
Numerical 2DV coupled frequency perturbation
model

package for iFlow

Yoeri Dijkstra

Copyright c© 2017. Y.M. Dijkstra

When using iFlow, please cite Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and
Schramkowski, G. P. (Manuscript submitted to Geoscientific Model Development). The
iFlow Modelling Framework v2.4. A modular idealised process-based model for flow and
transport in estuaries.
Additionally you may refer to this manual as Dijkstra, Y. M. (2017). iFlow modelling frame-
work. User manual & technical description.
Note the license obligations that come with iFlow.

Contents

1 Modules Reference . 5
1.1 General . 6
1.2 Hydrodynamics . 7
1.3 Sediment . 11
1.4 Salinity . 13

2 Introduction: approach and domain . 15

3 Grids . 17

I Leading-order and first-order hydrodynamics

4 Equations and perturbation approach . 23
4.1 Scaling . 24
4.2 Ordering & overview of the equations . 27

5 Harmonic analysis . 31
5.1 Illustration of the derivation . 32
5.2 Leading-order equations . 35
5.3 First-order equations . 39
5.4 Generalisation . 40

6 Numerical implementation . 43
6.1 Implementation of the generalised momentum equation 44
6.2 Implementation of the generalised depth-averaged continuity equation 46

7 Higher order model . 49
7.1 Derivation of the equations . 49
7.2 Computation of required derivatives . 51

8 Reference level . 57

A Accuracy of near-boundary derivatives . 59
A.1 Finite difference method . 59
A.2 Spectral methods . 60

II Sediment dynamics

9 Sediment dynamics . 67
9.1 Equation . 67
9.2 Scaling and ordering . 68
9.3 Abstract solution . 70
9.4 Harmonic analysis and vector notation . 70
9.5 Numerical solution method . 71

10 Bed exchange . 73
10.1 Derivation of the equation . 73
10.2 Scaling and ordering . 74
10.3 Solution method . 75

1. Modules Reference

This chapter provides a short overview of all modules in the package numerical2DV and the
required input and expected output. The modules have been ordered into sections for
the purpose of providing structure to this chapter.

Explanation of terms and colours
Behind the input variables we will mention several data types. While some data types may
be obvious, some others are explained in the table below:

Space-separated num-
bers

real numbers separated by one or more spaces. Do not use
comma’s or other markers to separate the numbers.

Grid-conform array n-
dimensional

a numpy array with n (i.e. some number) or fewer (!) dimensions.
More dimensions than n is not allowed. All axes should be grid
conform. That means that the length of a dimension should either
be 1 or equal to the size of the corresponding grid axis. If n is larger
than the grid size, the length of this axis is free. Note that a single
number counts as a grid-conform array.

General n-dimensional either a grid-conform array or a numerical or analytical function.
In both cases they may n (i.e. some number) or fewer dimensions.

iFlow grid a grid variable with underlying subvariables as described in the
manual (Dijkstra, 2017)

The cells with input variables have been colour-coded to indicate whether the variable is
likely to be given in the input file, computed by another module or given in the configura-
tion file. By the very nature of iFlow this is only indicative and depends on the modules used.
As an example, almost any variable given in the input file may be used as a variable in a
sensitivity analysis. It then becomes an input parameter of the sensitivity analysis module in
the input file. The sensitivity analysis module delivers it to the module that uses this variable.

6 Chapter 1. Modules Reference

Likely a parameter in the input file
Either in the input file or from another module
Likely a parameter computed by another module
Likely a constant in the configuration file src.config

1.1 General

1.1.1 RegularGrid

Module for generating a standard computation and output grid with an along-channel (x),
vertical (z) and frequency (f) dimension. See the iFlow manual (Dijkstra, 2017) for general
information on grids. See Chapter 3 in this manual for specific information on the grids
generated here.

Type Normal
Submodules None
Input L Number. Length of the system in the x-direction.

B General 1-dimensional. Width of the system.

H General 1-dimensional. Depth of the system between the refer-
ence level (i.e. water level at the mouth, typically mean sea level)
and the bed.

xgrid, zgrid,
fgrid

Space-separated values. Specification for the axes of the stan-
dard computation grid. Options:
1) 'equidistant'noCells. Equidistant axis with number of cells equal
to noCells. Note that the number of nodes is noCells+1.
2) 'logarithmic'noCells, gamma. Distribution as

(
eγX −1

)
/(eγ −1),

with X an equidistant axis with noCells cells and steepness fac-
tor γ.
3) 'list'[values]. Directly prescribe all grid nodes in a list with
values. May be dimensionless between 0 and 1 or dimensional
(end points need to be in the list).
4) 'integer'maxIndex. Axis with integer steps, practical for discrete
dimensions. This axis type does not have a dimensionless axis
between 0 and 1. The argument maxIndex indicates the maximum
index of this axis (inclusive). The axis will thus have maxIndex+1
elements.
5) 'file'filepath. Reads grid points from an ASCII file. The file
path incl. extension should be given as argument. The file should
contain a single column of values between 0 and 1, corresponding
to the grid nodes.

xoutputgrid,
zoutputgrid,
foutputgrid

Space-separated values. Specification for the axes of the output
grid, see above for options.

Output grid iFlow grid. Standard computation grid

outputgrid iFlow grid. Standard output grid.

1.1.2 HigherOrderIterator

Auxiliary iterative module. Starts the iteration for higher-order computations (i.e. second
or higher order). The higher-order modules in this package compute one order in every

1.2 Hydrodynamics 7

iteration. The second order thus does not require this iteration, but, for computations higher
than second-order, this iterator ensures that such an iteration is started.

Type Iterative
Submodules None
InputInit maxOrder Integer. Maximum order to be computed (inclusive).

variables Space-separated strings . Variables to compute higher-order
of. Variable names should be given here without the integer
marking the order at the end of their name.

@{variables}

+{1,2}

Data type depends on variables entered. First-order quanti-
ties of the variable names entered above.

Input @{variables}

+{2,@{maxOrder}+1}

Data type depends on variables entered. Higher-order
quantities of the variable names entered above. This input
requirement is purely technical and help iFlow to determine
the extent of the iteration loop.

Output order Integer. Current order of computation.

maxOrder Integer. Copy of the input variable maxOrder to this module.

1.2 Hydrodynamics

1.2.1 HydroLead

Leading-order hydrodynamics using a numerical perturbation model. See Part I of this
manual.

Type Normal
Submodules tide externally forced tidal flow. Forced by input parameters A0 and

phase0.

river externally forced river flow. Forced by input parameter Q0.
Input BottomBC string. Bottom boundary condition type. Allows for values

'PartialSlip' or 'NoSlip'

Av General 3-dimensional. Vertical eddy viscosity in m2/s.

roughness General 3-dimensional. Second dimension is length 1. Roughness
coefficient s f (if BottomBC=='PartialSlip') or z0 (if BottomBC=='NoSlip').
May vary x and time, but not in z. Therefore the second dimension
needs to have length 1.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

G Number. Acceleration of gravity in m2/s
Input sub-
modules

A0 Only tide

space-separated numbers. Water level amplitude at the seaward
boundary in metres. The first value corresponds to subtidal (should
equal 0). The second value corresponds to the frequency with
angular frequency ω (standard M2 tide). The third value corre-
sponds angular frequency 2ω (standard M4) etc. The number of
values should be smaller than or equal to the maximum resolved
frequency (i.e. fmax+1 in the grid).

phase0 Only tide

8 Chapter 1. Modules Reference

space-separated numbers. Water level phase at the seaward
boundary in degrees. Similar to A0. First element should equal 0.

Q0 Only river

number. Leading-order river discharge at the landward boundary
in m3/s.

Output zeta0 Numerical function 3-dimensional. . Second dimension is length 1.
Leading-order water level elevation in metres. Saved as numerical
function with its x-derivative.

u0 Numerical function 3-dimensional. Horizontal flow velocity, saved
as numerical function with its z-derivative.

w0 Array 3-dimensional. Vertical flow velocity.

1.2.2 HydroFirst

First-order hydrodynamics using a numerical perturbation model. See Part I of this manual.

Type Normal
Submodules tide externally forced tidal flow. Forced by input parameters A1 and

phase1.

river externally forced river flow. Forced by input parameter Q1.

adv internally generated flow by momentum advection.

nostress internally generated flow through velocity-depth-asymmetry; in-
teractions between the velocity gradient (i.e. the shape of the
velocity profile) and the water level.

stokes internally generated tidal return flow that compensates for the net
mass transport in the leading order.

baroc flow induced by a horizontal density gradient.

mixing flow induced by first-order eddy viscosity contributions.
Input BottomBC string. Bottom boundary condition type, see module HydroLead.

Av General 3-dimensional. Vertical eddy viscosity in m2/s, see module
HydroLead.

roughness General 3-dimensional. Second dimension is length 1. Roughness
coefficient s f , see module HydroLead.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency component
in rad/s

G Number. Acceleration of gravity in m2/s
BETA Number. Conversion parameter for salinity in ρ = ρ0(1+β s)

Input sub-
modules

A1 Only tide

space-separated numbers. Water level amplitude at the seaward
boundary in metres, see module HydroLead.

phase1 Only tide

space-separated numbers. Water level phase at the seaward
boundary in degrees, see module HydroLead.

1.2 Hydrodynamics 9

Q1 Only river

number. First-order river discharge at the landward boundary in
m3/s.

u0 Only stokes, nostress, adv, mixing

General 3-dimensional Leading-order horizontal flow velocity
(m/s).

zeta0 Only stokes, nostress

General 3-dimensional Leading-order water level elevation (m).
Second dimension should be length 1.

w0 Only adv

General 3-dimensional Leading-order vertical flow velocity (m/s).

s0 Only baroc

General 3-dimensional Leading-order salinity (psu).
Output zeta1 Numerical function 3-dimensional. . Second dimension is length 1.

Leading-order water level elevation in metres. Saved as numerical
function with its x-derivative.

u1 Numerical function 3-dimensional. Horizontal flow velocity, saved
as numerical function with its z-derivative.

w1 Array 3-dimensional. Vertical flow velocity.

1.2.3 HydroHigher

Higher-order hydrodynamics using a numerical perturbation model. See Chapter 7 of this
manual.
Use in combination with the module HigherOrderIteration.

Type Normal
Submodules adv internally generated flow by momentum advection.

nostress internally generated flow through velocity-depth-
asymmetry; interactions between the velocity gradient (i.e.
the shape of the velocity profile) and the water level.

stokes internally generated tidal return flow that compensates for
the net mass transport in the lower orders.

baroc flow induced by a horizontal density gradient.

mixing flow induced by higher-order eddy viscosity contributions.

densitydrift flow induced by the interaction between the horizontal
density gradient and moving surface level.

Input maxContributions Integer. Maximum number of separate contributions saved
per submodule.

maxOrder Integer. Maximum order to be computed (inclusive). Is
output of the module HigherOrderIteration.

BottomBC string. Bottom boundary condition type, see module Hy-
droLead.

Av General 3-dimensional. Leading-order vertical eddy viscos-
ity in m2/s, see module HydroLead.

10 Chapter 1. Modules Reference

roughness General 3-dimensional. Second dimension is length 1.
Roughness coefficient s f , see module HydroLead.

grid iFlow grid.

OMEGA Number. Angular frequency of the lowest-frequency com-
ponent in rad/s

G Number. Acceleration of gravity in m2/s

BETA Number. Conversion parameter for salinity in ρ = ρ0(1+β s)
Input sub-
modules

u0, u1 Only stokes, nostress, adv, mixing, densitydrift

General 3-dimensional Leading- and first-order horizontal
flow velocity (m/s).

zeta0 Only stokes, nostress, mixing, densitydrift

General 3-dimensional Leadingand first-order water level
elevation (m). Second dimension should be length 1.

w0, w1 Only adv

General 3-dimensional Leading- and first-order vertical flow
velocity (m/s).

Av+{2,@{maxOrder}+1} Only mixing

General 3-dimensional Higher-order vertical eddy viscosity
(m2/s).

s+{1,@{maxOrder}} Only baroc

General 3-dimensional Salinity (psu).

s+{0,@{maxOrder}-1} Only densitydrift

General 3-dimensional Salinity (psu).
Output zeta+{2,@{maxOrder}+1}Numerical function 3-dimensional. . Second dimension is

length 1. Water level elevation in metres. Saved as numeri-
cal function with its x-derivative.

u+{2,@{maxOrder}+1} Array 3-dimensional. Horizontal flow velocity.

w+{2,@{maxOrder}+1} Array 3-dimensional. Vertical flow velocity.

surfder Array 5-dimensional. Vertical derivatives of u at the surface
(in 1/s), Mainly for internal use, but given as output for anal-
ysis purposes. The array is structured as [x, z (length 1), f ,
order of u, order of derivative].

surfstress Array 5-dimensional. Vertical shear divergence (in m/ss) at
the surface, Mainly for internal use, but given as output for
analysis purposes. The array is structured as [x, z (length 1),
f , order of u, order of derivative].

1.2.4 ReferenceLevel

Estimation of the river-induced subtidal water level set-up. This is used to set a reference
level R and is used together with H to form the reference depth. This is especially useful if
H is partially negative or small. See also Chapter 8 of this manual.

Type Iterative
Submodules None

1.3 Sediment 11

InputInit Q0, Q1 Number. Leading- and first-order river discharges (in m3/s). If one
is used, the other can be omitted. If both are set, only Q0 will be
used.

H General 1-dimensional. Depth in metres (see RegularGrid).
Input BottomBC string. Bottom boundary condition type, see module HydroLead.

Av General 3-dimensional. Leading-order vertical eddy viscosity in
m2/s, see module HydroLead.

roughness General 3-dimensional. Second dimension is length 1. Roughness
coefficient s f , see module HydroLead.

B General 1-dimensional. Width of the system.

grid iFlow grid.

G Number. Acceleration of gravity in m2/s
Output R Array 1-dimensional. Reference level (in metres), which is the

estimated river-induced set-up of the zero-reference level (i.e.
water level at the open boundary). the reference level is always
zero at x = 0.

1.3 Sediment

1.3.1 SedDynamicLead

Leading-order sediment model, see Chapter 9.

Type Normal
Submodules erosion Resuspension of sediment by the flow.
Input ws General 3-dimensional. Leading-order fall velocity (in m/s).

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

Av General 3-dimensional. Leading-order vertical eddy viscosity (in
m2/s).

grid iFlow grid.

sigma_rho General 2-dimensional. Prandtl-Schmidt number to convert the
vertical eddy viscosity to a vertical eddy diffusivity as Kν = Aν

σrho .

G Number. Acceleration of gravity (in m/s2).

OMEGA Number. Angular frequency of the slowest considered tidal fre-
quency (standard M2).

RHO0 Number. Reference density of water (in kg/m3).

DS Number. Typical sediment diameter (in m).
Output hatc0, a Array 3-dimensional. Leading-order sediment concentration, di-

vided by the availability a (in kg/m3). NB. this output variable
consists of a main index hatc0 and sub-index a.

1.3.2 SedDynamicFirst

First-order sediment model, see Chapter 9.

12 Chapter 1. Modules Reference

Type Normal
Submodules erosion Resuspension of sediment by the flow.

sedadv Horizontal advection of sediment.

noflux Correction to the sediment concentration due to variations of the
water level.

fallvel Effects of first-order changes to the fall velocity.

mixing Effects of first-order changes to the eddy diffusivity.
Input Same as SedDynamicLead

hatc0, a Only for submodules sedadv, noflux, fallvel, mixing

Leading-order sediment concentration, divided by the availability
a (in kg/m3).

w0 Only for submodules sedadv

Leading-order vertical velocity (in m/s).

ws1 Only for submodules fallvel

First-order fall velocity (in m/s).

Av1 Only for submodules mixing

First-order eddy viscosity (in m2/s).

u1 Only for submodules erosion

First-order horizontal velocity (in m/s).

zeta0 Only for submodules noflux

Leading-order water level elevation (in m).
Output hatc1, a

hatc1, ax

Array 3-dimensional. First-order sediment concentration in two
parts. One part divided by the availability a, the other part divided
by ax (in kg/m3). The concentration is retrieved as c1 = ĉ1

aa+ ĉ1
ax ax.

NB. this output variable consists of a main index hatc1 and sub-
indices a and ax.

1.3.3 SedDynamicSecond

Second-order sediment model, see Chapter 9.

Type Normal
Submodules erosion Resuspension of sediment by the flow.
Input Same as SedDynamicLead, except for u0

u1 General 3-dimensional. First-order horizontal velocity (in m/s).
Output hatc2, a Array 3-dimensional. Second-order sediment concentration by

river-induced resuspension, divided by the availability a (in kg/m3).
NB. this output variable consists of a main index hatc2 and sub-
index a.

1.3.4 StaticAvailability

Model for the water-bed exchange of sediment, resulting in the sediment availability, see
Chapter 10.

Type Normal

1.4 Salinity 13

Submodules None
Input Kh General 1-dimensional. Horizontal eddy diffusivity.

sedbc String. Type of boundary condition. Currently allows for astar and
csea (see below).

@sedbc Number. If sedbc equals astar, use the domain-average availability
a∗ as input (dimensionless). Else use the depth-averaged subtidal
concentration csea at the open boundary (in kg/m3).

B General 1-dimensional. Width (in m).

zeta0 General 3-dimensional. Leading-order water elevation (in m/s).

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

u1 General 3-dimensional. First-order horizontal velocity (in m/s).

hatc0, a,
hatc1, a,
hatc1, ax,
hatc2, a

General 3-dimensional. Scaled sediment concentrations, see out-
put of SedDynamicLead, SedDynamicFirst, SedDynamicSecond.

grid iFlow grid.
Output a Array 1-dimensional. Sediment availability (dimensionless).

c0 Array 3-dimensional. Leading-order sediment concentration (in
kg/m3).

c1 Array 3-dimensional. First-order sediment concentration (in kg/m3).

c2 Array 3-dimensional. Second-order sediment concentration due
to rivder-induced resuspension (in kg/m3).

1.4 Salinity

1.4.1 SalinityLead

Prognostic (resolving) salinity model numerical perturbation model for the leading-order
salinity. The model assumptions lead to a fully well mixed salinity field to leading-order. For
more explanation of the model we refer to McCarthy (1993); Wei et al. (2016).

Type Normal
Submodules None
Input ssea Number. Salinity (in psu) at the seaward boundary x = 0.

Q1 Number. First-order river discharge at the landward boundary (in
m3/s).

Kh General 1-dimensional. Horizontal eddy diffusivity (in m2/s).

H General 1-dimensional. Depth (in m), see also RegularGrid.

B General 1-dimensional. Width (in m), see also RegularGrid.

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

grid iFlow grid.
Output s0 Numerical function 3-dimensional. Leading-order salinity, saved

together with its x-derivative. Uniform in vertical (i.e. length 1 in
z-direction).

14 Chapter 1. Modules Reference

s1var Numerical function 3-dimensional. Incomplete first-order salinity,
saved together with its z-derivative. This quantity still needs to be
closed by a higher-order balance.

1.4.2 SalinityFirst

Prognostic (resolving) salinity model numerical perturbation model for the leading-order
salinity. For more explanation of the model we refer to McCarthy (1993); Wei et al. (2016).

Type Normal
Submodules None
Input ssea Number. Salinity (in psu) at the seaward boundary x = 0.

Q1 Number. First-order river discharge at the landward boundary (in
m3/s).

Kh General 1-dimensional. Horizontal eddy diffusivity (in m2/s).

H General 1-dimensional. Depth (in m), see also RegularGrid.

B General 1-dimensional. Width (in m), see also RegularGrid.

u0 General 3-dimensional. Leading-order horizontal velocity (in m/s).

u1 General 3-dimensional. First-order horizontal velocity (in m/s).

s0 General 3-dimensional. Leading-order salinity.

s1var General 3-dimensional. Incomplete first-order salinity, still to be
closed.

grid iFlow grid.
Output s1 Numerical function 3-dimensional. First-order salinity, saved to-

gether with its x-derivative.

s2var Numerical function 3-dimensional. Incomplete second-order salin-
ity, saved together with its z-derivative. This quantity still needs to
be closed by a higher-order balance.

2. Introduction: approach and domain

Insight into the hydrodynamical mechanisms that govern the flow in estuaries is essential to
learn more about the processes that govern the transport of sediment transport, oxygen or
nutrients. This manual presents a detailed derivation and description of a two-dimensional
idealised numerical package for iFlow that aims at this. This manual contains one separate
chapter on the grid generating module and then four parts discussing:

1. Hydrodynamics
2. Turbulence models
3. Salinity
4. Sediment dynamics

Every part of this manual will contain one or more chapters discussing the model equations,
their derivation or solution method. The final chapter in each part contains a detailed
description on the use of the provided iFlow modules.

The model is based on the perturbation approach, earlier adopted by e.g. Ianniello (1977,
1979); Chernetsky et al. (2010); Ensing et al. (tion) for hydrodynamics, McCarthy (1993);
Wei et al. (2016) for salinity and Chernetsky et al. (2010); Ensing et al. (tion) for sediment
dynamics. The perturbation approach involves a scaling of the equations to distinguish
between the terms that balance at leading order and much smaller terms that balance at
higher orders. Under suitable assumptions, the leading-order balance becomes linear and
therefore much easier to solve than the original non-linear set of equations. The approach
does however not neglect the non-linear terms or other higher-order terms. Instead, linear
estimates of these terms appear as forcing mechanisms to linear higher-order balances.
Theoretically, the full solution to the non-linear system is obtained when an infinite number
of higher-order balances is solved for. Practically, we typically only solve for the leading-
order and first-order balances, which provide a reasonably accurate estimate of the full
solution. Due to the linearity of the equations at each order, the effect of different forcing
mechanisms can be identified. These forcing mechanisms include externally applied flows
and internally generated flows by non-linear effects and density gradients.

16 Chapter 2. Introduction: approach and domain

Compared to earlier perturbation models, one of the main unique and novel features
this model is that it allows for leading-order temporal variations of turbulent mixing. In
practice, the eddy viscosity varies strongly over a tidal cycle due to variations in the
velocity or density gradient, giving rise to a range of interesting interactions and feedback
mechanisms. Additionally the model supports any vertical profile of the eddy viscosity. The
model also supports multiple tidal frequencies that are overtides of the M2 tide, including
the M6 and M8 tide.

The model domain is a two-dimensional width-averaged area as sketched in Figure 2.1.
The width can be supplied in along-channel direction to account for changes of the width
over the domain. The length of the estuary between the seaward boundary x = 0 and the
landward boundary is denoted by L and can be freely chosen. The width, B, and depth,
H, can be provided as arbitrary smooth functions of x. The depth H is relative to the mean
sea level (MSL) defined at z = 0. Details on the functions that iFlow supports for the depth
and width are provided in the manual on the auxiliary module package.

The surface level relative to z = 0 is expressed as R+ζ and is computed by the model. By
default the reference level R = 0 and ζ is equal to the surface level. The use of a non-zero
reference level is however required if the river bed is above MSL over part of the domain.
The depth H is then negative, which poses a problem in further calculations. In this case
iFlow computes the reference level R as a quick estimate of the mean surface level and
ensures that H +R is always positive. More details on the computation of R are provided in
the part on hydrodynamics.

B(x)

x

0 L

(a) Top view

H(x)

x

0
0

z ζ(x)
R(x)

L

(b) Side view

Figure 2.1: Model domain. The model is two-dimensional in along-channel (x) and vertical
(z) direction and is width-averaged. The depth and width are allowed to vary smoothly
with x.

3. Grids

The numerical2DV package contains a module RegularGrid that generates computational
and output grids. The grid is curvi-linear as exemplified in Figure 3.1. The grid is constructed
by defining a dimensionless x-axis, x̂, and a dimensionless z-axis, ẑ, both between 0 and 1.
The dimensional axes x and z are then obtained by scaling the start and end points with
the boundary locations, according to

x = x̂L, (3.1)
z(x) =−H(x)ẑ+R(x)(1− ẑ) . (3.2)

This implies that the x-axis is independent of z, while the z-axis depends on x. The dimen-
sionless ẑ-axis is rescaled to fit between −H(x) and R(x).

0 20 40 60 80 100 120 140 160

x (km)

−14

−12

−10

−8

−6

−4

−2

0

z
(m

)

Figure 3.1: Example of a grid with 20 x 10 grid cells.

The dimensionless axes may be equidistant or non-equidistant. iFlow v2.3 defines the
following types of axes
• ’equidistant’. Equidistant axis with grid points on the boundaries. It takes the maxi-

mum grid index as argument
• ’logarithmic’. Points are distributed as

(
eγX −1

)
/(eγ−1), where X is a set of equidistant

18 Chapter 3. Grids

points and γ is a steepness factor. It takes the maximum grid index and steepness
factor as arguments

• ’list’. Define axis directly by prescribing the coordinates. It takes a list of either
dimensional or dimensionless values as input

• ’integer’. Axis with integer steps, practical for discrete dimensions. This axis type
is an exception as it is not saved as points between 0 and 1 and does not require
boundary definitions.

• ’file’. Reads grid points from an ASCII file. The file path should be given as an argu-
ment. The file should contain a single column of grid points between 0 and 1.

The RegularGrid module generates a working grid that becomes available as the standard
grid variable grid and an output grid that becomes available as the standard grid for
writing output outputgrid. The module requires the depth H(x), width B(x) and length L
as input variables, for which it is recommended to use a geometry generating module.
Furthermore RegularGrid needs input as given in Code sample 3.1. The input provides the
input for the x, z and f axes for the working and output grid. The axis type can be selected
from the list of axis types above. The axis arguments should correspond to the axis type.
Note that the f -axis should typically be of the type integer.

� Code sample 3.1 — input for RegularGrid.

1 module numerical2DV.RegularGrid

2 xgrid [axis type] [axis arguments]

3 zgrid [axis type] [axis arguments]

4 fgrid [axis type] [axis arguments]

5

6 xoutputgrid [axis type] [axis arguments]

7 zoutputgrid [axis type] [axis arguments]

8 foutputgrid [axis type] [axis arguments]

�

I
4 Equations and perturbation approach 23
4.1 Scaling
4.2 Ordering & overview of the equations

5 Harmonic analysis . 31
5.1 Illustration of the derivation
5.2 Leading-order equations
5.3 First-order equations
5.4 Generalisation

6 Numerical implementation 43
6.1 Implementation of the generalised momentum equation
6.2 Implementation of the generalised depth-averaged con-

tinuity equation

7 Higher order model 49
7.1 Derivation of the equations
7.2 Computation of required derivatives

8 Reference level . 57

A Accuracy of near-boundary derivatives 59
A.1 Finite difference method
A.2 Spectral methods

Leading-order and first-order
hydrodynamics

21

This part discusses the width-averaged equations for water motion, presents the reduction
of the complexity of these equations using the perturbation approach and harmonic
analysis and discusses the numerical implementation of the reduced model. A flow
diagram of these steps is presented in Figure 3.2. Chapter 4 presents the equations
and the first two steps in the model complexity reduction, the scaling and perturbation
approach, to derive the leading-order and first-order systems of equations. Chapter 5
then presents the harmonic analysis, resulting in the novel coupled-frequency form of the
equations. The numerical implementation is consequently discussed in Chapter 6. The
extension of the model to arbitrary higher order is discussed in Chapter 7. Finally, Chapter
?? gives a description of the hydrodynamic modules provided in this package and the
required input.

Eliminate time
dimension by
assuming tidal
flow

Scaling Perturbation
method

Non-linear
equations

Identify leading
and first order
terms

Separate linear
equations at the
leading and higher
orders

Numerical
implementation

Finite differences
implementation

2DV Equations Primary
equations

Reduction of
complexity

Solution

Harmonic
decomposition

Figure 3.2: Flow diagram of the steps presented in this part on the presentation of the
equations for hydrodynamics, the reduction of the complexity of these equations and the
numerical implementation.

4. Equations and perturbation approach

The starting point for this chapter are the Reynold-averaged width-averaged momen-
tum, continuity and depth-averaged continuity equations and boundary conditions (see
e.g. Chernetsky et al., 2010). In these equations we neglect the effects of Coriolis and
assume that density variations are small compared to the average density, allowing for
the Boussinesq approximation. The equations solve for the horizontal velocity u, vertical
velocity w and water level ζ in the horizontal and vertical coordinates x and z and time t.
The equations read2D equations

ut +uux +wuz =−g(Rx +ζx)−g
∫ R+ζ

z

ρx

ρ0
dz̃+(Aν uz)z , (momentum balance) (4.1)

• Aν uz(x,R+ζ , t) = 0, (no-stress) (4.2)
• Aν uz(x,−H, t) = s f u(x,−H, t), (partial slip), or (4.3)
• u(x,−H, t) = 0, (no-slip) (4.4)

ζt +
1
B

(
B
∫ R+ζ

−H
udz
)

x
= 0, (Depth-averaged continuity)

(4.5)

• ζ (0, t) = A(t), (tidal forcing) (4.6)

• B(L)
∫ R(L)+ζ (L,t)

−H(L)
u(L,z, t)dz = Q. (river forcing and tidal reflection)

(4.7)

wz +
1
B
(Bu)x = 0, (continuity) (4.8)

• w(x,−H, t)+u(x,−H, t)Hx = 0. (kinematic) (4.9)

Here g is the acceleration of gravity, ρ is the density with reference density ρ0. The density
follows from the salinity s (in PSU) according to a linear equation of state: ρ = ρ0(1+7 ·104s).
The eddy viscosity is denoted by Aν and s f is a partial slip roughness parameter. Which of
the bottom boundary conditions (4.3) or (4.3) is used depends on the formulation for the
eddy viscosity and is discussed in more detail below. A(t) is the tidal forcing at the seaward
boundary x = 0 and Q is the river discharge, The subscripts x, z and t in the equations

24 Chapter 4. Equations and perturbation approach

denote derivatives with respect to these dimensions.

The water motion is forced by a periodic water level variation A(t) at the seaward boundary Forcing
x = 0, see Equation (4.6). The allowed boundary signal consists of the semi-diurnal M2 tide
(i.e. 12.42 hour periodic) and any of its overtides. At the landward boundary x = L, the
model is forced by a constant river discharge Q, see Equation (4.7). Typically it is assumed
that the river-induced velocity is much smaller than the typical M2 tidal velocity, so that it
only appears at the first order. However, leading-order river discharges are allowed in the
model. The tidal wave is reflected at the landward boundary, simulating the effect of a
tidal weir or locking complex. The water motion is further forced by a horizontal density
gradient, ρx in Equation 4.1. This density gradient follows from a prescribed horizontal
salinity gradient that is constant in time. The density forcing is assumed to be a first-order
effect in both solution methods.

4.1 Scaling
The model equations are analysed using a mathematical scaling analysis. This analysis Scaling

assumptionsis used to identify which terms balance at the leading order and which terms are much
smaller. The present scaling analysis pivots around three crucial assumptions.

1. We define

ε =
AM2

H0
� 1, (4.10)

i.e. the ratio of the typical water level amplitude to the typical depth is much smaller
than unity. The small parameter ε will be used to define first-order effects. A term is
therefore said to be of leading order if it is O(1) in its scaled dimensionless form and
of first-order if it is O(ε).

2. The typical tidal wave length and the typical length-scale of bathymetrical varia-
tions are of the same order of magnitude as the length of tidal influence into the
estuary. This implies that sudden, local bathymetry variations are not allowed. Rather,
bathymetrical changes should be smooth over the length of the estuary.

3. The horizontal density gradient is small. More precisely the internal Froude number
should be of the order of ε or equivalently ρxL/ρ0 should be of the order of ε2, where
L is the length of tidal influence. As a consequence, the baroclinic pressure term
g
∫

zR+ζ ρx
ρ0

dz̃ in Equation 4.1 is of the order of ε. These three assumptions result in all
non-linearities in u, w and ζ to be first-order effects.

For the scaling, the equations are transformed to a dimensionless system in order to Typical scales
establish the order of magnitude of each term. The equations are scaled by using six
typical scales, which are presented in Table 4.1. The table presents three more scales
that are derived from the other six. The velocity scale U follows from the scaling of the
depth-averaged continuity equation (4.5), which in dimensionless form reads

AM2

TM2

ζ
∗
t∗ +

(H0 +AM2)U
Ltide

∫ R∗+ζ ∗

−H∗
(H∗u∗)x∗ dz+

H0U
Lconv

∫ R∗+ζ ∗

−H∗
H∗u∗ dz = 0.

It follows that the velocity scale U must obey

U =
AM2

TM2

min(Ltide,Lconv)

(H0 +AM2)
≈

AM2

TM2

L
H0

,

where it is assumed that H0� AM2 (using assumption 1 above). The scale of the velocity
thus depends on the governing length scale, which is either the tidal wave length scale or
the typical scale at which the estuary geometry changes. It is assumed that these length
scales are both of the same order of magnitude as the length of tidal influence in the
estuary (assumption 2 above), such that

O(Ltide) = O(Lconv) = L.

4.1 Scaling 25

This requires the estuarine geometry to vary gradually.

Similar to U , W is derived from the continuity equation 4.8. It follows that

W =
H0

L
U.

The typical eddy viscosity follows from the uniform, stationary barotropic momentum
balance (Aν uz)z = gζx. It follows that

N =
H2

0
TM2

.

Scale Dimensionless quantity
TM2 M2 tidal period t = TM2t∗

AM2 M2 tidal amplitude at the seaward side ζ = AM2ζ ∗

H0 Average depth at seaward side z = H0z∗ and R = AM2R∗

Ltide Tidal wave length x = Ltidex∗ for ux, wx, ζx
Lconv convergence length x = Lconvx∗ for Hx, Bx
Rx Typical density gradient ρx = Rxρ∗x∗

Scale Dimensionless quantity
U Typical horizontal velocity of the M2 tide u =Uu∗

W Typical vertical velocity of the M2 tide w =Ww∗

N Typical eddy viscosity Aν = N Aν
∗

Table 4.1: Scales (upper table) and derived scales (lower scales) for deriving the dimen-
sionless equations.

For the scaling of the reference level R, we will assume that the actual magnitude scalesReference
level with the local depth and is therefore best made dimensionless as R = H0R∗. However, the

horizontal gradient scales with the horizontal water level gradient and scales as Rx =
AM2
Ltide

R∗x .
This seemingly inconsistent scaling is required in systems where the depth H relative to z = 0
varies from O(H0) at the mouth to O(AM2) further upstream. The reference level is assumed
to be of the same order of magnitude as the depth further upstream, but since the depth
is scaled by H0 everywhere, R also needs to be scaled with H0. However, the variation of R
from a value of zero the mouth to O(AM2) further upstream yield that Rx scales with

AM2
Ltide

.

Using these dimensionless variables, the dimensionless momentum equation (4.1) is canMomentum
equation be written as

u∗t∗ +
AM2

H0
u∗u∗x∗ +

AM2

H0
w∗u∗z∗ =−gH0

T 2
M2

L2 (R∗x +ζ
∗
x)−

g
ρ0

H0TM2Rx

U

∫ R∗+εζ ∗

z∗
ρ
∗
x∗ dz̃+H2

0 (Aν
∗u∗z∗)z∗ .

The factor
AM2
H0

in front of the momentum advection term uux +wuz denotes the ratio of
the typical tidal amplitude and the typical depth. This parameter will be called ε and is
assumed to be much smaller than unity, i.e.

ε =
AM2

H0
.

The other factors that appear in the dimensionless momentum equation can be related to

the magnitude of ε . These factors are considered below. Firstly, gH0
T 2

M2
L2 can be rewritten by

26 Chapter 4. Equations and perturbation approach

using that
√

gH0 equals the barotropic shallow-water wave velocity cE . This wave velocity
can also be estimated as cE = L

TM2
. It follows that

gH0
T 2

M2

L2 = 1.

Secondly, g
ρ0

H0TM2 Rx
U is simplified to

g
ρ0

H0TM2Rx

U
=

cI

U
=

RxL
ρ0

H0

AM2

,

where cI is the baroclinic (internal) wave velocity, defined as cI = cE
RxL
ρ0

. The term cI
U is also

known as the internal Froude number. This is assumed to be of the order of ε . This gives an
order-of-magnitude estimate for the allowable density gradient Rx:

RxL
ρ0

= O(ε2).

The integral boundaries in the baroclinic term contain order ε terms. It is therefore reason-
able to linearise the integral boundary around z = R (i.e. ζ = 0) by a Taylor expansion to
find ∫ R∗+εζ ∗

z∗
ρ
∗
x∗ dz̃ =

∫ R∗

z∗
ρ
∗
x∗ dz̃+ ερ

∗
x∗(R

∗)ζ ∗+ . . .

The dimensional momentum equation then has terms of the following order of magnitude:

ut︸︷︷︸
O(1)

+ uux︸︷︷︸
O(ε)

+ wuz︸︷︷︸
O(ε)

=−gζx︸ ︷︷ ︸
O(1)

+g
∫ R

z

ρx

ρ0
dz̃︸ ︷︷ ︸

O(ε)

+gζ
ρx(R)

ρ0︸ ︷︷ ︸
O(ε2)

+(Aν uz)z︸ ︷︷ ︸
O(1)

The dimensionless form of the depth-averaged continuity equation 4.5 is Depth-
averaged
continuity

ζ
∗
t∗ +

1
B∗

(
B∗
∫ R∗+εζ ∗

−H∗
u∗ dz∗

)
x∗
= 0.

All terms are of the same order, except for the integration boundary ζ , which is of order ε .
This is again linearised using a Taylor expansion according to∫ R+ζ

−H
udz =

∫ R

−H
udz+ζ u(x,R, t)+

The dimensional equation then has terms of the following order of magnitude:

ζt︸︷︷︸
O(1)

+
1
B

(
B
∫ R

−H
udz
)

x︸ ︷︷ ︸
O(1)

+(ζ u(x,R, t))x︸ ︷︷ ︸
O(ε)

= 0.

The continuity equation (4.8) finally has only two terms, which balance at leading order Continuity
(O(1)).

The surface boundary condition (4.2) needs to be linearised to apply it at our fixed Boundary
conditions

4.2 Ordering & overview of the equations 27

reference level z = R. This linearisation follows from a Taylor expansion

Aν uz(x,R+ζ , t) = Aν uz(x,R, t)︸ ︷︷ ︸
O(1)

+Aν uzz(x,R, t)ζ︸ ︷︷ ︸
O(ε)

+

The ordering of this boundary condition in terms of ε is obtained by observing that z∗ =
AM2
H0

ζ ∗ =O(ε). The bottom boundary condition (4.3) or (4.4) has maximum two terms, which
should therefore balance. This balance is at the leading order (O(1)).

The horizontal boundary condition at the seaward side (x = 0) is separated into a leading-
order and a first-order tidal forcing. The leading-order tidal forcing can theoretically consist
of multiple harmonic components, but we will always assume it to consist of a single M2
tidal component. The first-order forcing can similarly consist of any number of over-tides
of the M2 tide, but we will assume it to consist of a single M4 tidal forcing. The resulting
ordered version of the boundary condition then reads

ζ (0, t) = AM2 cos(ωt)︸ ︷︷ ︸
O(1)

+AM4 cos(2ωt−φ)︸ ︷︷ ︸
O(ε)

.

The river discharge prescribed at the landward side can be prescribed as either a leading-
order or a first-order forcing, depending on its strength. Whether the river discharge is
a leading-order or first-order mechanisms follows from writing the landward boundary
condition (4.7) in a dimensionless form:

∫
εζ ∗(L,t)

−H∗
u∗(L, z̃, t)dz̃ =

Q
UH0B

=

{
O(1) (leading order)
O(ε) (first order)

.

The condition compares the typical river-induced velocity to the typical tidal velocity.
Note that this ratio increases to infinity near the end of the tidal influence, where the
tidal velocity is by definition small compared to the river discharge. The normative river
velocity and tidal velocity for determining whether the river is a leading or first order effect
are those in the main area of interest. The upper bound of the integral in the boundary
condition is linearised around z = 0 by using a Taylor expansion. The expression then reads∫ R

−H
u(L,z, t)dz︸ ︷︷ ︸

O(1)

+ζ (L, t)u(L,0, t)︸ ︷︷ ︸
O(ε)

+ . . .=
Q
B︸︷︷︸

O(1) or O(ε)

4.2 Ordering & overview of the equations
In addition to the scaling of the equations, we will write the solution variables u, w and ζ as
an asymptotic series ordered in the small parameter ε, i.e.

u = u0 +u1 +u2 + . . . , (4.11)

w = w0 +w1 +w2 + . . . , (4.12)

ζ = ζ
0 +ζ

1 +ζ
2 + . . . , (4.13)

where u0, w0 and ζ 0 are of leading order, u1, w1 and ζ 1 are assumed to be of order ε , u2, w2

and ζ 2 are of order ε2 etcetera. Furthermore we assume that the eddy viscosity Aν has a
similar ordering

Aν = Aν
0 +Aν

1 +Aν
2 + (4.14)

In the following, it will be assumed that the reference level R follows the river-induced
sub-tidal water level set-up. To denote this we will write Rx as R0

x +R1
x . If the river is taken into

28 Chapter 4. Equations and perturbation approach

account at the leading order, it is assumed that the reference level is fully captured by R0
x

and R1
x = 0. If the river is only taken into account at the first order, R0

x is ignored (i.e. R0
x = 0).

Since this is no formal ordering, we will keep R without order notation wherever possible.

Substituting these series in the momentum, continuity and depth-averaged continuity
equations, we obtain a system of equations that is identical to (4.1)-(4.9), but that is
ordered in ε. By construction, the terms of first and higher orders are much smaller than
the terms of leading order. As a first approximations, these terms are therefore neglected
to obtain the leading-order system

u0
t − (Aν

0u0
z)z =−g(R0

x +ζ
0
x), (4.15)

• Aν
0u0

z (x,R, t) = 0, (4.16)

•

{
Aν

0u0
z (x,−H, t) = s f u0(x,−H, t) (partial-slip) or

u0(x,−H, t) = 0 (no-slip).
(4.17)

1
B
(Bu)0

x +w0
z = 0, (4.18)

• w0(x,−H, t) =−u0(x,−H, t)Hx. (4.19)

ζ
0
t +

1
B

(∫ R

−H
Bu0
)

x
= 0, (4.20)

• ζ
0(0, t) = A0(t), (4.21)

•
∫ R

−H
u0(L,z, t)dz =

Q0

B
. (4.22)

The residual after computing the leading-order system is dominated by the first-order terms.
Neglecting the second and higher order we obtain the first-order system, which is an
approximation for the residual. We define a short-hand notation for the forcing terms to
the first-order system, reading

ς
1(x,z, t) = g

∫ R

−H

ρx

ρ0
dz, (Baroclinic) (4.23)

η
1(x,z, t) = u0(x,z, t)u0

x(x,z, t)+w0(x,z, t)u0
z (x,z, t), (Advection) (4.24)

ψ
1(x,z, t) = Aν

1(x,z, t)u0
z (x,z, t). (Turbulence) (4.25)

γ
1(x, t) = ζ

0(x, t)u0(x,R, t), (Tidal return flow) (4.26)

χ
1(x, t) = ζ

0(x, t)
(
Aν

0(x,R, t)u0
z (x,R, t)

)
z . (No-stress) (4.27)

Using this notation we obtain the first-order system

u1
t − (Aν

0u1
z)z =−g(R1

x +ζ
1
x)+ ς

1 +ψ
1
z −η

1, (4.28)

• Aν
0u1

z (x,R, t) =−χ
1(x, t)−ψ(x,R, t) = 0, (4.29)

•

{
Aν

0u1
z (x,−H, t)− s f u1(x,−H, t) =−ψ(x,−H, t), (partial-slip), or

u1(x,−H, t) = 0 (no-slip).
(4.30)

1
B
(Bu1)x +w1

z = 0, (4.31)

• w1(x,−H, t) =−u1(x,−H, t)Hx. (4.32)

ζ
1
t +

1
B

(∫ R

−H
Bu1
)

x
+

1
B

(
Bγ

1)
x = 0, (4.33)

• ζ
1(0, t) = A1(t), (4.34)

•
∫ R

−H
u1(L,z, t)dz =

Q1

B
− γ

1(L, t). (4.35)

4.2 Ordering & overview of the equations 29

The leading-order system contains two forcing mechanisms, while the first-order system
contains seven. These mechanisms listed in Table 4.2.

Short name Explanation Symbol Order
Tide Tidal amplitude forced at the seaward

boundary
A 0 and 1

River Constant river discharge at the landward
boundary

Q 0 or 1

Baroclinic Forcing by the along-channel baroclinic
pressure gradient

ς 1

Advection Effect of momentum advection uux +wuz η 1
Tidal return flow The return flow required to compensate

for the mass flux induced by Stokes drift
γ 1

Turbulence Effect of higher-order turbulent diffusion ψ 1
No-stress Correction for the alteration of the velocity

profile due to the application of the no-
stress boundary condition at z = R instead
of the real surface z = R+ζ

χ 1

Table 4.2: Separate forcing mechanisms to the water motion, the mathematical symbol
used in the equations and the order at which these mechanisms appear.

5. Harmonic analysis

This chapter presents the derivation of a coupled-frequency form of the ordered equations
derived in Chaper 4. This form is obtained by assuming that the solution to the equations
consists of a sum of tidal components and a subtidal component. Here, we assume that
all tidal components are overtides of the M2 tide. This assumption allows us to eliminate
the time derivatives from the equations and obtain sets of ordinary differential equations
(ODEs). It will be shown that these ODEs take the form of a set of matrix equations, in which
the tidal components are coupled.

We will express the solution to the equation ui, wi, ζ i (i = 1,2) in terms of a sum of tidal com-
ponents. To this end we approximate the solution by a complex Fourier series expansion.
This takes the form

ui(x,z, t) = Re

(
p

∑
n=0

ûi
n(x,z)e

niωt

)
,

wi(x,z, t) = Re

(
p

∑
n=0

ŵi
n(x,z)e

niωt

)
,

ζ
i(x, t) = Re

(
p

∑
n=0

ζ̂
i
n(x)e

niωt

)
.

The quantities of the form ûi
n symbol indicate the complex amplitude of u in frequency

component n and order i. The Fourier series expansion is cut-off after tidal component p,
because a numerical computation can only handle a finite number of tidal components.
Please note that the Fourier series approximation becomes exact when one takes the limit
p→ ∞. Similarly we will expand the eddy viscosity, partial slip roughness parameter, density,

32 Chapter 5. Harmonic analysis

tidal forcing and river forcing. The corresponding Fourier series read

Aν
i(x,z, t) = Re

(
p

∑
n=0

Âi
νt,m(x,z)e

niωt

)
,

si
f (x,z, t) = Re

(
p

∑
n=0

ŝi
f ,m(x,z)e

niωt

)
,

ρ
i(x,z, t) = Re

(
p

∑
n=0

ρ̂
i
m(x,z)e

niωt

)
,

Ai(t) = Re

(
p

∑
n=0

Âi
meniωt

)
,

Qi = Q̂i
0.

The solution method is easiest when the solution variables are expressed using not only
positive Fourier components, but also negative components. For the solutions u, w and ζ

we therefore alternatively define the negative series

ui(x,z, t) = Re

(
p

∑
n=−p

ŭi
n(x,z)e

niωt

)
,

wi(x,z, t) = Re

(
p

∑
n=−p

w̆i
n(x,z)e

niωt

)
,

ζ
i(x, t) = Re

(
p

∑
n=−p

ζ̆
i
n(x)e

niωt

)
.

It holds that ûi
n = ŭi

n + ŭi
−n for n = 1, . . . , p and ûi

0 = ŭi
0. Similar identities hold for w and ζ . In

the following we will use a vector notation for the complex amplitudes. A vector will be
denoted by an underline .. We define:

ŭi = [ŭi
−p, . . . , ŭ

i
0, . . . , ŭ

i
p]. (5.1)

Similar definitions are used for w and ζ . For the other quantities Aν , s f , ρ , A and Q we vectors
containing the complex amplitude and its complex conjugate. Illustrating this for Aν , we
define

Âν

i
= [Âi

ν p, . . . , Âi
ν1, Â

i
ν0, . . . , Â

i
ν p]. (5.2)

5.1 Illustration of the derivation
We will provide an elaborate derivation of the coupled-frequency form of the leading-
order momentum equation, assuming R0

x = 0 for the purposes of this illustration. The
coupled-frequency forms of the other equations then follow from the same principles. First,
the Fourier series defined above are substituted in the momentum equation. This yields:

Re

(
p

∑
n=−p

niω ŭ0
n(x, t)e

niωt

)
−Re

(
p

∑
n=−p

ψ̆
0
n eniωt

)
z

=−gRe

(
p

∑
n=−p

ζ̆
0
x,n(x)e

niωt

)
, (5.3)

where we define

ψ
0 = Aν

0u0
z

and construct a Fourier series for this. Even though Aν
0 and u0

z contain at maximum p+1
positive harmonic components, their product ψ may contain up to 2p+1 positive harmonic

5.1 Illustration of the derivation 33

components. This series is truncated to p+1 positive components so that

ψ =
p

∑
n=0

ψ̂
0
n eniωt

=
p

∑
n=−p

ψ̆
0
n eniωt ,

with ψ̂0
n = ψ̆0

n + ψ̆
0
−n for n = 1, . . . , p and ψ̂0

0 = ψ̆0
0 .

We can eliminate the summation by gathering the factors in front of each exponential
function eniωt for a certain n, i.e.

Re
(
niω û0

n(x, t)e
niωt)=−gRe

(
ζ̂

0
x,n(x)e

niωt
)
+Re

(
ψ̂

0
meniωt)

z . (n ∈ [−p, p]) (5.4)

This is possible because the exponential functions eniωt (n ∈ Z) form a set of orthogonal
basis functions. The only way of satisfying equation (5.4) is then if the factors in front of
each of the basis functions balance.

We will next eliminate the Re. This can be done by simply removing Re from the equations.
Indeed, if two complex numbers are equal, then certainly their real parts are also equal.
We also divide the equation by eniωt to obtain

niω û0
n(x, t) =−gζ̂

0
x,n(x)+

(
ψ̂

0
m
)

z . (n ∈ [−p, p]) (5.5)

We can show that the complex Equation (5.5) does not put stronger requirements on the
solution than the real Equation (5.4). Let us consider the simplified real equation

Re
(
âeiωt)= Re

(
b̂eiωt) , (5.6)

for some complex numbers a and b. This evaluates to

Re(â)cos(ωt)+ Im(â)sin(ωt) = Re(b̂)cos(ωt)+ Im(b̂)sin(ωt).

By the orthogonality of the cosine and sine, this expression breaks down into two separate
equations

Re(â) = Re(b̂),

Im(â) = Im(b̂).

We see that the real Equation (5.6) for complex variables is equivalent to the complex
equation â = b̂.

5.1.1 Product of two Fourier series

The final step in the derivation is finding an expression for ψ̆0
n in terms of ŭ0

n,z and Â0
νn. To

this end, let us first try to find such an expression for quantities with only positive Fourier
components, i.e. ψ̂0

n , i.e. ψ̂0
n = f (û0

n,z, Â
0
νn). Observe that a component u0

m (i.e. Re
(
û0

memiωt
)
)

can be written as

u0
m = Re

(
û0

memiωt)= 1
2

(
û0

memiωt + û0
me−miωt

)
,

where the overbar denotes the complex conjugate. The product of two specific compo-
nents Â0

νn and u0
m,z can then be written as

Aν
0
nu0

m,z =

[
Â0

νneniωt + Âν

0
ne−niωt

][
û0

memiωt + û0
me−miωt

]
=

1
4

(
Â0

νnû0
z,mei(n+m)ωt + Â0

νnû0
m,ze

i(n−m)ωt + Âν

0
nû0

m,ze
i(−n+m)ωt + Âν

0
nû0

m,ze
i(−n−m)ωt

)
=

1
2

Re
(

Â0
νnû0

m,ze
i(m+n)ωt + Â0

νnû0
m,ze

i(m−n)ωt
)
. (5.7)

34 Chapter 5. Harmonic analysis

It follows then that

ψ
0 =

∞

∑
n=0

∞

∑
m=0

Aν
0
nu0

m,z

=
1
2

Re

(
∞

∑
n=0

∞

∑
m=0

(
Â0

νnû0
m,ze

i(n+m)ωt + Â0
νnû0

z,mei(m−n)ωt
))

.

We will next define Â0
ν−n = Â0

νn for n > 0. We then find

ψ
0 =

1
2

Re

(
∞

∑
n=−∞

∞

∑
m=0

(
Â0

νnû0
m,ze

i(n+m)ωt
))

,

=
1
2

Re

(
∞

∑
k=−∞

∞

∑
m=0

(
Â0

νk−mû0
m,ze

kiωt
))

.

We have found a double infinite series of positive and negative Fourier components

ψ
0 = Re

(
∞

∑
k=−∞

ψ̆
0
k ekiωt

)
,

with ψ̆0
k = 1

2 ∑
∞
m=0 Â0

νk−mû0
m,z. A series with positive Fourier components can be found by

further rewriting to

ψ
0 =

1
2

Re

(
∞

∑
k=0

∞

∑
m=0

(
Â0

νk−mû0
m,z + Â0

ν−k−mû0
m,z
)

e−kiωt

)
,

=
1
2

Re

(
∞

∑
k=0

∞

∑
m=0

(
Â0

νk−mû0
m,z + Â0

νk+mû0
m,z

)
ekiωt

)
, (5.8)

where for the last step it was used that Re(a) = Re(a) for any complex number a. We then
find ψ̂0

n = 1
2 ∑

∞
m=0

(
Â0

νk−mû0
m,z + Â0

νk+mû0
m,z

)
. The positive Fourier components ψ̂0

n cannot be

expressed as a linear combination of û0
n, but also require knowledge about the complex

conjugate1. This observation is also expressed in Theorem below.

Since we are looking for linear solution methods for û0, we prefer the positive and negative
components ψ̆0 over the positive components ψ̂0. As a consequence we also have to
consider ŭ0 instead of û0 for the calculations. We then find ψ̆0

k = 1
2 ∑

∞
m=−∞ Â0

νk−mŭ0
m,z. When

considering the truncated series of ŭ0
n n ∈ [−p, p], ψ̆0

n is typically has non-zero for n <−p and
n > p. These components are neglected and the series for ψ̆0

n is truncated to n ∈ [−p, p].

Theorem 5.1.1 — Product of positive Fourier series. Let u and v be two real L 2 signals and
let their Fourier series be defined as Re

(
∑

∞
n=0 ûnenit

)
and Re

(
∑

∞
n=0 v̂nenit

)
with û, v̂ ∈ C. Then

1. ψ = uv can be expressed as Re
(
∑

∞
n=0 ψ̂nenit

)
with ψ̂ ∈ C.

2. However, ψ̂n cannot be expressed as a linear combination of ûn, ∀n≥ 0.

Proof. The first claim follows almost trivially from Fourier series theory. The signal ψ is real
and ψ ∈L 2, as L 2 is a Hilbert space. We can then apply Fourier series theory to find
that ∃!ψ̂n with n ∈ Z+ such that ψ = Re

(
∑

∞
n=0 ψ̂nenit

)
.

For the second statement let us assume that we can write the coefficients ψ̂k as linear

1Note that complex conjugation is not a linear operation

5.2 Leading-order equations 35

combination of the components of û.

ψ̂k =
∞

∑
n=0

fk
({

v̂m,m ∈ Z+
})

ûn ∀k ∈ Z+. (5.9)

By the uniqueness of Fourier coefficients we can compare 5.9 with the previously derived
expression 5.8. This comparison yields:

1
2

∞

∑
n=0

ûnv̂k−n + ûnv̂k+n =
∞

∑
n=0

fk
({

v̂m,m ∈ Z+
})

ûn ∀k ∈ Z+.

After eliminating the summation we see

1
2

ûnv̂k−n + ûnv̂k+n = fk
({

v̂m,m ∈ Z+
})

ûn ∀n,k ∈ Z+.

This equality can never be satisfied as the complex conjugate of ûn on the left-hand
side of this equality can never be balanced by the right-hand side. �

5.2 Leading-order equations
We substitute the Fourier series expansions into the leading-order equations 4.15, 4.31 and
4.33. We then obtain a set of equations for each frequency component. We can write this
as a set of matrix equations using the vector notation of Expression 5.1.

5.2.1 Momentum equation

The above procedure results in the following form of the momentum equation:

Dŭ0−
(
N 0ŭ0

z
)

z =−g
(

R̆0
x + ζ̆

0

x

)
, (5.10)

36 Chapter 5. Harmonic analysis

where D and N are (2p+1)× (2p+1) matrices of the form

D =

−piω /0

−(p−1)iω

. . .

/0 piω

, ŭ =

ŭ−p

ŭ−(p−1)

...

ŭp

,

N 0 =
1
2

2Re(Â0
ν0) Â0

ν1 · · · Â0
ν p

Â0
ν1 2Re(Â0

ν0)
. . .

...
. . . /0

...
. . .

. . . Â0
ν1

. . .

Â0
ν p · · · Â0

ν1 2Re(Â0
ν0) Â0

ν1 · · · Â0
ν p

. . . Â0
ν1

. . .
. . .

...

/0
. . .

...
. . . 2Re(Â0

ν0) Â0
ν1

Â0
ν p · · · Â0

ν1 2Re(Â0
ν0)

The matrix N 0 is a diagonal matrix only if all time-varying components of Aν

0 are zero.
In such a case, Equation 5.10 reduces to a diagonal matrix equation. As a result all
frequencies are uncoupled within the leading order. However, in general Aν

0 will contain
time variations and all frequency components are coupled.

We will now adopt a more abstract notation of the above matrix equation using abstract
linear operators. The abstract notation helps in deriving expressions for the continuity and
depth-averaged continuity equations later. It also helps to show the similarities between
the leading-order system and higher-order systems. An example of the notation that we
will adopt is provided in Intermezzo 5.2.1

Intermezzo 5.2.1 — Abstract linear operators. We will illustrate the use of linear operators by
a simple example. Consider the Poisson problem in one dimension in the domain [0,1]

uzz = f , (z ∈ (0,1))

where f is an arbitrary real function and the problem is subject to homogeneous
boundary conditions of a mixed type:

αu(0)+βuz(0) = 0, (α,β ∈ R)
γu(1)+δuz(1) = 0, (γ,δ ∈ R)

Let the linear function space H1
m(0,1) be the space of all once weakly differentiable func-

tions between 0 and 1 (generally denoted by H1(0,1)) that satisfy the above boundary

5.2 Leading-order equations 37

conditions. We require our solution u to be in this space, i.e.

u ∈ H1
m(0,1) =

{
H1(0,1) |αu(0)+βuz(0) = 0, γu(1)+δuz(1) = 0, α,β ,γ,δ ∈ R

}
In the remainder of this manual we will not focus too much on the function spaces
that the solutions are in. They are merely introduced here to explain how the abstract
notation captures the boundary conditions.

We define the linear operator A : H1
m(0,1)→ R according to

A =
∂ 2

∂ z2 .

We then solve the problem

A u = f .

Inhomogeneous boundary conditions cannot be incorporated in the function space,
because this would make the space non-linear. In order to see this, consider the
boundary conditions

αu(0)+βuz(0) = a, (α,β ,a ∈ R)
γu(1)+δuz(1) = b, (γ,δ ,b ∈ R)

and let u1 and u2 be functions in H1
m(0,1), but now with these boundary conditions. The

sum of these solutions is not in the same space, because it does not satisfy the boundary
conditions.

The solution is therefore separated into two parts. The first is a solution to the inhomoge-
neous differential equation with homogeneous boundary conditions, which has been
treated above. We will call this the internally forced part. The second is a solution to
the homogeneous differential equation with inhomogeneous boundary conditions. We
will call this the externally forced part. The latter will be denoted by ubc1(a) and ubc2(b).
ubc1(a) is the solution that satisfies the inhomogeneous boundary condition at z = 0 and
the homogeneous boundary condition at z = 1. ubc2(b) satisfies the inhomogeneous
condition at z = 1 and the homogeneous condition at z = 0. The total solution to the
problem reads

u = ubc1(a)+ubc2(b)+A −1 f

Let us define the linear operator A as

A = D−N 0
z

∂

∂ z
−N 0 ∂ 2

∂ z2 . (5.11)

The momentum equation and its boundary conditions then rewrite to

A ŭ0 =−g
(

R̆0
x + ζ̆

0

x

)
, (5.12)

• N 0ŭ0
z (x,R) = 0,

•

{
N 0ŭ0

z (x,−H)−S f ŭ0(x,−H) = 0, or
ŭ0(x,−H) = 0,

38 Chapter 5. Harmonic analysis

where S f is a matrix like N with components ŝ f . The solution to the equation reads

ŭ0 =−gA −1
(

R̆0
x + ζ̆

0

x

)
. (5.13)

The inverse of the abstract linear operator A can, in some cases, be calculated analytically.
However, we will calculate this numerically using the method outlined in Chapter 6

5.2.2 Depth-averaged continuity equation

Next, the depth-averaged continuity equation will be rewritten to a vector form using the
complex amplitudes of u and ζ . The resulting expression reads:

Dζ̆
0
+

1
B

(∫ R

−H
Bŭ0 dz

)
x
= 0

The velocity components ŭ can be eliminated from this equation by using Expression 5.13.
This yields

Dζ̆
0
− g

B

(∫ R

−H
BA −1 dz

)
x
ζ̆

0

x
− g

B

∫ 0

−H
BA −1 dzζ̆

0

xx
=

g
B

(∫ R

−H
BA −1R̆0

x dz
)

x
(5.14)

This can be written in terms of an abstract operator B, which is defined as

B = D− g
B

(∫ R

−H
BA −1 dz

)
x

∂

∂x
− g

B

∫ 0

−H
BA −1 dz

∂ 2

∂x2 . (5.15)

It is useful to note that the right-hand side of Equation (5.14) can be written as −BR̆0,
since the reference level only has a sub-tidal component. The depth-averaged continuity
equation and its boundary condition then reduce to

Bζ̆
0
=−BR̆0

, (5.16)

• ζ̆
0
(0) = Â

0
,

• −gB(L)
∫ R

−H
A −1(L,z)dz

(
R̆0

x(L)+ ζ̆
0

x
(L)
)
= Q̂

0
.

Where Â
0 contains the tidal forcing at all frequency components in metres and Q̂

0 is the
river discharge in m3/s. This vector is only non-zero is its subtidal component.

The solution to this abstract equation can be written as (see Intermezzo 5.2.1 for an
explanation of the notation)

ζ̆
0
= ζ̆

0
tide + ζ̆

0
river− R̆0

, (5.17)

where the subscript ’tide’ denotes the effect from the forcing at the seaward boundary
condition (i.e. by Â

0) and ’river’ denotes the effect from the forcing at the landward
boundary condition (i.e. by Q̂

0). If the reference level is non-zero, then the reference level
is deducted from the river-induced water level amplitude.

5.2.3 Continuity equation

Finally, we rewrite the continuity equation and its boundary condition in terms of complex
amplitudes as

w̆0
z =−

1
B
(Bŭ)0

x , (5.18)

• w̆0(x,−H, t) =−ŭ0(x,−H, t)Hx.

5.3 First-order equations 39

This equation can be used to calculate w̆0 when ŭ0 has been calculated from the momen-
tum and depth-averaged continuity equations. The solution reads

w̆0(x,z) =− 1
B

∫ z

−H
(Bŭ)0

x dz− ŭ0(x,−H, t)Hx (5.19)

5.3 First-order equations
Similar to the leading order, we will write the first-order equations 4.28, 4.31 and 4.33 in
terms of complex amplitude vectors. It will be shown that this results in equations that are
largely similar to the leading order. The internal forcing terms defined in (4.23)-(4.27) are
approximated by a truncated series of Fourier components

ς
1(x,z, t) = Re

(
p

∑
n=−p

ς̆
1
n (x,z)e

niωt

)
,

η
1(x,z, t) = Re

(
p

∑
n=−p

η̆
1
n (x,z)e

niωt

)
,

ψ
1(x,z, t) = Re

(
p

∑
n=−p

ψ̆
1
n (x,z)e

niωt

)
,

γ
1(x, t) = Re

(
p

∑
n=−p

γ̆
1
n (x)e

niωt

)
,

χ
1(x, t) = Re

(
p

∑
n=−p

χ̆
1
n (x)e

niωt

)
.

Using these expressions we can proceed by deriving the complex amplitude vector form
of the momentum equation.

5.3.1 Momentum equation

The momentum equation in matrix notation is derived similar to the leading-order system.
The equation reads

Dŭ1−
(
N 0ŭ1)

z =−g
(

R1
x + ζ̆

1

x

)
− η̆

1 + ς̆
1 + ψ̆

1
z
.

We see that this system is highly similar to the leading-order system. The difference is in
the forcing components. This is even more clear when we use the abstract notation
introduced above. We can again use the same linear operator A as in 5.11. We then
obtain the system:

A ŭ1 =−g
(

R1
x + ζ̆

1

x

)
− η̆

1 + ς̆
1 + ψ̆

1
z

(5.20)

• N 0ŭ1
z (x,R) =−N χ̆

1(x)− ψ̆
1(x,R),

•

{
N 0ŭ1

z (x,−H)−S f ŭ1(x,−H) =−ψ̆
1(x,−H), or

ŭ1(x,−H) = 0,

The solution then has the abstract form

ŭ1 =−gA −1
(

R1
x + ζ̆

1

x

)
−A −1

η̆
1 +A −1

ς̆
1 +A −1

ψ̆
1
z
+ ŭ1

no-stress + ŭ1
mixing,

=−gA −1
(

R1
x + ζ̆

1

x

)
+ ŭother forcings,

where the last equation is simply a convenient short-hand notation of the complete first
equation.

40 Chapter 5. Harmonic analysis

5.3.2 Depth-averaged continuity and continuity equations

The first-order depth-averaged continuity equation becomes

Dζ̆
1
+

1
B

(∫ R

−H
Bŭ1 dz

)
x
=−1

b

(
Bγ̆

1
)

x
.

Substituting the expression for u1 we find

Dζ̆
1
− g

B

(∫ R

−H
BA −1

ζ̆
1

x
dz
)

x
=−1

b

(
Bγ̆

1
)

x
+

g
B

(∫ R

−H
BA −1R̆1

x dz
)

x
− 1

B

(∫ R

−H
Bŭother forcings dz

)
x
.

The depth-averaged continuity equation and its boundary condition then reduce to

Bζ̆
1
=− 1

B

(
Bγ̆

1
)

x
−BR̆1− 1

B

(∫ R

−H
Bŭother forcings dz

)
x
, (5.21)

• ζ̆
1
(0) = Â

1
,

• −gB(L)
∫ R

−H
A −1(L,z)dz

(
Rb1

x(L)+ ζ̆
1

x
(L)
)
= Q̂

1
.

The solution to this abstract equation can be written as

ζ̆
1
=−B−1 1

B

(
Bγ̆

1
)

x
+ ζ̆

1

tide
+ ζ̆

1

river
− R̆1−B−1 1

B

(∫ R

−H
Bŭother forcings dz

)
x
. (5.22)

The first-order water level thus consists of the externally forcing tide and river flow, the tidal
return flow originating from the depth-averaged continuity equation and several terms
originating from the momentum balance. The reference level is again subtracted from the
river-induced water level.

The first-order continuity equation is identical in u1 and w1 to the leading-order continuity
in u0 and w0. The solution therefore trivially follows from the solution of the leading-order
continuity equation.

5.4 Generalisation
We have seen that the leading-order and first-order systems have a highly similar structure.
We will exploit this in the numerical implementation by implementing a single solver for
each equation (momentum, depth-averaged continuity), which can be used for both
orders. We will not define a generalisation of the continuity equation as this equation has
already been solved for explicitly above.

The momentum equation has the general form:

Dŭ−
(
N 0ŭz

)
z =−gζ̆

x
+ f ,

• N 0ŭz(x,R) = f surface,

•

{
N ŭz(x,−H)−S f ŭ(x,−H) = f bed, or
ŭ(x,−H) = f bed,

This equation takes input parameters N , Nz, F , f
s
ur f ace and S f .

The depth-averaged continuity equation takes the form:

Dζ̆ +
1
B

(
M ζ̆

x
+F

)
x
= 0,

• ζ̆ (0) = f open,

• M ζ̆
x
(L) = f closed

5.4 Generalisation 41

The numerical implementations of these two equations is presented in the next chapter.

The general form of the continuity equation is given by (5.19)

6. Numerical implementation

This chapter describes the numerical implementation of the two general matrix equations
that were described in Section 5.4. Since these general equations hold for all orders, the
numerical implementation is the same for each order. For the momentum equation we
will adopt a general discretisation method for ŭz that guarantees the conservation of
momentum. The solution u is then obtained by a second-order numerical integration of ŭz.
The depth-averaged continuity equation is implemented using a strictly mass conservative
scheme. One of the consequences is that the baroclinically induced velocity has a
depth-averaged value that is strictly zero, regardless of the grid resolution. This property is
especially useful when computing the transport of constituents in additional modules. This
is because there is no net depth-averaged flow created by numerical errors.

The implementation of the continuity equation is not discussed in a separate section, since
no discretisation is required. The solution of the continuity equation uses a second-order
central numerical differentiation scheme, which reduces to a first-order upwind scheme
at the boundaries. It also uses a first-order numerical integration scheme based on the
trapezoidal rule.

The equations will be discretised on a collocated non-equidistant grid following the iFlow
standard axis format. This format for a grid axis is sketched in Figure 6.1.

𝑥 = 0

𝑥 𝑗 𝑥 𝑗+1 𝑥 𝑗−1 𝑥 𝑗𝑚𝑎𝑥 𝑥 0

∆𝑥 𝑗 ∆𝑥 𝑗−1 ∆𝑥 0 𝑥 = 1

𝑧 = 0

𝑧 𝑘 𝑧 𝑘+1 𝑧 𝑘−1 𝑧 𝑘𝑚𝑎𝑥 𝑧 0

∆𝑧 𝑘 ∆𝑧 𝑘−1 ∆𝑧 0 𝑧 = 1

Figure 6.1: Definition of a standard dimensionless grid axis for x̂ and ẑ.

44 Chapter 6. Numerical implementation

6.1 Implementation of the generalised momentum equation
We choose for a numerical implementation of the momentum equations that starts from
the conservative form of the differential equation. This form is not solved for the velocity u,
but instead for uz. The momentum equations are repeated here for convenience:

Dŭ−
(
N 0ŭz

)
z =−gζ̆

x
+ f , (6.1)

• N 0ŭz(x,R) = f surface, (6.2)

•

{
N ŭz(x,−H)−S f ŭ(x,−H) = f bed, or
ŭ(x,−H) = f bed,

For the following we define a numerical vector as ŭ with elements ŭn,k or ŭk at frequency
component n and grid point k according to

ŭ = [ŭ−p,0, . . . , ŭp,0, ŭ−p,1, . . . , ŭp,1, . . . , ŭ−p,kmax, . . . , ŭp,kmax]
T

= [ŭT
0 , . . . ŭ

T
1 , . . . , ŭ

T
kmax]

T . (6.3)

6.1.1 Discretisation

Even though we will solve the equation on a collocated grid, during the derivation we
will consider this equation on a staggered grid where uz is given on the same points as
the standard grid (Figure 6.1) and where u is given in the centre between two grid points.
Later, we will convert u from the centre points back to the standard grid points. On the
staggered grid with indices k = 0, . . . ,kmax let us define φ̆ = ŭz as

φ̆
k
=

1
∆zk−1/2

(
ŭk+1/2− ŭk−1/2

)
,

where ∆zk−1/2 =
1
2 (∆zk +∆zk−1). Equation (6.1) can then be discretised at point zk+1/2 using

a central discretisation. This yields

Dŭk+1/2−
1

∆zk

(
N 0

k+1φ̆
k+1
−N 0

k φ̆
k

)
=−gζ̆

x
+ f

k+1/2
. (6.4)

We now subtract the equations in two consecutive cell centres

D
(

ŭk+1/2− ŭk−1/2

)
− 1

∆zk

(
N 0

k+1φ̆
k+1
−N 0

k φ̆
k

)
+

1
∆zk−1

(
N 0

k φ̆
k
−N 0

k−1φ̆
k−1

)
= f

k+1/2
− f

k−1/2
.

This equation rewrites to

Dφ̆
k
∆zk−1/2−

1
∆zk

(
N 0

k+1φ̆
k+1
−N 0

k φ̆
k

)
+

1
∆zk−1

(
N 0

k φ̆
k
−N 0

k−1φ̆
k−1

)
= f

k+1/2
− f

k−1/2
. (6.5)

This expression requires the forcing f at the grid centres. This forcing is determined by linear
interpolation using the adjacent grid points.

The boundary condition at the surface is easily discretised; Surface
boundary
conditionN 0

0 φ̆
0
= f surface.

Indeed, one of the reasons for choosing this method of implementation is because it
guarantees that the velocity gradient at the surface is exact.

The partial slip condition at the bed is solved for by adapting the discrited equation (6.4) Partial slip

6.1 Implementation of the generalised momentum equation 45

in the cell centre closest to the bed. This discretised equation reads

Dŭkmax−1/2−
1

∆zkmax−1

(
N 0

kmaxφ̆
kmax
−N 0

kmax−1φ̆
kmax−1

)
=−gζ̆

x
+ f

kmax−1/2
. (6.6)

Next we use the boundary condition N 0
kmaxφ̆

kmax
= S f ŭkmax + f bed to obtain an expression

for ŭ at the bed

ŭkmax = S −1
f N 0

φ̆
kmax
−S −1

f f bed. (6.7)

This can be converted to an approximation of ŭkmax−1/2 by a first-order Taylor approximation

ŭkmax−1/2 = φ̆
kmax

(
S −1

f N 0− 1
2 ∆zkmax−1

)
−S −1

f f bed.

This condition is substituted to the left-hand side of (6.6). The thus obtained expression is
left-multiplied by S f and reads

D
(
N 0− 1

2 ∆zkmax−1S f
)

φ̆
kmax
− 1

∆zkmax−1

(
S f N

0
kmaxφ

kmax
−S f N

0
kmax−1φ

kmax−1

)
=−gS f ζ̆

x
+S f f

kmax−1/2
+D f bed.

After solving the above equation for φ , the integration to û results in an integration constant
equal to the velocity at the bed. The velocity at the bed follows from the bed boundary
condition (see (6.7)) and is repeated here

ûkmax = S −1
f N φ

kmax
−S −1

f f bed.

Alternatively the no-slip boundary condition follows from combining (6.6) with a first-orderNo-slip
Taylor approximation of the no-slip condition

ŭkmax−1/2 =
1
2 ∆zkmax−1φ̆

kmax
.

We then obtain

1
2 ∆zkmax−1Dφ̆

kmax
.− 1

∆zkmax−1

(
N 0

kmaxφ̆
kmax
−N 0

kmax−1φ̆
kmax−1

)
=−gζ̆

x
+ f

kmax−1/2
. (6.8)

The bed velocity required in the integration follows directly from the no slip condition as
ŭkmax = 0.

6.1.2 Numerical implementation

The discretised equation (6.5) can be abstractly written as

A(x)φ̆(x) =−gIbζ̂
x
(x)+ f̃ (x),

where the double underlining denotes a numerical vector, see (6.3). This equation solves
for the vertical dimension and is evaluated at each horizontal grid point. The matrix A
is a band matrix. The matrices A and Ib are defined below in terms of sub-matrices of
dimension (2p+1)× (2p+1)

A =

I /0

A B C /0

. . .
. . .

. . .

/0 A B C

Ã B̃

, Ib =

/0

...

...

/0

I

. (6.9)

46 Chapter 6. Numerical implementation

where the sub-matrices A, B, C, Ã and B̃ are formed from the coefficients in front of φ̆
k−1

,
φ̆

k
and φ̆

k+1
in (6.5). The actual bandwidth of the matrix A is 4p+ 3, because A, B and

C themselves are band matrices. This is the most optimal matrix structure that can be
obtained in terms of computational time to solve the system.

Since ζ̆
x

is still unknown, the solution φ̆ follows from separately solving AΦ = Ib and Aφ̆
f
= f ,

so that

φ̆ =−gΦζ̆
x
+ φ̆

f
.

After ζ̆
x

is computed from the depth-averaged continuity equation, the velocity follows
from the vertical velocity gradient using a second-order numerical integration routine
based on the Simpson rule, see the NiFTy package.

6.2 Implementation of the generalised depth-averaged continuity equation
We will adopt an implementation of the generalised depth-averaged continuity equation
that guarantees the net conservation of mass. We will first derive the criterion that the
equation has to satisfy and then derive the mass conservative scheme. The generalised
equations are repeated here for convenience:

Dζ̆ +
1
B

(
M ζ̆

x
+F

)
x
= 0, (6.10)

• ζ̆ (0) = f open,

• M ζ̆
x
(L) = f closed.

The net conservation of mass concerns the residual flow. The residual component is there-
fore taken from the equation and for illustration purposes we assume that the boundary
conditions are homogeneous:{

1
B

(
M ζ̂

x
+F

)
x

}
0
= 0.

This equation can be integrated over x to arrive at{
M ζ̂

x
+F

}
0
= 0,

where the right-hand side is zero, because it is assumed that the boundary conditions are
homogeneous. Non-homogeneous boundary conditions would add a net contribution on
the right-hand side. The above equation shows that it is required to calculated ζ̂x directly,
as this is the only way to guarantee that this equation is always satisfies in the numerical
calculation.

6.2.1 Discretisation

In order to find a numerical scheme to solve for ζx, we will consider a staggered grid with
the center-points defined in the middle of the grid points of our standard grid (Figure 6.1).
The final scheme that we will derive will only use the points on the collocated standard
grid, so that the staggered grid is only used for the derivation. On the staggered grid let us
define ξ = ζx as

ξ̆i =
1

∆xi−1/2

(
ζ̂i+1/2− ζ̂i−1/2

)
,

6.2 Implementation of the generalised depth-averaged continuity equation 47

where ∆xi−1/2 = 1
2 (∆xi +∆xi−1). We can then discretise Equation 6.10 at the point j+ 1/2

using a central discretisation. The result reads

Dζ̆
j+1/2

+
1

B j+1/2∆x j

(
M j+1ξ̆

j+1
+F j+1−M jξ̆ j

−F j

)
= 0. (6.11)

An equation for ξ̆ is obtained by subtracting two equations at neighbouring points;

D
(

ζ̆
j+1/2

− ζ̆
j−1/2

)
+

1
B j+1/2∆x j

(
M j+1ξ̆

j+1
−M jξ̆ j

+F j+1−F j

)
− 1

B j−1/2∆x j−1

(
M jξ̆ j

−M j−1ξ̆
j−1

+F j−F j−1

)
= 0,

which rewrites to

Dξ̆
j
∆x j−1/2 +

1
B j+1/2∆x j

(
M j+1ξ̆

j+1
−M jξ̆ j

+F j+1−F j

)
(6.12)

− 1
B j−1/2∆x j−1

(
M jξ̆ j

−M j−1ξ̆
j−1

+F j−F j−1

)
= 0. (6.13)

This expression only uses B on the staggered grid points. The values for B at these points will
be either determined analytically or by linear interpolation of numerical data, depending
on the way B is defined.

The boundary condition on the open boundary can be discretised by using that ξ̆
0
=Boundary

conditions 1
1
2 ∆x0

(
ζ̆

1/2
− Â
)

. This expression can be substituted into equation 6.11 to obtain a boundary

condition for ξ̆ :

D
(

1
2 ∆x0ξ̆

0
+ Â
)
+

1
B1/2∆x0

(
M1ξ̆

1
−M0ξ̆

0
+F1−F0

)
= 0

The boundary condition at the landward boundary follows directly from the equation and
reads

Mjmaxξ̆
jmax

= f closed.

6.2.2 Numerical implementation

The discretised depth-averaged continuity equation (6.13) can be written as

Bξ̆ = f
open

+ f
closed

+ F̃ ,

where the right-hand side term F̃ is a function containing the forcing term F and the
matrix B and right-hand side vectors can be written as

B =

Ẽ F̃

E F G /0

. . .
. . .

. . .

/0 E F G

/0 I

, f

open
=

f open

0

...

0

0

, f

open
=

0

0

...

0

f closed

,

with 2p+1 square sub-matrices E, F and G following from the coefficients in the discretised
equations. The water level ζ̆ follows from the computed water level gradient by a second-
order numerical integration routine based on the Simpson rule, see the NiFTy package.

7. Higher order model

We have seen that the leading-order and first-order momentum and depth-averaged
continuity equations can be expressed in abstract notation as A u = f1 and Bu = f2, where
A and B are some linear operators and f1 and f2 represent the forcing terms. Similar
forms can be derived for the second-order and higher-order systems. In this chapter we
will derive these systems for a model up to any order.

7.1 Derivation of the equations
We will start again from the equations of motion (4.1)-(4.9) with the scaling of Section
4.1. Before making the ordering we will develop a series expansion around z = R in the
boundary conditions and depth-integrated quantities. Using Taylor series, we find the
following expansions

Aν(x,R+ζ , t)uz(x,R+ζ , t) =
∞

∑
n=0

1
n!

(Aν(x,R, t)uz(x,R, t))
(n)

ζ
n,

∫ R+ζ

−H
u(x,z, t)dz =

∫ R

−H
u(x,z, t)dz+

∞

∑
n=1

1
n!

u(n−1)(x,R, t)ζ n,

∫ R+ζ

z
ρx(x,z, t)dz =

∫ R

z
ρx(x,z, t)dz+

∞

∑
n=1

1
n!

ρ
(n−1)
x (x,R, t)ζ n,

50 Chapter 7. Higher order model

where [·](n) denotes the nth-order derivative in z-direction. Substituting this, our system of
equations then reads

ut − (Aν uz)z =−gζx−η− ς − ςδ ,

• Aν(x,R, t)uz(x,R, t) =−χ,

• Aν(x,−H, t)uz(x,−H, t)− s f u(x,−H, t) = 0, or,
• u(x,−H, t) = 0.

ζt +
1
B

(
B
∫ 0

−H
udz
)

x
=− 1

B
(Bγ)x ,

• ζ (0) = ζ0,

•
∫ R

−H
u(L)dz = qriv− γ(L, t)

wz +
1
B
(Bux) = 0,

• w(x,−H, t) =−u(x,−H, t)Hx.

Here we use the short-hand notation introduced in Expressions (4.23)-(4.27), with the
addition of ςδ defined as

ςδ =
g
ρ0

∞

∑
n=1

1
n!

ρ
(n−1)
x (x,R, t)ζ n, (density drift) (7.1)

The system is scaled and ordered using the same procedure as in Sections 4.1 and 4.2. For
clarity, we will adopt the following notation
[·]n for nth powers,
[·](n) for nth-order derivatives with respect to z,
[·]<n> for nth order in ε.

For the ordering, we will use the formal expansions of Expressions (4.11)-(4.14), which now
are written as e.g. u(x,z, t) = ∑

∞
n=0 u<n>(x,z, t). The ordering leads to a system of equations

for order n = 0,1, . . . of the form

u<n>
t −

(
Aν

<0>u<n>
z
)

z =−gζ
<n>
x −η

<n>− ς
<n>− ς

<n>
δ

+ψ
<n>
z ,

• Aν
<0>(x,R, t)u<n>

z (x,R, t) =−χ
<n>−ψ

<n>(x,R, t)−ψ
<n>
χ ,

• Aν
<0>(x,−H, t)u<n>

z (x,−H, t)− s f u<n>(x,−H, t) =−ψ
<n>(x,−H, t), or,

• u<n>(x,−H, t) = 0.

ζt +
1
B

(
B
∫ R

−H
u<n> dz

)
x
=− 1

B

(
Bγ

<n>)
x ,

• ζ
<n>(0) = ζ

<n>
0 ,

•
∫ R

−H
u<n>(L)dz = q<n>

riv − γ
<n>(L, t),

w<n>
z +

1
B

(
Bu<n>

x
)
= 0,

• w<n>(x,−H, t) =−u<n>(x,−H, t)Hx.

Here we find another new term ψchi, which indicates the interaction between the higher-
order eddy viscosity and depth variations, or mixing-no-stress interaction. The non-linear
terms η , ςδ , χ , ψχ and γ and the linear terms ς and ψ are all zero at the leading order. The
density drift ςδ and mixing-no-stress interaction ψχ are also zero at first order. At order n
(n≥ 1) these forcing terms depend only on the flow velocity and water level up to order
n−1. The system of equation is thus the same at each order, except for the forcing. The

7.2 Computation of required derivatives 51

forcing terms at each order are expanded below.

η
<n> =

n−1

∑
m=0

u<m>u<n−m−1>
x +w<m>u<n−m−1>

z , (advection)

ς
<n> =

g
ρ0

∫ 0

z
ρ
<n>
x , (baroclinic pressure)

ς
<n>
δ

=
g
ρ0

n−1

∑
m=1

n−1−m

∑
k=0

1
m!

(
ρ
<k>
x (x,0, t)

)(m−1)
ζ
<l1> · · ·ζ<lm>,

∀l1, . . . , lm s.t.
m

∑
r=1

lr = n−1−m− k, (density drift)

χ
<n> =

n

∑
m=1

n−m

∑
k=0

1
m!

(
Aν(x,0, t)u<k>

z (x,0, t)
)(m)

ζ
<l1> · · ·ζ<lm>,

∀l1, . . . , lm s.t.
m

∑
r=1

lr = n−m− k, (no-stress term)

γ
<n> =

n

∑
m=1

n−m

∑
k=0

1
m!

(
u<k>(x,0, t)

)(m−1)
ζ
<l1> · · ·ζ<lm>,

∀l1, . . . , lm s.t.
m

∑
r=1

lr = n−m− k, (tidal return flow)

ψ
<n> =

n

∑
m=1

Aν
<m>(x,z, t)u<n−m>

z (x,z, t). (mixing)

ψ
<n>
χ =

n

∑
m=1

n−m

∑
k=0

n−m−k

∑
i=1

1
m!

(
Aν

<i>(x,0, t)u<k>
z (x,0, t)

)(m)
ζ
<l1> · · ·ζ<lm>,

∀l1, . . . , lm s.t.
m

∑
r=1

lr = n−m− k− i, (mixing-no-stress interaction)

Apart from these internal forcing mechanisms, we allow for external forcing by the tide
and river. These external forcing mechanisms are only allowed on leading order and first
order. This is because higher-order external forcing mechanisms have no added value to
the interpretation of the model results.

7.2 Computation of required derivatives
Since the higher-order equations take the same form as the leading-order and first-order
systems, they can be solved using the same methods for harmonic analysis and numerical
implementation, see Chapters 5 and 6. The difference between the system at each order
is in the forcing terms. A particular point of attention are the no-stress, tidal return flow
and density drift terms, which need higher-order derivatives of the velocity and density
at the surface. These derivatives cannot simply be computed using straight-forward
numerical differentiation as one quickly looses accuracy, see also Appendix A. Therefore
the derivatives are computed using an alternative method presented in this section.

7.2.1 Required derivatives for higher order hydrodynamics

Before deriving an alternative method for calculating derivatives, we will look closer at
which derivatives are required at which order. The required derivatives for the nth-order
equation are listed below

52 Chapter 7. Higher order model

Term Derivative Remarks
Advection u<k>

z (k ≤ n).
Density drift

(
−Aν ρ<k>

z
)(m−1)

(x,R, t) (m≤ n−1, k ≤ n−m−1).
No-stress

(
−Aν u<k>

z
)(m)

(x,R, t) (m≤ n, k ≤ n−m).
Tidal return flow

(
u<k>

)(m−1)
(x,R0, t) (m≤ n, k ≤ n−m).

The advection term thus requires the first derivatives to be available always and every-
where. The no-stress and tidal return flow terms require very specific higher-order derivatives
at the surface. Especially for the first-order and second-order equations these specific
derivatives can be calculated by using the momentum equation and the knowledge
of the solutions. We will therefore look specifically at the first and second order before
considering the general case.

First-order system

The first-order no-stress term only requires
(
Aν u0

z
)

z (x,R, t). This term can be calculated by
using the leading order momentum equation, according to(

Aν u0
z
)

z (x,R, t) = niωu0(x,R, t)+gζ
0
x (x, t).

This does not require taking any derivatives and thus has the same accuracy as the
leading-order solution. The tidal return flow term only requires u0(x,R, t) and thus involves
no vertical derivatives.

Second-order system

The second-order no-stress term requires the following terms:
(
Aν u0

z
)

z (x,R, t),
(
Aν u1

z
)

z (x,R, t),(
Aν u0

z
)

zz (x,R, t). The first of these terms has already been calculated in the first-order system.
The second term can be calculated from the first-order momentum equation according
to (

Aν u1
z
)

z (x,R, t) = niωu1(x,R, t)+(u0u0
x)(x,R, t)+(w0 u0

z︸︷︷︸
=0

)(x,R, t)+gζ
1
x (x, t)+

g
ρ0

∫ R

R
ρ

0
x︸ ︷︷ ︸

=0

,

= niωu1(x,R, t)+(u0u0
x)(x,R, t)+gζ

1
x (x, t).

This also does not require taking any vertical derivatives. The third term in the no-stress
contribution is determined from taking the derivative of the leading-order momentum
equation. This yields(

Aν u0
z
)

zz (x,0, t) = niω u0
z (x,0, t)︸ ︷︷ ︸

=0

+(gζx(x, t))z︸ ︷︷ ︸
=0

,

= 0.

The tidal return flow requires u0(x,0, t), u1(x,0, t), u0
z (x,0, t). The latter term is zero, so that there

are no vertical derivatives involved in the second-order tidal return flow.

It thus follows that the first-order and second-order systems only require the first derivative
of the velocity for the advection term, but otherwise do not require any vertical derivatives.
The first-order derivative is solved for directly in the numerical solution procedure (see
Chapter 6), so that its accuracy is guaranteed.

7.2 Computation of required derivatives 53

Third and higher orders

The new terms that appear in the third-order no-stress terms are
(
Aν u2

z
)

z (x,0, t),
(
Aν u1

z
)

zz (x,0, t)
and

(
Aν u0

z
)

zzz (x,0, t). The first term could be reconstructed from the second-order momen-
tum equation in a similar way as for the first-order momentum equation in the second-order
computation. As the second-order momentum equation contains many forcing terms,
this is done by saving the forcing terms while calculating the second order and using this
saved forcing for the reconstruction.

The second term is calculated by differentiating the first-order momentum balance. This
requires calculating u0

z z and u1
z at the surface. The third term can be obtained by differenti-

ating the leading-order momentum balance twice. This yields(
Aν u0

z
)

zzz (x,0, t) = niωu0
zz(x,0, t),

which also requires u0
zz at the surface. Similarly the tidal return flow requires u0

zz at the
surface.

Extending this to higher order it is found that the nth-order equation requires (u<k>)(m)(x,0, t)
with m ≤ n− 1 and k ≤ n−m− 1. Summarising, the first-order and second-order systems
provide no problems. The third-order and higher-order systems require progressively higher
derivatives at the surface, the accuracy of which should be investigated.

7.2.2 Computation of derivatives

At general order n we thus require
(
Aν u<k>

z
)<n−k> and u<k>(n−k−1) for k = 0, . . . ,n−1. As was

shown, the first of these terms can be computed using the latter. In the derivation however,
it is useful to compute both terms. This is done by taking derivatives of the momentum
equation. In this section we will denote these to terms as follows:(

Aν
<0>u<n>

z
)(d+1)

shear stress,

u<n>(d) velocity derivatives.

Derivatives of the shear stress term

Rewriting the momentum equation, for a general derivative d we find for d ≥ 0(
Aν

<0>u<n>
z
)(d+1)

= u<n>
t

(d)
+gζ

<n>
x

(d)
+η

<n>(d)
+ ς

<n>(d)
+ ς

<n>
δ

(d)−ψ
<n>(d+1)

.

The right-hand side can be expanded according to

ζ
<n>
x

(d)
=

{
ζ<n>

x if d = 0
0 if d > 0

,

η
<n>(d)

=
n−1

∑
m=0

d

∑
i=0

(
d
i

)(
u<m>(i)u<n−m−1>

x
(d−i)

+w<m>(i)u<n−m−1>(d−i+1)
)
,

ς
<n>(d)

=

{
g

ρ0

∫ 0
z ρ<n>

x if d = 0

− g
ρ0

ρ<n>
x

(d−1) if d > 0
,

ς
<n>
δ

(d)
=

g
ρ0

n−1

∑
m=1

n−1−m

∑
k=0

1
m!

(
ρ
<k>
x (x,0, t)

)(m−1+d)
ζ
<l1> · · ·ζ<lm>,

∀l1, . . . , lm s.t.
m

∑
r=1

lr = n−1−m− k,

ψ
<n>(d+1)

=
n

∑
m=1

d+1

∑
i=0

(
d +1

i

)
Aν

<m>(i)u<n−m>(d−i+2)
.

54 Chapter 7. Higher order model

The derivatives of the vertical velocity in the advection term is calculated according to

w<m>(d)
=

{
w if d = 0

− 1
B

(
Bu<m>(d−1)

)
x

if d > 0
.

Restricting our attention to the terms involving the velocity, we require at most u<n−1><d>

for advection and u<n−1><d+2> for the mixing term. We will show later that these quantities
are indeed available.

Derivatives of the velocity

The derivative of the velocity can be derived from the derivative of the shear stress. First
we expand

(
Aν

<0>u<n>
z
)(d+1)

=
d+1

∑
i=0

(
d +1

i

)
Aν

<0>(i)
u<n>(d−i+2)

.

We split-off the term with the highest velocity derivative and rewrite this term to

u<n>(d+2)
=

1
Aν

<0>

((
Aν

<0>u<n>
z
)(d+1)−

d+1

∑
i=1

(
d +1

i

)
Aν

<0>(i)
u<n>(d−i+2)

)
.

Order of calculation

Based on the calculation methods of the shear stress and velocity derivatives, we can
determine when each of these terms can be computed. The tables below show, for
each order of ε (n) and each order of derivation (d), when these terms can be computed.
For example, the first table shows a 4 for n = 3, d = 1. This means that the shear stress(
Aν

<0>u<3>
z
)(2) can be computed at the beginning of the fourth-order computation, i.e.

before u<4>, w<4> and ζ<4> are computed.

As an example, the quantities needed at the fourth order are marked red. Clearly, all
red-marked entries can be calculated at the beginning of the fourth-order computation
or earlier. This means that we have a closed system for computing derivatives.

shear stress 0 1 2 3 4 5 d→
n ↓ 0 1 2 3 4 5 6

1 2 3 4 5 6
2 3 4 5 6
3 4 5 6
4 5 6

velocity 0 1 2 3 4 5 6 d→
n ↓ 0 1 1 1 2 3 4 5

1 2 2 2 3 4 5
2 3 3 3 4 5
3 4 4 4 5
4 5 5 5

Order of convergence: proof of concept

The method for computing derivatives presented above allows us to compute derivatives
accurately, without losing numerical order of convergence. We will show a proof of
concept of this statement by using a simple example. Let us consider a model with a
uniform, time-independent eddy viscosity. We calculate the water motion up to tenth order
and look at the numerical convergence of the leading-order velocity and its derivatives at
the surface z = 0. The result is presented in Figure 7.1. It only presents the even derivatives,
as the odd derivatives are all zero. The figure shows that the velocity and its derivatives
display second-order convergence. The error is about an order of magnitude larger for
the derivatives than for the velocity itself, but the error does not grow when increasing the
order of derivation. The method of taking derivatives presented here thus seems robust.

7.2 Computation of required derivatives 55

1.0 1.5 2.0 2.5 3.0
log10(kmax)

−7

−6

−5

−4

−3

−2

R
e
la

ti
v
e
 e

rr
o
r

Error of u0 and derivatives at surface

der0
der2
der4
der6
der8

Figure 7.1: Relative error of u0 and its derivatives at the surface (z = 0) plotted for vertical
grid resolutions ranging from 10 to 1000 cells. The dashed lines mark no convergence (flat
line), first-order convergence and second-order convergence (steepest sloping line).

8. Reference level

The reference level R can be predefined or computed using iFlow’s ReferenceLevel module.
This module determines the reference level on the basis of the river-induced sub-tidal
water level set-up. To this end the reference level can be expressed as either R0 following
the leading-order river discharge or R1 following the first-order river discharge. Since the
equations are identical in either case, we will present a general equation for R, without any
ordering markers. Since an estimate is sufficient, the reference level is computed using only
the sub-tidal components of the leading-order eddy viscosity and partial slip parameter.
The appropriate sub-tidal equations follow from the leading-order and first-order system of
equations and read (omitting unnecessary ordering marks and subscripts denoting the
riverine component)

−gRx +
(
〈Aν

0〉uz
)

z = 0, (8.1)

• 〈Aν
0〉(x,R)uz(x,R) = 0, (8.2)

•

{
〈Aν

0〉(x,−H)uz(x,−H) = 〈s f (x)〉u(x,−H), or
u(x,−H) = 0,

(8.3)

∫ R

−H
u(x,z)dz =

Q
B
, (8.4)

• R(0) = 0, (8.5)
(8.6)

The solution to Equation (8.1) follows from integrating twice

u =−gRx

(∫ z

−H

R− z̃
Aν

dz̃+

{
R+H

s f
(partial slip)

0 (no-slip)

)
.

58 Chapter 8. Reference level

Inserting this into Equation (8.4) we find

−gRx

∫ R

−H

(∫ z

−H

R− z̃
Aν

dz̃+

{
R+H

s f
(partial slip)

0 (no-slip)

)
dz︸ ︷︷ ︸

U (R)

=
Q
B
.

This equation is non-linear in R and reminds us of the classical equation for stationary
backwater curves. Following a similar method as for backwater curves, the solution can
be computed numerically using an explicit finite differences approach. Starting at x = 0,
it is known that R = 0 from the boundary condition. This can be used to compute Rx by
rewriting the above equation to

Rx(0) =−
Q

gU (0)B(0)
.

The reference level R at a point x = ∆x then follows from

R(∆x) = R(0)+∆xRx(0).

Continuing this approach, the following two equations are solved at every grid point

Rx(x) =−
Q

gU (x)B(x)
, (8.7)

R(x+∆x) = R(x)+∆xRx(x). (8.8)

The thus computed reference level provides an estimate of the sub-tidal water level set-
up directly caused by the river discharge. Any effect of time-varying eddy viscosity or
partial slip parameter as well as non-linear interactions involving the river discharge are
incorporated in the water motion and will not be neglected. Likewise, the water level
term ζ 0

river or ζ 1
river corrects for the difference in numerical errors between the first-order

numerical scheme used here and any other method used to solve the hydrodynamics
equations.

A. Accuracy of near-boundary derivatives

The higher-order model presented in Chapter 7 requires vertical derivatives of arbitrary
order of the horizontal velocity at the surface. In Chapter 7 it is explained how these
derivatives can be computed with a high degree of accuracy. The method developed
there is motivated by the loss of accuracy when simply taking the derivative using a numer-
ical finite difference method or a spectral method. This loss of accuracy is demonstrated
below.

A.1 Finite difference method
While it is possible to solve the higher-order system equation using finite differences, this
method encounters several problems. The first problem is one of general accuracy. As
the higher-order forcing terms require the multiplication of many previously numerically
calculated quantities, there is a risk of a build-up of the numerical error. This problem is
however encountered with any approximating solution method and is best identified by
trying different grid resolution. The second, more imminent problem is in taking high-order
derivatives at the surface. The higher-order terms require taking arbitrary order derivatives
of numerical entities. We will show below that this is possible, but encounters serious
accuracy problems.

Let us consider the nth derivative of a numerical function u(z) at the boundary z = 0 (i.e.
R = 0 for simplicity). This derivative can be determined by using a Taylor series, which in
general reads

u(z) =
∞

∑
m=0

1
m!

u(m)(0)zm.

This series can be used to distil u(n)(0) by taking a set of N + 1 points 0 = z0 > z1 > .. . > zN ,

60 Chapter A. Accuracy of near-boundary derivatives

evaluating

u(n)(0) =
N

∑
k=0

αku(zk)

=
∞

∑
m=0

1
m!

u(m)(0)
N

∑
k=0

αkzm
k

and requiring that{
∑

N
k=0 αkzn

k = n!

∑
N
k=0 αkzm

k = 0 ∀m 6= n,

This set of requirements can be solved when taking as many equations as variables, which
means solving for m = 0, . . . ,N. Note that this implies that N ≥ n. The order of accuracy of
the method is simply given by N−n+1, so that first order accuracy is obtained when N = n.
The coefficients αk can be solved from the matrix equationz0

0 · · · z0
N

...
. . .

...
z0

N · · · zN
N

α0

...
αN

= n!en

This matrix equation can lead to an erroneous estimate for u(n)(0) in two ways. First, the
error depends on the numerical order of accuracy, i.e. N−n+1. The error decreases with
increasing order of accuracy and increases with increasing order of the derivative. The
latter is because higher-order derivatives require more z-points, so that the the first and last
point are spaced further apart. This error can be decreased again by refining the grid.
Second, the error depends on the condition number of the above matrix. The condition
quickly becomes worse for increasing N, so that a higher order of accuracy comes with a
larger condition number. The condition is also worse for finer grids. The two sources of errors
thus pose a strict trade-off between the condition number and the order of accuracy and
the grid spacing. As a result, the error on the direct numerical computation of higher-order
derivatives cannot be bounded. Finite difference differentiation for higher-order derivatives
is therefore not feasible.

A.2 Spectral methods
As higher-order derivatives are a problem in finite difference methods, we try a solution
using spectral methods. As the momentum equation with a parabolic eddy viscosity
profile looks a lot like the Legendre differential equation, the solution is expressed in terms
of Legendre polynomials. Consider the arbitrary-order momentum equation assuming
R = 0 for simplicity

niω û(x,z)− (Aν(x,z)ûz(x,z))z =−gζ̂x(x)+F(x,z), −H(x)≤ z≤ 0 (A.1)
• Aν(x,0)ûz(x,0) = Fsurf, (A.2)
• u(x,−H) = 0. (A.3)

using the usual notation. We assume here that the eddy viscosity has a parabolic profile
according to

Aν(x,z) = Av,0(x)(z∗s H(x)− z)(z+(z∗0 +1)H(x)). (A.4)

Note that this parabolic eddy viscosity uses a dimensionless roughness z∗0 at the bed and
z∗s at the surface. The latter is required in order to have a non-zero eddy viscosity at the

A.2 Spectral methods 61

surface and thus allow for the surface boundary condition. Substituting (A.4) we rewrite
Equation (A.1) to

niω û−Av,0 ((z∗s − z)(z+(z∗0 +1)H)ûz)z =−gζ̂x +F, −H ≤ z≤ 0 (A.5)

Equation (A.5) is further transformed to a new coordinate ẑ, which is defined as

ẑ =
2z
H

+1.

This transforms Equation (A.5) to

niω û−Av,0 ((2z∗s +1− ẑ)(2z0 +1+ ẑ)ûẑ)ẑ =−gζ̂x +F, −1≤ ẑ≤ 1,

which is further rewritten to

niω û−Av,0
(
(1− ẑ2)ûẑ +2z∗s (1+ ẑ)ûẑ +2z∗0(1− ẑ)ûẑ +4z∗0z∗s ûẑ

)
ẑ =−gζ̂x +F, (A.6)

• 2HAv,0z∗s (z
∗
0 +1)ûẑ(x,1) = Fsurf, (A.7)

• û(x,−1) = 0. (A.8)

This equation can be simplified by making use of the Legendre eigenvalue problem((
1− ẑ2)Pn,ẑ

)
ẑ +n(n+1)Pn = 0 −1≤ ẑ≤ 1, (A.9)

The solutions of this eigenvalue problem are Legendre polynomials. The velocity signal û
can now be expanded in terms of the Legendre polynomials found above. The expansion
is truncated after N +1 terms so that the series reads

û(x,z) =
N

∑
k=0

ck(x)Pk(ẑ). (A.10)

Expressions (A.9) and (A.10) are substituted in Equation (A.6) to find

N

∑
k=0

(niω +Av,0k(k+1))ckPk−Av,0
(
(2z∗s (1+ ẑ)+2z∗0(1− ẑ)+4z∗0z∗s)ckPẑ,k

)
ẑ =−gζ̂x +F.

This rewrites to

N

∑
k=0

(niω +Av,0k(k+1))ckPk−Av,0 pẑckPẑ,k−Av,0 pckPẑẑ,k =−gζ̂x +F, (A.11)

•
N

∑
k=0

2HAv,0z∗s (z
∗
0 +1)ckPẑ,k(1) = Fsurf, (A.12)

•
N

∑
k=0

ckPk(−1) = 0, (A.13)

where p(ẑ) = 2z∗s (1+ ẑ)+2z∗0(1− ẑ)+4z∗0z∗s . These equations are evaluated on a Legendre-
Gauss-Lobatto grid. This is the optimal grid for solving the above problem in such a way that
the boundary points are included. The grid is determined as the zeros of the polynomial
Pẑ,N supplemented by the boundary points ẑ =−1 and ẑ = 1. Resulting is a matrix-vector
equation Ac = b, which can be solved for the vector of coefficients c.

For a first simple test we take the leading-order balance, i.e. F = 0, Fsurf = 0. The resulting
velocity profile for z∗0 = z∗s = 0.001 and 50 Legendre polynomials (i.e. N = 49) is plotted in
Figure A.1.

Next considering the derivatives, we present the values of the first 10 derivatives of the
complex amplitude û at the surface in Table A.1. The results are unrealistically large for the

62 Chapter A. Accuracy of near-boundary derivatives

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
|u| M2 (m/s)

−16

−14

−12

−10

−8

−6

−4

−2

0

z
(m

)

Figure A.1: Vertical profile of the leading-order M2 velocity amplitude.

N = 49 N = 50
Value 0.331398590135+0.571918657833i 0.331354073632+0.571862224246i
Derivative 1 −3.24740234703e−15−2.88657986403e−15i 1.85962356625e−15 +4.4408920985e−15i
Derivative 2 −9.17274192145−14.2384109211i −13.7628423338−22.2530758058i
Derivative 3 −1503.97105291−2052.06633488i −5709.71494084−9434.83785597i
Derivative 4 100188.053184+324613.346467i −1929493.09078−3246682.90378i
Derivative 5 142776778.279+282246571.605i −538844780.156−918695754.093i
Derivative 6 50570037196.1+94572152629.9i −126308916525−217338867418i
Derivative 7 1.22127010365e13 +2.23737573114e13i −2.526203683e13−4.37498283231e13i
Derivative 8 2.33008369769e15 +4.22452310456e15i −4.37707835081e15−7.61546724019e15i
Derivative 9 3.72121394705e17 +6.70544468807e17i −6.65801737027e17−1.16230875729e18i
Derivative 10 5.13158186669e19 +9.21027174533e19i −8.99136132495e19−1.57360619242e20i

Table A.1: Surface derivatives of û.

second and higher derivatives. Tests with N larger does only make the results worse. For
example the second derivative for N = 100 is equal to approximately −154−245i.

Looking closer at the second derivative. This is computed according to ûẑẑ(1)=∑
N
k=0 ckPẑẑ,k(1).

The values of Pẑẑ,k(1) diverge, while the absolute values of the coefficients ck converge. The
resulting cumulative sums ∑

n
k=0 ckPẑẑ,k(1) for n = 1,2, . . . ,N converge, but only after strongly

oscillating between values much larger than the final converged result, see Figure A.2. The
cumulative sums thus involve adding and subtracting very large numbers. As this adding
and subtracting needs to be done numerically, this leads to an error of the converged
value of the derivative which is larger than the actual value of the derivative. Spectral
methods therefore also cannot solve the problem of taking high-order derivatives of u at
the surface.

A.2 Spectral methods 63

0 10 20 30 40 50
−100

−80

−60

−40

−20

0

20

40

60

80

Figure A.2: Value of the cumulative sums ∑
n
k=0 ckPẑẑ,k(1) for n = 1,2, . . . ,N = 49, with n on the

horizontal axis. For n = N, this sum equals the second derivative of the velocity u at the
surface. However, this computation is erroneous, since the sum involves numerically adding
and subtracting large numbers.

II

9 Sediment dynamics 67
9.1 Equation
9.2 Scaling and ordering
9.3 Abstract solution
9.4 Harmonic analysis and vector notation
9.5 Numerical solution method

10 Bed exchange . 73
10.1 Derivation of the equation
10.2 Scaling and ordering
10.3 Solution method

Sediment dynamics

9. Sediment dynamics

This chapter provides a comprehensive mathematical derivation of a numerical sediment
module for iFlow. Starting point is the semi-analytical sediment model of Brouwer et al.
(2016b), which is similar to the model by Chernetsky et al. (2010), with the addition of the
sediment advection term. In the present model, we will add the following features

1. Vertical variation of Kν and ws,
2. Leading-order time variation of Kν and ws,

9.1 Equation
We start from the two-dimensional width-averaged sediment equation as presented by
e.g. Chernetsky et al. (2010), which reads

ct +ucx +wcz− (wsc)z = (Kν cz)z +(KHcx)x , (9.1)
• wsc+Kν cz = 0 at z = R+ζ , (9.2)
• wsc+Kν cz = D−E at z =−H. (9.3)

Here c is the suspended sediment mass concentration, ws is the fall velocity, Kν is the vertical
eddy diffusivity, KH is the horizontal eddy diffusivity and D and E denote the deposition
and erosion. Due to our solution method, the horizontal boundary conditions are not yet
required. These will be provided in the availability equation (Section 10).

At the bed we assume a single sediment layer without considering bed stratigraphy. The
deposition D is given by settling, i.e.

D = wsc.

The erosion is formulated as

E = E f (a)

where E is the potential erosion, i.e. the erosion rate irrespective of the sediment availability
under conditions of abundant sediment supply. The function f (a) is the erodability as a

68 Chapter 9. Sediment dynamics

function of the sediment availability. The erodability is assumed to be a number between 0
and 1 and is assumed to be a constant in time. The formulation for E is discussed in Section
9.1.1.

9.1.1 Bed erosion

We will compare two bed erosion formulations. The first is the expression used by Chernetsky
(2012). His expression is adapted to use the erodability instead of availability (also see
Brouwer et al. (2016a))

E = wsc∗, (9.4)

where

c∗ =
ρs

ρ0g′ds
finf|τb| f (a),

where ρs is the bulk dry sediment density, g
′
= g(ρs−ρ0)/ρ0 is reduced gravity, ds is a typical

grain size, finf is some calibration constant and τb is the bed shear stress. Chernetsky (2012)
uses the availability a instead of finf f (a) in his original erosion formulation. The magnitude
of his a is controlled by a calibration parameter a∗, so that he has the same number of
calibration parameters.

Alternatively, we consider the standard Partheniades model (Kandiah, 1974), slightly
rewritten

E =

{
M|τb− τc| if |τb|> τc,

0 if |τb| ≤ τc.

where M is some erosion parameter and τc is the critical shear stress. Although almost
never mentioned explicitly, this expression holds for the potential erosion E assuming there
is sufficient sediment to erode (also see above). It thus requires additional bookkeeping of
the sediment availability to compute the actual erosion. For simplicity we will assume that
τc = 0 to find

E = M|τb|. (9.5)

Expressions (9.4) and (9.5) are equivalent if M =ws
ρs

ρ0g′ds
finf. Typically, however, M is regarded

as a calibration parameter that has no apparent relation to the sediment density, size or
fall velocity. As both expressions contain the same number of calibration parameters they
can be regarded as fully equivalent. Momentarily the sediment model only implements
the Chernetsky et al. (2010) model.

9.2 Scaling and ordering
For the scaling of the sediment model the reader is referred to the iFlow manual for the
package semi_analytical (Brouwer, 2017). We then make an ordering of the concentra-
tion, fall velocity and eddy diffusivity as

c = c0 + c1 + c2 + . . . ,

ws = w0
s +w1

s +w2
s + . . . ,

Kν = Kν
0 +Kν

1 +Kν
2 + . . . ,

where c0, w0
s , Kν

0 are of leading order, c1, w1
s , Kν

1 are of order ε etc. Similarly we make an
ordering of the erosion E, which then breaks down into an ordering of the bed shear stress
and fall velocity. The erodability f is not ordered.

9.2 Scaling and ordering 69

The ordering of c, ws and Kν are inserted into the sediment equation (9.1). This surface
boundary condition is then linearised around the reference level z = R. Using the ordering
and the scaling we find the following equation at the leading leading order

c0
t −
(
w0

s c0 +Kν
0c0

z
)

z = 0, (9.6)

• w0
s c0 +Kν

0c0
z = 0 at z = R, (9.7)

• Kν
0c0

z =−E0 at z =−H. (9.8)

And at the first order

c1
t −
(
w0

s c1 +Kν
0c1

z
)

z =−u0c0
x−w0c0

z −
(
w1

s c0)
z−
(
Kν

1c0
z
)

z , (9.9)

• w0
s c1 +Kν

0c1
z =−w1

s c0−Kν
1c0

z −
(
w0

s c0 +Kν
0c0

z
)

z︸ ︷︷ ︸
c0

t

ζ
0 at z = R, (9.10)

• Kν
0c1

z =−E1−Kν
1c0

z at z =−H. (9.11)

The equality c0
t =

(
w0

s c0 +Kν
0c0

z
)

z used in (9.10) is derived from (9.6). The second-order
sediment dynamics will be largely disregarded, except for the sediment concentration
induced by resuspension by the river flow. The equation for this reads

c2
t −
(
w0

s c2 +Kν
0c2

z
)

z = 0, (9.12)

• w0
s c2 +Kν

0c2
z = 0 at z = R, (9.13)

• Kν
0c2

z =−E2
river-river at z =−H. (9.14)

For ease of writing, we define the following quantities

η
1
c = u0c0

x +w0c0
z , (9.15)

ψ
1
c = Kν

1c0
z , (9.16)

ξ
1
c = w1

s c0, (9.17)

χ
1
c = c0

t ζ
0, (9.18)

(9.19)

The resulting equation with boundary conditions reads

c0
t −
(
w0

s c0 +Kν
0c0

z
)

z = 0, (9.20)

• w0
s c0 +Kν

0c0
z = 0 at z = R, (9.21)

• Kν
0c0

z =−E 0 f at z =−H. (9.22)

And at the first order

c1
t −
(
w0

s c1 +Kν
0c1

z
)

z =−η
1
c −ξ

1
c −ψ

1
c,z, (9.23)

• w0
s c1 +Kν

0c1
z =−ξ

1
c −ψ

1
c −χ

1
c at z = R, (9.24)

• Kν
0c1

z =−E 1 f −ψ
1
c at z =−H. (9.25)

Finally, the second-order equation, with only river-induced resuspension, reads

c2
t −
(
w0

s c2 +Kν
0c2

z
)

z = 0, (9.26)

• w0
s c2 +Kν

0c2
z = 0 at z = R, (9.27)

• Kν
0c2

z =−E 2
river-river f at z =−H. (9.28)

70 Chapter 9. Sediment dynamics

9.3 Abstract solution
The sediment equation can be seen as an abstract linear equation in c forced by a number
of components. We identify five forcing components:

1. erosion (E 0 f , E 1 f , E 2 f),
2. sediment advection (η1

c),
3. the no-flux surface boundary condition (χ1

c),
4. higher-order fall velocity variations (ξ 1

c),
5. higher-order eddy viscosity variations (ψ1

c).

Only the erosion is found at the leading order, while all five appear at the first order.

The remaining unknown in the forcing components is the erodability f (a). It will be shown
here that all the forcing components can be expressed in terms of f (a) and we will use this
to define the abstract form of the solution to the sediment equation in terms of f (a). First,
the leading-order erosion was already written in terms of f (a), see (??)). We can therefore
express the leading-order solution as

c0 = Ĉ 0 f (a), (9.29)

where Ĉ 0 is some linear operator that is computed numerically.

The abstract leading-order solution (9.29) can then be used to rewrite the forcing compo-
nents for the first order. Substituting this expression yields

η
1
c = u0Ĉ 0

x f (a)+u0Ĉ 0 fx(a)+w0Ĉ 0
z f (a),

ψ
1
c = Kν

1Ĉ 0
z f (a),

ξ
1
c = w1

s Ĉ
0
z f (a),

χ
1
c =

(
ζ

0Ĉ 0
t
)

f (a),

E1 = E 1 f .

We thus see that the first-order forcing scales with either f (a) and fx(a). The first-order
solution can then be written as

c1 = Ĉ 1
a f (a)+ Ĉ 1

ax fx(a). (9.30)

Similarly, the second-order equation is forced by E2 = E 2 f and can be written as

c2
river-river = Ĉ 2

a f (a). (9.31)

9.4 Harmonic analysis and vector notation
We will write the concentration, fall velocity and vertical eddy diffusivity in terms of har-
monic components of the form

ci(x,z, t) = Re

(
p

∑
n=0

ĉi(x,z)eniωt

)
,

wi
s(x,z, t) = Re

(
p

∑
n=0

ŵi
s(x,z)e

niωt

)
,

Kν
i(x,z, t) = Re

(
p

∑
n=0

K̂i
ν(x,z)e

niωt

)
.

9.5 Numerical solution method 71

The concentration is most easily solved for when the negative Fourier components are
taken into account as well. We will therefore use the alternative notation

ci(x,z, t) = Re

(
p

∑
n=−p

c̆i(x,z)eniωt

)
, (9.32)

with ĉi
n = c̆i

n + c̆i
−n for n = 1, . . . , p and ĉi

0 = c̆i
0. We will also define the following vectors:

c̆i =
[
c̆i
−p, . . . , c̆

i
0, . . . , c̆

i
p
]T

,

w̆s
i =
[
ŵs

i
p, . . . , ŵs

i
1, ŵ

i
s0, . . . , ŵ

i
sp

]T
,

K̆ν

i
=

[
K̂ν p

i
, . . . , K̂ν1

i
, K̂i

ν0, . . . , K̂
i
ν p

]T

,

η̆c
i =
[
η̆c,p

i
, . . . , η̆c,1

i
, η̆ i

c,0, . . . , η̆
i
c,p

]T
,

ψ̆c
i =
[
ψ̆c,p

i
, . . . , ψ̆c,1

i
, ψ̆ i

c,0, . . . , ψ̆
i
c,p

]T
,

ξ̆c
i
=

[
ξ̆c,p

i
, . . . , ξ̆c,1

i
, ξ̆ i

c,0, . . . , ξ̆
i
c,p

]T

,

χ̆c
i =
[
χ̆c,p

i
, . . . , χ̆c,1

i
, χ̆ i

c,0, . . . , χ̆
i
c,p

]T
.

Substituting the above vectors in the ordered equations (9.6)-(9.11), we obtain the follow-
ing matrix equations

Dc̆0−
(
W 0

s c̆0 +K 0c̆0
z
)

z = 0, (9.33)

• W 0
s c̆0 +K 0c̆0

z = 0 at z = R, (9.34)

• K 0c̆0
z =−E 0 f at z =−H. (9.35)

And at the first order

Dc̆1−
(
W 0

s c̆1 +K 0c̆1
z
)

z =−η̆c
1− ξ̆

1

z
− ψ̆

1
c,z
, (9.36)

• W 0
s c̆1 +K 0c̆1

z =−ξ̆
1
− ψ̆

1
c
− χ̆

1
c

at z = R, (9.37)

• K 0c1
z =−E 1 f − ψ̆

1
c

at z =−H. (9.38)

Here the matrix D is a diagonal matrix with components −piωt, . . . , piωt. The matrices Ws, K
and E i contain the components of the fall velocity, eddy diffusivity and erosion respectively.
The sediment balance is solved in terms of the unknown f , which is a function of x. The
second-order model is of a similar form as the leading-order model and is omitted here for
brevity.

9.5 Numerical solution method
The general form of the sediment balance reads, omitting ·̆ and order notation for gener-
ality,

Dc−
(
Wsc+K cz

)
z = f , (9.39)

• Wsc+K cz = f surf at z = R, (9.40)

• K cz = f bed at z =−H. (9.41)

We use a second-order central method for the diffusive term
(
K cz

)
z. This method uses

small grid spacing by acting over half grid cells. A first-order upwind method over full

72 Chapter 9. Sediment dynamics

grid cells is used for the settling term (Wsc)z. Since the settling is directed downwards, the
upwind direction is known and constant. The resulting discretisation for interior grid cells
reads

Dck−
(
Ws,k−1ck−1−Ws,kck

)
∆z

k− 1
2

−

(
K

k− 1
2

c
z,k− 1

2
−K

k+ 1
2

c
z,k+ 1

2

)
∆z

k− 1
2

= f
k
,

which further rewrites to

Dck−
(
Ws,k−1ck−1−Ws,kck

)
∆z

k− 1
2

−

(
K

k− 1
2

ck−1−ck
∆zk−1

−K
k+ 1

2

ck−ck+1
∆zk

)
∆z

k− 1
2

= f
k
.

The eddy diffusivity at the points k− 1
2 are defined as

K
k− 1

2
=

Kk−1 +Kk

2
.

A naive and simple way to discretise the boundary conditions is according to a first-order
scheme

Ws,0c̆0 +
K0−K1

∆z0
= f surf,

Kkkmax−1 −Kkkmax

∆zkkmax−1

= f bed.

10. Bed exchange

10.1 Derivation of the equation
The exchange of sediment with the bed is modelled through the sediment availability. This
is modelled using the balance equation

βat = D−E, (10.1)

where a is the sediment availability (dimensionless) and D and E are the erosion and
deposition per metre width of the estuary. The sediment availability can have different
interpretations and the parameter β is included to convert between some different inter-
pretations. If β = ρs(1−n)H0, with ρs the dry bed density, n the bed porosity (i.e. ρs(1−n)
equals ρbed, the actual bed density) and H0 a reference thickness (in metre), the availabil-
ity equals the thickness of the sediment layer relative to H0. If H0 = 1 m, (10.1) corresponds
to the Exner equation. Here we will take β equal to a a reference mass per bottom surface
area M0 (in kg/m2). By default we will choose β = M0 = 1 kg/m2.

Following Chernetsky (2012) we rewrite this equation by integrating the sediment balance
(9.1) ∫ R+ζ

−H
ct dz+

∫ R+ζ

−H
ucx +wcz dz−

∫ R+ζ

−H
(wsc+Kν cz)z dz =

1
B

∫ R+ζ

−H
(BKHcx)x dz

This is rewritten using the Leibniz rule for integration(∫ R+ζ

−H
cdz
)

t
−cζt +

1
B

(∫ R+ζ

−H
Bucdz

)
z
−uc(R+ζ)x +uc(−H)x

−
∫ R+ζ

−H
(Bu)xc+wzcdz+ wcz|R+ζ

− wc|−H + (wsc+Kν cz)|R+ζ
− (wsc+Kν cz)|−H

=
1
B

(∫ R+ζ

−H
BKHcx dz

)
x
−KHcx(R+ζ)x +KHcx(−H)x.

74 Chapter 10. Bed exchange

Here

c(w−ζt −u(R+ζ)x) = 0 at z = R+ζ kinematic BC
c(w+uHx) = 0 at z =−H kinematic BC

wsc+Kν cz−KHcx(R+ζ)x = 0 at z = R+ζ surface BC
wsc+Kν cz +KHcx(H)x = D−E at z =−H bottom BC∫ R+ζ

−H
(Bu)xc+wzcdz = 0 continuity.

We then obtain(∫ R+ζ

−H
cdz
)

t
+

1
B

(∫ R+ζ

−H
Bucdz

)
z
− 1

B

(∫ R+ζ

−H
BKHcx dz

)
x
=−D+E

Substituting this in (10.1) we findβa+
∫ R+ζ

−H
cdz︸ ︷︷ ︸

=S

t

=− 1
B

(
B
∫ R+ζ

−H
uc−KHcx dz

)
x
.

We will only consider the subtidal part of this equation, meaning that the left-hand side
vanishes and we find〈

B
∫ R+ζ

−H
uc−KHcx dz

〉
x
= 0,

where 〈·〉 denotes the tidal-average. This equation requires one horizontal boundary
condition, for which we describe that he advective and diffusive transport vanishes in
time-average sense at the landward boundary, i.e.〈

B
∫ R+ζ

−H
uc−KHcx

〉
= 0 at x = L, (10.2)

Therefore we can integrate the equation, use the boundary condition to find〈
B
∫ R+ζ

−H
uc−KHcx dz

〉
= 0, (10.3)

10.2 Scaling and ordering
Using the same scaling arguments as before we find that the equation vanishes at leading-
order. At first-order we find〈

B
∫ R

−H
u0c0 dz

〉
x
. (10.4)

It is assumed that the velocity u0 only contains an M2 component and the concentration
c0 only contains M0 and M4 components. In that case, the time-average of u0c0 vanishes,
so that the first-order equation vanishes. Therefore the second-order equation is required
as a closure condition (this is explained below). The second-order equation reads〈

B
∫ R

−H
u1c0 +u0c1−KHc0

x dz+Bζ
0 u0c0∣∣

z=R

〉
= 0. (10.5)

In practice it is found that, near the landward end, the transport by the river flow is
dominant and needs to be included to prevent sediment from accumulating near the

10.3 Solution method 75

boundary. Therefore we include the fourth-order transport terms B
∫ R
−H u1

t extriverc2
river-river +

KHc2
river-river, x dz. By including this term and not any other fourth-order terms, we consciously

break the scaling and consistency. Whenever this fourth-order river-induced transport term
becomes the dominant mechanism explaining the sediment dynamics, the model results
need to be treated with care.

The concentration computed in Section ?? depends on the erodability f (a), see (9.29),
(9.30) and (9.31). In the following we will assume f = a. Future versions of the model will also
allow for other formulations. We then find that the solutions for the concentration become

c0 = Ĉ 0a,

c1 = Ĉ 1
a a+ Ĉ 1

ax ax,

c2
river-river = Ĉ 2

a a.

The equation can then be rewritten to〈
B
∫ R

−H
u1Ĉ 0a+u0Ĉ 1

a a+u0Ĉ 1
ax ax +u1

riverĈ
2
a a−KH

(
Ĉ 0a

)
x−KH

(
Ĉ 2a

)
x dz+Bζ

0 u0Ĉ 0∣∣
z=R a

〉
= 0.

Gathering terms that scale with a and ax we find〈
B
∫ R

−H
u1Ĉ 0 +u0Ĉ 1

a +u1
riverĈ

2
a −KH Ĉ 0

x −KH Ĉ 2
x dz+Bζ

0 u0Ĉ 0∣∣
z=R

〉
︸ ︷︷ ︸

=T

a+
〈
u0Ĉ 1

ax −KH Ĉ 0
x −KH Ĉ 2

x
〉︸ ︷︷ ︸

=F

ax = 0

(10.6)

In short this reads

Ta+Fax = 0. (10.7)

This expression still requires a boundary condition. We will follow Chernetsky et al. (2010)
and use

a∗ =
∫ L

0 Badx∫ L
0 Bdx

, (10.8)

where a∗ is the domain-average availability. This availability needs to be prescribed
externally.

10.3 Solution method
The subtidal closure equation (10.7) is a first-order differential equation in a. The general
solution to this reads

a = ke−
∫ x

0
T
F dx′ .

The constant of integration k follows from the boundary condition

k =
a∗
∫ L

0 Bdx∫ L
0 Be−

∫ x
0

T
F dx′ dx

, (10.9)

The transport terms T and F can be decomposed into several contributions related to the
forcing of the velocity or concentration. Details on this decomposition are discussed in the
manual of the package semi_analytical (Brouwer, 2017).

Bibliography

Brouwer, R. L. (2017). Semi-analytical 2DV perturbation model. Package for iFlow.

Brouwer, R. L., Schramkowski, G. P., de Swart, H. E., de Mulder, T., Verwaest, T., and Mostaert, F.
(2016a). Geïdealiseerde proceprocess van systeemovergangen naar hypertroebelheid.
WP 1.5 Niet-lineair sedimsediment. Technical report, Waterbouwkundig Laboratorium
Borgerhout/Flanders Hydraulics Research, Antwerp. In Dutch.

Brouwer, R. L., Schramkowski, G. P., Verwaest, T., and Mostaert, F. (2016b). Geïdealiseerde
proceprocess van systeemovergangen naar hypertroebelheid. WP 1.4 Basismodel sedi-
ment. Technical report, Waterbouwkundig Laboratorium Borgerhout/Flanders Hydraulics
Research, Antwerp. In Dutch.

Chernetsky, A. S. (2012). Trapping of sediment in tidal estuaries. PhD thesis, TU Delft.

Chernetsky, A. S., Schuttelaars, H. M., and Talke, S. A. (2010). The effect of tidal asymmetry
and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics,
60:1219–1241.

Dijkstra, Y. M. (2017). iFlow modelling framework. User manual & technical description.

Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P. (Manuscript
submitted to Geoscientific Model Development). The iFlow Modelling Framework v2.4. A
modular idealised process-based model for flow and transport in estuaries.

Ensing, E., De Swart, H. E., and Schuttelaars, H. M. (Manuscript in preparation). The role of
flow-turbidity ffeedback in highly turbid estuaries.

Ianniello, J. P. (1977). Tidally induced residual currents in estuaries of constant breadth and
depth. Journal of Marine Research, 35:755–786.

Ianniello, J. P. (1979). Tidally induced residual currents in estuaries of variable breadth and
depth. Journal of Physical Oceanography, 9:962–974.

Kandiah, A. (1974). Fundamental aspects of surface erosion of cohesive soils. PhD thesis,
University of California, Davis.

78 Chapter 10. Bed exchange

McCarthy, R. K. (1993). Residual currents in tidally dominated, well-mixed estuaries. Tellus,
45A:325–340.

Wei, X., Schramkowski, G. P., and Schuttelaars, H. M. (2016). Salt dynamics in well-mixed
estuaries: Importance of advection by tides. Journal of Physical Oceanography, 46:1457–
1475.

	1 Modules Reference
	1.1 General
	1.2 Hydrodynamics
	1.3 Sediment
	1.4 Salinity

	2 Introduction: approach and domain
	3 Grids
	Part I — Leading-order and first-order hydrodynamics
	4 Equations and perturbation approach
	4.1 Scaling
	4.2 Ordering & overview of the equations

	5 Harmonic analysis
	5.1 Illustration of the derivation
	5.2 Leading-order equations
	5.3 First-order equations
	5.4 Generalisation

	6 Numerical implementation
	6.1 Implementation of the generalised momentum equation
	6.2 Implementation of the generalised depth-averaged continuity equation

	7 Higher order model
	7.1 Derivation of the equations
	7.2 Computation of required derivatives

	8 Reference level
	A Accuracy of near-boundary derivatives
	A.1 Finite difference method
	A.2 Spectral methods

	Part II — Sediment dynamics
	9 Sediment dynamics
	9.1 Equation
	9.2 Scaling and ordering
	9.3 Abstract solution
	9.4 Harmonic analysis and vector notation
	9.5 Numerical solution method

	10 Bed exchange
	10.1 Derivation of the equation
	10.2 Scaling and ordering
	10.3 Solution method

