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1. Modules Reference

This chapter provides a short overview of all modules in the package semi_analytical2DV

and the required input and expected output. The modules have been ordered into
sections for the purpose of providing structure to this chapter.

Explanation of terms and colours
Behind the input variables we will mention several data types. While some data types may
be obvious, some others are explained in the table below:

Space-separated num-
bers

real numbers separated by one or more spaces. Do not use
comma’s or other markers to separate the numbers.

Grid-conform array n-
dimensional

a numpy array with n (i.e. some number) or fewer (!) dimensions.
More dimensions than n is not allowed. All axes should be grid
conform. That means that the length of a dimension should either
be 1 or equal to the size of the corresponding grid axis. If n is larger
than the grid size, the length of this axis is free. Note that a single
number counts as a grid-conform array.

General n-dimensional either a grid-conform array or a numerical or analytical function.
In both cases they may n (i.e. some number) or fewer dimensions.

iFlow grid a grid variable with underlying subvariables as described in the
manual (Dijkstra, 2017b)

The cells with input variables have been colour-coded to indicate whether the variable is
likely to be given in the input file, computed by another module or given in the configura-
tion file. By the very nature of iFlow this is only indicative and depends on the modules used.
As an example, almost any variable given in the input file may be used as a variable in a
sensitivity analysis. It then becomes an input parameter of the sensitivity analysis module in
the input file. The sensitivity analysis module delivers it to the module that uses this variable.
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Likely a parameter in the input file
Either in the input file or from another module
Likely a parameter computed by another module
Likely a constant in the configuration file src.config

1.1 Hydrodynamics

1.1.1 HydroLead

Leading-order hydrodynamics using a semi-analytical perturbation model. See Part I of
this manual.

Type Normal
Submodules tide externally forced tidal flow. Forced by input parameters A0 and

phase0.
Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

Av General 3-dimensional. Vertical eddy viscosity in m2/s.

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient s f (if BottomBC=='PartialSlip') or z0 (if
BottomBC=='NoSlip'). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

G Number. Acceleration of gravity in m2/s

TOLERANCEBVP Number. If the bvp_solver is used to solve the ODE for the water
level, this number sets the tolerance or accuracy of the result.

Input sub-
modules

A0 Only tide

space-separated numbers. Water level amplitude at the seaward
boundary in metres. The first value corresponds to subtidal (should
equal 0) and the second value corresponds to the frequency with
angular frequency ω (standard M2 tide). Unlike the numerical2DV

package, it is not possible to include water level amplitudes higher
than than the M2 component as a forcing of the leading order
hydrodynamics.

phase0 Only tide

space-separated numbers. Water level phase at the seaward
boundary in degrees. Similar to A0. First element should equal 0.

Output zeta0 Numerical function 3-dimensional. Second dimension is length 1.
Leading-order water level elevation in metres. Saved as numerical
function with its x- and xx-derivative.

u0 Numerical function 3-dimensional. Horizontal flow velocity, saved
as numerical function with its x-, z-, zz-, zzx-derivative.
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w0 Array 3-dimensional. Vertical flow velocity, saved as numerical
function with its z-derivative.

1.1.2 HydroFirst

First-order hydrodynamics using a numerical perturbation model. See Part I of this manual.

Type Normal
Submodules tide externally forced tidal flow. Forced by input parameters A1 and

phase1.

river externally forced river flow. Forced by input parameter Q1.

adv internally generated flow by momentum advection.

nostress internally generated flow through velocity-depth-asymmetry; in-
teractions between the velocity gradient (i.e. the shape of the
velocity profile) and the water level.

stokes internally generated tidal return flow that compensates for the net
mass transport in the leading order.

baroc flow induced by a horizontal density gradient.
Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

Av General 3-dimensional. Vertical eddy viscosity in m2/s.

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient s f (if BottomBC=='PartialSlip') or z0 (if
BottomBC=='NoSlip'). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

G Number. Acceleration of gravity in m2/s

TOLERANCEBVP Number. If the bvp_solver is used to solve the ODE for the water
level, this number sets the tolerance or accuracy of the result.

RHO0 Number. Reference density kg/m3

BETA Number. Conversion parameter for salinity in ρ = ρ0(1+β s)
Input sub-
modules

A1 Only tide

space-separated numbers. Water level amplitude at the seaward
boundary in metres, see module HydroLead. Here, only a M4
amplitude can be prescribed, i.e. the first two numbers equal 0.

phase1 Only tide

space-separated numbers. Water level phase at the seaward
boundary in degrees. Similar to A1. First two elements should equal
0.
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Q1 Only river

number. First-order river discharge at the landward boundary in
m3/s.

u0 Only stokes, nostress, adv

General 3-dimensional Leading-order horizontal flow velocity
(m/s).

zeta0 Only stokes, nostress

General 3-dimensional Leading-order water level elevation (m).
Second dimension should be length 1.

w0 Only adv

General 3-dimensional Leading-order vertical flow velocity (m/s).

s0 Only baroc

General 3-dimensional Leading-order salinity (psu).
Output zeta1 Numerical function 3-dimensional. Second dimension is length 1.

Leading-order water level elevation in metres. Saved as numerical
function with its x- and xx-derivative.

u1 Numerical function 3-dimensional. Horizontal flow velocity.
w1 Array 3-dimensional. Vertical flow velocity.

1.2 Sediment

1.2.1 SedDynamic

Type Normal
Submodules erosion internally generated sediment concentration and transport due

to bottom erosion.

noflux internally generated sediment concentration and transport due
to the no flux boundary condition at the surface.

sedadv internally generated sediment concentration and transport due to
sediment advection also known as spatial settling lag, i.e. ucx +wcz.

Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sa level)
and the bed.

Av General 3-dimensional. Vertical eddy viscosity in m2/s.

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient s f (if BottomBC=='PartialSlip') or z0 (if
BottomBC=='NoSlip'). May vary x and time, but not in z. There-
fore the second dimension needs to have length 1.

astar Number. Average amount of sediment at the bottom for resuspen-
sion

ws Number. Settling velocity in m/s

Kh Number. Horizontal eddy diffusivity coefficient m2/s

grid iFlow grid.
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zeta0 Numerical function 3-dimensional. Leading-order water level ele-
vation (m). Second dimension should be length 1.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

RHOS Number. Density of the sea kg/m3

RHO0 Number. Reference density kg/m3

G Number. Acceleration of gravity in m2/s

DS Number. Sediment grain size in m
Input sub-
modules

u0 all

Numerical function 3-dimensional Leading-order horizontal flow
velocity (m/s).

zeta0 Only noflux

Numerical function 3-dimensional Leading-order water level ele-
vation (m). Second dimension should be length 1.

w0 Only sedadv

Numerical function 3-dimensional Leading-order vertical flow ve-
locity (m/s).

u1 Only erosion

Numerical function 3-dimensional First-order horizontal flow veloc-
ity (m/s).

Output hatc0 General 3-dimensional. Leading-order sediment concentration
amplitude.

hatc1 General 3-dimensional. First-order sediment concentration ampli-
tude.

hatc2 General 3-dimensional. Second-order sediment concentration
amplitude. This amplitude is only due to river-river interaction.

c0 General 3-dimensional. Leading-order sediment concentration.

c1 General 3-dimensional. First-order sediment concentration.

c2 General 3-dimensional. Second-order sediment concentration.

T General 1-dimensional. Transport function for the availability.

F General 1-dimensional. Diffusion function for the availability.

a General 1-dimensional. Availability of sediment.





2. Introduction: domain and approach

Insight into the hydrodynamical mechanisms that govern the flow and sediment transport
in estuaries is essential to learn more about processes that govern the current state or the
future fate of the estuary under investigation. This manual presents a detailed derivation
and description of a two-dimensional semi-analytical package for iFlow that aims at this.
This manual contains two parts discussing:

1. Hydrodynamics
2. Sediment dynamics

Every part of this manual will contain one or more chapters discussing the model equations,
their derivation or solution method. The final chapter in each part contains a detailed
description on the use of the provided iFlow modules.

The model is of the exploratory type (Murray, 2003) and is based on the perturbation
approach, earlier adopted by e.g. Ianniello (1977, 1979); Chernetsky et al. (2010) for hy-
drodynamics, Chernetsky et al. (2010) for salinity and Chernetsky et al. (2010) for sediment
dynamics. The perturbation approach involves a scaling of the equations to distinguish
between the terms that balance at leading order and much smaller terms that balance at
higher orders. Under suitable assumptions, the leading-order balance becomes linear and
therefore much easier to solve than the original non-linear set of equations. The approach
does however not neglect the non-linear terms or other higher-order terms. Instead, linear
estimates of these terms appear as forcing mechanisms to linear higher-order balances.
Theoretically, the full solution to the non-linear system is obtained when an infinite number
of higher-order balances is solved for. Practically, we typically solve for the leading- and
first-order balances, which provide a reasonably accurate estimate of the full solution. Due
to the linearity of the equations at each order, the effect of different forcing mechanisms
can be identified.

The model describes two-dimensional, width-averaged (2DV) physical quantities, i.e. sur-
face elevation ζ (x, t), horizontal and vertical flow velocity, u(x,z, t) and w(x,z, t), respectively,
and sediment concentration c(x,z, t), in a straight channel of length L with varying longitu-
dinal bed profile H(x) and channel width B(x) (Fig. 2.1). The bottom profile H(x) (relative to
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the mean sea level defined at z = 0) and channel width B(x) are allowed to vary gradually
over the x-direction, i.e. with length scales corresponding to the length of the tidal wave.
The sidewalls of the channel are assumed to be vertical and tidal flats are not present.
The seaward boundary of the estuary is located at x = 0 and the landward boundary is
located at x = L. At the latter boundary the river flows into the domain. Details on the
functions that iFlow supports for the depth and width are provided in the manual on the
auxiliary module package.

The surface level relative to z = 0 is expressed as R+ζ and is computed by the model. By
default the reference level R = 0 and ζ is equal to the surface level. The use of a non-zero
reference level is however required if the river bed is above MSL over part of the domain.
The depth H is then negative, which poses a problem in further calculations. In this case
iFlow computes the reference level R as a quick estimate of the mean surface level and
ensures that H +R is always positive. More details on the computation of R are provided in
the part on hydrodynamics of the Numerical2DV package (Dijkstra, 2017a). In this manual,
the default reference level R = 0 is used in the analysis.

B(x) 

x 

0 L 

(a) Top view

H(x) 

x 

0 
0 

z ζ(x) 
R(x) 

L 

(b) Side view

Figure 2.1: Model domain. The model is two-dimensional in along-channel (x) and vertical
(z) direction and is width-averaged. The depth and width are allowed to vary smoothly
with x.
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3. Equations and ordering

3.1 Equations and assumptions

3.1.1 Model equations

It is assumed that the water motion in the estuary is dominated by tidal forcing, with effects
of river discharge being relatively small. Moreover, the effect of wind stress and wind waves
on the water motion is neglected. Under the above mentioned assumptions, momentum
and mass balance is expressed by the width-averaged shallow water equations:

ut +uux +wuz =−gζx−g

ζ∫
z

ρx

ρ0
dz+(Avuz)z, (3.1)

ux +wz +
Bx

B
u = 0. (3.2)

In these equations, ζ (x, t) is width-averaged surface elevation, and u(x,z, t) and w(x,z, t) is
width-averaged horizontal and vertical flow velocity, respectively. Furthermore, t is time,
g is gravitational acceleration, ρ is density, ρ0 is a constant reference density and Av is
vertical eddy viscosity coefficient. The subscripts (.)x, (.)z and (.)t denote the derivative
of a variable in the respective dimension. In Eq. (3.1), the left-hand side contains inertia
(first term) and advection (second and third term). The exerting forces are found on
the right-hand side, representing barotropic pressure gradient force, baroclinic pressure
gradient force and internal frictional force, respectively.

Eqs. (3.1) and (3.2) are subject to horizontal and vertical boundary conditions. Furthermore,
a decision has to be made with respect to the salinity distribution and the turbulence
closure. These topics are treated below.
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3.1.2 Horizontal boundary conditions

The water motion is forced by a prescribed tidal elevation on the seaside of the estuary at
x = 0 that consists of a semi-diurnal (M2) and a M4 constituent

ζ (0, t) = AM2 cos(σt)+AM4 cos(2σt−ϕ), (3.3)

where AM2 and AM4 are the amplitudes of the M2 and M4 tidal constituents, respectively,
ϕ = ϕM4 −2ϕM2 the phase difference between the M2 and M4 tidal constituents and σ the
tidal frequency.

At the landward boundary x = L, the channel is constrained by a weir with a constant river
discharge Q. Here, the tidal discharge is required to vanish, so

B(L)

ζ (L,t)∫
−H(L)

u(L,z, t)dz =−Q. (3.4)

3.1.3 Vertical boundary conditions

At the free surface z = ζ , the boundary conditions are the no stress condition and the
kinematic boundary condition

Avuz(x,ζ , t) = 0, (no stress) (3.5)
w(x,ζ , t) = ζt(x, t)+u(x,ζ , t)ζx(x, t). (kinematic) (3.6)

At the bottom z =−H, we assume the bed to be impermeable and prescribe a partial slip
condition (Schramkowski et al., 2002b)

w(x,−H, t) =−u(x,−H, t)Hx, (impermeable bed) (3.7)
Avuz(x,−H, t) = s f u(x,−H, t). (partial slip) (3.8)

Note that the partial slip condition is evaluated at the top of the constant stress layer
instead of at the true bed. Here, the parameter s f is the so-called stress parameter that
can still depend on the longitudinal coordinate. Following Friedrichs and Hamrick (1996)
and Schramkowski et al. (2002a), this dependency is taken to be linear in the local water
depth

s f = s f0

(
H(x)
H0

)n

, (3.9)

where s f0 is constant and n a factor that generally varies between 1 and 3/2. Note that
the bottom boundary condition is a linear relation between bed shear stress and velocity,
which is a result of a Lorentz linearization procedure (Zimmerman, 1982).
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3.1.4 Salinity distribution

The channel density ρ(x,z, t) of the estuarine water varies in general due to the salinity s,
suspended sediment concentration c and temperature T . In this semi-analytical package
of iFlow v2.2, we neglect density gradients caused by suspended sediment and temper-
ature and, thus, density only varies due to salinity. The equation of state for the channel
density is taken to be linear (Chernetsky et al., 2010), and is given by

ρ = ρ0(1+βss), (3.10)

where s is salinity in psu and βs a constant that converts salt to density. It is assumed that the
salinity is vertically well-mixed, which means that the vertical variations of the salinity field
are small compared to its depth- and time-averaged value. Hence, we can write s' 〈s(x)〉,
where angular brackets 〈.〉 denote a tidal average. In this report, the hydrodynamic model
is diagnostic in salinity (hence density), where the expression for longitudinal salinity profile
is given by (Warner et al., 2005; Talke et al., 2009)

s(x) =
ŝ
2

[
1− tanh

(
x− xc

xL

)]
, (3.11)

where ŝ is the salinity at sea in psu, xc is the location in the estuary in meters where the
salinity gradient is largest and xL is the length scale in meters over which the salinity decays
(a measure for the size of the salt wedge).

Under the above mentioned assumptions, the baroclinic pressure gradient term in Eq. (3.1)
can be rewritten as

g

ζ∫
z

ρx

ρ0
dz'−gβs〈sx〉(z−ζ ). (3.12)

3.1.5 Turbulence closure

Following Friedrichs and Hamrick (1996), the vertical eddy viscosity coefficient Av is param-
eterized as

Av(x) = Av0

(
H(x)
H0

)m

, (3.13)

where Av0 is constant, m is a factor that generally varies between 0 and 3/2, and H0 is the
water depth at the entrance of the estuary. Hence, it is assumed that Av is independent of
height z and can be taken out of the parentheses in Eq. (3.1). Furthermore, asymmetry in
mixing that is a result of time-dependent stratification (Stacey et al., 2001, 2010; Cheng
et al., 2010) is neglected.

3.2 Scaling
The two equations for continuity (including the rewritten baroclinic pressure gradient term,
Eq. (3.12)) and momentum conservation, Eqs. (3.1) and (3.2), are supplemented by the



18 Chapter 3. Equations and ordering

depth-averaged continuity, using Eqs. (3.2), (3.6) and (3.7). The latter is used to derive the
ordinary differential equation for the water level. The three equations are repeated below

ut +uux +wuz =−gζx +gβs〈sx〉(z−ζ )+(Avuz)z, (3.14)

ux +wz +
Bx

B
u = 0, (3.15)

ζt +

(
d
dx

+
Bx

B

) ζ∫
−H

udz = 0. (3.16)

The equations are transformed to a dimensionless system by using a scaling argument in
order to establish the order of magnitude of the several terms. The equations are scaled
by using six typical scales, which are presented in Table 3.1.

Scale Dimensionless quantity
σ M2 tidal frequency t = σ−1t̃
AM2 M2 tidal amplitude at the seaward side ζ = AM2 ζ̃

L Estuary length x = Lx̃
H0 Average depth at seaward side z = H0z̃ and H = H0H̃
B0 Average width at seaward side B = B0B̃
Sx Typical salinity gradient sx = Sxs̃x̃

Derived scale Dimensionless quantity

U =
σAM2 L

H0
Typical horizontal velocity of the M2 tide u =Uũ

W = H0U
L = σAM2 Typical vertical velocity of the M2 tide w =Ww̃

Av =
σH2

0
λ 2 Typical eddy viscosity Av = AvÃv

Table 3.1: Scales and derived scales for deriving the dimensionless equations.

This table presents three more scales that are derived from the other six. The velocity
scale U follows from expressing the depth-averaged continuity equation in dimensionless
quantities. Writing

∫ ζ

−H udz = Hū, where the bar denotes the depth-integrated quantity, and
using the typical scales from Table 3.1 this results in

σAM2 ζ̃t̃ +
H0U

L

(
H̃ ˜̄u
)

x̃ +
H0U

L
B̃x̃

B̃
H̃ ˜̄u = 0.

Thus, it follows that an appropriate scale U for the velocity is

U =
σAM2L

H0
.

Similarly, the derived vertical velocity scale W follows from substituting the scaled variables
into Eq. (3.15)

U
L

ũx̃ +
W
H0

w̃z̃ +
U
L

B̃x̃

B̃
ũ = 0,
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and thus

W =
H0U

L
·max

(
1,

B̃x

B̃

)
.

The typical scale for the eddy viscosity follows from the stationary barotropic momentum
balance (Avuz)z = gζx. It follows that

Av =
σH2

0
λ 2 ,

where

λ =
L

Lw
=

σL√
gH0

.

Here, λ is the ratio of the estuary length L and the frictionless tidal wave length Lw up to a
factor 2π.

3.2.1 Scaling the momentum equation

The dimensionless momentum equation is then given by

σUũt̃ +
U2

L
ũũx̃ +

WU
H0

w̃ũz̃ =−
gAM2

L
ζ̃x̃ +gβsSx〈s̃x̃〉(H0z̃−AM2 ζ̃ )+

AvU
H2

0
(Ãvũz̃)z̃.

Rewriting this equation yields

ũt̃ +
AM2

H0
[ũũx̃ + w̃ũz̃] =−

1
λ 2 ζ̃x̃ +µ〈s̃x̃〉(z̃−

AM2

H0
ζ̃ )+

1
λ 2 (Ãvũz̃)z̃,

where

µ =
gH0

U
βsSx

σ
.

Here, µ is a factor determining the magnitude of the salinity gradient. The factor AM2/H0 in
front of the advection term is assumed to be much smaller than unity. This provides the
motivation for ordering the equation around a small parameter ε which is defined as

ε =
AM2

H0
.

The other factors that appear in the dimensionless momentum equation can be related
to the magnitude of ε. These factors are considered below. Firstly, the magnitude of 1/λ 2
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depends on the ratio of the length of the system and the frictionless tidal wave and is
usually considered to be close to unity. For many estuaries this is a good approximation,
e.g. for the Scheldt Estuary λ ≈ 1.8.

Secondly, it is assumed that the factor µ in front of the salinity gradient is of order ε. From
observations in well-mixed estuaries it usually follows that currents driven by the salinity
gradient are small compared to tidally driven currents.

The dimensional momentum equation then has terms of the following order of magnitude:

ut︸︷︷︸
O(1)

+ uux︸︷︷︸
O(ε)

+ wuz︸︷︷︸
O(ε)

=−gζx︸ ︷︷ ︸
O(1)

+gβs〈sx〉(z−ζ )︸ ︷︷ ︸
O(ε)

+(Avuz)z︸ ︷︷ ︸
O(1)

3.2.2 Scaling the depth-averaged continuity equation

The dimensionless form of the depth-averaged momentum equation (3.16) is

ζ̃t̃ +

(
∂

∂ x̃
+

B̃x̃

B̃

) εζ̃∫
−H̃

ũdz̃ = 0.

All terms are of the same order, except for the integration boundary εζ̃ . The integral is
therefore linearized around z̃ = 0 by a Taylor expansion according to

∫
εζ̃

−H̃
ũdz̃ =

∫ 0

−H̃
ũ(x̃,0, t̃)dz̃+ εζ̃ ũ(x̃,0, t̃)+HOT 1

The dimensional equation then has terms of the following order of magnitude:

ζt︸︷︷︸
O(1)

+

 ∂

∂x︸︷︷︸
O(1)

+
Bx

B︸︷︷︸
O(1)



∫ 0

−H
udz︸ ︷︷ ︸

O(1)

+ζ u(x,0, t)︸ ︷︷ ︸
O(ε)

= 0.

3.2.3 Scaling the boundary conditions

Horizontal boundary conditions

The dimensionless horizontal boundary condition at the entrance x̃ = 0 reads

ζ̃ (0, t̃) = cos t̃ +
AM4

AM2

cos(t̃−ϕ).

It is assumed that AM4/AM2 is of order ε and thus the dimensional form has terms of the
following order of magnitude

1The acronym HOT means ’higher-order terms’.
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ζ (0, t) = AM2 cos(σt)︸ ︷︷ ︸
O(1)

+AM4 cos(2σt−φ)︸ ︷︷ ︸
O(ε)

.

The landward dimensionless boundary condition at x̃ = 1 reads

εζ̃ (1,t̃)∫
−H̃(1)

ũ(1, z̃, t̃)dz̃ =− Q
B0H0UB̃(1)

.

It is assumed here that the term Q/(B0H0U) is of order ε. Furthermore, the upper bound
of the integral εζ̃ (1, t̃) is linearized around z̃ = 0 by using a Taylor expansion (see previous
section). The resulting dimensional form has the following order of magnitude∫ 0

−H
u(L,z, t)dz︸ ︷︷ ︸

O(1)

+ζ (L, t)u(L,0, t)︸ ︷︷ ︸
O(ε)

+HOT =− Q
B(L)︸ ︷︷ ︸
O(ε)

Vertical boundary conditions

The momentum equation (3.14) has boundary conditions which are applied on the bed
and at the surface. The dimensionless boundary conditions at the surface z̃ = εζ̃ read

w̃(x̃,εζ̃ , t̃) = ζ̃t̃(x̃, t̃)+ ε ũ(x̃,εζ̃ , t̃)ζ̃x̃(x̃, t̃),

AvÃvũz̃(x̃,εζ̃ , t̃) = 0.

Linearizing w̃(x̃,εζ̃ , t̃) and ũ(x̃,εζ̃ , t̃) around z̃ = 0 using a Taylor expansion results in

w̃(x̃,0, t̃)+ εζ̃ w̃z̃(x̃,0, t̃) = ζ̃t̃(x̃, t̃)+ ε

[
ũ(x̃,0, t̃)+ εζ̃ ũz̃(x̃,0, t̃)

]
ζ̃x̃(x̃, t̃),

AvÃv

[
ũz̃(x̃,0, t̃)+ εζ̃ ũz̃z̃(x̃,0, t̃)

]
= 0.

The resulting dimensional form of the surface boundary conditions have the following order
of magnitude

w(x,0, t)︸ ︷︷ ︸
O(1)

= ζt(x, t)︸ ︷︷ ︸
O(1)

+u(x,0, t)ζx(x, t)−ζ (x, t)wz(x,0, t)︸ ︷︷ ︸
O(ε)

+HOT,

Avuz(x,0, t)︸ ︷︷ ︸
O(1)

=−Avζ (x, t)uzz(x,0, t)︸ ︷︷ ︸
O(ε)

+HOT.

The dimensionless boundary conditions on the bed z̃ =−H̃ read
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Ãvũz̃(x̃,−H̃, t̃) =
s f H0

Av
ũ(x̃,−H̃, t̃),

w̃(x̃,−H̃, t̃) =−ũ(x̃,−H̃, t̃)H̃x̃(x̃).

Here s f H0/Av is the dimensionless slip parameter. If this parameter is much smaller than
unity the bottom is stress free. If it is much larger than unity, the velocity at the bed vanishes
and the boundary condition reduces to the no-slip condition. The terms in these boundary
conditions must all be of equal order in order to obtain balanced equations, i.e. their
dimensional forms have the following order of magnitude

w(x,−H, t)︸ ︷︷ ︸
O(1)

=−u(x,−H, t)Hx(x)︸ ︷︷ ︸
O(1)

, (3.17)

Avuz(x,−H, t)︸ ︷︷ ︸
O(1)

= s f u(x,−H, t)︸ ︷︷ ︸
O(1)

. (3.18)

3.3 Ordering & overview of the equations
The solutions u, w and ζ are written as a power series of the small parameter ε

u = u0 +u1 +u2 + . . . ,

w = w0 +w1 +w2 + . . . ,

ζ = ζ
0 +ζ

1 +ζ
2 + . . . ,

where u1, w1 and ζ 1 are assumed to be of order ε, u2, w2 and ζ 2 are of order ε2, etcetera.

Substituting these series in the momentum, continuity and depth-averaged continuity
equations yields the systems of equations in leading order and first order. The solution
to the momentum equation yields u, the continuity yields w and the depth-averaged
continuity equation yields ζ .

3.3.1 Leading order system

At leading order, the dimensional system of equations describing the water motion reads

Avu0
zz−u0

t = gζ
0
x , (3.19)

u0
x +w0

z +
Bx

B
u0 = 0, (3.20)

ζ
0
t +

(
d
dx

+
Bx

B

) 0∫
−H

u0dz = 0. (3.21)

Note that in the momentum equation (3.19) at leading order, the advection terms uux and
uwz do not reappear. Additionally, the assumption that the horizontal density gradient is
small has the consequence that the baroclinic pressure is of order ε and is not present in
Eq. (3.19).

The corresponding boundary conditions read
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ζ
0 = AM2 cos(σt), at x = 0, (3.22)
0∫

−H

u0dz = 0, at x = L, (3.23)

w0 = ζ
0
t , at z = 0, (3.24)

Avu0
z = 0, at z = 0, (3.25)

Avu0
z = s f u0, at z =−H, (3.26)

w0 =−u0Hx, at z =−H. (3.27)

3.3.2 First order system

At first order, O(ε1), the dimensional momentum and continuity equations are given by

Avu1
zz−u1

t = gζ
1
x +ξ −gβs〈sx〉z, (3.28)

u1
x +w1

x +
Bx

B
u1 = 0, (3.29)

ζ
1
t +

(
d
dx

+
Bx

B

) 0∫
−H

u1dz+ γ

= 0, (3.30)

where we have introduced the following simplifying notations

ξ (x,z, t) = u0(x,z, t)u0
x(x,z, t)+w0(x,z, t)u0

z (x,z, t), (3.31)

γ(x, t) = ζ
0(x, t)u0(x, t)

∣∣
z=0 , (3.32)

χ(x, t) = ζ
0(x, t)u0

zz(x, t)
∣∣
z=0 . (3.33)

Here, ξ represents advection of momentum and γ is related to the tidal return flow or
Stokes return flow, which is the result of a positive correlation between the zeroth order
vertical and horizontal tide. Finally, χ originates from the first order contribution of the stress
free boundary condition.

The boundary conditions for the system of equations at first order read

ζ
1 = AM4 cos(2σt−ϕ), at x = 0, (3.34)
0∫

−H

u1dz =−Q
B
− γ, at x = L, (3.35)

w1 = ζ
1
t +u0

ζ
0
x −w0

z ζ
0, at z = 0, (3.36)

Avu1
z =−Avχ, at z = 0, (3.37)

Avu1
z = s f u1, at z =−H, (3.38)

w1 =−u1Hx, at z =−H. (3.39)
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As is apparent from Eq. (3.28)-(3.39), the first order velocity and water level are forced
externally by an M4 tidal component and a constant river discharge and internally by the
salinity gradient, the leading order advection, and tidal return flow (Stokes return flow).



4. Analytical solutions to the ordered equations

This chapter presents the derivation of the analytical solutions of the ordered equations
derived in Chapter 3. It is assumed that the solution to the equations consists of a sum
of tidal components and a subtidal component. Furthermore, we assume that all tidal
components are overtides of the M2 tide. This assumption allows us to eliminate the time
derivatives from the equations and obtain sets of ordinary differential equations (ODEs).

4.1 Leading order solution
Since the leading order equations are forced by a single M2 tidal component, solutions
can be written in the following exponential form

(u0,w0,ζ 0) = 1
2

[
û0(x,z), ŵ0(x,z), ζ̂ 0(x,z)

]
eiσt + 1

2

[
û0∗(x,z), ŵ0∗(x,z), ζ̂ 0∗(x,z)

]
e−iσt . (4.1)

Here, û0, ŵ0, ζ̂ 0 are the complex amplitudes of the horizontal velocity, the vertical velocity
and the surface elevation, respectively. Furthermore, i is the imaginary unit and the
superscript (.)∗ denotes the complex conjugate of that variable.

Substituting the trial solution Eq. (4.1) into the momentum and continuity equations,
Eqs. (3.19)-(3.21), leads to

Avû0
zz− iσ û0 = gζ̂

0
x , (4.2)

û0
x + ŵ0

z +
Bx

B
û0 = 0, (4.3)

iσζ̂
0 +

(
d
dx

+
Bx

B

) 0∫
−H

û0dz = 0. (4.4)
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Notice that here we only substituted the normal form of the complex amplitudes. Their
conjugates follow automatically.

4.1.1 Horizontal flow velocity

First, the momentum equation (4.2) is solved to obtain an expression for the horizontal
velocity amplitude û0. This equation is subject to the no stress boundary condition (3.25) at
the free surface z = 0 and the partial slip boundary condition (3.26) at the bottom z =−H.
Using the solution (4.1), these boundary conditions transform into

Avû0
z (x,0) = 0, (4.5)

Avû0
z (x,−H)− s f û0(x,−H) = 0, (4.6)

respectively. The general solution of Eq. (4.2) can be expressed in the form

û0 = û0
c + û0

p,

where the particular solution û0
p is any specific function that satisfies the inhomogeneous

equation (4.2) and the complementary solution û0
c is a general solution of the correspond-

ing homogeneous equation. As it is assumed here that the vertical eddy viscosity is
independent of z, the homogeneous equation can be written as

û0
zz−

iσ
Av

û0 = 0,

and the characteristic equation is

r2
M2
− iσ

Av
= 0.

Consequently, the complementary solution û0
c reads

û0
c =C1erM2 z +C2e−rM2 z, (4.7)

with

rM2 =

√
iσ
Av

. (4.8)

From Eq. (4.2) it follows that û0
p is of the form C3ζ̂ 0

x and, thus, û0
p,z = û0

p,zz = 0. Substitution in
Eq. (4.2) leads to
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−iσC3ζ̂
0
x = gζ̂

0
x ,

and thus C3 =−g/(iσ).

The general solution of û0 is thus

û0 =C1erM2 z +C2e−rM2 z− g
iσ

ζ̂
0
x . (4.9)

To obtain the coefficients C1 and C2, the boundary conditions (4.5) and (4.6) are used.
Substituting Eq. (4.9) into Eq. (4.5) yields

Av (rM2C1− rM2C2) = 0,

implying that C1 =C2 =C. Subsequently, substituting Eq. (4.9) into Eq. (4.6) and solving for C
leads to

C =
1
2

gζ̂ 0
x

iσ
s f

AvrM2 sinh(rM2H)+ s f cosh(rM2H)
ζ̂

0
x . (4.10)

Substituting Eq. (4.10) into the general equation for û0, Eq. (4.9), and rewriting in terms of
hyperbolic functions results in the expression for the horizontal velocity amplitude û0, i.e.

û0 =
gζ̂ 0

x

iσ
(αM2 cosh(rM2z)−1) , (4.11)

with

αM2(x) =
s f(

AvrM2 sinh(rM2H)+ s f cosh(rM2H)
) . (4.12)

4.1.2 Surface elevation

Next, the solution (4.1) along with the solution for û0 are substituted into the depth-
averaged continuity equation (4.4). With the third term on the left-hand side of Eq. (4.4)

Bx

B

0∫
−H

û0 dz =
Bx

B

[
g
iσ

ζ̂
0
x

(
αM2

rM2

sinh(rM2z)− z
)]0

−H
,

=
Bx

B
g
iσ

ζ̂
0
x

(
αM2

rM2

sinh(rM2H)−H
)
,
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and the second term on the left-hand side of Eq. (4.4)

 0∫
−H

û0 dz


x

=

(
g
iσ

ζ̂
0
x

(
αM2

rM2

sinh(rM2H)−H
))

x
,

=
g
iσ

[
ζ̂

0
xx

(
αM2

rM2

sinh(rM2H)−H
)
+

ζ̂
0
x

(
αM2,xrM2 −αM2rM2,x

r2
M2

sinh(rM2H)+

αM2

rM2

cosh(rM2 H)(rM2Hx + rM2,xH)−Hx

)]
.

Eq. (4.4) then gives a second-order linear ordinary differential equation (ODE) as a function
of ˆ̃

ζ 0

T1ζ̂
0
xx +T2ζ̂

0
x −T3ζ̂

0 = 0, (4.13)

with

T1 =
αM2

rM2

sinh(rM2H)−H,

T2 =
Bx

B
T1 +Hx(αM2 cosh(rM2H)−1)+

αM2,x

rM2

sinh(rM2H)+

αM2rM2,x

r2
M2

(rM2H cosh(rM2H)− sinh(rM2H)),

T3 =
σ2

g
.

Eq. (4.13) is subject to the boundary conditions at the seaward, x = 0, and landward side
of the estuary, x = L,

ζ̂
0(0) = AM2 , (4.14)

0∫
−H(L)

û0(L)dz = 0. (4.15)

Eq. (4.13) generally needs to be solved numerically because of the non-constant coeffi-
cients in the ODE.

Intermezzo 4.1.1 — Special case. A special case in which an analytical solution for ζ̂ 0 can
be found is when αM2 , rM2 , and H are uniform in the x-direction and thus their derivatives
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w.r.t. x are zero. After rearranging terms, Eq. (4.13) then reduces to

ζ̂
0
xx +

Bx

B
ζ̂

0
x −

σ2

g
(

αM2
rM2

sinh(rM2H)−H
) ζ̂

0 = 0. (4.16)

Assuming ζ̂ 0 = ept to be a solution to Eq. (4.16), it follows that p must be a root of the
characteristic equation

p2 +
Bx

B
p− σ2

g
(

αM2
rM2

sinh(rM2H)−H
) = 0, (4.17)

which has solutions

p1,2 =

−Bx
B ±

√(Bx
B

)2
+ 4σ2

g
(

αM2
rM2

sinh(rM2 H)−H
)

2
. (4.18)

The general solution of ζ̂ 0 thus reads

ζ̂
0 = c1ep1x + c2ep2x. (4.19)

Using the boundary condition at the seaward side of the estuary, Eq. (4.14), it follows that
c1 + c2 = AM2 . From the landward boundary condition, Eq. (4.15), it follows that ζ̂ 0

x (L) = 0.
Setting the derivative of Eq. (4.19) equal to zero, leads to the following expressions for c1
and c2:

c1 =−
AM2 p2ep2L

p1ep1L− p2ep2L ,

c2 =
AM2 p1ep1L

p1ep1L− p2ep2L .

For readability Eq. (4.19), with the expressions for c1 and c2 defined above, can be
rewritten in hyperbolic form. Introducing

p1,2 =−β ±βΓ,

with
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β =
1
2

Bx

B
,

Γ =

√√√√1+
σ2

gβ 2
(

αM2
rM2

sinh(rM2H)−H
) ,

the hyperbolic expression for the surface elevation ζ̂ 0 of a converging channel with
constant coefficients is

ˆ̃
ζ

0 =

[
Γcosh(βΓ(x−L))+ sinh(βΓ(x−L))

Γcosh(βΓL)− sinh(βΓL)

]
AM2e−βx. (4.20)

4.1.3 Vertical flow velocity

Finally, the vertical velocity ŵ0 can be found by substituting the expression for û0 into the
continuity equation (4.3). This results in an expression for ŵ0

z ,

ŵ0
z̃ =

g
iσ

[(
ζ̂xx +

Bx

B
ζ̂x

)
(1−αM2 cosh(rM2z))−

ζ̂x (αM2,x cosh(rM2z)+αM2rM2,xzsinh(rM2z))
]
.

(4.21)

Integrating Eq. (4.21) and using the kinematic boundary condition at the surface (Eq. (3.24)),
ŵ0(x,0) = iσζ̂ 0, as integration constant, results in

ŵ0 =
g
iσ

[(
ζ̂xx +

Bx

B
ζ̂x

)(
z−

αM2

rM2

sinh(rM2z)
)
−

ζ̂x

rM2

(
αM2,x sinh(rM2z)+αM2rM2,x

(
zcosh(rM2z)−

sinh(rM2z)
rM2

))
− σ2

g
ζ̂

0

]
.

(4.22)

4.2 First order solutions
As is apparent from the first order system described by Eqs. (3.28)-(3.39), the first order
velocity and water level are forced externally by an M4 tidal component and a constant
river discharge and internally by the salinity gradient, the leading order advection, and
tidal return flow (stokes flow). Since we assumed leading order solutions with a M2 tidal
frequency, Eq. (4.1), the product of two leading order forcing terms, Eqs. (3.31)-(3.33), with
an M2 frequency result in a residual (M0) and a M4 frequency. Taking γ(x, t) = ζ 0(x, t)u0(x,0, t)
as an example, and using Eq. (4.1), this results in
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γ(x, t) = 1
4

[
ζ̂

0(x)eiσt + ζ̂
0∗(x)e−iσt

][
û0(x,0)eiσt + û0∗(x,0)e−iσt

]
,

= 1
4

[
ζ̂

0(x)û0∗(x,0)+ ζ̂
0∗(x)û0(x,0)

]
︸ ︷︷ ︸

M0

+ 1
4

[
ζ̂

0(x)û0(x,0)e2iσt + ζ̂
0∗(x)û0∗(x,0)e−2iσt

]
︸ ︷︷ ︸

M4

,

= 〈γ〉+[γ].

In the following sections we will derive the solutions for the residual (M0) and M4 contribu-
tions of the surface elevation and the horizontal velocity. Thereby, we will use 〈.〉 and [.] to
denote the residual (M0) or time-averaged and M4 contribution, respectively.

4.2.1 Contributions to the residual flow velocity and surface elevation

The equations for the residual flow are obtained by taking the tide-averaged component
of the first order equations. The momentum equation with its boundary conditions is then
given by

Avû10
zz = gζ̂

10
x + 〈ξ̂ 〉−gβs〈ŝx〉z, (4.23)

ζ̂
10(0) = 0, (4.24)
0∫

−H

û10(L,z)dz =− Q
B(L)

−〈γ̂(L)〉, (4.25)

û10
z (x,0) =−〈χ̂〉, (4.26)

Avû10
z (x,−H) = s f û10(x,−H), (4.27)

where the first number in the superscript refers to the order and the second number to
the frequency. Since the solution to û10 is linear, it can be constructed by adding the
contributions of the different forcing terms to the residual velocity, i.e.

û10 = ûbaroc + ûno-stress + ûstokes + ûriver + ûadv. (4.28)

The expressions for the contribution of each forcing term to the residual velocity can be
derived by taking into account only the terms in the momentum equation and appropriate
boundary conditions for each contribution.

Baroclinic pressure

For the baroclinic pressure contribution, the equations become

Avûbaroc
zz = gζ̂

baroc
x −gβs〈ŝx〉z, (4.29)

0∫
−H

ûbaroc(L,z)dz = 0, (4.30)

ûbaroc
z (x,0) = 0, (4.31)

Avûbaroc
z (x,−H) = s f ûbaroc(x,−H). (4.32)
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Integrating Eq. (4.29) twice leads to

ûbaroc
z =

g
Av

[
ζ̂

baroc
x z− 1

2
βs〈ŝx〉z2

]
+Cbaroc, (4.33)

ûbaroc =
g

2Av

[
ζ̂

baroc
x z2− 1

3
βs〈ŝx〉z3

]
+Cbarocz+Dbaroc, (4.34)

where Cbaroc(x) and Dbaroc(x) are integration constants to be determined using the boundary
conditions. From the boundary condition at z = 0, Eq. (4.31), it follows that Cbaroc = 0.
Substituting Eqs. (4.33) and (4.34) into the boundary condition at z =−H, Eq. (4.32), and
using Cbaroc = 0, results in the following expression for Dbaroc:

Dbaroc =−
(

H
s f

+
H2

2Av

)
gζ

baroc
x −

(
H2

2s f
+

H3

6Av

)
gβs〈ŝx〉. (4.35)

Substituting Cbaroc = 0 and Dbaroc, Eq. (4.35), into Eq. (4.34) results in

ûbaroc =

(
z2−H2

2Av
− H

s f

)
gζ

baroc
x −

(
z3 +H3

6Av
+

H2

2s f

)
gβs〈ŝx〉. (4.36)

The expression for ζ̂ baroc
x is obtained by substituting Eq. (4.36) into the boundary condition

at x = 1, Eq. (4.30). Integrating Eq. (4.36) and equaling to zero leads to

ζ
baroc
x =−

(
H

8Av
+

1
2s f

)
Hβs〈ŝx〉(

H
3Av

+
1
s f

) . (4.37)

This flow contribution is also referred to as gravitational circulation. Numerically integrating
Eq. (4.37) with respect to x leads to an expression for the water level set-up ζ̂ baroc due to
the baroclinic pressure gradient and the constraint of no net transport.

Stress free boundary condition

For the contribution of the stress free boundary condition, the equations become

Avûno-stress
zz = gζ̂

no-stress
x , (4.38)

0∫
−H

ûno-stress(L,z)dz = 0, (4.39)

ûno-stress
z (x,0) =−〈χ̂〉, (4.40)

Avûno-stress
z (x,−H) = s f ûno-stress(x,−H). (4.41)
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Integrating Eq. (4.38) twice leads to

ûno-stress
z =

g
Av

ζ̂
no-stress
x z+Cno-stress, (4.42)

ûno-stress =
g

2Av
ζ̂

no-stress
x z2 +Cno-stressz+Dno-stress, (4.43)

where Cno-stress(x) and Dno-stress(x) are integration constants to be determined using the
boundary conditions. From the boundary condition at z = 0, Eq. (4.40), it follows that

Cno-stress =−〈 ˆ̂χ〉. (4.44)

Substituting Eqs. (4.42) and (4.43) into the boundary condition at z =−H, Eq. (4.41), and
using the expression for Cno-stress, yields

Dno-stress =−
(

H2

2Av
+

H
s f

)
gζ̂

no-stress
x −

(
H +

Av

s f

)
〈χ̂〉. (4.45)

Substituting the expressions for Cno-stress and Dno-stress into Eq. (4.43) results in

ûno-stress =

(
z2−H2

2Av
− H

s f

)
gζ̂

no-stress
x −

(
z+H +

Av

s f

)
〈χ̂〉, (4.46)

The expression for ζ̂ no-stress
x is obtained by substituting Eq. (4.46) into the boundary condition

at x = 1, Eq. (4.39). Integrating Eq. (4.46) and equaling to zero leads to

ζ̂
no-stress
x =−

(
H
2
+

Av

s f

)
〈χ̂〉

gH
(

H
3Av

+
1
s f

) . (4.47)

Numerically integrating Eq. (4.47) with respect to x leads to an expression for the water
level set-up or set-down ζ̂ no-stress due to the stress free boundary condition.

Stokes return flow
For the contribution of the Stokes return flow, the equations become

Avûstokes
zz = gζ̂

stokes
x , (4.48)

0∫
−H

ûstokes(L,z)dz =−〈γ̂(L)〉, (4.49)

ûstokes
z (x,0) = 0, (4.50)

Avûstokes
z (x,−H) = s f ûstokes(x,−H). (4.51)
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Integrating Eq. (4.48) twice leads to

ûstokes
z =

g
Av

ζ̂
stokes
x z+Cstokes, (4.52)

ûstokes =
g

2Av
ζ̂

stokes
x z2 +Cstokesz+Dstokes, (4.53)

where Cstokes(x) and Dstokes(x) are integration constants to be determined using the bound-
ary conditions. From the boundary condition at z = 0, Eq. (4.50), it follows that Cstokes = 0.
Substituting Eqs. (4.52) and (4.53) into the boundary condition at z =−H, Eq. (4.51), and
using the expression for Cstokes, yields

Dstokes =−
(

H2

2Av
+

H
s f

)
gζ̂

stokes
x . (4.54)

Substituting the expressions for Cstokes and Dstokes into Eq. (4.53) results in

ûstokes =

(
z2−H2

2Av
− H

s f

)
gζ̂

stokes
x . (4.55)

The expression for ζ̂ stokes
x can be obtained by substituting Eq. (4.55) into the boundary

condition at x = 1, Eq. (4.49). This leads to

ζ̂
stokes
x =

〈γ̂〉

gH2
(

H
3Av

+
1
s f

) . (4.56)

Numerically integrating Eq. (4.56) with respect to x leads to an expression for the water
level set-up ζ̂ stokes due to the landward net transport of water induced by the tide.

River flow

For the contribution of the river flow, the equations become

Avûriver
zz = gζ̂

river
x , (4.57)

0∫
−H

ûriver(L,z)dz =− Q
B(L)

, (4.58)

ûriver
z (x,0) = 0, (4.59)

Avûriver
z (x,−H) = s f ûriver(x,−H). (4.60)

Integrating Eq. (4.57) twice leads to
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ûriver
z =

g
Av

ζ̂
river
x z+Criver, (4.61)

ûriver =
g

2Av
ζ̂

river
x z2 +Criverz+Driver, (4.62)

where Criver(x) and Driver(x) are integration constants to be determined using the boundary
conditions. From the boundary condition at z = 0, Eq. (4.59), it follows that Criver = 0.
Substituting Eqs. (4.61) and (4.62) into the boundary condition at z =−H, Eq. (4.60), and
using the expression for Criver, yields

Driver =−
(

H2

2Av
+

H
s f

)
gζ̂

river
x . (4.63)

Substituting the expressions for Criver and Driver into Eq. (4.62) results in

uriver =

(
z2−H2

2Av
− H

s f

)
gζ̂

river
x . (4.64)

The expression for ζ̂ river
x can be obtained by substituting Eq. (4.64) into the boundary

condition at x = 1, Eq. (4.58). This leads to

ζ̂
river
x =

Q

gBH2
(

H
3Av

+
1
s f

) . (4.65)

Numerically integrating Eq. (4.65) with respect to x leads to an expression for the water
level set-up ζ̂ river due to river flow.

Advection of momentum
For the advection of momentum contribution, the equations become

Avûadv
zz = gζ̂

adv
x + 〈ξ̂ 〉, (4.66)

0∫
−H

ûadv(L,z)dz = 0, (4.67)

ûadv
z (x,0) = 0, (4.68)

Avûadv
z (x,−H) = s f ûadv(x,−H). (4.69)

Since the advection term ξ̂ on the right-hand side of Eq. (4.66) is a function of z, we use
the method of variation of parameters to find a solution for ûadv. First, we must solve the
homogeneous equation ûadv

zz = 0, which leads to

ûadv
h =Cadv,hz+Dadv,h, (4.70)
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where Cadv,h(x) and Dadv,h(x) are integration constants. Second, we solve the particular
equation for the water level forcing, ûadv

zz = gζ̂ adv
x /Av, which leads to

ûadv
p,ζ̂

=
g

2Av
ζ̃

adv
x z2 +Cadv,pz+Dadv,p, (4.71)

where Cadv,p(x) and Dadv,p(x) are integration constants. Third, we solve the particular equa-
tion for the advective forcing, ûadv

zz = 〈ξ̂ 〉/Av. Since ξ̂ is a function of z, we seek a pair of
functions, f (x,z) and g(x,z), so that the particular solution reads

ûadv
p,ξ̂

= f z+g, (4.72)

which has the same form as the homogeneous solution, Eq. (4.70). The first derivative of
ûadv

p,ξ̂
with respect to z is

(ûadv
p,ξ̂

)z = fzz+ f +gz. (4.73)

Now, let us assume that whatever f and g are, they will satisfy the following

fzz+gz = 0. (4.74)

The first derivative (ûadv
p,ξ̂

)z is now equal to f and the second derivative (ûadv
p,ξ̂

)zz equals fz. This

implies

fz =
〈 ˆ̂
ξ 〉
Av

. (4.75)

Substituting Eq. (4.75) into Eq. (4.74) gives

gz =−
〈 ˆ̃
ξ 〉z
Av

. (4.76)

Integrating Eqs. (4.75) and (4.76) and substituting into Eq. (4.72) leads to

ûadv
p,ξ̂

=
1
Av

z
z∫

−H

〈ξ̂ 〉dz′−
z∫

−H

〈ξ̂ 〉z′dz′

 . (4.77)
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Adding Eqs. (4.70), (4.71) and (4.77), results in the full expression for ûadv, viz.

ûadv =
g

2Av
ζ̂

adv
x z2 +Cadvz+Dadv +

z
Av

z∫
−H

〈ξ̂ 〉dz′− 1
Av

z∫
−H

〈ξ̂ 〉z′dz′, (4.78)

where Cadv =Cadv,h +Cadv,p and Dadv = Dadv,h +Dadv,p. From the boundary condition at z = 0,
Eq. (4.68), it follows that

Cadv(x) =− 1
Av

0∫
−H

〈ξ̂ 〉dz. (4.79)

Substituting Eq. (4.78) and Eq. (4.79) into the boundary condition at z = −H, Eq. (4.69),
results in the following expression for Dadv

Dadv(x) =−
(

H2

2Av
+

H
s f

)
gζ̂

adv
x − 1

Av

(
H +

Av

s f

) 0∫
−H

〈ξ̂ 〉dz. (4.80)

Substituting the expressions for Cadv and Dadv into Eq. (4.78) results in

uadv =

(
z2−H2

2Av
− H

s f

)
gζ̂

adv
x − 1

Av

(
z+H +

Av

s f

) 0∫
−H

〈ξ̂ 〉dz

+
1
Av

z
z∫

−H

〈ξ̂ 〉dz′−
z∫

−H

〈ξ̂ 〉z′dz′

 .

(4.81)

The expression for ζ̂ adv
z is obtained by substituting Eq. (4.81) into the boundary condition at

x = 1, Eq. (4.67). Integrating Eq. (4.81) and equaling to zero leads to

ζ̂
adv
x =

1
H

0∫
−H

z
z∫

−H

〈ξ̂ 〉dz′−
z∫

−H

〈ξ̂ 〉z′dz′

dz−
(

H
2
+

Av

s f

) 0∫
−H

〈ξ̂ 〉dz

gH
[

H
3
+

Av

s f

] . (4.82)

4.2.2 Contributions to the M4 flow velocity and surface elevation

The equations for the M4 flow are obtained by taking the M4-component, denoted by
[.], of the first order equations (3.28)-(3.38). The momentum equation, depth-averaged
continuity equation and the appropriate boundary conditions are then given by
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Avû14
zz −2iσ û14 = gζ̂

14
x +2[ξ̂ ], (4.83)

2iσζ̂
14 +

(
∂

∂x
+

Bx

B

) 0∫
−H

û14dz+2[γ̂]

= 0, (4.84)

ζ̂
14(0) = AM4e−iϕ , (4.85)
0∫

−H

û14(L,z)dz =−2[γ̂(L)], (4.86)

û14
z (x,0) =−2[χ̂], (4.87)

Avû14
z (x,−H) = s f û14(x,−H). (4.88)

(4.89)

Notice, that the factor 2 appearing in the equations is due to the substitution of the
trial solution Eq. (4.1). Similar to the residual velocity, the solution to û14 is linear and can
therefore be constructed by adding the contributions of the different forcing terms, i.e.

û14 = ûtide + ûno-stress + ûstokes + ûadv (4.90)

The salinity field and the river outflow have no M4 component and that an additional
forcing due to the externally imposed M4-tide is present. To derive the expressions for the
different M4 velocity contributions only the appropriate terms due to the specific forcing
are taking into account. Since an additional inertia term (2iû14) is present in the momentum
equation (4.83), solving it requires the same approach as was done for the M2 flow velocity.
In the following, the different velocity contributions are derived.

External tide

The solution for the M4 flow velocity is derived in the same way as was done for the M2 flow
velocity in Section 4.1. The only difference is that the forcing frequency is different, i.e. e2it̃

instead of eit̃ . The equations for the M4 tide are given by

Avûtide
zz −2iσ ûtide = gζ̂

tide
x , (4.91)

ζ̂
tide(0) = AM4e−iϕ , (4.92)
0∫

−H

ûtide(L,z)dz = 0, (4.93)

ûtide
z (x,0) = 0, (4.94)

Avûtide
z (x,−H) = s f ûtide(x,−H). (4.95)

Following the same derivation steps as in Section 4.1, the solution for the M4 flow velocity
amplitude is

utide =
gζ̂ tide

x

2iσ
(αM4 cosh(rM4z)−1) , (4.96)
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with

αM4 =
s f(

AvrM4 sinh(rM4H)+ s f cosh(rM4H)
) , (4.97)

rM4 =

√
2iσ
Av

. (4.98)

To obtain the expression for ζ̂ tide
x , Eq. (4.96) is substituted in the depth-averaged continuity

equation (4.84). This leads to the following second-order, linear, homogeneous ordinary
differential equation (ODE) for the water level

F1ζ̂
tide
xx +F2ζ̂

tide
x −F3ζ̂

tide = 0, (4.99)

with

F1 =
αM4

rM4

sinh(rM4H)−H, (4.100)

F2 =
Bx

B
F1 +Hx(αM4 cosh(rM4H)−1)+

αM4,x

rM4

sinh(rM4H)+ (4.101)

αM4rM4,x

r2
M4

(rM4H cosh(rM4H)− sinh(rM4H)), (4.102)

F3 =
4σ2

g
, (4.103)

Notice that Eq. (4.99) is equal to Eq. (4.13) for the M2 water level. Furthermore, the
coefficients F1, F2 and F3 are similar to T1, T2 and T3, respectively, except that the higher
frequency of the M4 tide is incorporated in rM4 , αM4 and F3. Finally, Eq. (4.99) needs to be
solved numerically since the variables αM4 , rM4 and H are functions of the longitudinal
coordinate x.

Stress free boundary condition

The equations due to the M4 contribution of the stress free boundary condition are given
by

Avûno-stress
zz −2iσ ûno-stress = gζ̂

no-stress
x , (4.104)

ζ̂
no-stress(0) = 0, (4.105)
0∫

−H

ûno-stress(L,z)dz = 0, (4.106)

ûno-stress
z (x,0) =−2[χ̂], (4.107)

Avûno-stress
z (x,−H) = s f ûno-stress(x,−H). (4.108)
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The general solution to the momentum equation (4.104) is given by the contribution due
to the homogeneous equation and the water level forcing and reads, viz. (4.9),

ûno-stress =C1erM4 z +C2e−rM4 z− g
2iσ

ζ̂
no-stress
x . (4.109)

The unknowns C1 and C2 are obtained using the boundary conditions at the free surface
and the bottom. From the boundary condition at the free surface, Eq. (4.107), it follows
that

C2 =C1 +
2[ ˆ̃χ]
r̃M4

. (4.110)

Subsequently, it follows from the bottom boundary condition, Eq. (4.108), that

C1 = αM4

(
gζ̂ no-stress

x

4iσ
−
(

1
rM4

+
Av

s f

)
[χ̂]erM4 H

)
. (4.111)

Substituting the expressions for C1 and C2, Eqs. (4.111) and (4.110), respectively, into
Eq. (4.109) results in

uno-stress =
gζ̂ no-stress

x

2iσ
(αM4 cosh(rM4 z)−1)−

2αM4

rM4s f
[χ̂]
(
AvrM4 cosh(rM4(z+H))+ s f sinh(rM4(z+H))

)
.

(4.112)

To obtain the expression for ζ̂ no-stress
x , Eq. (4.112) is substituted into the depth-averaged con-

tinuity equation (4.84). This leads to the following second-order, linear, non-homogeneous
ODE for the water level

F1ζ̂
no-stress
xx +F2ζ̃

no-stress
x −F3ζ̂

no-stress = Fno-stress, (4.113)

with

Fno-stress =
2iσ
g

((
Bx

B
[χ̂]+ [χ̂]x

)
(1−αM4)

r2
M4

−
[χ̂](rM4αM4,x +2rM4,x(1−αM4))

r3
M4

)
,

and F1, F2 and F3 defined by Eqs. (4.100)-(4.103), respectively. Eq. (4.113) needs to be
solved numerically since the variables αM4 , rM4 and H are functions of the longitudinal
coordinate x.
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Stokes return flow

The equations due to the M4 contribution of the Stokes return flow are given by

Avûstokes
zz −2iσ ûstokes = gζ̂

stokes
x , (4.114)

ζ̂
stokes(0) = 0, (4.115)
0∫

−H

ûstokes(L,z)dz =−2[γ̂(L)], (4.116)

ûstokes
z (x,0) = 0, (4.117)

Avûstokes
z = s f ûstokes. (4.118)

The general solution to the momentum equation (4.114) is given by the contribution due to
the homogeneous equation and the water level forcing. This solution is equal to Eq. (4.46)
and reads

ûstokes =C1erM4 z +C2e−rM4 z− g
2iσ

ζ̂
stokes
x . (4.119)

The unknowns C1 and C2 are obtained using the boundary conditions at the free surface
and the bottom. From the boundary condition at the free surface, Eq. (4.117), it follows
that C1 =C2 =C.

Subsequently, it follows from the bottom boundary condition, Eq. (4.118), that

C =
gαM4 ζ̂ stokes

x

4iσ
. (4.120)

Substituting the expression for C, Eq. (4.120), into Eq. (4.119) results in

ustokes =
gζ̂ stokes

x

2iσ
(αM4 cosh(rM4z)−1). (4.121)

To obtain the expression for ζ̂ stokes
x , Eq. (4.121) is substituted into the depth-averaged conti-

nuity equation (4.84). This leads to the following second-order linear non-homogeneous
ODE for the water level

F1ζ̂
stokes
xx +F2ζ̃

stokes
x −F3ζ̂

stokes = Fstokes, (4.122)

with

Fstokes =−
4iσ
g

(
[γ̂]x +

Bx

B
[γ̂]

)
.
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and F1, F2 and F3 defined by Eqs. (4.100)-(4.103), respectively. Eq. (4.122) needs to be
solved numerically since the variables αM4 , rM4 and H are functions of the longitudinal
coordinate x.

Advection of momentum

The equations when the contribution of the advection of momentum is considered,
become

Avũadv
zz −2iσ ûadv = gζ̂

adv
x +2[ξ̂ ], (4.123)

ζ̂
adv(0) = 0, (4.124)
0∫

−H

ûadv(L,z)dz = 0, (4.125)

ûadv
z (x,0) = 0, (4.126)

Avûadv
z (x,−H) = s f ûadv(x,−H). (4.127)

Deriving the expression for ûadv, we can add the solutions to the momentum equa-
tion (4.123) due to the different forcing terms on the right-hand side of that equation.
We already know the solutions of the homogeneous equation and due to the water level
forcing, see Eq. (4.109). The expression for ûadv then becomes

ûadv =C1erM4 z +C2e−rM4 z− g
2iσ

ζ̂
adv
x + ûadv

p,ζ . (4.128)

The solution ûadv
p,ζ due to the advection of momentum is found using the method of variation

of parameters. This method was already introduced in the section on the contribution of
advection of momentum to the residual flow velocity. What the method boils down to is
finding a solution that has a similar form as the solution to the homogeneous equation, but
with different factors in front of the functions f (x,z) = erM4 z and g(x,z) = e−rM4 z. Hence, we
seek functions A(x,z) and B(x,z), such that

ûadv
p,ξ = A f +Bg, (4.129)

is a general solution of the non-homogeneous equation. We need only to calculate the
integrals

A(x,z) =−
z∫

−H

1
W

g(x,z′)b(x,z′)dz′, (4.130)

B(x,z) =
z∫

−H

1
W

f (x,z′)b(x,z′)dz′, (4.131)

where W is the Wronskian of the functions f and g given by
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W =

∣∣∣∣ erM4 z e−rM4 z

rM4erM4 z −rM4e−rM4 z

∣∣∣∣=−rM4e−rM4 zerM4 z− rM4e−rM4 zerM4 z =−2rM4 .

Furthermore, b(x,z) = 2[ξ̂ ] is the non-homogeneous forcing term. Substituting W , f , g and b
in Eqs. (4.130) and (4.131), results in

A(x,z) =
1

rM4

z∫
−H

[ξ̂ ]e−rM4 z′dz′,

B(x,z) =− 1
rM4

z∫
−H

[ξ̂ ]erM4 z′dz′,

The final general solution to Eq. (4.66) can be found by substituting Eq. (4.129) into
Eq. (4.128), using the expressions for f , g, A and B, and reads

ûadv =C1erM4 z +C2e−rM4 z +
1

rM4

G1−
g

2iσ
ζ̂

adv
x , (4.132)

with

G1 = erM4 z
z∫

−H

[ξ̂ ]e−rM4 z′dz′− e−rM4 z
z∫

−H

[ξ̂ ]erM4 z′dz′.

The unknowns C1 and C2 are obtained using the boundary conditions at the free surface,
Eq. (4.126), and at the bottom, Eq. (4.127). At the free surface, taking the derivative of
Eq. (4.132) with respect to z and equaling to zero results in

C2 =C1 +
1

rM4

G2,

with

G2 =

0∫
−H

[ξ̂ ]e−rM4 zdz+
0∫

−H

[ξ̂ ]erM4 zdz.

At the bottom, substituting the expression for ûadv into Eq. (4.127) and rearranging results in

C1 = αM4

(
gζ̂ adv

x

4iσ
− 1

2

(
1

rM4

+
Av

s f

)
G2erM4 H

)
.
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Substituting the expressions for C1 and C2 into Eq. (4.132) gives

uadv =
gζ̂ adv

x

2iσ
(αM4 cosh(rM4z)−1)+

G1

AvrM4

−

αM4G2

AvrM4s f
(AvrM4 cosh(rM4(z+H))+ s f sinh(rM4(z+H))).

(4.133)

To obtain the expression for ζ̂ adv
x , Eq. (4.133) is substituted into the depth-averaged continu-

ity equation (4.84). This leads to the following second-order linear non-homogeneous ODE
for the water level

F1ζ̂
adv
xx +F2ζ̂

adv
x −F3ζ̂

adv = Fadv, (4.134)

with

Fadv =
1
g

(
d
dx

+
Bx

B

)G2(1−αM4)− r
0∫

−H

G1dz

 , (4.135)

and F1, F2 and F3 defined by Eqs. (4.100)-(4.103), respectively. Eq. (4.134) needs to be
solved numerically since the variables αM4 , rM4 and H are functions of the longitudinal
coordinate x.
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This chapter describes the numerical implementation of the leading and first order hy-
drodynamics of the semi-analytical iFlow model package discussed in Chapters 3 and
4. In the code itself, documentation is present that describes each module and function
used to calculate water levels and velocities. Here, an overview of the structure of each
hydrodynamics module is given, together with some more detailed information on how
the equations in Chapters 3 and 4 are implemented.

5.1 General structure of the hydrodynamics modules
The leading and first order hydrodynamics are coded in two separate modules and can
be found in the package folder of the used iFlow version, e.g. for version 2.4 the pathname
is

../packages/semi_analytical2DV/hydro/

Both hydrodynamics modules are designed as classes in which several functions are
defined; the compulsory __init__() and run() functions (see iFlow modelling framework
manual) together with ones that actually calculate the surface elevation and velocities.
The function structure and explanation for each module are given in Table 5.1. As can be
seen from the table, both modules have similar functions and module specific functions.
The functions that are similar include: calculation of the root of the characteristic equation
in rf() and the coefficient α in af(), the definition of the boundary conditions in bcs(),
and the callback functions system_ode() and system_ode_der(). The latter two are treated
in more detail in the following section.

The specific functions for the HydroLead module are waterlevel() and velocities() in
which the water level and velocities are calculated. The HydroFirst module contains
six functions each calculating the water level and horizontal velocity due to a specific
forcing mechanism. The reason is that the HydroFirst module loops over the first order
contributions that the user defined as output in the input file.
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Table 5.1: Function structure of the classes HydroLead and HydroFirst.

Hydrolead HydroFirst

- rf: Calculates the root of the characteristic equation at location x; Eqs. (4.8)
and (4.98)

- af: Calculates the coefficient alpha at location x; Eqs. (4.12) and (4.97)
- bcs: Defines the boundary conditions of the boundary value problem
- system_ode: Callback function that returns the derivatives of the dependent

variables in the ODE
- system_ode_der: Callback function that returns the partial derivatives of the

dependent variables in the ODE

- waterlevel: Calculates the water level due
to external M2 tide by solving the boundary
value problem; Eq. (4.13)

- tide: Calculates the water level and hor-
izontal flow velocities due to external M4
tide; Eqs. (4.96) and (4.99)

- velocities: Calculates the horizontal and
vertical flow velocities; Eq. (4.11)

- stokes: Calculates the water level and hor-
izontal flow velocities due to Stokes return
flow; Eqs. (4.55) and (4.122)
- nostress: Calculates the water level and
horizontal flow velocities due to the no-
stress boundary condition; Eqs. (4.46) and
(4.113)
- adv: Calculates the water level and hor-
izontal flow velocities due to advection of
momentum; Eqs. (4.81) and (4.134)
- baroc: Calculates the water level and hor-
izontal flow velocities due to the baroclinic
pressure gradient; Eq. (4.36)
- river: Calculates the water level and
horizontal flow velocities due to river flow;
Eq. (4.64)

5.2 Solving the boundary value problem for the water level
The two hydrodynamics modules both use the scikits.bvp_solver package (see https:

//pythonhosted.org/scikits.bvp_solver/index.html to find the documentation and how
to install it) to solve the differntial equation for the water level due to the external M2
tide, Eq. (4.13), the external M4 tide, Eq. (4.99), the stokes return flow, Eq. (4.122), the
no-stress boundary condition, Eq. (4.113), and the advection of momentum, Eq. (4.134).
The general form of the second order differential equation for the water level is

T1ζ̂xx +T2ζ̂x−T3ζ̂ = T4. (5.1)

For the numerical implementation of this differential equation in the BVP solver (found in the
function system_ode), it needs to be transformed into two first order differential equations.
Introducing Y1 = ζ̂ and Y2 = ζ̂x, Eq. (5.1) can be recast to

dY1

dx
= Y2, (5.2)

dY2

dx
=

1
T1

(T3Y1−T2Y2 +T4) . (5.3)

https://pythonhosted.org/scikits.bvp_solver/index.html
https://pythonhosted.org/scikits.bvp_solver/index.html
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Unfortunately, scikit.bvp_solver cannot handle complex numbers in solving the problem.
Therefore, Eqs. (5.2)-(5.3) need to be split into real and imaginary parts. Introducing
Y1 = y1+ iy2 and Y2 = y3+ iy4, this results in the following four equations that are implemented
in hydrodynamics modules of the function system_ode

dy1

dx
= y3,

dy2

dx
= y4,

dy3

dx
= Re

{
T3
T1

}
y1− Im

{
T3
T1

}
y2−Re

{
T2
T1

}
y3 + Im

{
T2
T1

}
y4 +Re

{
T4
T1

}
,

dy4

dx
= Im

{
T3
T1

}
y1 +Re

{
T3
T1

}
y2− Im

{
T2
T1

}
y3 +Re

{
T2
T1

}
y4 + Im

{
T4
T1

}
,

where Re{.} and Im{.} denote the real and imaginary part, respectively. Note that for the
external M2 and M4 tidal forcing, T4 = 0.

To speed up computation time, scikits.bvp_solver allows the user to define the analytical
partial derivatives of the derivatives of the dependent variables, i.e. dy j/dx = y′j ( j = 1, . . . ,4),
resulting in the following matrix that is implemented in the function system_ode_der


∂y′1
∂y1

. . .
∂y′1
∂y4

...
. . .

...
∂y′4
∂y1

. . .
∂y′4
∂y4

=


0 0 1 0
0 0 0 1

Re
{

T3
T1

}
−Im

{
T3
T1

}
−Re

{
T2
T1

}
Im
{

T2
T1

}
Im
{

T3
T1

}
Re
{

T3
T1

}
−Im

{
T2
T1

}
−Re

{
T2
T1

}
 .

With the calculated water levels of each forcing mechanism known, the corresponding
velocities are calculated using the analytical expressions derived in Chapter 4.
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6. Equations and ordering

6.1 Equations and assumptions
6.1.1 Sediment concentration equation

In addition to hydrodynamic model discussed in the previous part, the morphodynamic
model calculates the width-averaged sediment concentration c(x,z, t) in the model do-
main. The sediment is assumed to consist of non-cohesive, fine particles that have a
uniform grain size (constant settling velocity) and are transported primarily as suspended
load. The sediment dynamics is described by the width-averaged sediment mass balance
equation (for a detailed derivation of this equation see Chernetsky, 2012)

ct +ucx +wcz = wscz +(Khcx)x +
Bx

B
Khcx +(Kvcz)z, (6.1)

where, c(x,z, t) is the width-averaged suspended sediment concentration, ws is settling
velocity and Kh and Kv are the horizontal and vertical eddy diffusivity coefficient, respec-
tively. Usually, Kv is assumed to be equal to the vertical eddy viscosity coefficient Av. On
the left-hand side of Eq. (6.1), the first term is associated with temporal settling lag effects
(related to tidal asymmetry and local inertia, see Groen, 1967) and the second and third
term with spatial settling lag effects (related to the finite time for sediment particles to
settle, see Postma, 1954; de Swart and Zimmerman, 2009). On the right-hand side, the
first term is associated with the settling of sediment, whereas the other terms are due to
diffusive transport processes.

6.1.2 Vertical boundary conditions

At the free surface z = ζ , there is no transport of sediment through the water surface

wsc(x,ζ , t)+Kvcz(x,ζ , t)−Khcx(x,ζ , t)ζx(x, t) = 0 (6.2)
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At the bottom z =−H, it is assumed that the diffusive flux equals the erosion flux E

−Kvcz(x,−H, t)nz−Khcx(x,−H, t)nx = E. (6.3)

Here, ~n = (nx,nz) = (Hx/|~n|,1/|~n|) is the unit normal vector at the bottom and the erosion
flux E is related to the so-called reference concentration c? through E = wsc?. In turn, the
reference concentration is defined as

c?(x, t) = ρs
|τb(x, t)|
ρ0g′ds

a(x), (6.4)

where, ρs is density of sediment, τb(x, t) is the bed shear stress defined as

τb = ρ0Avuz = ρ0s f u. (6.5)

Here, ρ0 is reference density, g′ = g(ρs−ρ0)/ρ0 is reduced gravity, ds is grain size, and a(x)
is the availability of easily erodible sediment in mud reaches. The availability function is
unknown and is yet to be determined. This can be achieved by using the morphodynamic
equilibrium condition discussed in the next section.

6.1.3 Morphodynamic equilibrium condition

Following Friedrichs et al. (1998), we assume that the total amount of sediment in the
estuary varies on a timescale that is much longer than that at which the easily erodible
sediment is redistributed. In that case, the availability of sediment can be determined by
assuming that the tidally averaged transport of sediment is divergence free, i.e. there is a
balance between the tidally averaged erosion and deposition at the bottom z =−H(x).
This is also known as the morphodynamic equilibrium condition. Assuming that there is no
residual sediment flux through the seaward and landward boundaries, we can write this
condition as (for a detailed derivation of this equation see Chernetsky, 2012)

B

〈 ζ∫
−H

(uc−Khcx)dz

〉
= 0. (6.6)

The sediment concentration in the morphodynamic equilibrium still depends on the un-
known availability of sediment a(x). Since the sediment concentration depends linearly on
the availability of sediment, the morphodynamic equilibrium condition, Eq. (6.6), can be
rewritten in terms of a(x).

Fax +Ta = 0, (6.7)

with
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F =

〈 ζ∫
−H

ucax

ax
−Kh

ca

a
dz

〉
, (6.8)

T =

〈 ζ∫
−H

(
uca

a
−Kh

(
ca

a

)
x
)dz

〉
, (6.9)

where ca and cax are the parts of c that are a function of a and ax, respectively. The solution
to Eq. (6.7) is

a(x) = Ae
−

x∫
0

T
F dx

, (6.10)

where A is an integration constant. Instead of an initial condition at the seaward boundary,
we prescribe the average amount of sediment at the bottom for resuspension,

a? =

L∫
0

B(x)a(x)dx

L∫
0

B(x)dx
. (6.11)

Substituting the Eq. (6.10) into Eq. (6.11) results in an expression for the integration constant
A

A =

a?
L∫
0

B(x)dx

L∫
0

B(x)e
−

x∫
0

T
F dx

dx

. (6.12)

6.2 Scaling
Similar to the momentum and mass balance equations for the water motion and corre-
sponding boundary conditions, the sediment mass balance equation and its boundary
conditions are transformed to a dimensionless form to determine the order of magnitude
of each term. The typical scales presented in Table 3.1 are augmented with one for the
sediment concentration, C, the availability of sediment, a? and the horizontal and vertical
eddy diffusivities, see Table 6.1.

A typical scale for the sediment concentration follows by scaling the reference concentra-
tion and using the expression τb = ρ0Avuz

c̃? =CÃv|ũz̃|ã, (6.13)
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Scale Dimensionless quantity
C = ρsAvUa?

H0g′ds
Typical sediment concentration c =Cc̃

a? Typical amount of available sediment a = a?ã

Kv = Av =
σH2

0
λ 2 Typical vertical eddy diffusivity Kv = KvK̃v

Kh = σL2
(

AM2
H0

)2
Typical horizontal eddy diffusivity Kh = KhK̃h

Table 6.1: Typical scales for deriving the dimensionless sediment mass balance equation.
See Table 3.1 for the typical scales used for the equations for the water motion.

with

C =
ρsAvUa?

H0g′ds
. (6.14)

The vertical eddy diffusivity is usually taken equal to the eddy viscosity and hence their
typical scale are the same.

The typical scale for the horizontal eddy diffusivity can be found by assuming that it can
be represented by a velocity scale multiplied by a length scale. Here, we take the tidal
velocity U and the tidal excursion length `=U/σ , leading to the following typical scale for
the horizontal eddy diffusivity,

Kh =U`=
U2

σ
= σL2

(
AM2

H0

)2

. (6.15)

6.2.1 Scaling the sediment mass balance equation

Using these typical scales, the dimensionless sediment mass balance equation is

c̃t̃ +
AM2

H0
[ũc̃x̃ + w̃c̃z̃] =

ws

σH0
c̃z̃ +

Kh

σL2 (K̃hc̃x̃)x̃ +
Kh

σL2
B̃x̃

B̃
K̃hc̃x̃ +

Kv

σH2
0
(K̃vc̃z̃)z̃. (6.16)

Similar to the hydrodynamics, we recognize the small parameter ε = AM2/H0 in front of
the sediment advection term. The factors in front of the other terms can be related to ε.
First, from observations the factor ws/σH0 in front of the first rhs term associated with the
settling of sediment is usually close to unity. Second, the factor Kh/σL2 is of order ε2. Finally,
the vertical diffusion coefficient, Kv, is usually taken equal to the vertical eddy viscosity
coefficient, Av. Hence, the factor in front of the vertical diffusion of sediment term Kv/σH2

0
is of order one.

The dimensional sediment mass balance equation thus has terms of the following order of
magnitude:

ct︸︷︷︸
O(1)

+ ucx︸︷︷︸
O(ε)

+ wcz︸︷︷︸
O(ε)

= wscz︸︷︷︸
O(1)

+(Khcx)x︸ ︷︷ ︸
O(ε2)

+
Bx

B
Khcx︸ ︷︷ ︸

O(ε2)

+(Kvcz)z︸ ︷︷ ︸
O(1)
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6.2.2 Scaling the vertical boundary conditions

The sediment mass balance equation (6.1) has boundary conditions that act on the bed
and at the surface. The dimensionless boundary condition at the surface z̃ = εζ̃ reads

ws

σH0
c̃(x̃, ζ̃ , t̃)+

Kv

σH2
0

K̃vc̃z̃(x̃, ζ̃ , t̃)−
εKh

σL2 K̃hc̃x̃(x̃, ζ̃ , t̃)ζ̃x̃(x̃, t̃) = 0. (6.17)

According to the typical scales introduced in Tables 3.1 and 6.1, the first and second terms
are of order one, whereas the third term is of order ε3. The resulting dimensional form of
the surface boundary condition has the following order of magnitude

wsc(x,ζ , t)︸ ︷︷ ︸
O(1)

+Kvcz(x,ζ , t)︸ ︷︷ ︸
O(1)

−Khcx(x,ζ , t)ζx(x, t)︸ ︷︷ ︸
O(ε3)

= 0 (6.18)

At the bottom z̃ =−H̃, the dimensionless boundary condition is

− Kv

σH2
0

K̃vc̃z̃(x̃,−H̃, t̃)− Kh

σL2 K̃hc̃x̃(x̃,−H̃, t̃)H̃x̃ =
ws

σH0
Ãv|ũz̃|ã. (6.19)

Apart from the second term on the left-hand side, which is of order ε3, all the terms are of
order one. Hence, the dimensional bottom boundary condition has the following order of
magnitude

−Kvcz(x,−H, t)nz︸ ︷︷ ︸
O(1)

−Khcx(x,−H, t)nx︸ ︷︷ ︸
O(ε2)

=
wsρss f

g′ds
|u(x,−H, t)|a(x)︸ ︷︷ ︸

O(1)

. (6.20)

Notice that in Eq. (6.19) we have used τb = ρ0Avuz, whereas in Eq. (6.20) we have used
τb = ρ0s f u. Both expressions are possible, see Eq. (6.5), and are in accordance with the
partial slip boundary condition.

6.2.3 Scaling the morphodynamic equilibrium condition

The dimensionless morphodynamic equilibrium condition is

〈 εζ̃∫
−H̃

(Uũc̃−Kh

L
K̃hc̃x̃)dz̃

〉
= 0, (6.21)

where we have omitted the width B in this equation. By substituting the typical scales
U and Kh in this equation, we find that the first term is an order ε term and the second
term is an order ε2 term. However, we know that the tidally averaged sediment transport
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〈ũc̃〉 is of order ε as well, whereas the longitudinal gradient of the sediment concentration
〈c̃x̃〉 is of order one. As a result, both terms in Eq. (6.21) are of the same order ε2 and the
dimensional expression for the morphodynamic equilibrium condition has the following
order of magnitude

〈 ζ∫
−H

( uc︸︷︷︸
O(ε2)

−Khcx︸︷︷︸
O(ε2)

)dz

〉
= 0. (6.22)

Furthermore, we scale expression (6.11) that prescribes the average amount of sediment
in the system, resulting in

1∫
0

B̃ãdx̃

1∫
0

B̃dx̃
= 1. (6.23)

It follows, that the nominator and the denominator are of the same order.

6.3 Ordering & overview of the equations
As introduced in Section 3.2, the solution u, w, ζ and here also c are written as a power
series of the small parameter ε

u = u0 +u1 +u2 + . . . ,

w = w0 +w1 +w2 + . . . ,

ζ = ζ
0 +ζ

1 +ζ
2 + . . . ,

c = c0 + c1 + c2 + . . . ,

where u1, w1 and ζ 1 are assumed to be of order ε, u2, w2 and ζ 2 are of order ε2, etcetera.

Substituting these series in the sediment mass balance equation, the boundary conditions
and the morphodynamic equilibrium condition yields the systems of equations in leading
order and first order.

6.3.1 Leading order concentration equation

At leading order, when assuming a constant vertical eddy diffusivity, the dimensional
sediment mass balance equation reads

c0
t −wsc0

z −Kvc0
zz = 0, (6.24)

with boundary conditions
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wsc0(x,0, t)+Kvc0
z (x,0, t) = 0, (6.25)

−Kvc0
z (x,−H, t) = Ê0a(x), (6.26)

with

Ê0 =
wsρs

ρ0g′ds
|τ0

b (x, t)|=
wsρss f

g′ds
|u02

b (x, t)|. (6.27)

In these equations, the subscript [.]b denotes evaluation of the physical variable at the
bottom and Ê0 is the leading order erosion term (see Intermezzo 6.3.1). It thus follows from
Eqs. (6.24)-(6.27) that the leading order sediment concentration is forced internally by the
leading order bottom shear stress.

Intermezzo 6.3.1 — Derivation of the first and leading order erosion terms, Ê0 and Ê1. In this
intermezzo a derivation is given for the erosion terms Ê0 and Ê1 that arise in the bot-
tom boundary conditions of the leading and first order contributions to the sediment
concentration.

Using the power series expression for u and restricting attention up to first order terms,
with u0� u1, we can write the magnitude of bottom shear stress τb as

|τb|= ρ0s f |u|= ρ0s f

√
(u0 +u1)2 ≈ ρ0s f

√
(u0)2 +2u0u1,

= ρ0s f |u0|
√

1+2
u1

u0 ≈ ρ0s f |u0|+ρ0s f
|u0|
u0 u1,

≈ ρ0s f |u0|+ρ0s f sg(u0)u1,

where the first term is O(1) and the second O(ε). Hence, we find that

Ê =
wsρs

ρ0g′ds
|τb| ≈ Ê0 + Ê1,

with

Ê0 =
wsρss f

g′ds
|u02

b |,

Ê1 =
wsρss f

g′ds
sg(u02)

[
u10

b +u14
b
]
.

To determine the leading order erosion Ê0 we need the harmonic decomposition of
|u02

b |. This term only contains residual components and tidal components that are even
multiples of the M2 tide (M4 etc.). More specifically, when writing u02 as
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u02 = 1
2 û02eiσt + c.c.,

the following harmonic series for |u02| holds,

|u02
b |=

∞

∑
n=−∞

a2ne2inσt ,

with

a2n =
2
π
|û02|

(
û02

b

û02∗
b

)n
(−1)n

1−4n2 .

For the leading order concentration only the residual and M4 component are relevant
(n = 0 and n =±1). Similarly, for the first order erosion term Ê1 the harmonic components
of sg(u02) are relevant, which can be written in the following harmonic series

sg(u02
b ) =

∞

∑
n=−∞

a(2n+a)e
i(2n+1)σt ,

with

a(2n+1) =
2(−1)n

π(2n+1)

(
û02

b

|û02
b |

)2n+1

.

For the first order concentration only the M2 and M6 components are relevant (n = 0 and
n =±1)

6.3.2 First order concentration equation

At first order, the dimensional sediment mass balance equation is

c1
t −wsc1

z −Kvc1
zz =−u0c0

x−w0c0
z . (6.28)

The corresponding boundary conditions are

wsc1(x,0, t)+Kvc1
z (x,0, t) =−ζ

0(x, t)c0
t (x,0, t), (6.29)

−Kvc1
z (x,−H, t) = Ê1a(x), (6.30)
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with

Ê1 =
wsρs

ρ0g′ds
|τ1

b (x, t)|=
wsρss f

g′ds
sg(u02

b (x, t))u1
b(x, t). (6.31)

Here, Ê1 is the first order erosion term (see Intermezzo 6.3.1). It follows from Eqs. (6.28)-(6.30)
that the first order sediment concentration is forced internally by the first order bottom
shear stress (Eq. (6.30)), advection of sediment (Eq. (6.28)) and surface correction term
due to a Taylor expansion around z = 0 (Eq. (6.29)).

6.3.3 Second order concentration equation

In general, we do not consider the sediment balance at second order. However, near
the landward boundary all tidal velocity components vanish, and thus there is hardly
any tidal transport, whereas river flow might still be strong enough to erode sediment
and transport it downstream. This transport mechanism is due to a second order, river
flow-induced sediment concentration c20

river-river that is subsequently advected by the river
flow. We argue that this transport mechanism becomes dominant over tidal transport
mechanisms near the landward boundary and thus we include this mechanism in the
iFlow’s sediment dynamics.

The corresponding sediment mass balance equation at second order is

(c20
river-river)t −ws(c20

river-river)z−Kv(c20
river-river)zz = 0, (6.32)

with boundary conditions

wsc20
river-river(x,0, t)+Kv(c20

river-river(x,0, t))z = 0, (6.33)

−Kv(c20
river-river(x,−H, t))z = Ê20

river-rivera(x), (6.34)

with

Ê20
river-river =

wsρss f

g′ds

[
〈|u02

b (x, t)+ û10
b,river(x, t)|〉−〈|u02

b (x, t)|〉
]
. (6.35)

In these equations, 〈.〉 denotes the tidal average. It follows from Eq. (6.35) that when river
flow becomes zero, so do Ê20

river-river and thus no sediment will be eroded by the river flow.





7. Analytical solutions to the ordered equations

7.1 Leading order solutions of sediment concentration
From the overview of the ordered equations, it followed that the leading order sediment
concentration equation is only forced by the leading order bed shear stress. In turn, the
bed shear stress is a function of the leading order velocity at the bed u0(x,−H, t). Recalling
that the leading order velocity only consists of an M2 tidal signal, it thus follows that the
concentration has a residual component and all tidal constituents with frequencies that
are an even multiple of the M2 tidal frequency (i.e. M4, M8, etc.). Hence, the solutions for
u0 and c0, omitting contributions with frequencies higher than the M4 frequency, can be
written as

u0 = 1
2 û02(x,z)eiσt + 1

2 û02∗(x,z)e−iσt , (7.1)

c0 = c00(x,z)+ 1
2 ĉ04(x,z)e2iσt + 1

2 ĉ04∗(x,z)e−2iσt , (7.2)

Substituting the normal form of these trial solutions (the complex conjugates follow auto-
matically) in Eq. (6.24) leads to

2iσ ĉ04e2iσt −ws
(
c00 + ĉ04e2iσt)

z−Kv
(
c00 + ĉ04e2iσt)

zz = 0. (7.3)

Since this equation is linear we can solve for ĉ00 and ĉ04 separately. This is done in the next
two sections.
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7.1.1 Tidally averaged part of the leading order sediment concentration

The tidally averaged sediment concentration equation reads

Kvc00
zz +wsc00

z = 0, (7.4)

with boundary conditions,

wsc00(x,0)+Kvc00
z (x,0) = 0, (7.5)

−Kvc00
z (x,−H) = Ê00a(x), (7.6)

with Ê00 the leading order residual component of the erosion term (see Intermezzo 6.3.1).
Differentiating Eq. (7.4) once with respect to z and solving the resulting differential equation
leads to the following expression for c00,

c00 =C00e−
ws
Kv z +A, (7.7)

where C00 is an amplitude and A is an integration constant. Using the boundary condition
at z = 0, Eq. (7.5), it follows that A = 0. Subsequently, using the boundary condition at
z =−H, Eq. (7.6), it follows that

C00 = Ê00a(x)e−
ws
Kv H . (7.8)

Using the expressions for A and C00, the expression for c00 becomes

c00 = Ê00a(x)e−
ws
Kv (H+z). (7.9)

7.1.2 M4 part of the leading order sediment concentration

From Eq. (7.3) it follows that M4 part of the sediment concentration equation is

Kvĉ04
zz +wsĉ04

z −2iσ ĉ04 = 0, (7.10)

with boundary conditions,

wsĉ04(x,0)+Kvĉ04
z (x,0) = 0, (7.11)

− 1
2 Kvĉ04

z (x,−H) = Ê04a(x). (7.12)

Note that now we take the M4 harmonic component of the erosion term. The characteristic
equation of Eq. (7.10) is
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Kvr2 +wsr−2iσ = 0,

and the corresponding roots are

r1,2 =
−ws±λM4

2Kv
, (7.13)

with λM4 =
√

w2
s +8iσKv. The general solution for ĉ04 now reads

ĉ04 = A1er1z +A2er2z, (7.14)

where A1 and A2 are unknowns that need to be determined from the boundary conditions.
Substituting Eq. (7.14) into the boundary condition (7.11) for z = 0 leads to an expression for
A1 in terms of A2

A1 =
A2(λM4 −ws)

λM4 +ws
.

Using the boundary condition (7.12) for z =−H yields an expression for A2,

A2 =
4(λM4 +ws)Ê04a(x)

(λM4 +ws)2e−r2H − (λM4 −ws)2e−r1H .

With the expressions for A1 and A2 known, we can construct the solution for ĉ04.

7.2 First order solutions of sediment concentration
From the overview of the ordered equations in Section , it followed that the first order
sediment concentration equation is forced by the first order bed shear stress, a surface cor-
rection term because the transport across the time-dependent water surface is specified
at z = 0 instead of the real surface z = ζ , and advection of sediment (spatial settling lag
effects). These forcing terms all consist of correlations between an M2 signal and a residual
plus an M4 signal. It follows that the first order concentration has an M2 component and all
tidal constituents with frequencies that are an even multiple of the M2 tidal frequency (i.e.
M6, M10, etc.). Omitting contributions with frequencies higher than the M4 frequency, we
can write the solution for u1 and c1 as

u1 = u10(x,z)+ 1
2 û14(x,z)e2iσt + 1

2 û14∗(x,z)e−2iσt , (7.15)

c1 = 1
2 ĉ12(x,z)eiσt + 1

2 ĉ12∗(x,z)e−iσt , (7.16)

Because the first order system of equations presented in Section 6.3.2 is linear we can solve
for each forcing mechanism separately. Hence, we can write the solution for ĉ12 as
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ĉ12 = ĉ12
ero + ĉ12

noflux + ĉ12
sedadv.

The individual contributions are treated in the next sections.

7.2.1 Contribution due to bottom erosion

Substituting the trial solutions for u0, u1 and c1 in Eqs. (6.28)-(6.30) and considering only the
forcing term at the bottom, results in

Kv
(
ĉ12

ero
)

zz +ws
(
ĉ12

ero
)

z− iσ ĉ12
ero = 0, (7.17)

with boundary conditions

wsĉ12
ero(x,0)+Kvĉ12

ero(x,0) = 0, (7.18)

− 1
2 Kv

(
ĉ12

ero(x,−H)
)

z = Ê12a(x). (7.19)

Adopting the same solution method as for ĉ04, we find

ĉ12
ero = B1er1z +B2er2z, (7.20)

with

r1,2 =
−ws±λM2

2Kv
, (7.21)

B1 =
B2(λM2 −ws)

λM2 +ws
, (7.22)

B2 =
4(λM2 +ws)Ê12a(x)

(λM2 +ws)2e−r2H − (λM2 −ws)2e−r1H , (7.23)

and λM2 =
√

w2
s +4iσKv.

7.2.2 Contribution due to the no flux condition at the surface

Substituting the trial solutions for u0, u1 and c1 in Eqs. (6.28)-(6.30) and considering only the
forcing term due to the no flux condition at the surface, results in

Kv
(
ĉ12

noflux
)

zz +ws
(
ĉ12

noflux
)

z− iσ ĉ12
noflux = 0, (7.24)

with boundary conditions



7.2 First order solutions of sediment concentration 65

wsĉ12
noflux(x,0)+Kvĉ12

noflux(x,0) =−iσζ̂
0∗(x)ĉ04(x,0), (7.25)

Kv
(
ĉ12

noflux(x,−H)
)

z = 0. (7.26)

Notice that the leading order residual concentration c00 does not have a contribution
in the forcing term at z = 0, as it is time-independent. Furthermore, we only consider the
normal form of the M2-part of the correlation between the surface elevation and the
leading order concentration amplitudes.

The derivation of the solution for ĉ12
noflux is equal to that of ĉ04 and ĉ12

ero and reads

ĉ12
noflux =C1er1z +C2er2z, (7.27)

with r1 and r2 given by Eq. (7.21) and

C1 =−
iσζ̂ 0∗ ĉ04

s

(ws +Kvr1)− r1
r2
(ws−Kvr2)e(r2−r1)H

, (7.28)

C2 =−
r1

r2
C1e(r2−r1)H . (7.29)

Here, the subscript [.]s denotes the value of the physical variable evaluated at the surface.

7.2.3 Contribution due to sediment advection

Substituting the trial solutions for u0, c0, u1, c1 and additionally w0, which is a similar expression
as u0, in Eqs. (6.28)-(6.30) and considering only the forcing term due to sediment advection,
results in

(
ĉ12

sedadv
)

zz +
ws

Kv

(
ĉ12

sedadv
)

z−
iσ
Kv

ĉ12
sedadv =−

ϖ

Kv
, (7.30)

with boundary conditions

wsĉ12
sedadv(x,0)+Kvĉ12

sedadv(x,0) = 0, (7.31)

Kv
(
ĉ12

sedadv(x,−H)
)

z = 0. (7.32)

Here, the forcing term ϖ due to sediment advection is defined as

ϖ = û02c00
x + ŵ02c00

z + 1
2

(
û02∗ ĉ04

x + ŵ02∗ ĉ04
z

)
, (7.33)

where we only consider the normal form (∼ eiσt) of the forcing term. Notice that due to
the fact that the concentration amplitudes are a function of a(x), the derivatives with
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respect to x in Eq. (7.33) additionally yield terms that are a function of ax. The latter will be
important in solving for a using the morphodynamic equilibrium condition, see Section 7.4.

Solving for ĉ12
sedadv from Eqs. (7.30)-(7.32) is done in the same way as for the velocity am-

plitude for the advection of momentum in Section 4.2.2. It involves seeking solutions for
the homogeneous equation and due to the sediment advection forcing. The general
expression for ĉ12

sedadv is

ĉ12
sedadv = D1er1z +D2er2z + ĉ12

p,sedadv, (7.34)

with r1,2 defined by Eq. (7.21). Furthermore, D1 and D2 need to be determined using the
boundary conditions and ĉ12

p,sedadv is the particular solution due to sediment advection. The
latter is found using the method of variation of parameters. Following the steps outlined in
Section 4.2.2, we find

ĉ12
p,sedadv = D3er1z−D4er2z, (7.35)

with

D3 =

z∫
−H

ϖ

λM2

e−r1z′ dz′, (7.36)

D4 =

z∫
−H

ϖ

λM2

e−r2z′ dz′. (7.37)

Using boundary conditions (7.31) and (7.32), we find expressions for D1 and D2,

D1 =

(ws +Kvr2)
0∫
−H

ϖ

λM2
e−r2z′ dz′− (ws +Kvr1)

0∫
−H

ϖ

λM2
e−r1z′ dz′

(ws +Kvr1)− r1
r2
(ws +Kvr2)e(r2−r1)H

, (7.38)

D2 =

(ws +Kvr2)
0∫
−H

ϖ

λM2
e−r2z′ dz′− (ws +Kvr1)

0∫
−H

ϖ

λM2
e−r1z′ dz′

(ws +Kvr2)− r2
r1
(ws +Kvr1)e(r1−r2)H

. (7.39)

The full solution for ĉ12
sedadv now reads

ĉ12
sedadv = (D1 +D3)er1z +(D2−D4)er2z, (7.40)

with the variables D1-D4 defined above.
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7.3 Second order solution of sediment concentration due to erosion by river
flow

The solution for the sediment concentration c20
river-river as a result of erosion by river flow is

equal to that of the tidally averaged part of the leading order sediment concentration c00

and reads

c20
river-river = Ê20

river-rivera(x)e
− ws

Kv (H+z), (7.41)

where Ê20
river-river is given by Eq. (6.35).

7.4 Morphodynamic equilibrium condition; transport components
In the previous sections we derived the amplitudes of the sediment concentration due to
various physical processes. These amplitudes are functions of the still unknown sediment
availability a(x). To calculate the actual sediment concentrations we use the morphody-
namic equilibrium condition (6.6) to solve for a(x), which resulted in the following differential
equation for a,

Fax +Ta = 0.

Since we know the concentration amplitudes, we can obtain exact analytical expressions
for F and T that each contain several contributions that represent either an advective or
a diffusive transport process. This allows us to assess each process separately, which highly
simplifies the analysis of sediment dynamics in estuaries. Below these different transport
processes are given.

For readability we repeat the expressions for F and T below,

F =

〈 0∫
−H

ucax

ax
−Kh

ca

a
dz

〉
,

T =

〈 0∫
−H

(
uca

a
−Kh

(
ca

a

)
x

)
dz+ζ

0u0(x,0)c0(x,0)

〉
.

The extra term that arises in the expression for T is called the Stokes drift and is a result
of the fact that during flood more water is transported in a landward direction than is
transported back to the seaward direction during ebb. The diffusive transport contributions
of F consist of the diffusion by the tide and river, i.e. Khc00 and Khc20

river, respectively. In
addition, through the forcing ϖ (Eq. (7.33)), the sediment advection contribution has a
diffusive part, û02ĉ12,ax

sedadv. Here, the superscript [.]ax denotes the part of the concentration
that is a function of ax. The contributions are thus,
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Fsedadv =

0∫
−H

1
4ax

[
û02ĉ12∗,ax

sedadv + û02∗ ĉ12,ax
sedadv

]
dz, (7.42)

Fdiffusion-tide =−
0∫

−H

Kh
c00

a
dz, (7.43)

Fdiffusion-river =−
0∫

−H

Kh
c20

river
a

dz. (7.44)

The advective transport contributions of T stem mainly from interactions between the first
order velocity and leading order concentration, u1c0, and/or between the leading order
velocity and first order concentration, u0c1. Additionally, there are diffusive components by
the tide and the river, Khc00

x and Khc20
x,river, a component by the erosion and consequent

transport by the river flow, u10
riverc

20
river and a component due to the Stokes drift, ζ 0u0(x,0)c0(x,0).

In Table 7.1 the general expressions for each contribution of the advective transport is
given.

Table 7.1: Transport mechanisms

Transport mechanism Harmonic Forcing Expression

Velocity asymmetry residual river

0∫
−H

u10 c00

a dz
baroclinic
advection
no stress
Stokes

M4 ext. M4 tide
0∫
−H

1
4a

[
û14ĉ04∗ + û14∗ ĉ04

]
dz

advection
Stokes
no stress

Erosion asymmetry M2 river

0∫
−H

1
4a

[
û02ĉ12a∗ + û02∗ ĉ12a

]
dz

baroclinic
advection
no stress
Stokes
ext. M4 tide
no flux
sed. adv.

Diffusion residual M2 tide −
0∫
−H

Kh

(
c00

a

)
x

dz

river −
0∫
−H

Kh

(
c20

river
a

)
x

dz

River-river interaction residual river
0∫
−H

u10
river

c20
river
a dz

Stokes drift residual M2 tide
[
ζ̂ 0û02∗ c00

a + ζ̂ 0∗ û02 c00

a

]
z=0

M4 M2 tide
[
ζ̂ 0û02 ĉ04∗

a + ζ̂ 0∗ û02∗ ĉ04

a

]
z=0

Finally, when we substitute the known expressions for F and T into the availability expression,
Eq. (6.10), we obtain the availability a and thus the final expressions for the concentration
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c and its underlying components.





8. Numerical implementation

This chapter describes the numerical implementation of the leading and first order sed-
iment dynamics of the semi-analytical iFlow model package discussed in Chapters 6
and 7. In the code itself, documentation is present that describes the module and each
function used to calculate sediment transport and concentration. Here, an overview of
the structure of sediment dynamics module is given.

8.1 General structure of the sediment dynamics module
The sediment dynamics module can be found in the package folder of iFlow, e.g. for
version 2.4 the pathname is

../packages/semi_analytical2DV/sediment/

The module is designed as a class in which several functions are defined; the compulsory
__init__() and run() functions (see iFlow modelling framework manual) together with
ones that actually calculate the sediment transport functions and concentration compo-
nents. The function structure and explanation for each module are given in Table 8.1.

The module first loads parameter values and calculated physical variables from the
DataContainer. Subsequently, it systematically runs through the steps to calculate the
sediment concentration. First, the sediment concentration amplitudes are calculated.
From those, the transport function T and diffusion function F and sediment availability a
are calculated. Finally, the sediment concentration components are computed. Note
that the module only calculates those sediment concentration components that are given
by the user on input.
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Table 8.1: Function structure of the class SedDynamic.

SedDynamic

- run: Builds the output dictionary with the concentration amplitudes ĉ, the transport and
diffusion functions T and F , the availability a and the concentrations c.
- erosion_lead: Calculates the erosion induced leading order sediment concentration
amplitudes c00 and ĉ04 and their derivatives w.r.t. x and z; Eqs. (7.9) and (7.14).
- erosion: Calculates the erosion induced first order sediment concentration amplitude
c12

ero; Eq. (7.20).
- erosion_second: Calculates the erosion induced second order sediment concentration
amplitude c20

river by the river flow; Eq. (7.41).
- noflux: Calculates the first order sediment concentration amplitude c12

noflux due to the no
flux surface boundary condition; Eq. (7.27).
- sedadv: Calculates the first order sediment concentration amplitude c12

noflux due to sedi-
ment advection; Eq. (7.40).
- availability: Calculates the availability of sediment; Eqs. (6.10)-(6.12).
- dictExpand: Adds a maximum of two layers to a dictionary. Mainly used to build the
transport dictionary.
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