measured at the urban background air monitoring stations within domain 3 (see Figure 4).

<table>
<thead>
<tr>
<th>Station</th>
<th>Observation (µg m$^{-3}$)</th>
<th>Simulation (µg m$^{-3}$)</th>
<th>MFB*</th>
<th>MFE*</th>
<th>R*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villemomble</td>
<td>55.0</td>
<td>82.6</td>
<td>0.47</td>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>Champigny</td>
<td>56.3</td>
<td>83.6</td>
<td>0.47</td>
<td>0.50</td>
<td>0.65</td>
</tr>
<tr>
<td>Les Ulis</td>
<td>62.0</td>
<td>91.0</td>
<td>0.42</td>
<td>0.44</td>
<td>0.64</td>
</tr>
<tr>
<td>Logne</td>
<td>58.3</td>
<td>87.2</td>
<td>0.48</td>
<td>0.50</td>
<td>0.66</td>
</tr>
<tr>
<td>Cergy</td>
<td>60.9</td>
<td>93.9</td>
<td>0.48</td>
<td>0.50</td>
<td>0.63</td>
</tr>
<tr>
<td>Neuilly-sur-Seine</td>
<td>49.6</td>
<td>75.2</td>
<td>0.44</td>
<td>0.51</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*: Mean fractional bias (MFB), mean fractional error (MFE) and correlation coefficient (R)

Table B3. Statistical indicators of the comparison of simulated hourly concentrations of NO_2, NO_x, and O_3 in the SinG simulation to the concentrations measured at the urban background air monitoring stations of Villemomble and Champigny. The “O_3 (SinG-s)” correspond to the ozone concentrations from the simulation SinG-s using the adjusted input data including “corrected” O_3 boundary conditions. MFB and MFE in the O_3 concentration of the SinG simulation are strongly reduced using the corrected boundary conditions. However, the correlation coefficients do not change between the SinG and SinG-s simulations because the O_3 concentrations in the two simulations show very similar temporal evolutions.

<table>
<thead>
<tr>
<th>Villemomble</th>
<th></th>
<th>Champigny</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO_x</td>
<td>34.0</td>
<td>36.1</td>
</tr>
<tr>
<td>NO_2</td>
<td>26.2</td>
<td>27.7</td>
</tr>
<tr>
<td>O_3</td>
<td>55.5</td>
<td>56.3</td>
</tr>
<tr>
<td>O_3 (SinG-s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation (µg m$^{-3}$)</th>
<th>Simulation (µg m$^{-3}$)</th>
<th>MFB*</th>
<th>MFE*</th>
<th>R*</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.0</td>
<td>38.9</td>
<td>0.16</td>
<td>0.43</td>
<td>0.65</td>
</tr>
<tr>
<td>26.2</td>
<td>30.9</td>
<td>0.14</td>
<td>0.39</td>
<td>0.69</td>
</tr>
<tr>
<td>55.5</td>
<td>79.4</td>
<td>0.40</td>
<td>0.48</td>
<td>0.67</td>
</tr>
<tr>
<td>O_3 (SinG-s)</td>
<td>51.3</td>
<td>-0.04</td>
<td>0.4</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>35.3</td>
<td>-0.01</td>
<td>0.42</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>28.6</td>
<td>0.01</td>
<td>0.39</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>79.6</td>
<td>0.41</td>
<td>0.39</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>56.3</td>
<td>-0.03</td>
<td>0.39</td>
<td>0.66</td>
</tr>
</tbody>
</table>

*: Mean fractional bias (MFB), mean fractional error (MFE) and correlation coefficient (R)

References

