
General modules

package for iFlow

Yoeri Dijkstra

Copyright c© 2017. Y.M. Dijkstra

When using iFlow, please cite Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and
Schramkowski, G. P. (Manuscript submitted to Geoscientific Model Development). The
iFlow Modelling Framework v2.4. A modular idealised process-based model for flow and
transport in estuaries.
Additionally you may refer to this manual as Dijkstra, Y. M. (2017). iFlow modelling frame-
work. User manual & technical description.
Note the license obligations that come with iFlow.

Contents

1 Modules reference . 5
1.1 Output saving and loading . 6
1.2 Sensitivity and calibration . 8

1. Modules reference

The package general provides auxiliary modules that may be used in any simulation. The
functionalities of the modules include saving output, loading saved files, sensitivity analyses
and calibration. This chapter provides a short overview of all modules in the package
general and the required input and expected output. The modules have been ordered
into sections for the purpose of providing structure to this chapter.

Explanation of terms and colours
Behind the input variables we will mention several data types. While some data types may
be obvious, some others are explained in the table below:

Space-separated num-
bers

real numbers separated by one or more spaces. Do not use
comma’s or other markers to separate the numbers.

Grid-conform array n-
dimensional

a numpy array with n (i.e. some number) or fewer (!) dimensions.
More dimensions than n is not allowed. All axes should be grid
conform. That means that the length of a dimension should either
be 1 or equal to the size of the corresponding grid axis. If n is larger
than the grid size, the length of this axis is free. Note that a single
number counts as a grid-conform array.

General n-dimensional either a grid-conform array or a numerical or analytical function.
In both cases they may n (i.e. some number) or fewer dimensions.

iFlow grid a grid variable with underlying subvariables as described in the
manual (Dijkstra, 2017)

The cells with input variables have been colour-coded to indicate whether the variable is
likely to be given in the input file, computed by another module or given in the configura-
tion file. By the very nature of iFlow this is only indicative and depends on the modules used.
As an example, almost any variable given in the input file may be used as a variable in a

6 Chapter 1. Modules reference

sensitivity analysis. It then becomes an input parameter of the sensitivity analysis module in
the input file. The sensitivity analysis module delivers it to the module that uses this variable.

Likely a parameter in the input file
Either in the input file or from another module
Likely a parameter computed by another module
Likely a constant in the configuration file src.config

1.1 Output saving and loading

1.1.1 Output

The module Output is the standard output module of iFlow. It saves the variables listed after
requirements on the output grid to a Python Pickle file. Additionally to the listed variables, it
saves the output grid under the name 'grid' and it saves all the configuration and input file
variables. For more information and examples, see the iFlow framework manual (Dijkstra,
2017).

Type Normal
Submodules None
Input requirements Space-separated strings. The keyword requirements should be

placed in the input file. It may be placed anywhere, but it is
best practice to put it at the last line. iFlow uses this keyword in
general to determine what variables should be computed. The
module Output uses this information to determine the variables to
save. Additionally Output saves the output grid under the name
'grid' and it saves all the configuration and input file variables.

path String. Path to the output folder. May be relative to the working
directory or absolute.

filename String. File name without extension. If the file name already exists,
iFlow will save the output under the file name appended by the
smallest available integer to create a unique name. File names
allow for dynamic naming, i.e. replacing part of the file name
by the value of a variable at runtime. This may be a variable
given in the configuration file, input file or computed by a module
before Output is called. For this use @{ ... }, replacing ... by a
DataContainer call. For example @{'Q0'}, will be replaced by the
value of the variable Q0 and @{'A0', 1} will be replaced by the
second element (i.e. with index 1) in the list/array A0.

iteratesWith Optional, module name. Optional input indicates that the
output module should be called during every iteration of
the module specified in this input variable. For example
iteratesWith general.Sensitivity indicates that the output mod-
ule should be called during every iteration of the module gen-
eral.Sensitivity.

saveAnalytical.Optional, space-separated strings. Optional list of variable names.
The output module will try to save these variables as analytical
functions. If the data type of this variable is indeed a reference to
an analytical function, it will not convert the reference to numeri-
cal data, but save the reference along with any class variables of
the class that this function refers to.

1.1 Output saving and loading 7

dontConvert Optional, space-separated strings. Optional list of variable names.
These variables will not be converted to the output grid upon
saving. This should be used for variables that might seem grid-
conform, while they have nothing to do with a grid. For example
on a grid with axes x, z, f a variable with axes a, b might seem grid-
conform if a and b have the same length as x and z. iFlow will try to
convert this to the output grid, while this is not appropriate. Never
choose dontConvert for real grid-conform variables. This would
mean that the variable is saved on the computational grid, which
is not saved along with the output. It will therefore be hard to
reload the saved data.

1.1.2 ReadSingle

Read the contents of a single file saved using the standard Output module and restore
the contents to a DataContainer structure.

Type Normal
Submodules None
Input folder String. File path to folder with the file to read. The path may be

relative with respect to the working directory or absolute.
file String. File name without extension. Alternatively all may be used

to read all files in the folder, but only the last file that is read is kept
in memory.

variables Space-separated strings. List of variables to read from the file or
all to read all variables. Other modules will see this input variable
as the list of variables that becomes available for them. Therefore
it is not recommended to use all, as other modules then do not
know what variables are available and it might be impossible to
build a call stack.

Output @variables Dictionary/DataContainer with variables. Returns a data structure
with the loaded variables.

1.1.3 ReadMultiple

Read the contents of a multiple files saved using the standard Output module. The
results are stored in a variable experimentdata with subvariables equal to the file name. For
example consider a folder with files ’file1.p’ and ’file2.p’, each containing a variable u.
Assume a module receives the results of ReadMultiple in a DataContainer self.input.The
can then access this data as

� Code sample 1.1

1 dc1 = self.input.v('experimentdata', 'file1') # returns a DataContainer with contents of file1.p

2 u1 = dc1.v('u') # extract the variable u from this DataContainer

3 dc2 = self.input.v('experimentdata', 'file2')

4 u2 = dc2.v('u')

�

Alternatively, when the file names are unknown, many or difficult a workflow can be

� Code sample 1.2

1 filenames = self.input.getKeysOf('experimentdata') # loads all subkeys,

2 #i.e. filenames, under experimentdata

3 u = []

4 for file in filenames:

8 Chapter 1. Modules reference

5 dc = self.input.v('experimentdata', file) # returns a DataContainer with contents of file

6 u.append(dc.v('u'))

�

Type Normal
Submodules None
Input folder String. File path to folder with the file to read. The path may be

relative with respect to the working directory or absolute.

files Space-separates strings. File names without extension. Alterna-
tively all may be used to read all files in the folder.

variables Space-separated strings. List of variables to read from the file or
all to read all variables. Other than in the module ReadSingle,
ReadMultiple will output a variable experimentdata. Other modules
will thus not see the contents of the input variable variables. Using
all here thus yields no problems in the creation of the call stack.

Output experimentdata See explanation above.

1.2 Sensitivity and calibration

1.2.1 Sensitivity

The module Sensitivity is a simple yet powerful tool to perform sensitivity studies, i.e. repeat
a simulation for multiple values of one or more input variables. The variables and number
of variables to include in the sensitivity study can be chosen on input. This is best illustrated
using an example of the input file entry of Sensitivity

� Code sample 1.3 — input file entry of Sensitivity.

1 ## Sensitivity ##

2 module general.Sensitivity

3 variables Q1 ws

4 Q1 100 200 300 400 500

5 ws 10**np.linspace(-4.5, -1.5, 20)

6 loopstyle permutations # simultaneous or permutations

�

The input variables provides a list of the variables to loop over. This can be one or multiple.
These variables, here Q1 and ws, should be included as input variables as well. Each
should be followed by the values to loop over. In case of Q1 these values are provided as a
space-separated list, containing five values. In case of ws this is provided as Python code.
This code is interpreted by the module Sensitivity. The Python code here allows for Numpy
commands that follow after np.. The variable ws loops over 20 values. Finally, loopstyle
allows for two options permutations or simultaneous. In the first case, all combinations of all
variables are taken. In this example this results in 5 times 20 equals 100 simulations. In
the case simultaneous is used, the values of all variables are changed simultaneously. This
requires all variables to have the same number values and is therefore not possible in this
example.

Type Iterative
Submodules None
Input variables Space-separated strings. See example above.

@variables Space-separated numbers or Python code. Values of each vari-
able listed under variables. See example above.

loopstyle String. Allows for permutations or simultaneous. See example above.

1.2 Sensitivity and calibration 9

Output @variables values of all the variables listed in the input argument.

1.2.2 ManualCalibrationPlot

Post-processing and visualisation of a calibration study for the water level elevation in a
2DV simulation. This module requires multiple output files with model results for different
values of one or two calibration parameters (e.g. produced by the module Sensitivity).
This data should be loaded back into a variable experimentdata (e.g. through the module
LoadMultiple). ManualCalibrationPlot will then evaluate a cost function for each of these
output files by comparing the modelled water levels to measurements. The results are
plotted.

Type Normal
Submodules None
Input calibration_parameter Space-separated strings. Names of one or two calibration

parameters

axis Space-separated strings. Axis modification for plotting.
Number of elements should match the number of cali-
bration parameters. Allows for log for a logarithmic axis
or any other value for a normal linear axis.

unit Optional, Space-separated strings. Units to be placed at
the axes. Number of elements should match the number
of calibration parameters.

label Optional, Space-separated strings. Labels to be placed
at the axes. Number of elements should match the num-
ber of calibration parameters.

measurementset String. Name of the variable that contains measurement
data.

@measurementset iFlow measurementset. Output of a measurement data
module. No example given at the moment. Contact the
authors for an example module.

Bibliography

Dijkstra, Y. M. (2017). iFlow modelling framework. User manual & technical description.

Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P. (Manuscript
submitted to Geoscientific Model Development). The iFlow Modelling Framework v2.4. A
modular idealised process-based model for flow and transport in estuaries.

	1 Modules reference
	1.1 Output saving and loading
	1.2 Sensitivity and calibration

