Dear anonymous reviewer,

thank you very much for your detailed and valuable comments on the discussion paper. They were very helpful in order to improve the manuscript. I've used your comments and suggestions to rework the paper in many places, please have a look at the detailed responses below.

This response is structured as follows: the first section (as required by journal policy) includes your comments. In section two I have added my responses to the comments. Finally a document which highlights the actual changes made to the document is attached.

Thanks again and best regards,

Volker Wichmann
Interactive comment on “The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes” by Volker Wichmann

Anonymous Referee #2

Received and published: 3 May 2017

General comments
In his manuscript, V. Wichmann presents a GIS-based simulation framework for gravitational processes, i.e. a compilation of model components and their software implementation. It includes various well-known as well as recently developed approaches that conceptually or semi-physically represent displacement processes (but not initiation processes). This simulation framework can be of great interest and value to a broad range of academic, government and corporate users especially since its open-source implementation facilitates access and encourages customization.

While this paper is, in principle, worthy of publication in GMD, in my view the manuscript should still be substantially improved:

- The introductory section currently does not provide a general scientific background and motivation.

- The cited references are too narrowly focused on work by Wichmann and Heckmann, including non-refereed publications. The chosen methods / model components and general modelling approach needs to be situated in the broader context of (physically-based, conceptual and empirical) models of gravitational mass movements.

- The Discussion lacks depth. In particular, limitations are not discussed, and comparisons with similar models and software (including commercial products) are missing.

- The presentation of model structure and components in sections 2 and 3 should be partly re-arranged and re-written as it is often hard to follow (see detailed comments below).

I hope that the author will find these general comments as well as the following detailed comments useful in improving their manuscript.

Detailed comments

P1L12 This paper will attract the interest of a broader audience if it starts with a paragraph introducing the motivation for this work and the broader context, e.g. scientific and societal relevance and need for this kind of model and software implementation

P1L17 what is 2.5D in this context? perhaps too much detail for an introduction
Rather than presenting what the author’s GPP model is capable of, the author should first provide a brief overview of state-of-the-art modelling approaches for gravitational mass movements (including suitable references to the literature) and then indicate which of these approaches were chosen for / included in GPP and why.

A reference should be included to support this statement. ‘simple’ may be more appropriate than ’simplistic’

Some of the Wichmann / Heckmann references are published in less accessible journals and conference proceedings which may overlap in content with some of the peer-reviewed publications by the same authors? A better selection from this set of papers plus additional relevant references to the work of other authors may be more appropriate here.

As far as hazard susceptibility modelling is concerned, I noticed that statistical and machine-learning methods (e.g. logistic regression, generalized additive model, support vector machine), which are tremendously popular in this field, aren’t mentioned.

‘the plugging of a channel’ - check wording; perhaps ‘clogged stream channels’?

This information is too detailed for a 'general model structure’ section. Focus on broad concepts and structures, and explain the general modelling approach. E.g. is the proposed model based on principles of physics or is this a more heuristic GIS-based approach, could it perhaps be referred to as a cellular automata model? The processing steps described in P3L12-15 appear to suggest a more heuristic approach that certainly ensures mass preservation but is not capable of accommodating the physical (sliding / flowing) behaviour of solid to liquid mixtures of rock, soil, water, snow etc. that may be present in the various types of gravitational mass movements considered here. Such a simple approach may not necessarily be a bad thing, but the methodology should be contrasted appropriately with other possible modelling approaches, in particular physically based ones. In this context it appears to me that the approach presented here is similar to the cellular-automata model proposed by Guthrie et al. (2008) in Landslides in the narrower context of landslide modelling.

In general, I have the feeling that this word may be misleading; at the very least, its meaning in the context of this model should be properly defined. To me the word 'particle’ suggests that the model works with some elementary units of mass, e.g. 1 m 3 blocks, that are either passed on or deposited. Does the model really operate on such discrete elementary units, or does it determine amounts of material (e.g. 1.432 m 3 , i.e. real values not multiples of discrete units)? - (In P4L8 particles are referred to as "start cells", which adds to the confusion, since a grid cell does not change its location but particles are presumably passed along.)

What’s the rationale behind these three strategies? What geomechanical process characteristics are they based on?

Are all three figures necessary, or does figure 3 contain all necessary information? Diamond shapes are used for decisions; while "sink" and "stop" may be (nearly) self-explanatory, I am having difficulties understanding why "Material" or "Deposition Model" would involve a yes/no decision. E.g. if the material "stops" (Stop: Yes), then it will be deposited in full - what additional decisions are necessary? Perhaps some re-wording might help, or slightly more detailed labelling of boxes.
P6, Equation (2): This equation is a bit hard to read at first because of the unusual use of a conditional statement within a set, i.e. two opening curly braces of same size. Also, n_i should just be i, the cell identifier; n_i has not been defined. Perhaps to separate equations (2a) and (2b) should be given for N for $\gamma_{\text{max}} \leq 1$ and $\gamma_{\text{max}} > 1$. A less technical and more direct way of expressing this condition would be to say that all β_i are smaller or equal β_{thres} and that at least one adjacent grid cell is steeper than β_{thres}, respectively. Perhaps a brief explanation should be given as to what process or principle this equation is based on. It seems that this explanation is provided in lines P724-30 - why not here, before entering into technical details?

P7L9 "only steep neighbors are allowed" - what is the physical meaning of this? Does this restriction represent a real dynamic process or is this an arbitrary modelling decision?

P7L11 "which is missing [in] the modeling approaches developed for hydrological processes" - insert "in"; provide reference

In Eq. (4), upper branch ($i' \in N$), it seems necessary to include the persistence factor p in the denominator, i.e. $\sum_j{p \tan \beta_j}$ rather than $\sum_j{\tan \beta_j}$. In the numerator, placing the factor p before $\tan \beta_j$ would be preferable. With this, the scaling mentioned in L19 seems avoidable as they would already add up to 1.

P7L18 "this property (Markov chain)" - the described property, which tries to represent inertia, doesn’t seem to be related to the Markov property of stochastic processes.

P7L29-30 These statements concerning the dynamics properties of various types of mass movements should be supported with suitable references.

P7L33-38 run-out length calculated with geometric gradient approach - approach not introduced previously. In general, referring to section 3.2.1, how does this fit into the previously described framework that processes mass movements on a cell-by-cell basis while the run-out length approaches look at vectors from initiation points to potential run-out locations?

P8L15 This statement needs to be supported by a reference. The assumptions underlying the estimates presented in this paragraph should be outlined at least briefly.

P12 Eq. (16) The exponent β_i shouldn’t be in superscript when using the exponential function exp; just write $\exp \beta_i$ instead of \exp^{β_i}

Section 5 needs to discuss limitations of the presented model(s). E.g. this conceptual modelling approach is not entirely physically based; it builds upon basic principles such as mass preservation and tries to mimic typical macroscopic behaviours of various types of mass movements (e.g., divergence) without modelling the actual internal geomechanical dynamics (e.g. viscous flow etc. as applicable).

Run-up of material on the opposite valley slope doesn’t seem to be possible in the GPP model since material is only transferred to lower-elevation neighbouring cells as mentioned in P6L27.

P21L14 "impact of ... immediately obvious" - This is not a result of this study. The authors should avoid claims that are neither based on their findings nor on the cited literature. It may be appropriate to state that the proposed model can be used to assess the potential effectiveness of such forests (provided that the relevant processes are adequately represented by this model and its parameters).
A very brief section outlining implementation details should be included. E.g. which programming language; parallelized implementation? how parallelized, e.g. different Monte Carlo repetitions executed in parallel, . . .?

Is it correct that this model implementation only provides forward modelling capabilities, i.e. modelling possible outcomes based on prescribed model parameters? Or is it also capable of estimating model parameters such as the persistence parameter based on observed runout distributions? Are there any capabilities for validating the model based on observed runout distributions, or does the user have to do this outside the GPP module? I am thinking AUROC estimation based on observed historical events as commonly done in the statistical landslide susceptibility modelling literature.

The presented model and its implementation should be contrasted against other models and software, including commercial products, at least at a general level.

If I understand correctly the present model does not implement scouring (erosion) along the path as implemented by other similar models such as Guthrie et al. (2008) in Landslides.

P21 Section 6 - This shouldn't be a separate section (unless required by journal policy)

Technical comments

P1L7 "practicability" -> applicability or feasibility

P1L8-9 "first ... re-written" seems contradictory; it can't be first if it has been re-written, extended and improved

P1 'large-coverage...' -> 'regional-scale'

P2L26 'disposition modelling ' - susceptibility or slope stability modelling?

P7L21 "like" -> "as"

P7L24 "iterations" -> "repetition"

P7L29 "fixation" – re-word

P9L9 (i.e. first line) and elsewhere: "encoded" - re-word

P20L15 "proven" - re-word

P21L9 "pure" -> "purely"
2. Author's response to referee 2:

Geosci. Model Dev. Discuss.,
do:10.5194/gmd-2017-5-RC2, 2017
© Author(s) 2017. CC-BY 3.0 License.

Interactive comment on “The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes” by Volker Wichmann

Anonymous Referee #2

Received and published: 3 May 2017

General comments

“In his manuscript, V. Wichmann presents a GIS-based simulation framework for gravitational processes, i.e. a compilation of model components and their software implementation. It includes various well-known as well as recently developed approaches that conceptually or semi-physically represent displacement processes (but not initiation processes). This simulation framework can be of great interest and value to a broad range of academic, government and corporate users especially since its open-source implementation facilitates access and encourages customization.

While this paper is, in principle, worthy of publication in GMD, in my view the manuscript should still be substantially improved:

- The introductory section currently does not provide a general scientific background and motivation.”

Response: addressed and added to the introduction

- The cited references are too narrowly focused on work by Wichmann and Heckmann, including non-refereed publications. The chosen methods / model components and general modelling approach needs to be situated in the broader context of (physically-based, conceptual and empirical) models of gravitational mass movements.”

Response: references added; the manuscript has been reworked in order to provide a better distinction between the GPP model components and the implemented modeling approaches – the paper is mainly about the framework of the GPP model, the implemented modeling approaches have been discussed extensively in the cited references; a better classification of the general modeling approach has also been added

- The Discussion lacks depth. In particular, limitations are not discussed, and comparisons with similar models and software (including commercial products) are missing.”

Response: I’ve addressed the limitations and added some comparisons with similar software; I did not add a comparison with commercial products because I don't have access to such software and I feel that such a comparison is out-of-scope of a model description paper
“- The presentation of model structure and components in sections 2 and 3 should be partly re-arranged and re-written as it is often hard to follow (see detailed comments below).”

Response: these sections have been partly re-arranged and re-written in order to both provide a better distinction between model components and the implemented modeling approaches and to facilitate the reading/understanding

“I hope that the author will find these general comments as well as the following detailed comments useful in improving their manuscript.”

Detailed comments

“P1L12 This paper will attract the interest of a broader audience if it starts with a paragraph introducing the motivation for this work and the broader context, e.g. scientific and societal relevance and need for this kind of model and software implementation”

Response: two paragraphs were added to the introduction to address these issues

“P1L17 what is 2.5D in this context? perhaps too much detail for an introduction”

Response: the sentence was out of context, removed

“P1L18 Rather than presenting what the author’s GPP model is capable of, the author should first provide a brief overview of state-of-the-art modelling approaches for gravitational mass movements (including suitable references to the literature) and then indicate which of these approaches were chosen for / included in GPP and why”

Response: this overview is included in the paragraphs that have been added to the introduction

“P1L20-21 A reference should be included to support this statement. ‘simple’ may be more appropriate than ’simplistic’”

Response: rephrased (“simplifying concepts”); it is now explained in the paragraphs above what is meant by “simplifying”

“P1L23-P2L2 - Some of the Wichmann / Heckmann references are published in less accessible journals and conference proceedings which may overlap in content with some of the peer-reviewed publications by the same authors? A better selection from this set of papers plus additional relevant references to the work of other authors may be more appropriate here.”

Response: the only non “peer-reviewed” publications are the dissertation of Wichmann (2006), including the most elaborate description of the model components, and the book chapter Wichmann & Becht (2005), which was reviewed by the editors; I don't think the others are published in less
accessible journals; there are no additional references to the work of other authors given as these are, as far as I know, the only studies that are using these modeling approaches for the analysis of sediment cascades and process connectivity.

“P1L23-P2L2 As far as hazard susceptibility modelling is concerned, I noticed that statistical and machine-learning methods (e.g. logistic regression, generalized additive model, support vector machine), which are tremendously popular in this field, aren’t mentioned.”

Response: such models are popular for susceptibility modeling in a broader meaning, i.e. for deriving areas that are affected by mass movements; usually the results describe potential release areas, but not the process path and run-out distance; I’ve added some information to the introduction

“P2L33 ’the plugging of a channel’ - check wording; perhaps ’clogged stream channels’?”

Response: rephrased to “blocking of a channel by wood and debris”

“P3L5-9 This information is too detailed for a ’general model structure’ section. Focus on broad concepts and structures, and explain the general modelling approach. E.g. is the proposed model based on principles of physics or is this a more heuristic GIS-based approach, could it perhaps be referred to as a cellular automata model? The processing steps descript in P3L12-15 appear to suggest a more heuristic approach that certainly ensures mass preservation but is not capable of accommodating the physical (sliding / flowing) behaviour of solid to liquid mixtures of rock, soil, water, snow etc. that may be present in the various types of gravitational mass movements considered here. Such a simple approach may not necessarily be a bad thing, but the methodology should be contrasted appropriately with other possible modelling approaches, in particular physically based ones. In this context it appears to me that the approach presented here is similar to the cellular-automata model proposed by Guthrie et al. (2008) in Landslides in the narrower context of landslide modelling.”

Response: I’ve added a more general introduction/overview to this section; the manuscript has been reworked to provide a better distinction between model components and implemented (existing) modeling approaches; a special feature of the GPP model is its modularity, which allows the users to choose the model components to use and which modeling approach in the chosen components should be used; the focus is less on the individual modeling approaches as these have been described and reviewed in many studies; this section is about the general technical layout of the GPP model: which components are implemented (e.g. path finding, velocity calculation, deposition) and how do they interact. The model approaches which can be chosen by the user for each of these components are described in detail in section 3. Information about the principles on which the implemented modeling approaches are based on and how they are categorized, has been added to the introduction. The concepts used in the GPP model are not related to the cellular-automata model proposed by Guthrie et al. (2008). In their approach, landslides are modeled by agents which represent a variable mass of material moving from cell to cell down a slope. The process path is determined by ranking the eight neighbors surrounding a cell, based on their angular difference from the aspect of the current cell. They write: “A continuous probability function is used to describe the spread of the landslide mass to neighbor cells based on a normal distribution centered on the downslope aspect with a standard deviation of 30°”. This has only slight similarity to the random walk approach which includes more parameters (slope threshold, exponent of divergence and persistence factor) to control in which
topography and to which extent lateral spreading is simulated. Also the run-out length is determined
differently: in their model, if the mass reaches zero, the agent is terminated. The run-out length
algorithms used in the GPP model do not consider material deposition.

“P3L5-9 ‘particle’ - In general, I have the feeling that this word may be misleading; at the very least,
its meaning in the context of this model should be properly defined. To me the word ‘particle’ suggests
that the model works with some elementary units of mass, e.g. 1 m 3 blocks, that are either passed on
or deposited. Does the model really operate on such discrete elementary units, or does it determine
amounts of material (e.g. 1.432 m 3, i.e. real values not multiples of discrete units)? - (In P4L8
particles are referred to as "start cells", which adds to the confusion, since a grid cell does not change
its location but particles are presumably passed along.)”

Response: rephrased; I've added an explanation that the word particle is defined as in physics engines,
i.e. as a hypothetical mass point, which is routed downslope

“P4L10-19 - What’s the rationale behind these three strategies? What geomechanical process
characteristics are they based on?”

Response: the processing order of release areas / particles has an influence of the modeling result in
case the terrain is modified between two model iterations by sink filling or material deposition. Thus
the processing order determines the amount of influence between release areas. Explanation added

“Figs. 1-3 - Are all three figures necessary, or does figure 3 contain all necessary information?
Diamond shapes are used for decisions; while "sink" and "stop" may be (nearly) self-explanatory, I am
having difficulties understanding why "Material" or "Deposition Model" would involve a yes/no
decision. E.g. if the material "stops" (Stop: Yes), then it will be deposited in full - what additional
decisions are necessary? Perhaps some re-wording might help, or slightly more detailed labelling of
boxes.”

Response: In principle Fig. 3 does contain all information, but I think it is better to provide three
figures which explain the three main model configurations available for the user. Fig. 1 shows the
“simplest” configuration, which will be chosen by most users; Fig. 2 and 3 add more and more model
components and show how a user can add additional components to the basic setup of the GPP model.
Figures have been reworked, including boxes labeling, to make it more obvious that the decisions
involve whether a Deposition model is used at all and whether material is left / available for deposition.

“P6, Equation (2): This equation is a bit hard to read at first because of the unusual use of a conditional
statement within a set, i.e. two opening curly braces of same size. Also, n_i should just be i, the cell
identifier; n_i has not been defined. Perhaps to separate equations (2a) and (2b) should be given for N
for gamma_max <= 1 and gamma_max > 1. A less technical and more direct way of expressing this
condition would be to say that all beta_i are smaller or equal beta_thres and that at least one adjacent
grid cell is steeper than beta_thres, respectively. Perhaps a brief explanation should be given as to what
process or principle this equation is based on. It seems that this explanation is provided in lines P724-
30 - why not here, before entering into technical details?”
Response: The explanation of the calibration parameters has been moved up and placed before the equations. Additional equations have been added in order to better describe the underlying principle. Equation (2) has been reworked to (2a) and (2b).

“P7L9 "only steep neighbors are allowed" - what is the physical meaning of this? Does this restriction represent a real dynamic process or is this an arbitrary modelling decision?”

Response: This conceptual approach is related to the fact that rapid mass movements tend to follow the steepest descent when the topography is steep and that lateral spreading is minimized in those sections of the process path; the higher velocity in such sections is limiting the lateral spreading additionally. In flat topography, in contrast, the velocity is lower, and lateral spreading is usually increased. Modeling approaches developed for hydrological applications do not take this into account. Rephrased.

“P7L11 "which is missing [in] the modeling approaches developed for hydrological processes" - insert "in"; provide reference”

Response: inserted and reference added

“In Eq. (4), upper branch (i’ \in N), it seems necessary to include the persistence factor p in the denominator, i.e. \sum_j\{p \tan\beta_j\} rather than \sum_j\{\tan\beta\}. In the numerator, placing the factor p before \tan\beta_j would be preferable. With this, the scaling mentioned in L19 seems avoidable as they would already add up to 1.”

Response: The equation has been completely reworked by introducing a weighting factor which is either 1 or the persistence factor. The scaling is still needed as this scales the probabilities to -accumulated- values, i.e. probability intervals, so that a neighbor can be selected by simply drawing a random number between 0 and 1

“P7L18 "this property (Markov chain)” - the described property, which tries to represent inertia, doesn’t seem to be related to the Markov property of stochastic processes.”

Response: the wording is misleading as I didn't intend a connection to “Markov property” by using the word “property”; although the concept is related to the Markov property because the probability which successor cell is chosen depends on the current state of the cell, I've removed “Markov chain” as it is not necessary and maybe misleading

“P7L29-30 These statements concerning the dynamics properties of various types of mass movements should be supported with suitable references.”

Response: references added
“P7L33-38 run-out length calculated with geometric gradient approach - approach not introduced previously. In general, referring to section 3.2.1, how does this fit into the previously described framework that processes mass movements on a cell-by-cell basis while the run-out length approaches look at vectors from initiation points to potential run-out locations?”

Response: I've added a reference to Sect. 3.2.2 where the Geometric Gradient approach is described and rephrased. The GPP model includes several different approaches for run-out calculation which the user can choose from. As the run-out length approaches based on angle thresholds are very common, especially as these parameters can be easily derived by field mapping, they are included in the GPP model. For each position along the process path, the angle criterion is checked.

“P8L15 This statement needs to be supported by a reference. The assumptions underlying the estimates presented in this paragraph should be outlined at least briefly.”

Response: slightly rephrased; the assumptions are described in detail in the following sections

“P12 Eq. (16) The exponent \(\beta_i \) shouldn’t be in superscript when using the exponential function \(\exp \); just write \(\exp^{\beta_i} \) instead of \(\exp^{\hat{\beta}_i} \)”

Response: changed to \(e^{\beta_i} \) in equations 12 and 16

“Section 5 needs to discuss limitations of the presented model(s). E.g. this conceptual modelling approach is not entirely physically based; it builds upon basic principles such as mass preservation and tries to mimic typical macroscopic behaviours of various types of mass movements (e.g., divergence) without modelling the actual internal geomechanical dynamics (e.g. viscous flow etc. as applicable).”

Response: limitations and differences to entirely physically based models have been added to the discussion

“Run-up of material on the opposite valley slope doesn’t seem to be possible in the GPP model since material is only transferred to lower-elevation neighbouring cells as mentioned in P6L27.”

Response: Yes, this is impossible; mentioned as limitation in the discussion

“P21L14 "impact of ... immediately obvious" - This is not a result of this study. The authors should avoid claims that are neither based on their findings nor on the cited literature. It may be appropriate to state that the proposed model can be used to assess the potential effectiveness of such forests (provided that the relevant processes are adequately represented by this model and its parameters).”

Response: this is not the result of this study, but has been shown e.g. by Wichmann (2006); I think this is just a misleading wording, rephrased
“A very brief section outlining implementation details should be included. E.g. which programming language; parallelized implementation? how parallelized, e.g. different Monte Carlo repetitions executed in parallel, . . .? ”

Response: some details have been added

“Is it correct that this model implementation only provides forward modelling capabilities, i.e. modelling possible outcomes based on prescribed model parameters? Or is it also capable of estimating model parameters such as the persistence parameter based on observed runout distributions? Are there any capabilities for validating the model based on observed runout distributions, or does the user have to do this outside the GPP module? I am thinking AUROC estimation based on observed historical events as commonly done in the statistical landslide susceptibility modelling literature.”

Response: addressed in the discussion; currently only forward modeling with a focus on process path and run-out length is supported; many features are available in the GIS environment the model is implemented for; model parameter calibration tools would be a great addition

“The presented model and its implementation should be contrasted against other models and software, including commercial products, at least at a general level.”

Response: the discussion has been reworked, including model limitations and the comparison with other simulation frameworks for gravitational mass movement propagation. I think it is out-of-scope of the paper to discuss individual modeling approaches in detail, as the GPP model is only the framework coupling these established approaches which have been evaluated on their own in various studies

“If I understand correctly the present model does not implement scouring (erosion) along the path as implemented by other similar models such as Guthrie et al. (2008) in Landslides.”

Response: yes, currently the GPP model only implements material deposition approaches

“P21 Section 6 - This shouldn’t be a separate section (unless required by journal policy)”

Response: journal policy

Technical comments

“P1L7 "practicability" -> applicability or feasibility”

Response: changed to applicability
“P1L8-9 "first ... re-written" seems contradictory; it can’t be first if it has been re-written, extended and improved”

Response: rephrased

“P1 'large-coverage...' -> 'regional-scale’”

Response: rephrased

“P2L26 'disposition modelling ' - susceptibility or slope stability modelling?”

Response: changed to susceptibility

“P7L21 "like" -> "as"”

Response: changed

“P7L24 "iterations" -> "repetition"”

Response: changed

“P7L29 "fixation" – re-word”

Response: rephrased

“P9L9 (i.e. first line) and elsewhere: "encoded" - re-word”

Response: done

“P20L15 "proven" - re-word”

Response: done

“P21L9 "pure" -> "purely"”

Response: corrected
3. Manuscript with marked changes
The Gravitational Process Path (GPP) model (v1.0) – a GIS-based simulation framework for gravitational processes

Volker Wichmann¹,²
¹alpS, Centre for Climate Change Adaptation, 6020 Innsbruck, Austria
²Laserdata GmbH, 6020 Innsbruck, Austria

Correspondence to: Volker Wichmann (wichmann@alps-gmbh.com)

Abstract. The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The tool combines several sub-models conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each sub-model component several modeling approaches are provided, which makes the tool configurable for different processes like rockfall, debris flows or snow avalanches. The tool can be applied to large coverage regional scale studies like natural hazard susceptibility mapping on a regional scale but also contains components for scenario based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their practicability applicability in numerous studies, including also geomorphological research questions like the delineation of sediment cascades or the study of process connectivity. This is the first completely re-written open source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.

1 Introduction

Rapid mass movements like rockfall, debris flows or snow avalanches, are common features in mountainous regions. Due to population growth and the advancing construction of infrastructure and buildings in such areas, rapid mass movements more and more pose a risk to society and can result in severe damages or even disasters. Besides early warning systems and protection measures for disaster prevention, hazard susceptibility zoning, which identifies potentially endangered areas, is required for risk analysis and the creation of hazard maps (Carrara et al., 1991; Fell et al., 2008; Hu et al., 2016).

While physically based dynamic models can be used for detailed analyses of single events (Takahashi et al., 1992; Iverson, 1997; Pudasaini and Hutter, 2007), regional susceptibility mapping requires modeling approaches with minimal data requirements (Aleotti and Chowdhury, 1999; van Westen and Soeters, 2006; Horton et al., 2013). The input parameters of physically based models are often uncertain, which is why simplified conceptual models are used to estimate potentially endangered areas in regional studies (Mergili et al., 2015). An important part of hazard susceptibility zoning is the description of process paths and run-out distances to determine the objects at risk. This requires to know about potential release areas in order to use these as start points in process path models. Potential process initiation sites can be derived by various methods, including
geomorphological field mapping, the combination of index maps, statistical analyses, deterministic approaches (e.g., factor of safety), probabilistic approaches, or neural networks (Aleotti and Chowdhury, 1999). Originating from the derived starting zones, material, or rather mass points, are then routed over a DTM (digital terrain model). This is done by single or multiple flow direction algorithms, the latter being able to describe lateral spreading away from the slope line (e.g., O’Callaghan and Mark, 1984; Freeman, 1991; Horton et al., 2013). In order to determine the run-out length, often simple break criteria are used like threshold angles based on horizontal and vertical distances (Lied and Bakkehøi, 1980; Hungr and Evans, 1988; Dorren, 2003; Zimmermann et al., 1997). Other approaches, often based on the mass flow model of Voellmy (1955), are using simplified physically based models considering only the centre of mass but not its deformation (Körner, 1976; Perla et al., 1980; Hegg, 1996; Gamma, 2000; Wichmann and Becht, 2005; Horton et al., 2013).

This paper introduces the Gravitational Process Path (GPP) model version 1.0, an attempt to provide a GIS-based modeling framework for the simulation of process path and run-out area of gravitational processes. It combines several modeling approaches in a single tool and simulates the movement of a mass point over a raster DTM (digital terrain model) from an initiation site to the deposition area. It concatenates several sub-models (process path, The GPP model is a conceptual model, concatenating components for process path determination, run-out, deposition), each with several modeling approaches, and is calculation, sink filling and material deposition. For each of these components, several well established modeling approaches are implemented and can be chosen by the user. This makes the GPP model configurable for different processes like rockfall, debris flows or avalanches. Working on raster data sets, some of the modeling approaches had to be extended to work in 2.5D.

The GPP model includes stochastic (random walk, Markov chain, Monte Carlo simulation), physically-based and empirical. Basically, the GPP model simulates the movement of a mass point over a raster DTM from an initiation site to the deposition area. Therefore it includes empirical, stochastic and physically-based modeling approaches and provides the option of terrain modification by material deposition during operation. Although some of the approaches are rather simplistic, implemented approaches are based on simplifying concepts, realistic results can be achieved with the great advantage of requiring only a few input parameters. This makes it possible to use the tool in large coverage studies on a regional scale, for regional scale studies, but it also includes some components for scenario modeling of single events. Typical applications are natural-hazard susceptibility mapping (e.g., Zimmermann et al., 1997; Heinimann et al., 1998; Wichmann and Becht, 2004; Wichmann and Becht, 2005; Mergili et al., 2015; Proske and Bauer, 2016) and geomorphological process studies, e.g. on sediment cascades or process connectivity (e.g., Wichmann, 2006; Wichmann et al., 2009; Haas et al., 2012a; Heckmann et al., 2012; Heckmann and Schwanghart, 2013; Heckmann et al., 2016).

The individual modeling approaches and model components have proven their applicability to different geomorphological processes and research questions in several studies. The For process path modeling, the GPP model includes the single flow direction path finding approach of O’Callaghan and Mark (1984), also known as the D8 flow direction approach (Jenson and Domingue, 1988), which has been used in various hydrological applications including the derivation of watershed basins and catchment area. Gamma (1996, 2000) introduced and used geomorphological applications. Besides, a random walk approach as introduced in the dfwalk model for debris flow modeling, including a by Gamma (1996, 2000) is implemented. This random walk approach, especially suited for process path delineation of gravitational processes. The random walk approach, has been
used by various authors for rockfall modeling (e.g., Wichmann and Becht, 2006; Haas et al., 2012b; Proske and Bauer, 2016), debris flow modeling (e.g., Zimmermann et al., 1997; Heinimann et al., 1998; Wichmann and Becht, 2004; Wichmann, 2006; Mergili et al., 2015) and avalanche modeling (e.g., Heckmann, 2006; Schmidtner, 2012).

Run-out distance calculation For run-out distance calculation, the GPP model includes several approaches based on the energy line principle (e.g., Heim, 1932; Hungr and Evans, 1988) have been used for, which have been applied to various processes including rockfall (e.g., Heinimann et al., 1998; Dorren, 2003), debris flows (e.g., Zimmermann et al., 1997) and avalanches (e.g., Körner, 1980). The Beside the 1-parameter friction model of Scheidegger (1975) is implemented, which has been used for rockfall run-out calculations in several studies (e.g., van Dijke and van Westen, 1990; Meißl, 1998; Dorren and Seijmonsbergen, 2003; Wichmann and Becht, 2005; Wichmann, 2006; Haas et al., 2012b). The avalanche model of Voellmy (1955) and its derivatives, the VSG model (Salm et al., 1990) and the PCM model (Perla et al., 1980), have been committed to the main repository of SAGA hosted at sourceforge.net (https://sourceforge.net/projects/saga-gis/), and binaries are available with every SAGA release.

The paper is structured as follows: Sect. 2 provides an overview of the framework and the model components (process path, run-out, sink filling and deposition). The individual modeling approaches implemented for each component are described in detail in Sect. 3. In Sect. 4 model configurations and application examples for rockfall, debris flow, avalanche and scenario modeling are presented. Finally a discussion and conclusion is provided.

2 General model structure

The GPP model works on a raster DTM. Initiation sites, usually derived by some kind of disposition modeling or (field) mapping, is intended to provide a software framework for gravitational process path modeling. It integrates components for process path determination, run-out calculation, sink filling and material deposition. For each of these components, several modeling approaches are implemented. This makes it possible to concatenate modeling approaches as required to simulate the behavior of a certain geomorphological process or to use suitable approaches with regard to the available input data.

Generally, the GPP model routes a mass point, here called particle (following the nomenclature of physics engines), from an initiation site over a raster DTM to the deposition area. In the GPP model, these initiation sites are organized in so-called release areas, made up of one or more start cells. Generally, there are grid cells labeled as starting zones in an input raster data set. Such a raster data set has to be derived beforehand, usually by some kind of susceptibility modeling or (field) mapping.
The GPP model computes several model realizations computed from for each start cell by calculating a user-defined number of model iterations (Monte Carlo simulation). Only the overlay of all iterations leads to the number of model iterations is defined by the user (default: 1000 iterations). The overlay of the model results from all iterations shows the final model result, i.e. the complete process area (and not individual process paths), as every iteration will show a different result because of the stochastic components in the model. Additionally, the terrain might be modified by the deposition of material.

Besides the components for process path and run-out calculation, the GPP model integrates components, which can modify the DTM in each model iteration by material deposition: there is a model component, which handles natural or artificial sinks, and also some components a component to deposit material on process stop or along the process path. This allows the model to overcome sinks or to simulate the plugging-blocking of a channel by wood and debris. In order to use these components, the GPP model requires an input data set with material heights per start cell.

Fig. 1 shows a basic setup, usually used for gravitational process path modeling on a regional scale. As this setup does not include the filling of sinks, a hydrologically sound DTM must be used. In each model iteration, a particle is initialized using information from its start cell. In a first step, one of the process path models is used to update the particle’s path. In case there is no valid process path cell, and i.e., the path has reached the border of the DTM or a NoData cell, the particle does not move on is destroyed and the next particle is initialized. If the next cell in the process path could can be determined, one of the run-out models is used to update the speed of the particle, or, in case of an approach based on the energy line principle, the respective angle criterion is checked. In case the particle has stopped, the next particle is initialized. Otherwise, the next cell of the process path is determined.

A model configuration including the filling of sinks is depicted in Fig. 2. This setup requires additional information on the material available per start cell. In case the process path has ended up in a sink, the amount of material available for the particle is checked. This amount of material is then used to fill up the process path upslope while preserving a downward slope, allowing the next particle to overcome the sink. In case the material available in an iteration is not enough or the sink is larger, several model iterations might be necessary to completely fill up the sink. After the attempt to fill the sink, the next particle is initialized.
Figure 2. Flowchart of a GPP model configuration making use of the sink filling approach.

Fig. 3 shows a fully featured setup of the GPP model, which is usually used for scenario modeling of a single (or some few) events. In this setup, material may be deposited when a particle stops, depending on the chosen deposition model and whether there is (still) material available for the particle. Then the next particle is initialized. In case the particle did not stop, it depends again on the chosen deposition model and the available material whether material is deposited along the process path or not. Then the next cell of the process path is determined. The deposition of material on stop or based on slope and velocity along the process path alters the terrain between successive model iterations.

The sequence in which particles (start cells) are initialized depends on the chosen processing order. Three different ordering schemes, release areas, respectively particles, are initialized is crucial in case material deposition is simulated. The modification of the terrain between model iterations can influence process paths and run-out distances significantly. The following processing orders are implemented:

(a) Release areas in sequence: the release areas are processed one by one; in each model iteration, all start cells of a release area are processed in ascending order of their elevation. This configuration computes all model iterations for the start cells of release area one, next for the start cells of release area two and so on.

(b) Release areas in sequence per iteration: the release areas are processed one by one in each model iteration; the start cells are processed in ascending order of their elevation. This configuration computes a single model iteration with the start cells of release area one, next with all start cells of release area two and so on; then the next model iteration is run over all release areas.

(c) Release areas in parallel per iteration: in each model iteration the start cells of all release areas are processed in ascending order of their elevation. With this configuration, all start cells are processed in each model iteration sorted by elevation, irrespective of their membership to a certain release area.
Depending on the overall configuration, the GPP model requires just a few or more parameters. These are either global parameters, used throughout the simulation, or (optionally) spatially distributed parameters provided as raster data sets. An example for the latter are spatially distributed friction values depending on factors like surface characteristics or water content.

3 Modeling approaches

4 Model components

Within the following sections, the currently implemented model approaches of each model component are described in detail. The user can choose which model should be used in each component and combine these selections to simulate various processes. Typical model configurations are presented in Sect. 4.

3.1 Process path modeling approaches

The modeling of process pathways on a raster DTM has been a research topic since many years. The fact that each raster cell has only eight immediate neighbor cells results in problems to reconstruct the correct flow direction over longer distances.
Basically there are two different kinds of methods, single and multiple flow direction algorithms, for which a lot of modeling approaches have been proposed. A simple (in order to determine the downslope process path of a particle from its initiation site, the GPP model implements two different approaches. One is a single flow direction solution has been proposed by O’Callaghan and Mark (1984) algorithm, which selects that neighbor cell as next flow path cell to which the steepest downward slope is observed. Multiple flow direction approaches (e.g., Freeman, 1991) usually distribute the accumulated water or material among all neighbor cells to which a downward slope is recognized. But most of these approaches have been developed for hydrological applications and are only of limited use in order to model gravitational processes: the amount of water is usually distributed in more or less the same proportions to the neighbors, irrespective of the local slope conditions. Therefore Gamma (1996, 2000) introduced the mfdfl approach (multiple flow directions for debris flows) which is: The other, based on a random walk, is a multiple flow direction approach sensitive to the local slope conditions.

3.1.1 Maximum slope

This approach, as proposed by O’Callaghan and Mark (1984), is implemented mainly for convenience in order to provide a simple means to detect the process path along the gradient of gravity. A particle follows the steepest descent of the slope:

\[
 n = \max\{ (z - z_i)/d_i \} \tag{1}
\]

where \(n \) is the neighbor of steepest descent, \(z \) is the elevation of the currently processed cell, \(z_i \) is the elevation of neighbor cell \(i \), and \(d_i \) is the horizontal distance to neighbor cell \(i \).

The model result is thus deterministic, with the exception of its behavior (as implemented in the GPP model) when two or more neighbor cells show the same steepest descent or when a flat area is reached. In the first case, one of the neighbors cells is chosen by random. On flat areas a set of potential neighbor cells is determined which is made up of all neighbors with the same elevation as the current cell which have not been traversed yet in the current model iteration. From this set, a process path cell is chosen by random. Together with the possibility that the terrain could be modified This introduces a probabilistic component. Further, the terrain could have been modified between two model iterations by sink filling or material deposition between two model iterations, this introduces a probabilistic component.

The Maximum Slope model approach has no special parameters besides those controlling the mode of operation of the GPP model main loop, like the number of model operations repetitions or the processing order. The pseudo-random number generator, used to choose a neighbor cell by random under the pre-described conditions, can be initialized either with the current time or a fixed seed value. The latter will always produce the same succession of values for a given seed value and will thus give the same results for consecutive tool runs.

3.1.2 Random walk

With this approach, the process path is modeled by a variant of the dfwalk model of Gamma (2000). The model can be adjusted to as proposed by Gamma (1996, 2000). Besides the parameters controlling the Monte Carlo simulation like the number of
repetitions, the Random Walk approach has three parameters to calibrate the model in order to mimic the behavior of different geomorphological processes by three calibration parameters. (i) a slope threshold controls below which terrain slope divergent flow is allowed; (ii) this is accompanied by an exponent for divergent flow: below the slope threshold, the parameter controls the degree of divergence; (iii) finally, a persistence factor can be used to preserve the direction of movement by weighting the current flow direction in order to account for inertia, which can be observed for debris flows or wet snow avalanches (Nohguchi, 1989; Takahashi et al., 1992). Rockfall may be modeled with (almost) no persistence and a higher degree of divergence.

For the currently processed grid cell, a set N of potential flow path cells is determined from all immediate neighbor cells in a 3 by 3 window which have a, which have an equal or lower elevation than the central cell. There are two parameters available—a slope threshold and a parameter controlling divergent flow—to further reduce this set. Possible flow path cells are determined by the $mfdf$ criterion. This is done in several steps. First of all, for each neighbor cell i a slope value γ_i, based on the slope threshold β_{thres}, is calculated (Gamma, 2000; Wichmann and Beech, 2005):

\[
N = \left\{ n_i \mid \begin{array}{l}
\gamma_i \geq (\gamma_{max})^a \\
\gamma_i = \gamma_{max} \\
\end{array} \right\}
\]

\[
\text{and-}
\]

\[
\gamma_i = \frac{\tan\beta_i}{\tan\beta_{thres}}, \quad \beta_i \geq 0, \quad i \in \{1,2,\ldots8\}
\]

(2)

where γ_{max} is the $\max\{\gamma_i\}$, β_i is the slope to neighbor cell i, β_{thres} is a slope threshold and β_{thres} is the maximum value $\gamma_{max} = \max\{\gamma_i\}$ is a measure on how close the slope to the steepest neighbor is to the slope threshold. In case $\gamma_{max} > 1$ the set N of potential flow path cells is only made up of the steepest neighbor. Otherwise, the $mfdf$ (multiple flow directions for debris flows; Gamma, 2000) criterion is used to decide which neighbor cells are additionally included in N:

\[
\gamma_i \geq (\gamma_{max})^a \quad (0 < \gamma_{max} \leq 1, \quad a \geq 1)
\]

(3)

where a is an the exponent to control the amount of divergent flow. If γ_i is greater than or equal to the $mfdf$ criterion, then the neighbor i is included in N. Thus, the set N is given by either:

\[
N = \left\{ i \mid \gamma_i \geq (\gamma_{max})^a \right\} \quad \text{if } 0 \leq \gamma_{max} \leq 1, \quad i \in \{1,2,\ldots8\}, \quad a \geq 1
\]

(4a)

\[
N = \left\{ i \mid \gamma_i = \gamma_{max} \right\} \quad \text{if } \gamma_{max} > 1, \quad i \in \{1,2,\ldots8\}
\]

(4b)

The slope threshold makes it possible to adjust the model to different relief topography; in steep sections of the process path, where the terrain slope is near the threshold, only steep neighbors are allowed in addition to the steepest descent. In flat
sections, almost all lower neighbor cells are potential flow path cells and the tendency for divergent flow is increased. This degree of divergent flow below the slope threshold can be controlled by the exponent of divergent flow. This sensitivity to the terrain conditions is an important property which is missing in the modeling approaches developed for hydrological processes. The degree of divergent flow can be controlled by parameter α, which distribute the flow proportionally to the slope to all lower neighbors irrespective of the local topography (Gamma, 2000).

Finally, a cell is picked by random from the set N. The probability for each cell p_{prob} is given by

$$p_{prob} = \frac{i, j \in N}{p1} \frac{f_i \cdot \tan \beta_i}{\sum_j f_j \cdot \tan \beta_j}$$ \hspace{1cm} (5)$$

where i' denotes the previous flow direction and p is a persistence factor (which is also contained in the computation of the sum if $i' \in N$) i describes the currently processed neighbor cell, j depicts all neighbor cells in set N, and f is a weighting factor. In case the flow direction to neighbor i equals the previous flow direction, f equals the persistence factor p (with $p \geq 1$), otherwise $f = 1$. A tendency to move towards the steepest descent is always achieved given as the transition probabilities are weighted by slope. In case the previous flow direction i' is contained in the set N, the persistence factor is used to give this direction a higher weight and thus a higher probability to get. The persistence factor can be used to weight the current flow direction, which results in a higher probability that the neighbor in this direction gets selected. This property (Markov-Chain) can be used to reduce abrupt changes in flow direction. Finally the transition probabilities are scaled to accumulated values between 0 and 1, and the pseudo-random generator is used to select one flow path cell from the set.

In the GPP model, the approach is extended to also handle flat areas. This is done like as described for the Maximum Slope approach with the same restriction that a potential successor cell must not have been traversed yet in the current model iteration in order to prevent endless loops.

Besides the parameters controlling the Monte-Carlo simulation like the number of iterations, the Random Walk approach has three parameters to calibrate the model in order to mimic the behavior of different geomorphological processes. The $mfdf$ criterion (Eq. (4)) controls below which terrain slope divergent flow is allowed. Multiple neighbors are only allowed in case the steepest local slope is lower than the slope threshold. This is accompanied by the exponent for divergent flow: below the slope threshold, the parameter controls the degree of divergence. Finally, the persistence factor can be used to achieve a greater fixation in the direction of movement (accounting for inertia) as may be the case for debris flows or wet-snow avalanches. Rockfall may be modeled with (almost) no persistence and a higher degree of divergence.

The result of several model iterations is a raster data set with encoded storing the transition frequencies, i.e. how many times a grid cell has been traversed. Figure 4 shows the effect of different parameter settings for the three calibration parameters slope threshold, exponent for divergent flow and persistence factor. Here, (the run-out length was calculated with the Geometric Gradient approach using an angle of 26.5°, see Sect. 3.2.2). The number of model iterations is set to 1000 in the examples (a) to (j). In Fig. 4 (a) to (e) the slope threshold (40°) and the persistence factor (1.0) are fixed, while the exponent for divergent flow is increased in several steps (1.0, 1.1, 1.2, 1.5, and 2.0). It is obvious that the extent of the process area increases significantly because of the higher degree of lateral spreading.
Figure 4. Effect of different random walk parameter settings; (a) to (e): different exponents for divergent flow (1.0, 1.1, 1.2, 1.5, and 2.0); (f) to (j): different slope thresholds (15°, 20°, 30°, 40°, and 60°); (k) to (o): different persistence factors (1.0, 1.5, 2.0, 2.5, and 3.0). For details see text.

In Fig. 4 (f) to (j) the exponent for divergent flow (1.5) and the persistence factor (1.0) are fixed, while the slope threshold is increased gradually (15°, 20°, 30°, 40°, and 60°). It can be seen that the point at which lateral spreading is allowed is moving up the torrential fan, resulting in an increase of the total process area.

Figure 4 (k) to (o) shows the results of a stepwise increase of the persistence factor (1.0, 1.5, 2.0, 2.5, and 3.0) while the slope threshold (40°) and the exponent of divergent flow (2.0) are fixed. Here, only a single iteration was calculated from each start cell in order to visualize single trajectories. It is obvious that with higher persistence factors the number of changes in direction along a trajectory is decreasing.

3.2 Run-out modeling approaches

In order to determine the run-out length of a particle, the GPP model implements various approaches. These range from rather simple but convenient approaches (regarding e.g., the comparison with field observations) based on the energy line principle to 1- and 2-parameter friction models. In the following, these approaches are described in detail.
3.2.1 Energy line approaches

The run-out length of a process is often described by the vertical and horizontal distances covered by a particle from its start to the stopping position:

\[
\tan \alpha = \frac{dv}{dh}
\]

(6)

where \(\alpha\) is the angle to the horizontal and \(dv\) and \(dh\) are the vertical and horizontal offset, respectively. Both offsets can be defined differently, see below. This describes a straight energy line from the start to the stopping position (Heim, 1932). With a straight energy line, the velocity can be calculated by (Körner, 1980):

\[
 v_i = \sqrt{2 \cdot g \cdot h_v}
\]

(7)

where \(v_i\) is the velocity \([\text{ms}^{-1}]\) on the currently processed grid cell, \(g\) is the acceleration due to gravity \([\text{ms}^{-2}]\) and \(h_v\) is the height difference \([\text{m}]\) between the energy line and the current grid cell \(i\). Although the angle \(\alpha\) is not constant, it can be observed that it has a characteristic value range for gravitational movements of a specific type. The calibration of the angle \(\alpha\), which can be measured quite easily, is usually done by field observations and mapping. All approaches based on the energy line principle provide the possibility to output raster data sets with encoded storing the stopping positions and the maximum velocity encountered in each cell of the process path.

3.2.2 Geometric gradient

The geometric gradient (Heim, 1932) defines the vertical offset as the vertical distance between the release area and the end of the deposit. The horizontal offset is defined as the horizontal distance between these two points. This modeling approach thus requires just the friction angle \(\alpha\) as input. The GPP model supports both a global friction angle or a raster data set with friction angles for each start cell. Once the angle between the start cell of the particle and the current position of the particle drops below the friction angle \(\alpha\), the end of the deposit is reached.

3.2.3 Fahrboeschung

The Fahrboeschung principle (Heim, 1932) defines the vertical offset like the is determined in the same way as for the geometric gradient. But the horizontal offset is not defined as the horizontal distance between start and end point but as the length of the horizontal projection of the actual process path. Again, the friction angle can be provided either as a global value or by a raster data set with friction angles for each start cell.

3.2.4 Shadow angle

Both the geometric gradient and the Fahrboeschung principle do not take into account that with rockfalls most of the initial energy is dissipated once a rock impacts on the talus slope for the first time (Broilli, 1974; Dorren, 2003). Thus Hungr and
Evans (1988) proposed the shadow angle, which defines the vertical offset as the vertical distance between the first impact location on the talus slope and the end of the deposit. The horizontal offset is defined as horizontal distance between the first impact location and the end of the deposit. From this it follows that the shadow angle is always smaller than the geometric gradient.

The shadow angle can again be provided either as a global value or by a raster data set with shadow angles for each start cell. In order to determine the location of the first impact of a particle on the talus slope, the GPP model implements two different approaches: (i) the user provides a raster data set with impact areas. Once a particle reaches a cell encoded as impact area, the location of this cell is used to measure the shadow angle; (ii) a threshold describing the slope angle above which free fall is assumed is provided. As soon as the angle between the start cell and the current position of the particle drops below the threshold, the location of this cell is used to measure the shadow angle.

3.2.5 1-parameter friction model

The 1-parameter friction model has been developed to simulate rockfall and is based upon concepts introduced by Scheidegger (1975), which have been extended by various authors (van Dijke and van Westen, 1990; Meißl, 1998; Dorren and Seijmonsbergen, 2003). The GPP model implements several of these approaches, more details can be found in Wichmann and Becht (2005) and Wichmann (2006). The 1-parameter friction model calculates the velocity on the currently processed grid cell according to the velocity on the previous cell of the process path, the slope and a friction parameter. Once the velocity becomes zero, the end of the deposit is reached. Once a block is detached from the rock face, it is falling in free air:

\[v_i = \sqrt{2 \cdot g \cdot h_f} \]

where \(v_i \) is the velocity [ms\(^{-1}\)] on the currently processed grid cell, \(g \) is the acceleration due to gravity [ms\(^{-2}\)] and \(h_f \) is the height difference [m] between the start cell and the current grid cell \(i \). The impact on the talus slope occurs, similar to the shadow angle model, if (a) a particle reaches a cell encoded as impact area or (b) the angle between the start cell and the current position of the particle drops below the free fall threshold. The decrease of velocity on the talus slope due to energy loss on the first impact can be calculated in two different ways:

(i) energy reduction (Scheidegger, 1975):

\[v_i = \sqrt{2 \cdot g \cdot h_f \cdot K} \]

where \(K \) is the amount of unspent energy (\(K < 1 \), i.e. for an energy reduction of 75 % \(K \) is 0.25).

(ii) preserved component of velocity (Kirkby and Statham, 1975):

\[v_i = \sqrt{2 \cdot g \cdot h_f \cdot \sin \beta_i} \]
where β_i denotes the local slope gradient [$^\circ$]. Here, the component of the fall velocity parallel to the talus slope surface is conserved.

Approach (i) requires the user to specify the amount of energy reduction in percent as calibration parameter. With approach (ii) usually larger run-out distances are modeled. The strong dependence of approach (ii) on the slope of the impact cell complicates the model calibration (Wichmann, 2006). Approach (i) is used as the default in the GPP model. After the impact, two different modes of motion can be modeled (Scheidegger, 1975):

(i) sliding:

$$v_i = \sqrt{v_{(i-1)}^2 + 2 \cdot g \cdot (h - \mu_s \cdot D)}$$

(11)

where $v_{(i-1)}$ is the velocity [ms$^{-1}$] on the previous grid cell of the process path, h is the height difference [m] between adjacent grid cells, D is the horizontal difference [m] between adjacent grid cells and μ_s is the sliding friction coefficient [-].

(ii) rolling:

$$v_i = \sqrt{v_{(i-1)}^2 + 10/7 \cdot g \cdot (h - \mu_r \cdot D)}$$

(12)

where μ_r is the rolling friction coefficient [-].

Once the velocity on a grid cell becomes zero, the end of the deposit is reached. The model calibration usually requires only two parameters: the amount of energy loss on impact [%] and the sliding, depending on the chosen mode of motion, either the sliding or the rolling friction coefficient [-]. The latter friction coefficient can be provided either as global value or spatially distributed by providing a raster data set with friction values. Impact on the talus slope can either be modeled by providing an input raster data set with impact areas or by using a slope threshold (see Sect. 3.2.4). Besides the possibility to output a raster data set with encoded storing the stopping positions, a raster data set with the maximum velocity encountered in each cell of the process path can be output.

3.2.6 PCM model

The PCM model (Perla et al., 1980) is a 2-parameter friction model originally developed to calculate the run-out distance of avalanches. It is based on the model of Voellmy (1955). The model has also been applied to debris flows by various authors (Rickenmann, 1990; Zimmermann et al., 1997; Gamma, 2000; Wichmann, 2006). It is a center of mass model and it is assumed that the motion is mainly governed by a sliding friction coefficient μ and a mass-to-drag ratio M/D. In steeper parts of the process path, the velocity is mainly influenced by M/D, whereas the velocity in the run-out area is dominated by μ. The velocity on the currently processed grid cell depends on the velocity of the previous cell, the slope, the slope length and the two friction coefficients:

$$v_i = \sqrt{\alpha_i \cdot (M/D)_i \cdot (1 - \exp^{\beta_i}) + (v_{(i-1)})^2 \cdot \exp^{\beta_i} \sqrt{\alpha_i \cdot (M/D)_i \cdot (1 - e^{\beta_i}) + (v_{(i-1)})^2 \cdot e^{\beta_i}}}$$

(13)
\[\alpha_i = g (\sin \theta_i - \mu_i \cos \theta_i) \]
\[\beta_i = \frac{-2L_i}{(M/D)_i} \]

where \(v_i \) is the velocity [ms\(^{-1}\)] on the currently processed grid cell, \(g \) is the acceleration due to gravity [ms\(^{-2}\)], \(\theta \) is the local slope [°], \(L \) is the slope length between adjacent grid cells [m], \(\mu \) is the sliding friction coefficient [-], and \(M/D \) is the mass-to-drag ratio [m]. Perla et al. (1980) assume the following velocity correction for \(v_{(i-1)} \) before \(v_i \) is calculated in case of a concave transition in slope direction:

\[
v^*_i (i-1) = \begin{cases}
 v_{(i-1)} \cos (\theta_i - \theta_{(i-1)}) & \text{if } \theta_{(i-1)} \geq \theta_i \\
 v_{(i-1)} & \text{if } \theta_{(i-1)} < \theta_i
\end{cases}
\]

(15)

The correction is based on the conservation of linear momentum and has a higher magnitude in case of abrupt transitions. The accurate stopping position on a grid cell may be calculated by:

\[
s = \frac{(M/D)_i^2}{2} \ln \left(1 - \frac{(v_{(i-1)})^2}{\alpha_i (M/D)_i} \right) \]

(16)

where \(s \) is the length [m] of the process path segment on the grid cell. In the GGP model, \(s \) is not calculated and the process stops as soon as the square root in Eq. 13 becomes undefined. Thus the raster cell size determines the precision of the stopping position, which is a reasonable compromise for a grid based model.

Gamma (2000) proposed to incorporate the velocity correction (Eq. 15) directly into the velocity calculation (Eq. 13):

\[
v_i = \sqrt{\alpha_i \cdot (M/D)_i \cdot (1 - \exp^{\beta_i}) + (v_{(i-1)})^2 \cdot \exp^{\beta_i} \cdot \cos (\Delta \theta_i)} \sqrt{\alpha_i \cdot (M/D)_i \cdot (1 - e^{\beta_i}) + (v_{(i-1)})^2 \cdot e^{\beta_i} \cdot \cos (\Delta \theta_i)}
\]

(17)

and

\[
\Delta \theta_i = \begin{cases}
 \theta_{(i-1)} - \theta_i & \text{if } \theta_{(i-1)} > \theta_i \\
 0 & \text{if } \theta_{(i-1)} \leq \theta_i
\end{cases}
\]

(18)

Equation The GPP model implements equation (17) is also implemented in the GPP model. The model has to be calibrated by the friction parameters \(\mu \) and \(M/D \). In order to overcome the problem of mathematical redundancy – various combinations of the two parameters can result in the same run-out distance – the parameter \(M/D \) is usually taken to be constant along the process path. It is only calibrated once in order to obtain realistic maximum velocity ranges for a given process. Both friction parameters can be provided either as a global value or spatially distributed by a raster data set. In the GPP model
implementation it is also required to provide an initial velocity [ms⁻¹] in order to avoid that the process already stops on the first grid cell along the process path. As with the 1-parameter friction model, it is possible to output raster data sets with **encoded** storing the stopping positions and the maximum velocities.

3.3 Deposition modeling approaches

The GPP model implements various deposition modeling approaches. In order to use these approaches, an input raster data set with material heights per start cell is required. This total material height is then averaged by the number of iterations to calculate the material height available for a particle in each iteration. Material that has not been spent in an iteration is made available for the remaining iterations. Deposited material immediately alters the terrain and the next iteration is computed on the modified DTM.

The most important deposition approach is the filling of sinks, which allows the GPP model to overcome small depressions or even larger obstacles like retention basins. Others simply deposit material once a particle stops or allow deposition along the process path based on slope and/or velocity thresholds. The latter can be used to model scenarios like channel plugging the blocking of a channel by wood or debris.

3.3.1 Sink filling

The sink filling approach is immediately activated once a raster data set with material heights per start cell is provided as input. As soon as a sink is detected, the particle stops and material is deposited. The deposition is done preserving a downward slope if procurable, avoiding to create new sinks and making it possible to overcome the obstacle in subsequent model iterations.

The sink filling approach is based on Gamma (2000) with slight modifications: (i) the overflow cell and the depth of the sink are determined; (ii) if the depth of the sink can not be filled with the material available for the current model iteration, all material available is deposited and the computation stops; (iii) the sink is filled up to the height which is preserving a user specified minimum slope to the overflow cell; (iv) in order to avoid the creation of another sink, material is deposited on the process path above the sink; therefore it is tested if the material left over is enough to fill up the process path above the sink while preserving the minimum slope; in case the available material is not enough to preserve this slope, the angle is continuously decreased until a minimal downward slope can be preserved. In case material is left over, it is made available for the subsequent iterations. Gamma (2000) did not use a user specified minimum slope to preserve, but determined the average slope along the process path above the sink for the last 50 meters. For us, in performance tests of the GPP model this turned out to be too dependent on the local slope conditions, often resulting in large angles and thus using too much material which is then missing to fill the sink upwards.

3.3.2 On stop

This approach simply deposits material on the grid cell of the modeled stopping position. The amount of material deposited on this cell is controlled by the **Initial Deposition on Stop** parameter, which describes the percentage of the available material.
which is deposited at the stopping position. The rest of the material is used to fill up the process path above the stopping position. The angle used to do this while preserving a downward slope is determined in a way that all material left over in this iteration is used.

The approach makes it possible to adjust the deposition behavior to different geomorphological processes: simulating a rock fall event, the Initial Deposition on Stop parameter can be set to 100 %, resembling the deposition of single rocks. With debris flows or snow avalanches, it can be set lower in order to achieve a more lobe like deposition pattern. Nevertheless, the approach is not intended to realistically simulate the deposition pattern. But it can be used for scenario modeling, forcing the process path into different directions in subsequent model iterations.

3.3.3 Slope / velocity based

The On Stop deposition approach can be extended by slope and/or velocity based components, which can be used to force the deposition of material along the process path. Such components have been proposed by Gamma (2000) and are used in a modified way in the GPP model. Again, this approach is most useful for scenario modeling in order to simulate debris jamming or channel plugging. It is also useful if a high resolution DTM with great detail is used. The deposition starts once the slope or the velocity drops below a specific threshold. At a slope or velocity of zero, the Maximum Deposition along Path parameter controls how many percent of the material (available in this model iteration) that is deposited. At the slope/velocity threshold the percentage of material deposition is zero, which results in a linear relation.

The slope and velocity based approaches can be used separately or in combination. In the latter case, a deposition height is calculated with both approaches and the lower deposition height is applied. This reduces artefacts resulting from the usage of a single threshold. For example, on flat areas, no material is deposited as long as the velocity is still high.

The slope/velocity based approaches have a further parameter, the Minimum Path Length, which describes the distance along the process path that must be exceeded before deposition sets in. This is required to simulate the behavior of a volume (and not single particles) and to prevent the deposition of material shortly after the process has initiated or even within the release area itself. It is also useful to have more control on the position along the process path where deposition should set in, especially in case of cascades with alternating steeper and gently dipping slope profile sections.

3.4 Model input and output

This section provides a brief summary on the GPP model parameters, input, and output data sets. Table A1 shows the process path model parameters, grouped by model. The run-out parameters are shown in Table A2 and the deposition parameters in Table A3. Some of the parameters are global parameters, others can be provided as raster data sets in order to use spatially distributed parameter values. The input and output data sets are summarized in Table A4.
Use cases of the GPP model on a regional scale are natural hazard susceptibility mapping and the derivation of geomorphological process areas and sediment cascades. It is possible to simulate different scenarios based upon e.g., process magnitude, the existence of protection forest or protection measures. The inclusion of the deposition model component is usually only done on a more local scale. The modeling approaches available for each model component make it possible to simulate different gravitational processes depending on the overall model configuration. Within the following sections typical model configurations and parameter settings are described for rockfall, debris flow and avalanche modeling. Run-out calculations using one of the approaches based on the energy line principle have been used for all three process types, but as they are straightforward to use they are not discussed in detail. A separate section provides further information on scenario modeling. It must be noted that the parameter ranges provided for each process have to be considered as approximate values only and are thought to provide an initial guess. For example, Wichmann et al. (2008) have shown that for debris flow modeling the random walk and friction model parameters decrease with lower DTM resolutions.

4.1 Rockfall

A typical model configuration for rockfall modeling on a regional scale, e.g., to create susceptibility maps, combines the modeling approaches shown in Table 1. Usually the Random Walk approach is used to determine the process path, using rather permissive parameter settings regarding lateral spreading. The slope threshold is set rather high, usually in conformance with the threshold for free fall, in order to permit changes in direction already with the first impact on the talus slope. The exponent of divergence is comparatively high, too, in contrast to a rather small persistence factor which mimics the fact that rocks often change direction on impact.

Table 1. Model configuration for rockfall modeling on a regional scale and approximate parameter ranges (compiled from Wichmann, 2006; Wichmann and Becht, 2006; Proske and Bauer, 2016).

<table>
<thead>
<tr>
<th>Model component</th>
<th>Model approach</th>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process path</td>
<td>Random walk</td>
<td>slope threshold</td>
<td>55–65°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exponent of divergence</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>persistence factor</td>
<td>1.0–1.6</td>
</tr>
<tr>
<td>Run-out</td>
<td>1-parameter friction model</td>
<td>threshold free fall</td>
<td>55–65°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>energy reduction</td>
<td>70–75 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mittel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode of motion</td>
<td>sliding</td>
</tr>
</tbody>
</table>
The threshold of free fall used in the 1-parameter friction model depends on the DTM resolution, but should conform with the slope threshold of the Random Walk model. The energy reduction on impact is usually about 75 % as investigated by Broilli (1974). *Although the dominating modes of motion of rockfalls are falling, bouncing, and rolling, often a sliding motion is simulated for the sake of simplicity (e.g., van Dijke and van Westen, 1990; Meißl, 1998; Dorren and Seijmonsbergen, 2003; Wichmann and Becht, 2005).* When the model is applied on a regional scale, the friction coefficient μ should be provided spatially distributed as raster data set. Table 2 shows sliding friction coefficients for different materials and land cover. Spatially distributed friction coefficients are also very useful for scenario modeling, e.g., in order to determine the consequences of protection forest removal or reforestation.

Table 2. Coefficients of friction for different materials and land cover (compiled from van Dijke and van Westen, 1990; Dorren and Seijmonsbergen, 2003; Wichmann, 2006).

<table>
<thead>
<tr>
<th>Material / land cover</th>
<th>Friction coefficients (μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tills</td>
<td>0.35–0.5</td>
</tr>
<tr>
<td>Residual soils</td>
<td>0.4–0.5</td>
</tr>
<tr>
<td>Fluvial materials</td>
<td>0.4–0.5</td>
</tr>
<tr>
<td>Bare rock</td>
<td>0.4—0.9</td>
</tr>
<tr>
<td>Scree materials:</td>
<td></td>
</tr>
<tr>
<td>- marl</td>
<td>0.35–0.45</td>
</tr>
<tr>
<td>- flysch</td>
<td>0.6–0.7</td>
</tr>
<tr>
<td>- sandstone</td>
<td>0.7–0.8</td>
</tr>
<tr>
<td>- dolomite</td>
<td>0.7–0.8</td>
</tr>
<tr>
<td>- limestone</td>
<td>0.8–0.9</td>
</tr>
<tr>
<td>Rockfall materials</td>
<td>0.9–1.0</td>
</tr>
<tr>
<td>Meadow</td>
<td>0.5–0.6</td>
</tr>
<tr>
<td>Alpine shrubs</td>
<td>0.6–0.9</td>
</tr>
<tr>
<td>Bushes</td>
<td>0.6–0.7</td>
</tr>
<tr>
<td>Open forest</td>
<td>1.0–2.0</td>
</tr>
<tr>
<td>Dense forest</td>
<td>> 2.0</td>
</tr>
</tbody>
</table>

The model configuration thus requires the following raster data sets as input: a DTM, a raster with encoded release areas, and a raster with spatially distributed friction coefficients. Model outputs, describing the derived process area, are raster data sets with encoded *storage* transition frequencies, the encountered maximum velocities and the stopping positions.
4.2 Debris flows

A typical model configuration for debris flow modeling on a regional scale is shown in Table 3. Again, the Random Walk approach is used for path finding. The slope threshold is usually set to angles slightly above the slope of the torrential fan. The exponent of divergence depends on the size of the simulated events. The larger the event, the higher the exponent. Its value also depends on the grain size and water content, with lower values for flowslides and higher values for coarse-grained debris flows. The persistence factor is higher compared to rockfall as persistence is given in the case of debris flows.

Run-out distances are calculated on basis of the PCM model. The M/D drag ratio is usually calibrated once to match the highest observed velocities of a specific type of debris flow. The friction parameter μ is once again provided spatially distributed as a raster data set. Based on the observation that the sliding friction coefficient tends towards lower values with increasing catchment area, attributed to a changing rheology with higher discharges along the process path, Gamma (2000) derived the following estimating functions from debris flows in Switzerland:

\[
\begin{align*}
\text{minimum run-out: } \mu & = 0.25 \cdot a^{-0.21} \\
\text{likely run-out: } \mu & = 0.19 \cdot a^{-0.24} \\
\text{maximum run-out: } \mu & = 0.13 \cdot a^{-0.25}
\end{align*}
\]

with a = catchment area in km2. Such data sets can be easily computed from a raster with encoded stored catchment area (i.e. flow accumulation). Gamma (2000) and Wichmann and Becht (2005) additionally apply minimum (0.045) and maximum (0.3) thresholds in order to exclude extreme values. The model configuration thus requires a DTM, a raster with encoded release areas, and a raster with spatially distributed friction coefficients as input. Model outputs, describing the derived process area, are again raster data sets with encoded storing transition frequencies, encountered maximum velocities and stopping positions.

Table 3. Model configuration for debris flow modeling on a regional scale and approximate parameter ranges (compiled from Zimmermann et al., 1997; Gamma, 2000; Wichmann and Becht, 2005; Wichmann, 2006).

<table>
<thead>
<tr>
<th>Model component</th>
<th>Model approach</th>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process path</td>
<td>Random walk</td>
<td>slope threshold</td>
<td>20–40°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exponent of divergence</td>
<td>1.3–3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>persistence factor</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>Run-out</td>
<td>PCM model</td>
<td>μ \text{/}</td>
<td>0.04–0.8, spatially distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/D ratio</td>
<td>20–150</td>
</tr>
</tbody>
</table>

4.3 Avalanches

The model configuration for avalanche modeling on a regional scale resembles that for debris flow modeling, but the parameter variability is higher because of the different properties of powder and wet snow avalanches (see Table 4). All Random Walk parameters usually require higher values in order to be able to reproduce the extent of the process area. The friction parameter μ is lower for larger events, and the lower the snow density is, with powder avalanches showing the lowest values. The M/D ratio
is usually higher with larger (and powder) avalanches, resulting in higher maximum velocities. Both friction parameters can be provided spatially distributed. For example, Heckmann (2006) used spatially distributed M/D values based on vegetation cover as substitute for surface roughness.

Table 4. Model configuration for avalanche modeling on a regional scale and approximate parameter ranges (compiled from Perla et al., 1980; Salm et al., 1990; Hegg, 1996; Heckmann, 2006; Schmidtner, 2012).

<table>
<thead>
<tr>
<th>Model component</th>
<th>Model approach</th>
<th>Parameter</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process path</td>
<td>Random walk</td>
<td>slope threshold</td>
<td>45–60°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exponent of divergence</td>
<td>1.3–5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>persistence factor</td>
<td>1.5–3.0</td>
</tr>
<tr>
<td>Run-out</td>
<td>PCM model</td>
<td>μ</td>
<td>0.1–0.5, spatially distributed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/D ratio</td>
<td>20–1000, spatially distributed</td>
</tr>
</tbody>
</table>

4.4 Scenario modeling

Scenario modeling usually addresses topics like process magnitude, the impact of protection forest or protection measures. Different process magnitudes are usually modeled by using a different number of model iterations and/or friction coefficients. For example, different friction coefficients can be used to assess the relevance of protection forest by simulating events with and without forest cover and to compare how the run-out distances increase (e.g., Wichmann, 2006; Proske and Bauer, 2016). Different friction coefficients have also been used to simulate different block sizes in rockfall modeling (e.g., Haas et al., 2012b). The influence of protection measures can be analyzed by manipulating the DTM to include barriers or retention basins and to observe the impact on the extent of the processes area. Here, deposition modeling is usually involved for sink filling. Deposition of material and sink filling are also required with high resolution DTMs in order to fill up small depressions, to overcome obstacles, or to simulate the break out of incised channels.

In order to demonstrate the approach for sink filling, a 10 m DTM has been modified to include a sink along the process path. For the sake of simplicity, the process path is modeled using the Maximum Slope approach with 1000 iterations and no friction and deposition models. Figure 5 (a) shows that the process stops at the end of the sink in case no material is provided. If 50 m3 of material are provided, the process overcomes the sink and stops not until the next sink is reached. This sink can not be overcome because there is not enough material left over.

Figure 6 illustrates the sink filling approach in detail. In case only a single iteration is calculated (Fig. 6 (a)), all material provided is available in that iteration. The sink can thus be filled at once, preserving the slope specified with the minimum slope parameter (here 2.5°). Figure 6 (b) shows the successive filling of the sink when ten model iterations are calculated and thus only 50/10 m3 of material are available per iteration.
Figure 5. Sink filling; (a) the process stops in a sink; (b) the process overcomes the sink and stops in the next sink because no material is leftover.

Figure 6. Longitudinal profile illustrating the sink filling approach; (a) single model iteration, (b) ten model iterations.

Figure 7 shows the result of modeling two different magnitudes of debris flow events from five release areas on a 10 m, hydrologically sound DTM. The process path is modeled with the Random Walk approach (slope threshold = 40°, exponent of divergence = 2, persistence factor = 1.5, model iterations = 1000) and the run-out distance is calculated with the PCM model. Because debris flow velocities are usually lower than 12–15 ms\(^{-1}\), \(M/D\) is set to 40 m. The two events are modeled using a friction parameter \(\mu\) of 0.25 for the medium event and a \(\mu\) of 0.13 for the large event. In both cases the initial velocity is set to 1 ms\(^{-1}\).

The maximum velocities reached along the steeper parts of the process path are almost the same (16 ms\(^{-1}\) for the large event, 15 ms\(^{-1}\) for the medium event), but the run-out distances significantly increase with the lower friction value \(\mu\) used for the large event. The stopping positions are well distributed over the torrential fan because of the different process path lengths and slope profiles of the respective random walks. The number of stops per grid cell resembles the pattern of the transition frequencies.

Figures 8 (b) and (c) show the modeling results of the large event from four release areas on a hydrologically sound 2.5 m DTM (same random walk and friction model settings as in the 10 m case above). At this DTM resolution the debris flow channels are sharply incised and the process path is forced to follow the channels in case no material deposition along the process path is simulated. Figures 8 (d) to (f) show the result using 3750 m\(^3\) of material in total (equally distributed over the release areas) and the deposition model approach \(\text{min}(\text{slope};\text{velocity}) \& \text{on stop}\) with the following parameter settings: initial deposition on stop = 20 %, slope threshold = 35°, velocity threshold = 12 ms\(^{-1}\); maximum deposition along path = 20 % and minimum path length = 650 m. This parameter setting constrains the material deposition to the head of the torrential fan, successively filling up the incised channel and permitting the process to break out of the channel. In consequence, the process...
area covers the complete fan. Comparing the stopping positions (Fig. 8 (f)) with the material deposition heights (Fig. 8 (e)) it can be seen that although the deposition approach tries to deposit material while preserving a downward slope, new sinks are introduced in some cases because the available material per model iteration is not always enough to meet this requirement. Such sinks are then filled up in subsequent model iterations (see also Fig. 6 (b)). It can also be seen that all of the provided material is already used up before the end of the process paths is reached.

5 Discussion and Conclusion

The GPP model integrates several well known model approaches, which have proven, which are established in practice into a single GIS-based simulation framework. The framework is highly modular and, with components for process path, run-out length, sink filling and material deposition. The GPP model is a conceptual model, which provides the possibility to combine different modeling approaches and thus to model different kinds of gravitational processes. Although some model components

The currently implemented modeling approaches are not entirely physically based, but build upon empirical and basic principles to mimic typical macroscopic characteristics of mass movements. Nowadays, several physically based numerical simulation models are available, which make it possible to simulate processes at a very high level of precision. However, these types of models require many (geotechnical) parameters like rheological properties, cohesion and substrate characteristics. The detailed information required and the real-world heterogeneity limit their applicability to small areas, usually to single events (Clerici and Perego, 2000; Guthrie et al., 2008).
Although some modeling approaches included in the GPP model are based on rather simple concepts it is their complex interaction, which permits to delineate the extent of gravitational process areas. Reasonable spatially distributed results can be obtained with a minimum of input data and model parameters, recommending the framework especially for susceptibility mapping on regional scales. Nevertheless, recent additions to the model approaches like sink filling and deposition modeling make it also interesting for scenario modeling on various scales. Nevertheless, because of the limitations of the model it must be noted that this has to be done with great cautiousness at a local scale. For example, different block sizes of rockfall can only be simulated indirectly by using different friction parameters. Another limitation is the restriction of the process path routing to neighbor cells with equal or lower elevation, which makes the run-up of material on the opposite valley slope impossible. Like with every other simulation model it must be pointed out that it is a prerequisite to understand the functionality of the model components in detail before their application and the interpretation of the model results.

Besides its pure scientific application, the GPP model also qualifies as kind of sandbox game because of its characteristics. Dynamic processes are reproduced by stochastic components and Monte Carlo simulation. Basically only a DTM and a map of release areas is required to get started. This allows its straightforward application in education. Additional information like spatially distributed friction coefficients derived from land cover maps are easily added for scenario modeling making, e.g., the impact of protection forest decline immediately obvious. The GPP model provides only forward modeling capabilities. But as it is embedded in a GIS environment, model validation by observed historical events, e.g., by receiver operating characteristics.

Figure 8. Deposition modeling scenario on a high resolution 2.5 m DTM; (a) orthophoto, (b) transition frequencies (no deposition), (c) stopping positions (no deposition), (d) transition frequencies (deposition), (e) material deposition heights, (f) stopping positions (deposition). For details see text.
(ROC curve), can be done outside the model. Also the derivation of initiation sites can be done within the GIS environment. Currently lacking are tools to automatically estimate model parameters based on observed process areas. This would be a great addition.

Frameworks for the simulation of gravitational mass movements on a regional scale have been released by various authors. For example, Horton et al. (2013) published the Flow-R (Flow path assessment of gravitational hazards at a Regional scale) model, which is a distributed empirical model for regional susceptibility assessments of debris flows. It includes several flow direction algorithms, but not all are relevant for gravitational mass movement modeling, and a random walk approach is missing. Flow-R also implements two friction models: the approach of Perla et al. (1980) and the simplified friction-limited model (SFLM), which is based on the Fahrboeschung principle (Heim, 1932). Flow-R is Matlab-based and available free of charge for Windows and Linux, but its source code is not open. Mergili et al. (2015) developed the r.randomwalk model which offers built-in functions for model validation and has the ability to consider uncertainties. It is a multi-functional conceptual tool for backward- and forward-analyses of mass movement propagation and implemented as add-on to GRASS GIS (but not officially included). It additionally requires the statistics software R (R Project for Statistical Computing). Currently the tool only works on UNIX systems with GRASS GIS 7.0 installed from source.

The GPP model is written in C++ and implemented in the FOSS SAGA (Conrad et al., 2015) and "Geomorphology" tool library for the FOSS SAGA (Conrad et al., 2015). It is thus completely integrated into a GIS environment which facilitates the preparation of input data and the analysis of the results. This avoids cumbersome data editing and data format conversions. Furthermore, the integration of the model’s source code into the official SAGA source code repository will assure source code maintenance and easy application since the GPP model will be included in every SAGA binary release. It is running on Windows, Linux and Mac OS X.

Besides its purely scientific application, the GPP model also qualifies as kind of sandbox game because of its characteristics. Dynamic processes are reproduced by stochastic components and Monte Carlo simulation. Basically only a DTM and a map of release areas is required to get started. This allows its straightforward application in education. Additional information like spatially distributed friction coefficients derived from land cover maps are easily added for scenario modeling. This allows for example to visualize the impact of protection forest decline on rockfall run-out length by simulating scenarios with and without forest cover through the application of different friction coefficients (see Table 2).

The GPP model is an attempt to bundle the development efforts put into several geomorphological process models within the last years into a single free and open source application. We feel It is the author’s opinion that making them available in a new and free implementation, even extended by new components, is important for geomorphological and natural hazards related research and education. The modular structure of the framework and in particular of the source code facilitates the addition of further model approaches. Thus we are The author is looking forward to contributions extending the framework, like the extension of the framework through the addition of new modeling approaches or the implementation of accompanying SAGA tools, e.g., for automatic model parameter calibration based on observed events.
6 Code availability

The SAGA source code repository, including the GPP model, is hosted at https://sourceforge.net/projects/saga-gis/ using a git repository. Read only access is possible without login. Alternatively, the source code and binaries can be downloaded directly from the files section at https://sourceforge.net/projects/saga-gis/.

Appendix A
Table A1. The process path parameters of the GPP model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum slope</td>
<td>Iterations</td>
<td>Number of model iterations from each start cell [-]</td>
</tr>
<tr>
<td></td>
<td>Processing order</td>
<td>Processing order of start cells; choice</td>
</tr>
<tr>
<td></td>
<td>Seed value</td>
<td>Pseudo-random number generator initialization</td>
</tr>
<tr>
<td>Random walk</td>
<td>Iterations</td>
<td>Number of model iterations from each start cell [-]</td>
</tr>
<tr>
<td></td>
<td>Processing order</td>
<td>Processing order of start cells; choice</td>
</tr>
<tr>
<td></td>
<td>Seed value</td>
<td>Pseudo-random number generator initialization</td>
</tr>
<tr>
<td></td>
<td>Slope threshold</td>
<td>Threshold below which lateral spreading is modeled [°]</td>
</tr>
<tr>
<td></td>
<td>Exponent</td>
<td>Exponent controlling the amount of lateral spreading [-]</td>
</tr>
<tr>
<td></td>
<td>Persistence factor</td>
<td>Factor used as weight for the current flow direction [-]</td>
</tr>
<tr>
<td>Model</td>
<td>Parameters</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Geometric gradient</td>
<td>Friction angle</td>
<td>Angle between the release area and the end of the deposit (straight-line distance) [°]; either spatially distributed or global</td>
</tr>
<tr>
<td>Fahrboeschung principle</td>
<td>Friction angle</td>
<td>Angle between the release area and the end of the deposit (process path length) [°]; either spatially distributed or global</td>
</tr>
<tr>
<td>Shadow angle</td>
<td>Friction angle</td>
<td>Angle between first impact location on the talus slope and the end of the deposit (straight-line distance) [°]; either spatially distributed or global</td>
</tr>
<tr>
<td></td>
<td>Threshold angle free fall</td>
<td>Minimum angle between start cell and current cell to model free fall [°]; alternatively a raster data set with slope impact areas can be provided</td>
</tr>
<tr>
<td></td>
<td>Slope impact areas raster</td>
<td>Mapped slope impact areas as raster data set, optional</td>
</tr>
<tr>
<td>1-parameter friction model</td>
<td>Threshold angle free fall</td>
<td>Minimum angle between start cell and current cell to model free fall [°]; alternatively a raster data set with slope impact areas can be provided</td>
</tr>
<tr>
<td></td>
<td>Slope impact areas raster</td>
<td>Mapped slope impact areas as raster data set, optional</td>
</tr>
<tr>
<td></td>
<td>Method impact</td>
<td>Approaches to calculate the velocity reduction on slope impact; choice</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>Amount of energy reduction on slope impact [%]</td>
</tr>
<tr>
<td></td>
<td>Mu</td>
<td>Friction parameter μ [-]; alternatively a raster data set with friction values can be provided</td>
</tr>
<tr>
<td></td>
<td>Mu raster</td>
<td>Spatially distributed friction values [-] as raster data set, optional</td>
</tr>
<tr>
<td></td>
<td>Mode of motion</td>
<td>The mode of motion, either sliding or rolling</td>
</tr>
<tr>
<td>PCM model</td>
<td>Mu</td>
<td>Friction parameter μ [-]; alternatively a raster data set with friction values can be provided</td>
</tr>
<tr>
<td></td>
<td>Mu raster</td>
<td>Spatially distributed friction values [-] as raster data set, optional</td>
</tr>
<tr>
<td></td>
<td>Mass to drag ratio</td>
<td>Mass to drag ratio M/D [m]; alternatively a raster data set with M/D values can be provided</td>
</tr>
<tr>
<td></td>
<td>Mass to drag ratio raster</td>
<td>Spatially distributed M/D values [m] as raster data set, optional</td>
</tr>
<tr>
<td></td>
<td>Initial velocity</td>
<td>The initial velocity of a particle [ms(^{-1})]</td>
</tr>
</tbody>
</table>
Table A3. The deposition parameters of the GPP model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sink Filling</td>
<td>Minimum slope</td>
<td>Minimum slope to preserve on sink filling [°]</td>
</tr>
<tr>
<td>On stop</td>
<td>Initial deposition on stop<sup>1</sup></td>
<td>Percentage of available material initially deposited on stopping cell [%]</td>
</tr>
<tr>
<td>Slope & on stop</td>
<td>Slope threshold<sup>2</sup></td>
<td>Slope angle below which the deposition of material sets in [°]</td>
</tr>
<tr>
<td></td>
<td>Maximum deposition along process path<sup>1</sup></td>
<td>Percentage of material which is deposited at most [%]</td>
</tr>
<tr>
<td></td>
<td>Minimum path length<sup>1</sup></td>
<td>Path length which has to be reached before material deposition is enabled [m]</td>
</tr>
<tr>
<td>Velocity & on stop</td>
<td>Parameters denoted by <sup>1</sup></td>
<td>Velocity below which the deposition of material sets in [ms<sup>-1</sup>]</td>
</tr>
<tr>
<td>min(slope;velocity) & on stop</td>
<td>Parameters denoted by <sup>1,2</sup></td>
<td></td>
</tr>
</tbody>
</table>

¹ also used by the models below; ² also used by the min(slope;velocity) & on stop model
Table A4. The input and output data sets of the GPP model.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital terrain model</td>
<td>In case no Material data set for sink filling is provided, this must be a hydrologically sound DTM [m]; input data set</td>
</tr>
<tr>
<td>Release Areas</td>
<td>Release areas encoded by unique integer IDs, all other cells NoData [-]; input data set</td>
</tr>
<tr>
<td>Material</td>
<td>Height of material available in each start cell [m]; used for sink filling and material deposition; optional input data set</td>
</tr>
<tr>
<td>Friction Angle</td>
<td>Spatially distributed friction angles [°]. Optionally used with the Geometric Gradient, Fahrboeschung or Shadow Angle friction model; optional input data set</td>
</tr>
<tr>
<td>Slope Impact Areas</td>
<td>Slope impact grid, impact areas encoded with valid values, all other NoData. Optionally used with the Shadow Angle or the 1-parameter friction model; optional input data set</td>
</tr>
<tr>
<td>Friction Parameter Mu</td>
<td>Spatially distributed friction parameter μ [-], optionally used with the 1-parameter friction model or the PCM Model; optional input data set</td>
</tr>
<tr>
<td>Mass to Drag Ratio</td>
<td>Spatially distributed M/D ratio [m], optionally used with the PCM Model; optional input data set</td>
</tr>
<tr>
<td>Process Area</td>
<td>Delineated process area with encoded, stored as transition frequencies [count]; output data set</td>
</tr>
<tr>
<td>Deposition</td>
<td>Height of material deposited in each cell [m]; optional output data set in case a grid with material amounts is provided as input</td>
</tr>
<tr>
<td>Maximum Velocity</td>
<td>Maximum velocity observed in each cell [ms$^{-1}$]; optional output data set of the run-out models</td>
</tr>
<tr>
<td>Stopping Positions</td>
<td>Stopping positions, showing cells in which the run-out length has been reached [count]; optional output data set</td>
</tr>
</tbody>
</table>
Competing interests. The author declares that he has no conflict of interest.

Acknowledgements. The author would like to thank the Federal State of Vorarlberg for providing the remote sensing data sets, especially P. Drexel (Landesvermessungsamt Feldkirch).
References

