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Abstract. Aliasing errors arise in the multiplication of par-
tial sums, such as those encountered when numerically
solving the Navier–Stokes equations, and can be detrimen-
tal to the accuracy of a numerical solution. In this work,
a performance–cost analysis is proposed for widely used5

dealiasing schemes in large-eddy simulation, focusing on a
neutrally stratified, pressure-driven atmospheric boundary-
layer flow. Specifically, the exact 3/2 rule, the Fourier trun-
cation method, and a high-order Fourier smoothing method
are intercompared.10

Tests are performed within a newly developed mixed
pseudo-spectral finite differences large-eddy simulation
code, parallelized using a two-dimensional pencil decompo-
sition. A series of simulations are performed at varying res-
olution, and key flow statistics are intercompared among the15

considered runs and dealiasing schemes.
Both the Fourier truncation and the Fourier smoothing

method correctly predict basic statistics. However, they both
prove to provide less accurate flow statistics when compared
to the traditional 3/2 rule. The accuracy of the methods is20

dependent of the resolution. The biggest advantage of both
of these methods against the exact 3/2 rule is a notable re-
duction in computational cost with an overall reduction of
15 % for a resolution of 1283, 17 % for 1923, and 21 % for
2563.TS125

1 Introduction

The past decades have seen significant progress in computer
hardware in remarkable agreement with Moore’s law, which
states that the number of nodes in the discretization grids
doubles every 18 months (Moore, 1965; Voller and Porté- 30

Agel, 2002; Takahashi, 2005). A comparable progress has
been made in software development, with the rise of new
branches in numerical analysis like reduced-order modeling
(Burkardt et al., 2006) and uncertainty quantification (Najm,
2009), as well as the development of highly efficient numeri- 35

cal algorithms and computing frameworks like isogeometric
analysis (Hsu et al., 2011) or GPU computing (Hamada et al.,
2009; Bernaschi et al., 2010)

At the same time, with increasing computer power, the
range of scales and applications in computational fluid dy- 40

namics (CFD) has significantly broadened, allowing us to
describe – at an unprecedented level of detail – complex
flow systems such as fluid–structure interaction (Hughes
et al., 2005; Bernaschi et al., 2010; Takizawa and Tezduyar,
2011), land–atmosphere exchange of scalars, momentum and 45

mass (Moeng, 1984; Albertson and Parlange, 1999; Bou-
Zeid et al., 2004; Calaf et al., 2010; Anderson et al., 2012;
Giometto et al., 2016, 2017), weather research and fore-
casting (Skamarock et al., 2008), micro-fluidics (Wörner,
2012), and canonical wall-bounded flows (Schlatter and 50

Örlü, 2012), to name but a few. Despite this progress, high-
resolution simulations effectively exploiting current hard-
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2 F. Margairaz et al.: Comparison of dealiasing schemes in large-eddy simulation

ware and software capabilities (i.e., following Moore’s law)
are challenging as they require significant computational re-
sources, which most research groups do not have at their dis-
posal (Bou-Zeid, 2014). As a result, methods that aim at re-
ducing computational requirements while preserving numer-5

ical accuracy are still of great interest.
The Fourier-based pseudo-spectral collocation method

(Orszag, 1970; Orszag and Pao, 1975; Canuto et al., 2006)
remains the preferred “work horse” in simulations of wall-
bounded flows over horizontally periodic regular domains.10

This is often used in conjunction with a centered finite-
difference or Chebychev polynomial expansions in the ver-
tical direction (Albertson, 1996; Moeng and Sullivan, 2015).
The main strength of such an approach is the high order
of accuracy of the Fourier partial sum representation, cou-15

pled with the intrinsic efficiency of the fast Fourier trans-
form algorithm (Cooley and Tukey, 1965; Frigo and John-
son, 2005). In such algorithms, the leading-order error term
is represented by the aliasing that arises when evaluating the
quadratic nonlinear term (convective fluxes of momentum).20

This was first discovered in the early works of Orszag and
Patterson (Orszag, 1971; Patterson, 1971), which also set a
cornerstone in the treatment and removal of aliasing errors
in pseudo-spectral collocation methods. Aliasing errors can
severely deteriorate the quality of the solution, as exemplified25

by the large body of literature that has dealt with the topic. In
Horiuti (1987) and Moin and Kim (1982), it was shown how
the energy-conserving rotational form of the large-eddy sim-
ulation (LES) equations performed poorly without dealiasing
and that the proper removal of such error significantly im-30

proved the accuracy of the solution in statistics like the flow
turbulent shear stress, turbulence intensities, and two-point
correlations. As shown in Moser et al. (1983), Zang (1991),
and Kravchenko and Moin (1997), aliasing errors do not al-
ter the energy conservation properties of the rotational form35

of the LES equations, but the additional dissipation that is
introduced makes the flow prone to laminarization. Dealias-
ing is hence required in order to accurately resolve turbulent
flows with a well-developed inertial subrange, such as atmo-
spheric boundary layer (ABL) flows, for instance. However,40

the classic (exact) dealiasing methods developed in Patterson
(1971) based on padding and truncation (the 3/2 rule) or on
the phase-shift technique have proven to be computationally
expensive and are one of the most costly modules for mo-
mentum integration in high-resolution simulations, as it will45

be shown later in this work. For example, in simulations with
Cartesian discretization, where N is the number of colloca-
tion nodes in each of the three coordinate directions, the 3/2
rule requires us to expand the number of nodes to 3/2 × N ,
and the phase-shift method needs grids with 2 × N nodes.50

As a result, the computational burden introduced by these
methods is high, mainly due to the nonlinear increase in the
cost of the fast Fourier transform algorithm (such as the one
implemented in the Fastest Fourier Transform in the West
(FFTW) library). Additionally, this cost rises more rapidly55

when the Fourier transform is performed in higher dimen-
sions. Therefore, the treatment of aliasing errors severely
limits the computational performances of large-scale models
based on high-order schemes.

This has motivated efforts towards the development of ap- 60

proximate yet computationally efficient dealiasing schemes,
such as the Fourier truncation (FT) method (Orszag, 1971;
Moeng, 1984; Moeng and Wyngaard, 1988), the Fourier
smoothing (FS) method (Hou and Li, 2007), and the more
recent implicit dealiasing of Bowman and Roberts (2011). 65

Details on the FT and the FS techniques are provided in the
following section. Limits and merits of the different dealias-
ing techniques have been extensively discussed in the past
decades within the turbulent flow framework (Moser et al.,
1983; Zang, 1991). 70

In this work, we provide a cost–benefit analysis and a com-
parison of turbulent flow statistics for the FT and FS dealias-
ing schemes in comparison to the exact 3/2 rule using a
set of LES of fully developed ABL-type flows. Simulations
and benchmark analysis are performed using a recently de- 75

veloped mixed pseudo-spectral finite difference code, paral-
lelized via a pencil decomposition technique based on the
2DECOMP&FFT library (Li and Laizet, 2010). Results of
this work are of prime interest to the environmental fluids
community (e.g., ABL community) because they can help 80

improve the numerical performance of some of the numeri-
cal approaches used. An overview of the different dealiasing
methods is provided in Sect. 2. Section 3 briefly presents the
LES platform with important benchmark results. The com-
putational cost analysis and flow statistics obtained with the 85

different dealiasing schemes are later discussed in Sect. 4.
Finally, the conclusions are presented in Sect. 6.

2 Dealiasing methods

Aliasing errors result from representing the product of two
or more variables by N wavenumbers, when each one of 90

the variables is itself represented by a finite sum of N terms
(Canuto et al., 2006); here, N is assumed even. Such is the
case for example when treating the nonlinear advection term
in the Navier–Stokes (NS) equations. Let f and g be two
smooth functions with the corresponding discrete Fourier 95

transforms expressed as

f (x) =

N/2−1∑
k=−N/2

f̂ke
ikx and g(x) =

N/2−1∑
m=−N/2

ĝke
ikx, (1)

with f̂k and ĝk being the amplitudes of the kth Fourier mode
of f and g. The product of the two functions is hence given
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F. Margairaz et al.: Comparison of dealiasing schemes in large-eddy simulation 3

by

h(x) = f (x)g(x) =

N/2−1∑
m=−N/2

f̂meimx
N/2−1∑

n=−N/2
ĝne

inx

=

N−1∑
k=−N

ĥke
ikx, (2)

with

ĥk =

∑
m+n=k

f̂nĝm and |m|, |n| ≤ N/2. (3)5

Note that the corresponding expression for the Fourier
transform of the product h (result of the convolution of f

with g) requires 2N modes. Therefore, the exact computa-
tion of the product represents a major numerical cost. Tradi-
tionally the convolution of the two functions f and g is made10

with only N Fourier modes,

h(x) =

N/2−1∑
k=−N/2

h̃ke
ikx . (4)

As a result, the energy contained within the remaining
N + 1 to 2N modes folds back on the first N modes, and
the amplitude of the first N modes (h̃k) is aliased. This can15

be related to the exact amplitude ĥk as

ĥk =

∑
m+n=k

f̂nĝm +

∑
m+n=k±N

f̂nĝm = h̃k

+

∑
m+n=k±N

f̂nĝm, (5)

with

h̃k =

∑
m+n=k

f̂nĝm and − N/2 ≤ k ≤ N/2 − 1, (6)20

such that the second term contains the aliasing errors on
the kth mode. Aliasing errors propagate in the solution of
the differential equation and can induce large errors. For the
pseudo-spectral methods, the truncation and aliasing errors
affect both the accuracy and the stability of the numerical so-25

lution (see Canuto et al., 2006, Sect. 3, and Canuto et al.,
2007, Sect. 3, for detailed discussion). Traditionally, the
aliasing errors are treated using one of the two methods dis-
cussed below.

The 3/2-rule method is based on the so-called padding30

and truncation technique, where the Fourier partial sums are
zero-padded in Fourier space by half the available modes
(from N to 3/2N ), inverse-transformed to physical space be-
fore multiplication, multiplied, and then truncated back to the
original variable size (N ). This method fully removes alias-35

ing errors. However, the high computational cost related to
the inverse transform operation discourages its use in large-
scale simulations. The fast Fourier transform (FFT) algo-
rithm has an operational complexity of N log2(N); counting

the number of FFT and multiplications, the operation count 40

of the 3/2 rule applied to dealias the product of two vectors
of N components becomes (45/4)N log2(3N/2) (Canuto
et al., 2006). An alternative method is the so-called phase-
shift method, which consists of shifting the grid of one of
the variables in physical space. Given the appropriate shift, 45

the aliasing errors are eliminated naturally in the evalua-
tion of the convolution sum. This method has a cost equal
to 15N log2(N) (Canuto et al., 2006), which is even greater
than the 3/2 rule (Patterson, 1971; Orszag, 1972). The dis-
cussion above concerns one-dimensional problems, but the 50

expansion to higher-dimensional problems is straightforward
(Iovieno et al., 2001; Canuto et al., 2006). Although this
method provides the full dealiasing of the nonlinear term, the
cost of expanding the number of Fourier modes by a factor
of 3/2 is a computationally expensive endeavor, especially 55

with the progressively increasing size of numerical grids. To
reduce the numerical burden, two additional methods were
proposed in the past for treating the aliasing errors: the FS
method (Hou and Li, 2007), and the FT method (Orszag,
1971; Moeng, 1984; Moeng and Wyngaard, 1988). In both 60

methods, a set of high-wavenumber Fourier amplitudes are
multiplied by a test function û∗

k = f (k)uk to avoid expan-
sions to larger number of modes. As its name indicates, the
FT method sets to zero the last third of the Fourier modes
(f (k) = 0, for k > 2N/3), equivalent to a sharp spectral cut- 65

off filter. On the other hand, the FS method consists of a
progressive attenuation of the higher frequencies using the
weighting function f (k) = e−36k36

(Hou and Li, 2007). Fig-
ure 1 presents the spectral function f (k) for the two differ-
ent methods. Note that both the FT and FS methods behave 70

like a low-pass filter. Although the FT method (continuous
line) sets to zero any coefficient larger than k/kN > 2/3, the
FS method (dashed line) keeps all the wavelengths unper-
turbed up until k/kN > 3/4 and then progressively damps
the amplitude of the higher-wavenumber terms. The advan- 75

tage of both of these methods is that they avoid the need
for padding the Fourier partial sums and hence reduce the
numerical cost. Specifically, the computational cost of these
methods is (15/2)N log2(N) (Canuto et al., 2006), resulting
in methods 33% less computationally expensive than the 3/2 80

rule. The drawback of such approximate approaches is, how-
ever, the fact that a filtering operation is applied to the advec-
tion term, resulting in a loss of information. A desirable prop-
erty of the FS technique when compared to the FT method is
that the former exhibits a more localized error and is dynam- 85

ically very stable (Hou and Li, 2007), while the latter tends
to generate oscillations on the whole domain.
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Figure 1. Weighting functions used in the FT method (dashed line)
and the FS method (continuous line). The FT method filters scales
with k/kN > 2/3 and the FS method at k/kN > 3/4.

3 Large-eddy simulation framework

3.1 Equations and boundary conditions

The LES approach consists of solving the filtered NS equa-
tions, where the time and space evolution of the turbulent ed-
dies larger than the grid size are fully resolved, and the effect5

of the smaller ones is parameterized. Mathematically, this is
described through the use of a numerical filter that separates
the larger, energy-containing eddies from the smaller ones.
Often, the numerical grid of size 1 is implicitly used as a
top-hat filter, hence reducing the computational cost (Sagaut,10

2006; see Moeng and Sullivan, 2015, for an overview of the
technique in ABL research). As a result, the velocity field can
be separated in a resolved component (ũi , where i = 1,2,3)
and an unresolved contribution (u′

i) (Smagorinsky, 1963).
For this technique to be successful, the low-pass filter oper-15

ation must be performed at a scale smaller than the energy
production range, deep in the inertial subrange according
to Kolmogorov’s hypothesis (Kolmogorov, 1968; Piomelli,
1999). In atmospheric boundary-layer flow simulations, this
requirement is known to hold in the bulk of the flow, where20

contributions from the sub-grid-scale (SGS) motions (or sub-
filter-scale motions) to the overall dissipation rate are mod-
est. In the near-surface regions such a requirement is not met,
as the characteristic scale of the energy production range
L scales with the distance from the wall (L≈ κz, where25

κ ≈ 0.4 is the Von Kármán constant and z is the wall-normal
distance from the wall); hence, this remains an active re-
search field (Sullivan et al., 1994; Meneveau et al., 1996;
Porté-Agel et al., 2000; Hultmark et al., 2013; Lu and Porté-
Agel, 2014). In this work, the rotational form of the filtered30

NS equations are integrated, ensuring conservation of mass
of the inertial terms (Kravchenko and Moin, 1997). The cor-
responding dimensional form of the equation reads as

∂i ũi = 0, (7)

∂t ũi + ũj

(
∂j ũi − ∂i ũj

)
= −∂i p̃∗ − ∂j τ

1,d
ij + f̃i . (8)35

In these equations, ũi are the velocity components in
the three coordinate directions x,y,z (streamwise, spanwise,
and vertical, respectively), p̃∗ denotes the perturbed modified
pressure field defined as p̃∗

= p̃+
1
3ρ0τ

1
kk+

1
2 ũj ũj , where the

first term is the kinematic pressure, the second term is the 40

trace of the sub-grid stress tensor, and the last term is an ex-
tra term coming from the rotational form of the momentum
equation. Here, f̃i represents a generic volumetric force. The
flow is driven by a constant pressure gradient in the stream-
wise direction imposed through the body force f̃i . The sub- 45

grid stress tensor is defined as τ1
ij = ũiuj − ũi ũj , where the

deviatoric components are written using an eddy-viscosity
approach

τ
1,d
ij = τ1

ij −
1
3
τ1
kkδij = 2νT S̃ij , (9)

with νT = (CS1)2
|S̃| being the so-called eddy viscosity, 50

S̃ij =
1
2

(
∂j ũi + ∂i ũj

)
the resolved strain rate tensor, and CS

the Smagorinsky coefficient, a dimensionless proportional-
ity constant (Smagorinsky, 1963; Lilly, 1967). Many studies
have investigated the accuracy of this type of model, show-
ing good behavior for free-shear flows (Lesieur and Metais, 55

1996). For boundary-layer flows, the Smagorinsky constant
model is over-dissipative close to the wall, since the inte-
gral length scale scales with the distance to the wall. There-
fore, to properly capture the dynamics close to the surface,
the Mason–Thompson damping wall function is used (Ma- 60

son and Thomson, 1992). This function is given by f (z) =(
Cn

o (κz)−n
+ 1−n

)−
1
n and is used to decrease the value of

CS close to the wall, reducing the sub-grid dissipation.
Note that the molecular viscous term has been neglected

in the governing equations, including the wall-layer param- 65

eterization, which is equivalent to assuming that the surface
drag is mostly caused by pressure (i.e., there are negligible
viscous contributions). This is a typical situation in flow over
natural surfaces where the surface is often in a fully rough
aerodynamic regime. 70

The drag from the underlying surface is entirely modeled
in this application through the equilibrium logarithmic law
for rough surfaces (Kármán, 1931; Prandtl, 1932), with

τW =

[
κ

log(1z/2z0)

]2 (
〈ũ1〉

2(1z/2)+〈ũ2〉
2(1z/2)

)
. (10)

In Eq. (10), 〈ũi〉 is the planar averaged velocity sampled at 75

1z/2, z0 is the aerodynamic roughness length, representative
of the underlying surface, 1z denotes the vertical grid sten-
cil, and κ = 0.4 is the von Kármán constant. The wall shear
stress is computed considering the norm of the horizontal ve-
locity, and it is projected over the horizontal directions using 80

the unit vector ni , such that τW,i = τWni , where

ni =
〈ũi〉(1z/2)√

〈ũ1〉2(1z/2) + 〈ũ2〉2(1z/2)
, for i = 1,2. (11)
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In addition, the corresponding vertical derivatives of the
horizontal mean velocity field are imposed at the first grid
point of the vertically staggered grid (Albertson et al., 1995;
Albertson and Parlange, 1999).

This setup has now been extensively used to study neu-5

trally stratified ABL flows (Cassiani et al., 2008; Brasseur
and Wei, 2010; Abkar and Porté-Agel, 2014; Allaerts and
Meyers, 2017). Moreover, it is used as foundation to build
more complex simulations of the ABL adding scalar (pas-
sive or active) transport (for example, see Saiki et al., 2000;10

Stoll and Porté-Agel, 2008; Calaf et al., 2011; Salesky et al.,
2016) as well as other physical processes.

3.2 Numerical implementation and time integration
scheme

The equations are solved using a pseudo-spectral approach,15

where the horizontal derivatives are computed using discrete
Fourier transforms and the vertical derivatives are computed
using second-order accurately centered finite differences on
a staggered grid. A projection fractional-step method is used
for time integration following Chorin’s method (Chorin,20

1967, 1968). The governing equations become decoupled,
and the system of partial differential equations can be solved
in two steps: first, the nonlinear advection–diffusion equation
is explicitly advanced, and subsequently the Poisson equa-
tion is integrated (the so-called pressure correction step). The25

latter equation is obtained by taking the divergence of the first
equation and setting the divergence of velocity at the next
time step equal to zero, to ensure a divergence-free flow field.
The algorithm is detailed in the rest of the section. Initially,
the code computes the velocity tensor G̃t

ij = ∂j ũ
t
i , which30

contains all the derivatives of the flow field required to com-
pute the SGS stress tensor τ

1,d,t
ij = −2(CS1)2

|S̃t
|S̃t

ij . In the
first step of the projection method, the NS equations are
solved without the pressure. Hence, the intermediary right-
hand side is computed as35

R̃HS
∗

i =

[
ũt

j

(
∂j ũ

t
i − ∂i ũ

t
j

)
− ∂j τ

1,d,t
ij + f̃i

]
. (12)

Next, an intermediary step is computed using an Adams–
Bashforth scheme, following

ũ∗

i = ut
i + 1t

(
3
2

R̃HS
∗

i −
1
2

R̃HS
t−1t

i

)
, (13)

where R̃HS
t−1t

i is the right-hand side of the previous step. At40

this point, the resulting flow field is not divergence-free yet.
The modified pressure is used to impose this fundamental
property of the flow filed. Therefore, p̃∗t is computed solving
the Poisson equation

∂j∂j p̃
∗t

= ∂k0
t
k, (14)45

obtained by taking the divergence of the NS equations. The
term 0t

k on the right-hand side of the equation above is given

by

0t
k =

(
2

31t

)
ũt

k −
1
3

R̃HS
t−1t

k . (15)

The new flow field for the complete time step is obtained 50

by ũt
i = ũ∗

i −
3
21t∂i p̃

∗t . Finally, the new right-hand side is

updated with the pressure gradient as R̃HS
t+1t

i = R̃HS
∗

i −

∂i p̃
∗t .

Embedded within this approach, periodic boundary condi-
tions are imposed on the horizontal (x,y) directions. To close 55

the system, a stress-free lid boundary condition is imposed at
the top of the domain and an impermeability (w̃ = 0) con-
dition is imposed at the lower boundary, which sums to the
parameterized stress described in Sect. 3.

The code is parallelized following a 2-D pencil decompo- 60

sition paradigm similar to the one presented in Sullivan and
Patton (2011), partitioning the domain into squared cylinders
aligned along one of the horizontal directions, as shown in
Fig. 2. The 2-D pencil decomposition is implemented using
the 2DECOMP & FFT open-source library (Li and Laizet, 65

2010), which shows exceptional scalability up to a large
number of message passing interface (MPI) processes (Mar-
gairaz et al., 2017).

3.3 Analysis of the numerical cost

The LES algorithm can be separated into four distinct mod- 70

ules: (1) computation of the velocity gradients, (2) evalua-
tion of the SGS stresses and (3) of the convective term, and
(4) computation of the pressure field by solving the Pois-
son equation. These four modules represent the bulk of the
computational cost of the code, in addition to MPI commu- 75

nication. Figure 3 presents a simplified flowchart of the main
algorithm with each of the four modules.

The four modules have been individually timed to evalu-
ate their corresponding computational cost at a resolution of
Nx × Ny × Nz = 1283 with the 3/2 rule as a baseline. Re- 80

sults are shown in Fig. 4. As can be observed, more than half
of the integration time step (∼ 60%) is spent computing the
convective term. The three other modules share the rest of
the integration time as follows: the computation of the veloc-
ity gradients (∼ 20%), the Poisson solver (∼ 16%), and the 85

SGS (∼ 4%). It is important to note that this test was con-
ducted without any file input and output as it is not relevant to
assess the computational cost of the momentum integration.
As explained in Sect. 2, the nonlinear term requires the use
of dealiasing techniques to control the aliasing error, which 90

traditionally are associated with a padding operation (as men-
tioned in Sect. 2) and hence higher computational cost. It is
important to note that although the overall integration time
distribution between each individual module might vary de-
pending on the numerical resolution employed, the overall 95

cost of the convective term will remain important regardless
of the changes in numerical resolution. The goal of this work
is to explore the possibility of using alternative dealiasing

www.geosci-model-dev.net/11/1/2018/ Geosci. Model Dev., 11, 1–16, 2018
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Figure 2. Two-dimensional pencil decomposition of the computational domain with the domain transposed into the three direction of space:
(a) X pencil, (b) Y pencil, (c) Z pencil (based on Li and Laizet, 2010).

Velocity gradient

G̃t
ij = ∂j ũi

t

SGS

τ
∆,t
ij =−2(CS∆)2|S̃t|S̃t

ij

Convective term

ũj
t (∂j ũi

t − ∂iũj
t)

Poisson solver

∂j∂j p̃
∗t = ∂kΓ

t
k

Time
intergration

t= t+∆t

Figure 3. Simplified flowchart of the main algorithm presenting the
four modules that represent the bulk of the computational cost.

techniques to enhance the computational performance, while
maintaining accurate turbulent flow statistics in simulations
of ABL flows. It is important to note that the SGS model
used here takes a relatively small fraction of the time integra-
tion. This fraction is likely to be larger if a more sophisticated5

model is used, for example the dynamic Smagorinsky model
(Germano et al., 1991) or the Lagrangian scale-dependant
model (Bou-Zeid et al., 2005). In addition, it is important
to note that the low computational cost of the Poisson solver
is related to the use of pencil decomposition, which takes10

full advantage of the pseudo-spectral approach. Specifically,
the Z pencil combines with the horizontal treatment of the
derivatives to make the implementation of the solver very ef-
ficient.

3.4 Study cases15

The goal of this study is to develop a cost–benefit analy-
sis for the different, already established, dealiasing methods

0

0.05

0.1

0.15

(a) (b) (c) (d) (e)

Se
co

nd
sp

er
tim

e
st

ep

Figure 4. Individual timing of the four modules of the time loop
averaged over 10 k steps: (a) velocity gradient, (b) SGS, (c) con-
vective term, (d) Poisson solver, and (e) total time loop. The numer-
ical resolution is 1283, run with 64 MPI processes and a domain
decomposition of 8 × 8.

from a computational cost standpoint as well as in terms of
accuracy in reproducing turbulent flow characteristics. For
this reason, three different cases have been considered, corre- 20

sponding to the three dealiasing methods considered: (a) the
3/2 rule used as reference, (b) the FT method, and (c) the
FS method. All the simulations have been run with a nu-
merical resolution of Nx × Ny × Nz = 643, 1283, 1923, and
2563, with a domain size of (Lx,Ly,Lz) = (2π,2π,1) · zi , 25

where zi is the height of the boundary layer taken here with a
value of zi = 1000 m. A uniform surface roughness of value
z0/zi = 10−4 is imposed, which is representative of sparse
forest or farmland with many hedges (Brutsaert, 1982; Stull,
1988). The simulations have been initialized with a vertical 30

logarithmic profile with added random noise for the ũ1 com-
ponent. The two other velocity components ũ2 and ũ3 have
been initialized with an averaged zero velocity profile with
added noise to generate the initial turbulence. The integra-
tion time step is set to 1t = 0.2 s for the 643, 1283, and the 35

1923 simulations and to 1t = 0.1 s for the 2563 simulation.
These time steps ensure that stability requirements for the
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Table 1. Simulations summary, each simulation was run with the
three different dealiasing methods.

Simulation type Resolution Flow-through
Nx × Ny × Nz time T

Statistics runs 64 × 64 × 64 ∼ 285T

128 × 128 × 128 ∼ 285T

192 × 192 × 192 ∼ 200T

256 × 256 × 256 ∼ 200T

Timing runs 128 × 128 × 128 ∼ 2T

256 × 256 × 128 ∼ 2T

512 × 512 × 128 ∼ 2T

1024 × 1024 × 128 ∼ 2T

2048 × 2048 × 128 ∼ 2T

time integration scheme are met. The Smagorinsky constant
and the wall damping exponent are set to CS = 0.1 and n = 2
(Mason, 1994; Porté-Agel et al., 2000; Sagaut, 2006).

For each dealiasing method, the simulations at 643, 1283,
1923, and 2562 were run until the flow reached statistic con-5

vergence of the friction velocity u∗ and the mean kinetic en-
ergy. This warm-up time was fixed to ∼ 95T (where T is the
flow-through time, defined as T = U∞ t/Lx). At this point,
running averages were computed to evaluate the different
flow statistics presented in the following sections. To provide10

long enough averaging times, the 643 and 1283 simulations
were run for an additional ∼ 190T . The 1923 and 2563 sim-
ulations were run for an additional ∼ 100T . In parallel, runs
with higher horizontal resolution were used to evaluate the
computational cost of the dealiasing methods with increas-15

ing numerical resolution (timing runs). These last simula-
tions were only run for a few thousand iterations. Table 1
contains a summary of all the simulations preformed in this
work.

4 Results20

4.1 Computational cost

The computational cost of evaluating the convective term,
dealiased via the 3/2 rule, the FT, and the FS is intercom-
pared in Fig. 5. The horizontal resolution has been increased
from 128×128 to 2048×2048 collocation nodes to highlight25

how the different methods scale. Only the horizontal reso-
lution is changed given that the vertical direction is treated
in physical space with the second-order accurately centered
finite-difference method. Note that such a method does not
typically require any dealiasing treatment, because the trun-30

cation error tends to decrease the aliasing errors (Kravchenko
et al., 1996; Canuto et al., 2006). In Fig. 5, the ordinate axis
is divided by nx ·ny to show the effect of the increase in res-
olution on the computational cost. The number of MPI pro-
cesses and the domain decomposition have been kept identi-35
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Figure 5. Computational cost of the convective module as a func-
tion of the horizontal resolution. The timing of the module is pre-
sented on the left vertical axis and represented by left-pointing
arrows. The number of operations is shown on the right vertical
axis and represented by right-pointing arrows. The three different
dealiasing methods are plotted as the 3/2 rule as the blue dot–
dashed line, the FT method as the orange dotted line, and the FS
method as the yellow dashed line. The numerical resolutions are
nx ×ny × 128, run with 64 MPI processes and a domain decompo-
sition of 8 × 8.

cal to avoid introducing effects from the parallelization scal-
ing into the results. Hence, only the effect of the resolution
change on the computation time of the dealiasing methods
is presented here. Results confirm that the computational
cost of the convective term is notably smaller when using 40

the FT and FS dealiasing methods, with gains of 30 % at
nx ×ny = 128×128 and 23 % at nx ×ny = 2048×2048. The
results follow the computational cost calculated by the num-
ber of operations presented in Sect. 2, which predicted a gain
of up to 35% for runs with 40963 grid nodes. The deviation 45

in the computational cost present in Fig. 5 is the result of
the varying load of the computer cluster since all simulations
were run using the same number of nodes to avoid having
to add the code’s scaling properties to the analysis. From the
results it is also important to note that there is no significant 50

difference in the computational cost between the FT and FS
methods, given that both use the same grid size and hence
the corresponding numerical complexity of both methods is
similar. It is also worth mentioning that these methods are
simpler to implement and require less rapid-access memory 55

when compared to the 3/2 rule, as there is no need to extend
either the numerical grid or the wavenumber range.

In the following subsections, we compare the impact of
the different dealiasing schemes on flow statistics. Profiles
from runs using the 3/2 rule for dealiasing will be taken as 60

reference, and comments will focus on departures from such
“exact” profiles when the FT or FS treatments are considered.

www.geosci-model-dev.net/11/1/2018/ Geosci. Model Dev., 11, 1–16, 2018
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Figure 6. Instantaneous streamwise velocity perturbation u′(x,y,z, t) = u(x,y,z, t) − ū(x,y,z) at z/zi = 0.027 for the three different
dealiasing methods: (a) 3/2 rule, (b) FT method, and (c) FS method. The numerical resolution is 2563.

4.2 Flow statistics

Traditional flow metrics are investigated next and compared
between the different dealiasing schemes. Results for the
1283, 1923, and 2563 cases are presented in this section. The
results are normalized using the traditional scaling variables:5

the friction velocity (u∗) and the boundary-layer height (zi).
As a starting point, Fig. 6 shows an instantaneous snapshot
(pseudo-color plots) of the streamwise velocity perturbation
for the three dealiasing methods. An additional case with-
out dealiasing in the convective term was run and resulted in10

a complete laminarization of the turbulent flow (not shown
here), highlighting the importance of the dealiasing operation
(Kravchenko and Moin, 1997). By contrast, when dealias-

ing schemes are applied, the instantaneous flow field appears
qualitatively similar among the different cases. Irrespective 15

of the dealiasing method that is used, streamwise elongated
high- and low-momentum bulges flank each other, as is ap-
parent in Fig. 6. This is a common phenomena in pressure-
driven boundary-layer flows (Munters et al., 2016). Qualita-
tively, small differences can be appreciated on the structure 20

and distribution of the smaller-scale turbulence within the
flow only in the FT method. For example, the flow in panel
b shows the effect of the cutoff filter, where high-frequency
perturbations occur throughout the considered pseudo-color
plot. These spurious oscillations have an impact on the flow 25

statistics, as will be shown in the following.
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Figure 7. Top panels represent the plots of the non-dimensional mean streamwise velocity profile for (a) the 1283 case, (b) the 1923 case,
and (c) the 2563 case. Bottom panels represent the mean streamwise velocity gradient for (d) the 1283 case, (e) the 1923 case, and (f) the
2563 case. The lines represent the three different dealiasing methods: the 3/2 rule as the blue dot–dashed line, the FT method as the red
dotted line, and the FS method as the yellow dashed line. The solid line represents the ideal log–law profile.

The horizontally and temporally averaged velocity profiles
are characterized by an approximately logarithmic behav-
ior within the surface layer (z ≈ 0.15zi , as is apparent from
Fig. 7, where results are illustrated for the following three
resolutions: 1283, 1923, and 2563). For the 1283 case, the5

observed departure from the logarithmic profile for the 3/2-
rule case is in excellent agreement with results from previous
literature for this particular SGS model (Porté-Agel et al.,
2000; Bou-Zeid et al., 2005). When using the FT method,
the agreement of the averaged velocity profile with the cor-10

responding 3/2-rule profiles improves with increasing reso-
lution. While in the 1283 case a good estimation of the log-
arithmic flow is obtained at the surface layer, there is a large
acceleration of the flow further above. This overshoot does
not occur for the higher-resolution runs. When using the FS15

method, the mean velocity magnitude is consistently over-
predicted throughout the domain, and the situation does not
improve with increasing resolution (the overshoot is up to
7.5 % for the 1283, 8.5 % for the 1923, and 7 % for the 2563

run). Further comparing the results obtained by the FS and20

FT methods with those obtained with the 3/2 rule, it is clear
that while the FS method presents a generalized overestima-
tion of the velocity with an overall good logarithmic trend,

the FT method presents a better adjustment in the surface
layer with larger departures from the logarithmic regime in 25

the upper-domain region that decrease with increasing nu-
merical resolution. The mean kinetic energy of the system
is overestimated by ≈ +2% and ≈ +12% by the FT and FS
methods, when compared to that of runs using the 3/2 rule in
the 2563 case. Overall, the mean kinetic energy is larger for 30

the FT and FS cases, when compared to the 3/2-rule case,
even at the highest of the considered resolutions (≈ +2 and
≈ +12% by the FT and FS methods for the 2563 case). Such
behavior can be related to the low-pass filtering operation
that is performed in the near-wall regions, which tends to 35

reduce resolved turbulent stresses in the near-wall region, re-
sulting in a higher mass flux for the considered flow system.
This is more apparent for the low-resolution cases.

Mean velocity gradient profiles (8m = κ z
u∗

∂z〈U〉xy(z))
are also featured in Fig. 7d, e, and f. Profiles at each of the 40

considered resolutions present a large overshoot near the sur-
face, which is a well-known problem in LES of wall-bounded
flows and has been extensively discussed in the literature
(Bou-Zeid et al., 2005; Brasseur and Wei, 2010; Lu and
Porté-Agel, 2013). In comparing the results between the FS 45

and FT method with the 3/2 rule, it can be observed that there
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10 F. Margairaz et al.: Comparison of dealiasing schemes in large-eddy simulation

Table 2. Mean error in the variance profiles between the FT/FS
methods and the 3/2 rule over the lower 15 % of the domain.
For example, the error of the streamwise variance is computed as

err(u′u′) =
1
n

∑∣∣∣∣1 −
u′u′

FT/FS

u′u′
3/2

∣∣∣∣ for 0 < z < 0.15 · zi .

Case Method err(u′u′) err(v′v′) err(w′w′) err(u′w′)

1283 FT 21.5 % 20.8 % 19.8 % 0.3 %
1283 FS 5.0 % 16.7 % 9.5 % 1.7 %

1923 FT 6.8 % 17.3 % 21.3 % 2.4 %
1923 FS 13.4 % 18.1 % 12.0 % 1.5 %

2563 FT 20.8 % 7.8 % 8.5 % 0.3 %
2563 FS 10.5 % 3.4 % 5.5 % 1.1 %

are stronger gradients in the mean velocity profile within the
surface layer when using the FS method. This leads to the
observed shift in the mean velocity profile. Conversely, when
using the FT method, departures are of an oscillatory nature,
leading to less pronounced variations in the mean velocity5

profile when compared to the reference ones (the 3/2-rule
cases). This behavior is consistently found across the consid-
ered resolutions, but the situation ameliorates as resolution is
increased (i.e., weaker departures).

Figure 8 features the vertical structure of second-order10

statistics predicted via the FS and the FT methods, includ-
ing a comparison with the corresponding predictions from
the 3/2-rule, 2563-study case. Note that when averaging in
space and (subsequently) in time, the resulting profiles are
comparable to those found in previously published LES stud-15

ies (see, e.g., Porté-Agel et al., 2000; Bou-Zeid et al., 2005).
The fact that the shear stress profiles are similar among the
different dealiasing cases is also indicative of the fact that the
SGS fraction is not strongly affected by the choice of dealias-
ing method, which is also partly due to the simplicity of the20

static Smagorinsky model that is being used. The potential
effect that the different dealiasing schemes could have in
more advanced subgrid models is discussed later on. Specif-
ically, the error in the Reynolds shear stress (e.g., not in-
cluding the SGS contribution) in the surface layer decreases25

with increasing resolution for the FS method (from 1.7 to
1.1 % for the 1283 and 2563, respectively) as indicated in Ta-
ble 2 and also fluctuates around very small values for the FT
method. When considering the diagonal stress tensor compo-
nents across simulations, it is noteworthy that all such quanti-30

ties are overpredicted when using the FT and the FS methods
in the near-surface region (z / 0.1)TS2 . Further above, the
FS method tends to consistently overpredict, whereas the FT
method presents an oscillatory nature. As can be observed in
Table 2, the mean error deviations decrease with increasing35

resolution for all cases, except for the streamwise variance
where there is no clear trend.

To complement the analysis of the effect of the different
dealiasing methods on the physical structure of the flow, the
corresponding power spectra are investigated. According to 40

Kolmogorov’s energy cascade theory, the inertial subrange of
the power spectrum should be characterized by a power law
of −5/3 slope (Kolmogorov, 1968). In this range the effects
of viscosity, boundary conditions, and large-scale structures
are not important. Also, in wall-bounded flows without buoy- 45

ancy effects, a production range should also be present, fol-
lowing a power-law scaling of −1 (Gioia et al., 2010; Katul
et al., 2012; Calaf et al., 2013). Figure 9 shows the energy
spectra of the streamwise velocity obtained using the dif-
ferent dealiasing methods. The spectrum obtained using the 50

3/2 rule matches well the traditional turbulent spectra pre-
sented in the literature (Cerutti, 2000; Bou-Zeid et al., 2005)
and it is used to assess the effects introduced by the FT and
FS dealiasing methods. From this spectral analysis, it can be
observed that the high-wavenumber ranges are modified by 55

both methods. The FT method sharply cuts the spectra at the
scale of 3/2 · 1 close to the LES filter-scale 1. On the other
hand, the FS method smoothly attenuates the effects of the
aliasing errors at the high end of the spectra. The dealias-
ing methods have been designed for such behavior, since 60

only the higher frequencies are filtered. From the FT method
flow field spectra, the effect of the cutoff applied within the
dealiasing scheme is clearly visible. It is apparent that the
capacity of the LES solver to reproduce the fine-scale tur-
bulence structure of the flow is strongly jeopardized when 65

using the FT method and limited at the scale of 3/2 ·1 close
to the LES filter-scale 1. Essentially, this method artificially
over-dissipates the turbulent kinetic energy and yields to an
overestimation of the mean kinetic energy. In contrast, the
energy spectrum obtained using the FS method does not pro- 70

duce such a large energy cutoff. Therefore, a larger range of
the spectrum is resolved and less turbulent kinetic energy is
dissipated by aliasing errors.

Although the effect of the FT and FS methods on the small
scale can be clearly observed in Fig. 9, their effect on the 75

large scales also needs to be quantified. To compute a di-
rect comparison scale by scale, the following ratio was used
(Eq. 16) for the 1283, 1923, and 2563 simulations:

ρXX(k) =
EXX

u,k − E
3/2
u,k

E
3/2
u,k

(16)

where Eu,k denotes the power spectral density of the u ve- 80

locity component at wavenumber k and XX stands for the
dealiasing method FT or FS. If ρ(k) < 0, the energy density
at that given wavenumber (k) is less than the corresponding
one for the run using the 3/2 rule; vice versa if ρ(k) > 0.
Figure 10 presents the ratio ρ(k) for both methods. 85

When using the FT method, energy at the low wavenum-
bers is underpredicted, whereas energy at the large wavenum-
bers is overpredicted. Departures are in general larger with
decreasing resolution, with an excess of up to 100% for the
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1283 simulations in the wavenumber range close to the cut-
off wavenumber. By contrast, when using the FS method,
the energy from the filtered (dealiased) small scales is re-
distributed quasi-uniformly throughout the spectra with an
averaged overall variation of less than 13 %.5

5 Discussion

In the development of this paper, focus has been directed to
the study of the advantages and disadvantages of different
dealiasing methods. In this regard, throughout the analysis,
we have tried to keep the structure of the LES configuration10

as simple and canonical as possible to remove the effect of
other add-on complexities. Additional complications might
arise when considering additional physics; here we discuss

the potential effect that these different dealiasing methods
could have on them. One such element of added complex- 15

ity is, for example, the use of more sophisticated subgrid-
scale models based on dynamic approaches to determine the
values of the Smagorinsky constant (Germano et al., 1991;
Bou-Zeid et al., 2005). In most of these advanced subgrid
models, information from the small-scale turbulent eddies 20

is used to determine the evolution of the subgrid constant.
However, in both the FT and FS method, the small turbulent
scales are severely affected, and hence the use of dynamic
subgrid models could be severely hampered unless these are
accordingly modified and adjusted, for example via filter- 25

ing at larger scales than the usual grid scale. Another ele-
ment of added complexity consists of using more realistic
atmospheric forcing, considering for example the effect of
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Figure 9. Normalized streamwise spectra of the streamwise velocity as a function of kxz for the 1923 simulations. The three different
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Figure 10. Effect of the FT (a) and the FS (b) methods of the streamwise spectra of the streamwise velocity compare to the 3/2 rule. The
solid line represent the average value and the shaded area represent the extreme values. The resolutions are 1283 as the blue dot–dashed line,
1923 as the red dotted line, and 2563 as the purple dashed line.

the Coriolis force with flow rotation as a function of height
and velocity magnitude. In this case, we hypothesize that the
FT method could lead to stronger influences on the resultant
flow field as this dealiasing technique not only affects the
distribution of energy on small turbulent scales but also on5

large scales (as is apparent from Fig. 10), the latter being po-
tentially more affected by the Coriolis force. This represents

a strong nonlinear effect that is hard to quantify, and hence
further testing, including realistic forcing with a geostrophic
wind and Coriolis force, would be required to better quan- 10

tify these effects. Also, often in LES studies of atmospheric
flows, one is interested in including an accurate representa-
tion of scalar transport (passive/active). In this case the dif-
ferential equations do not include a pressure term, and hence
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most of the computational cost is linked to the evaluation of
the convective term. As a result, the benefit of using alterna-
tive, cheaper dealiasing techniques (FT or FS) will be even
more advantageous, yet the total gain is not trivial to evalu-
ate a priori, and the effect on the scalar fields should also be5

further evaluated.
In general, we believe that it is not fair to advocate for one

or other dealiasing method based on the results of this analy-
sis. Note that the goal of this work is to provide an objective
analysis of the advantages and limitations that the different10

methods provide, leaving the readers with the ultimate re-
sponsibility of choosing the option that will adjust better to
their application. For example, while having exact dealiasing
(3/2 rule) might be better in studies focusing on turbulence
and dispersion, one might be better off using a simpler and15

faster dealiasing scheme to run the traditionally expensive
warm-up runs or to evaluate surface drag in flow over urban
and vegetation canopies, where most of the surface force is
due to pressure differences (Patton et al., 2016).

6 Conclusions20

The Fourier-based pseudo-spectral collocation method
(Orszag, 1970; Orszag and Pao, 1975; Canuto et al., 2006)
remains the preferred work horse in simulations of wall-
bounded flows over horizontally periodic regular domains
and is often used in conjunction with a centered finite-25

difference or Chebychev polynomial expansions in the verti-
cal direction (Kopriva and Kolia, 1996; Shah and Bou-Zeid,
2014; Moeng and Sullivan, 2015). This approach is often
used because of the high-order accuracy and the intrinsic ef-
ficiency of the fast Fourier transform algorithm (Cooley and30

Tukey, 1965; Frigo and Johnson, 2005). In this technique,
aliasing that arises when evaluating the quadratic nonlinear
term in the NS equations can severely deteriorate the quality
of the solution and hence needs to be treated adequately. In
this work a performance–cost analysis has been developed35

for three well-accepted dealiasing techniques (3/2 rule, FT,
and FS) to evaluate the corresponding advantages and lim-
itations. The 3/2 rule requires a computationally expensive
padding and truncation operation, while the FT and FS meth-
ods provide an approximate dealiasing by low-pass filtering40

the signal over the available wavenumbers, which comes at a
reduced cost.

The presented results show compelling evidence of the
benefits of these methods as well as some of their draw-
backs. The advantage of using the FT or the FS approximate45

dealiasing methods is their reduced computational cost (cut-
back on the total simulation time of ∼ 15 % for the 1283 case,
∼ 21 %TS3 for the 2563 case), with an increased gain as the
numerical resolution is increased. Regarding the flow statis-
tics, results illustrate that both the FT and the FS methods50

yield less accurate results when compared to those obtained
with the traditional 3/2 rule, as one could expect.

Specifically, results illustrate that both the FT and FS
methods over-dissipate the turbulent motions in the near-wall
region, yielding an overall higher mass flux when compared 55

to the reference one (3/2 rule). Regarding the variances, re-
sults illustrate modest errors in the surface layer, with lo-
cal departures in general below 10 % of the reference value
across the considered resolutions. The observed departures
in terms of mass flux and velocity variances tend to reduce 60

with increasing resolution. Analysis of the streamwise veloc-
ity spectra has also shown that the FT method redistributes
unevenly the energy across the available wavenumbers, lead-
ing to an overestimation of the energy of some scales by up
to 100 %. By contrast, the FS method redistributes the energy 65

evenly, yielding a modest +13 % energy magnitude through-
out the available wavenumbers. Compared to the 3/2 rule,
these differences in flow statistics are the result of the sharp
low-pass filter applied in the FT method and the smooth filter
that characterizes the FS method. 70
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