Dear Dr. Peylin,

My co-authors and I are pleased to submit our revised manuscript titled “Impacts of microtopographic snow-redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem” for your consideration for publication in Geoscientific Model Development.

We thank you, the executive editor, and the two reviewers for insightful and constructive feedback, which helped us to clarify important aspects of our work. Modifications made in the revised version of the manuscript as compared to initial submission are summarized below:

1. As suggestion by reviewer #1, the introduction section has been shortened by removing the description of changes in Arctic net ecosystem productivity.
2. The discussion regarding future work has been expanded to include possible approaches to parsimoniously represent fine scale processes within a global land model.
3. We added to supplementary information a description of numerical tests we performed to ensure new model developments were correctly implemented.
4. The code availability section has been revised to included reference to the publicly accessible code and dataset repositories that were used in this study.

My co-authors and I believe we have thoroughly addressed all the reviewer comments and that the revised manuscript is well suited for publication in Geoscientific Model Development. We look forward to receiving your response.

Sincerely,
Gautam Bisht
Impacts of microtopographic snow-redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem [MS no. gmd-2017-71]

SC1: 'Executive Editor Comment on "Impacts of microtopographic snow-redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem", Astrid Kerkweg

"The main paper must give the model name and version number (or other unique identifier) in the title."

"If the model development relates to a single model then the model name and the version number must be included in the title of the paper. If the main intention of an article is to make a general (i.e. model independent) statement about the usefulness of a new development, but the usefulness is shown with the help of one specific model, the model name and version number must be stated in the title. The title could have a form such as, “Title outlining amazing generic advance: a case study with Model XXX (version Y)”.”

Response:
We have updated the title of our manuscript to be “Impacts of microtopographic snow-redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: A case study using ALM-3D v1.0”

"All papers must include a section, at the end of the paper, entitled 'Code availability'. Here, either instructions for obtaining the code, or the reasons why the code is not available should be clearly stated. It is preferred for the code to be uploaded as a supplement or to be made available at a data repository with an associated DOI (digital object identifier) for the exact model version described in the paper. Alternatively, for established models, there may be an existing means of accessing the code through a particular system. In this case, there must exist a means of permanently accessing the precise model version described in the paper. In some cases, authors may prefer to put models on their own website, or to act as a point of contact for obtaining the code. Given the impermanence of websites and email addresses, this is not encouraged, and authors should consider improving the availability with a more permanent
arrangement. After the paper is accepted the model archive should be updated to include a link to the GMD paper."

Inclusion of Code and/or data availability sections is mandatory for all papers and should be located at the end of the article, after the conclusions, and before any appendices or acknowledgments. For more details refer to the code and data policy.

Response:

We have publicly released the code and data used in this study. The ALM-3D code is available at https://bitbucket.org/gbisht/lateral-subsurface-model, while the data used in this study is available at https://bitbucket.org/gbisht/notes-for-gmd-2017-71.
RC1: 'Review of the manuscript by Bisht et al.', Anonymous Referee #1

General comments:
Manuscript by Bisht et al. presents simulation results in an Arctic polygonal ground ecosystem using an improved ALM model including lateral processes and snow redistribution. The conclusions are partly supported by modeling results, e.g., 1) snow depth variation was affected by snow redistribution, but not by lateral processes of thermal flow, 2) active layer depths was affected by lateral energy fluxes. Like many others, this work again stresses that advances in the land surface modeling is needed. In fact, the simple snow redistribution approach in the paper can be readily incorporated into land models.

My main reservations are the selection of the 2D transect and model validation. Why the transect is not selected where the sensors (as shown In Figure 1) are located? It makes the comparison between the model and observation meaningless.

Response:
We acknowledge that the 2D transect used for simulations in this study does not align with the sensor location. The objective of this work was not to validate the model for the few grid cells that exactly align with the observations recorded in the rim and center of a polygon, but to quantify relative differences between simulations for rim and center of a polygon. As noted in Figure 2, all grid cells above the dashed line were classified as rim, while all grid cells below the dashed line were classified as center. The model accurately captures the snow depth differences between rim and center when SR is turned on (Table 1). Additionally, errors in simulated temperature for all soil depths are lower for rim and center when SR is included (Table 2). Thus, our comparison of model results against observations is reasonable and the comparison we present indicates the model accurately represents system characteristics important for the conclusions of our paper.

Specific comments:
1) Lengthy texts in the Introduction that are not directly related to the study.

Response:
We have removed text in introduction describing changes in NEP within Arctic ecosystems as simulation in this work did not have an active biogeochemistry cycle.

2) Line 100-101: define "active layer thickness" for general readers.

Response:
We have added a definition for active layer thickness.

3) Line 126: define ALM.

Response:
We have updated the text to define ALM.

4) Line 158-160: redundant as already described in lines 126-128.

Response:
We have updated the text to remove redundancy.

5) Line 169: check unit of Q.

Response:
The units of Q have been corrected to \([\text{m}^3 \text{ of water m}^3 \text{ of soil s}^{-1}]\)

6) Define z in Eq. 2 and other variables in Eq. 4.

Response:
All terms in Equation 2 and 4 are now defined.

7) Eqs. 17 and 18, check the third term on the RHS.

Response:
Third term in equation 17 and 18 is updated.

8) Eq. 23: write cn as ci,j,k

Response:
In equation 23, \(c_n \) is now defined as \(c_{n_{i,j,k}} \). Additionally, equations 25-32 have been updated.

9) Define \(\omega' \) in Eqs. 25-31

Response:

In equation 25-31, \(\omega' \) is now replaced by \(1 - \omega \), where \(\omega \) is defined as the weight in the Crank-Nicholson method.

10) Line 312: from Fig. 2, I see less dependence of average snow depth on topography with SR.

Response:

We have fixed the typographical error and the text now reads “With SR, a much smaller dependence of winter-average snow depth on topography is predicted”

11) How well is the 3D model developed in the paper compared to analytical solutions or other well established numerical models?

Response:

In this work, we extended the existing 1D physics formulations for subsurface hydrologic and thermal processes to included lateral processes. Thus, we did not compare existing physics formulations against analytical solutions or other numerical models, but we did ensure that lateral coupling was implemented correctly. Sanity checks were preformed to ensure the 3D model solution is the same as in the 1D vertical model when the problem setup is horizontally homogeneous (Results not shown).

The thermal model is independent of gravity. Thus, additional tests were performed to ensure the numerical solution of the thermal model for propagation of heat is identical in a 1D column that is oriented horizontally and vertically. A test was performed to study the propagation of a heat perturbation that was applied on the left and top boundary of a spatially homogeneous 2D domain (Figure 1, below). The difference of simulated temperature between the two cases was of the order of the tolerance of the numerical solver (Figure 1c). An additional test was performed in which a sinusodially varying
temperature perturbation was applied on the left and top boundary; and the difference in results was again within tolerance of numerical solver (Figure 2). These tests ensured that lateral coupling was correctly implemented within the model. To address the reviewer’s concerns regarding testing, we have added description of these analyses to the Supplementary Material (Page 2, lines 18-40, and a reference to these tests has been added to the main text (Page 12, lines 241-244).

Figure 1. Propagation of a spatially homogeneous temperature perturbation applied on the (a) left and (b) top boundary of a spatially homogeneous 2D transect at the end of 1-day. (c) The difference in evolved temperature between two cases is many orders of magnitude smaller than the predicted states.

Figure 2 Same as Figure 1 except a sinusoidally varying spatial temperature perturbation is applied.
12) Where are the locations of center and rim in the model simulations? Fig. 1 shows two snow sensors and five temperature sensors. At what locations are the simulation compared to the corresponding observations?

Response:

The dashed line in Figure 2 classifies the 2D transect into rim and center. All grid cells that have surface elevation above the dash line are classified as rim, while all grid cells below the dashed line are marked as center.

13) As the authors noted on line 246 that PETSc is a scalable solver, so what is constraining the 3D simulation (statement on line 447)?

Response:

ALM is embarrassing parallel and has no cross processor communication because it is a 1D, vertical-only model. Even though PETSc is a scalable solver, the current implementation of the 3D model is serial. Thus, our model is capable of solving a 3D problem on each processor independently but unable to solve a parallel, 3D problem. We have updated the text in Section 3.5 (Page 19, lines 443-447) to clarify this point.

14) Because of the computational constraint, I don’t agree with the last statement on line 510-512.

Response:

We have updated the text to reflect that the current model is serial (Page 19, Lines 444-445). Even though the current version of the ALM-3D model is sequential, we believe it would be very useful for applications in the Earth System Model context. One potential future application would be to solve 3D subsurface hydrologic and thermal processes within a watershed. To this end, the domain decomposition of ALM in future versions could be modified such that all grid cells within a watershed are assigned to a single processor. In such an application, ALM-3D v1 would be an appropriate candidate.

15) Figure 1: what’s the legend? DEM?

Response:
The legend indicates the height in meters (now added to Figure 1).
RC2: 'A useful contribution', Anonymous Referee #2

General remark. The framework of the paper is Earth System modeling. The authors implement small-scale snow redistribution and 3D soil physics (2D in the setup used here). The results show that a simple snow redistribution parameterization based on microtopography has a very beneficial effect on a range of simulated variables. This is very nice. However, I think that the paper almost entirely misses a thorough discussion of an implementation strategy for these development in the ultimate context of Earth System modeling. This will happen on much larger spatial scales.

How will you move from an explicit fine-scale representation to a sub grid implementation? Will the choice be only to include snow redistribution (i.e. aren’t there already enough results to decide that a 3D soil physics will be an overkill in the Earth System modeling context)? Will the model have two tiles (polygon centers and rims), with snow being shuffled from one tile to the other? Or is the whole thing probably going to be more complex, with an explicit modeling of 3D soil physics supposing an idealized polygon of some finite size? What will be done if the model domain does include areas that are not polygonal tundra (it's supposed to be a global model if I understand correctly)?

Response:

This study is a necessary first step of documenting the role of fine scale processes associated with microtopography and lateral redistribution of water and energy in the subsurface. We acknowledge that a development of a sub grid structure to parsimoniously capture impacts of microtopography and lateral subsurface processes on coarser grid scale is a worthy scientific research, but such a new development is beyond the scope of the current work.

However, here are some thoughts on possible approaches to parsimoniously include fine scale processes. As suggested by the reviewer, investigate how accurate is a two-tile approach as compared to explicitly modeling the transect when snow redistribution is accounted for within the model. Additional simulations will be needed to investigate how well the two-tile approach performs when biogeochemical cycling is included. Exclusion of lateral subsurface processes has a greater impact on predicted subgrid variability than on
spatially averaged states. Thus, one possible extension of the current model would be to explicitly include an equation for the temporal evolution of sub grid variability of using the approach of Montaldo and Albertson (2003). The use of reduced-order models as described by Pau et al. (2014) is an alternate approach to estimate fine scale hydrologic and thermal states from coarse resolution simulation. We have added discussion of these topics to the Discussion section (page 20, Lines 468-4477).

If there are issues with computing time already in a 2d setting, is it realistic to go to 3d?

Response:
Moving beyond a 1D land model to a 2D/3D model will certainly increase the computational cost of the simulation. However, the land component is typically the least expensive component of an Earth System Model. ALM is less than 5% of the total computational cost of a fully coupled ACME simulation (ACME Performance team, personal communication, May 25, 2017). Even though there is some leeway in increasing the computational cost of the land model, the need to include higher spatial dimensional processes in land surface models has been made by many studies (Chen et al. (2006); Kim and Mohanty (2016); Maxwell and Condon (2016)). Lateral subsurface processes can be included in the land surface model via a range of numerical discretization approaches of varying complexity such as adding lateral flux of water and energy as source/sink term in the existing 1D model, implementing an operator split approach to solve vertical and lateral processes in a non-iterative model, or solving a fully coupled 3D model. Increased computational cost is not the only factor limiting application of ALM-3D to a global simulation. The subgrid hierarchy structure of the land model, which presently does not have any topological information, needs to be updated to include lateral connectivity. We have added some Discussion on theses topics to the revised version (Page 20, Lines 477-483).

Some words on validation/tests on larger scales?

Response:
Model validation is an integral part of model development. Ongoing projects of the U.S Department of Energy such as the NGEE-Arctic (https://ngee-arctic.ornl.gov) and the
NEE-Tropics (http://ngee-tropics.lbl.gov/) are expected to provide a wide range datasets related to land surface model at regional scales. Additionally, the Distributed Model Intercomparison Project Phase 2 (DMIP 2) provides a comprehensive datasets and modeling protocol for benchmarking distributed hydrologic models (Smith et al., 2012) and estimates of water table depth at global scales are available from Fan et al. (2013). Our future work will focus on application and validation of ALM-3D at regional scales. We have added some discussion of these issues to the Discussion section (page 20, Lines 483-486).

Answers to some of these questions might be pretty obvious, but I nevertheless think that a proper discussion of these and other related questions is required.

Response:

We added text in the discussion section that answers all of the questions raised by the reviewer.

Specific comments.

- L.24: "Three ten-years long simulations": Is that good English?

 Response:

The text has been modified to “Multiple 10-years long simulations”

- L.55: "Xu, 2016#154"

 Response:

The incorrect citation has now been removed in the updated version of the manuscript.

- L.61: The reference to Friedlingstein et al., 2006 is good but there has been quite some work on this more recently. In general, there are very many pre-2007 references and much less after that period. Maybe the bibliography could be a bit updated. For example, in line 78, the review by Schuur et al. in Nature 2015 might be worth citing.

 Response:

- L.166. "The flow water" -> "The water flow" or "The flow of water"

 Response:
The text has been updated to 'The flow of water'.

- L. 198. I suggest to clarify the writing here. What about this: ". . . zeta is the diagonal entry of the banded matrix (eq. 11-17)”, then provide eq. 11-17. Then: "small phi is a column vector given by:”, then put eq. 18. I think that would be clearer.

Response:

As per reviewer suggestions, description of equations 11-18 has been separated into a description of equations 11-17 followed by a description of equation 18.

- The same applies to eqs. 25-32. Separate eq. 32 from 25-31. I think that eq. 28 should read "eta=..." (not "mu=...") and eq. 29 should read "mu=..." (not "xi=...")

Response:

As per reviewer suggestion, description of equations 25-32 has been separated into two. Additionally, equations 28 and 29 have been correctly updated.

- Line 232: Please say clearly that this means that there is no geothermal heat flux represented in the model.

Response:

The text updated to explicitly state that geothermal heat flux was not accounted for in this work.

- L. 261: "to simulate SR", not "to simulated SR"

Response:

The text has been updated.

- L. 273: "its", not "it’s"

Response:

The text has been updated.

- L.277: A broken link to some internal reference. same at line 328, 342, 343

Response:

All broken references have been updated.

- L. 285: with do you put the dimension meters in square brackets?

Response:

Square brackets have been removed.

- L. 289: "SP mode": that's an internal nickname. Its meaning becomes clear at the end of the paper ("satellite phenology") but this is not required here. Either explain the acronym of leave it out.

Response:

Text has been updated to explain the acronym.
References

Impacts of microtopographic snow-redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: A case study using ALM-3D v1.0

Gautam Bisht¹, William J. Riley¹, Haruko M. Wainwright¹, Baptiste Dafflon¹, Yuan Fengming², and Vladimir E. Romanovsky³

¹Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

²Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA

³Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

Correspondence to: Gautam Bisht (gbisht@lbl.gov)

Abstract

Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALM-3D v1.0). Multiple 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R², lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R² of 0.59°C, 1.82°C, and 0.99, respectively). The spatial
heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.

1 Introduction

The northern circumpolar permafrost region, which contains ~1700 Pg of organic carbon down to 3 m (Tarnocai et al., 2009), is predicted to experience disproportionately larger future warming compared to the tropics and temperate latitudes (Holland and Bitz, 2003). Recent warming in the Arctic has led to changes in lake area (Smith et al., 2005), snow cover duration and extent (Callaghan et al., 2011a), vegetation cover (Sturm et al., 2005), growing season length (Smith et al., 2004), thaw depth (Schuur et al., 2008), permafrost stability (Jorgenson et al., 2006), and land-atmosphere feedbacks (Euskirchen et al., 2009). Future predictions of Arctic warming include northward expansion of shrub cover in tundra (strum 2001, Tape et al 2006), decreases in snow cover duration (Callaghan et al., 2011a), and emissions of CO₂ and CH₄ from decomposition of belowground soil organic matter (Koven et al., 2011; Schaefer et al., 2011; Schuur and Abbott, 2011; Xu et al., 2016).

Several recent modeling studies have predicted a positive global carbon-climate feedback at the global scale (Cox et al., 2000; Dufresne et al., 2002; Friedlingstein et al., 2001; Fung et al., 2005; Govindasamy et al., 2011; Jiang et al., 2011; Jones et al., 2003; Koven et al., 2015; Matthews et al., 2007b; Matthews et al., 2005; Sitch et al., 2008;
Thompson et al., 2004; Zeng et al., 2004), although the strength of this predicted feedback at the year 2100 was shown to have a large variability across models (Friedlingstein et al., 2006). In contrast to the ocean carbon cycle, the terrestrial carbon cycle is expected to be a more dominant factor in the global carbon-climate feedback over the next century (Matthews et al., 2007a; Randerson et al., 2015).

Snow, which covers the Arctic ecosystem for 8-10 months each year (Callaghan et al., 2011b), is a critical factor influencing hydrologic and ecologic interactions (Jones, 1999). Snowpack modifies surface energy balances (via high reflectivity), soil thermal regimes (due to low thermal conductivity), and hydrologic cycles (because of melt water). Several studies have shown that warm soil temperatures under snowpack support the emission of greenhouse gases from belowground respiration (Grogan and Chapin, 1999; Sullivan, 2010) and nitrogen mineralization (Borner et al., 2008; Schimel et al., 2004) during winter. Additionally, decreases in snow cover duration have been shown to increase net ecosystem CO₂ uptake (Galen and Stanton, 1995; Groendahl et al., 2007). Recent snow manipulation experiments in the Arctic have provided evidence of the importance of snow in the expected responses of Arctic ecosystems under future climate change (Morgner et al., 2010; Nobrega and Grogan, 2007; Rogers et al., 2011; Schimel et al., 2004; Wahren et al., 2005; Welker et al., 2000).

Apart from the spatial extent and duration of snowpack, the spatial heterogeneity of snow depth is an important factor in various terrestrial processes (Clark et al., 2011; Lundquist and Dettinger, 2005). As synthesized by López- Moreno et al. (2014), the following processes are responsible for snow depth heterogeneity at three distinct spatial scales: microtopography at 1-10 m (Lopez-Moreno et al., 2011); wind induced lateral transport processes at 100-1000 m (Liston et al., 2007); and precipitation variability at catchment scales of 10 – 1000 km (Sexstone and Fassnacht, 2014). The spatial distribution of snow not only affects the quantity of snowmelt discharge (Hartman et al., 1999; Luce et al., 1998), but also the water chemistry (Rohrbough et al., 2003; Wadham et al., 2006; Williams et al., 2001). Lawrence and Swenson (2011) demonstrated the importance of snow depth heterogeneity in predicting responses of the Arctic ecosystem to future climate change by performing idealized numerical simulations of shrub expansion across the pan-Arctic region using the Community Land Model (CLM4). Their results showed that an
increase in active layer thickness (ALT), which is the maximum annual thaw depth, under
shrubs was negated when spatial heterogeneity in snow cover due to wind driven snow
redistribution was accounted for, resulting in an unchanged grid cell mean active layer
thickness.

Large portions of the Arctic are characterized by polygonal ground features, which
are formed in permafrost soil when frozen ground cracks due to thermal contraction
during winter and ice wedges form within the upper several meters (Hinkel et al., 2005).
Polygons can be classified as ‘low-centered’ or ‘high-centered’ based on the relationship
between their central and mean elevations. Polygonal ground features are dynamic
components of the Arctic landscape in which the upper part of ice-wedge thaw under low-
centered polygon troughs leads to subsidence, eventually (~o(centuries)) converting the
low-centered polygon into a high-centered polygon (Seppala et al., 1991). Microtopography
of polygonal ground influences soil hydrologic and thermal conditions (Engstrom et al.,
2005). In addition to controlling CO$_2$ and CH$_4$ emissions, soil moisture affects (1)
partitioning of incoming radiation into latent, sensible, and ground heat fluxes (Hinzman
and Kane, 1992; McFadden et al., 1998); (2) photosynthesis rates (McGuire et al., 2000;
Oerbauer et al., 1991; Oechel et al., 1993; Zona et al., 2011); and (3) vegetation
distributions (Wiggins, 1951).

Our goals in this study include (1) analyzing the effects of spatially heterogeneous
snow in polygonal ground on soil temperature and moisture and surface processes (e.g.,
surface energy budgets); (2) analyzing how model predictions are affected by inclusion of
lateral subsurface hydrologic and thermal processes; and (3) developing and testing a
three-dimensional version of the ACME Land Model (ALM; (Tang and Riley, 2016; Zhu and
Riley, 2015)), called ALM-3D v1.0 (hereafter ALM-3D). We then applied ALM-3D to a
transect across a polygonal tundra landscape at the Barrow Environmental Observatory in
Alaska. After defining our study site, the model improvements, model tests against
observations, and analyses, we apply the model to examine the effects of snow
redistribution and lateral subsurface processes on snow micro-topographical
heterogeneity, soil temperature, and the surface energy budget.
2 Methodology

2.1 Study Area

Our analysis focuses on sites located near Barrow, Alaska (71.3° N, 156.5° W) from the long term Department of Energy (DOE) Next-Generation Ecosystem Experiment (NGEE-Arctic) project. The four primary NGEE-Arctic study sites (A, B, C, D) are located within the Barrow Environmental Observatory (BEO), which is situated on the Alaskan Coastal Plain. The annual mean air temperature for our study sites is approximately -13°C (Walker et al., 2005) and mean annual precipitation is 106 mm with the majority of precipitation occurring during the summer season (Wu et al., 2013). The study site is underlain with continuous permafrost (Brown et al., 1980) and the annual maximum thaw depth (active layer depth) ranges between 30-90 cm (Hinkel et al., 2003). Although the overall topographic relief for the BEO is low, the four NGEE study sites have distinct microtopographic features: low-centered (A), high-centered (B), and transitional polygons (C, D). Contrasting polygon types are indicative of different stages of permafrost degradation and were the primary motivation behind the choice of study sites for the NGEE-Arctic project. LIDAR Digital Elevation Model (DEM) data were available at 0.25 m resolution for the region encompassing all four NGEE sites. In this work, we perform simulations along a two-dimensional transect in low-centered polygon Site-A as shown by the dotted line in Figure 1.

2.2 ALMv0 Description

The original version of ALM is equivalent to CLM4.5 (Koven et al., 2013; Oleson, 2013b; Ghimire et al., 2016), and represents vertical energy and water dynamics, including phase change. We developed ALM-3D by expanding on that model to explicitly represent soil lateral energy and hydrological exchanges and fine-resolution snow redistribution. We run ALM-3D here with prescribed plant phenology (called Satellite Phenology (SP) mode), since our focus is on thermal dynamics of the system, rather than C cycle dynamics.
2.3 Representing Two- and Three-Dimensional Physics

2.3.1 Subsurface hydrology

The flow of water in the unsaturated zone is given by the θ-based Richards equations as

$$\frac{\partial \theta}{\partial t} = -\nabla \cdot \vec{q} - Q$$ \hspace{1cm} (1)

where θ [m3/m3] is the volumetric soil water content, t [s] is time, \vec{q} [m/s] is Darcy flux, and Q [m3/s] is volumetric sink of water. Darcy flux is given by

$$\vec{q} = -k \nabla (\psi + z)$$ \hspace{1cm} (2)

where k [m/s] is the hydraulic conductivity, ψ [m] is the soil matric potential, and z [m] is height above a reference datum. The hydraulic conductivity and soil matric potential are non-linear functions of volumetric soil moisture. ALMv0 uses the modified form of Richards equation of Zeng and Decker (2009) that computes Darcy flux as

$$\vec{q} = -k \nabla (\psi + z - C)$$ \hspace{1cm} (3)

where C is a constant hydraulic potential above the water table, z_v, given as

$$C = \psi_E + z = \psi_{sat} \left(\frac{\theta_E(z)}{\theta_{sat}} \right)^{-B} + z = \psi_{sat} + z_v$$ \hspace{1cm} (4)

where ψ_E [m] is the equilibrium soil matric potential, ψ_{sat} [m] is the saturated soil matric potential, θ_E [m3/m3] is volumetric soil water content at equilibrium soil matric potential, θ_{sat} [m3/m3] is volumetric soil water content at saturation, z_v [m] is height of water table above the reference datum, and B [-] is a fitting parameter for soil-water characteristic curves. Substituting equations (3) and (4) into equation (1) yields the equation for the vertical transport of water in ALMv0:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[k \left(\frac{\partial (\psi - \psi_E)}{\partial z} \right) \right] - Q$$ \hspace{1cm} (5)

A finite volume spatial discretization and implicit temporal discretization with Taylor series expansion leads to a tri-diagonal system of equations. We extended this 1-D Richards equation to a 3-D representation integrated in ALM-3D, which is presented next.

We use a cell-centered finite volume discretization to decompose the spatial domain into N non-overlapping control volumes, Ω_n, such that $\Omega = \bigcup_{n=1}^{N} \Omega_n$ and Γ_n represents the...
boundary of the \(n \)-th control volume. Applying a finite volume integral to equation (1) and

\[\frac{\partial}{\partial t} \int_{\Omega_n} \theta dV = - \int_{\Omega_n} (\vec{q} \cdot d\vec{A}) - \int_{\Omega_n} Q dV \]

(6)

The spatially discretized equation for the \(n \)-th grid cell that has \(V_n \) volume and \(n' \) neighbors

is given by

\[\frac{d\theta_n}{dt} V_n = - \sum_{n'} (q_{nn'} \cdot \vec{A}_{nn'}) - QV_n \]

(7)

For the sake of simplicity in presenting the discretized equation, we assume the 3-D grid is

a Cartesian grid with each grid cell having a thickness of \(\Delta x \), \(\Delta y \), and \(\Delta z \) in the \(x \), \(y \), and \(z \)
directions, respectively. Using an implicit time integral, the 3-D discretized equation at time

\(t + 1 \) for a \((i, j, k) \) control volume is given as

\[\left(\frac{\Delta \theta_{i,j,k}^{t+1}}{\Delta t} \right) V_{i,j,k} = \left(q_{x_{i-1/2,j,k}}^{t+1} - q_{x_{i+1/2,j,k}}^{t+1} \right) \Delta y \Delta z \]

\[+ \left(q_{y_{i,j-1/2,k}}^{t+1} - q_{y_{i,j+1/2,k}}^{t+1} \right) \Delta x \Delta z \]

\[+ \left(q_{z_{i,j,k-1/2}}^{t+1} - q_{z_{i,j,k+1/2}}^{t+1} \right) \Delta x \Delta y - QV_{i,j,k} \]

(8)

where \(q_x \), \(q_y \), and \(q_z \) are Darcy flux in the \(x \), \(y \), and \(z \) directions, respectively and \(\Delta \theta_{i,j,k}^{t+1} \) is the

change in volumetric soil liquid water in time \(\Delta t \). Using the same approach as Oleson

(2013a), the Darcy flux in all three directions is linearized about \(\theta \) using Taylor series

expansion. The linearized Darcy flux in the \(x \) direction at the \((i - 1/2, j, k) \) interface is a

function of \(\theta_{i-1,j,k} \) and \(\theta_{i,j,k} \):

\[q_{x_{i-1/2,j,k}}^{t+1} = q_{x_{i-1/2,j,k}}^t + \frac{\partial q_{x_{i-1/2,j,k}}}{\partial \theta_{i-1,j,k}} \Delta \theta_{i-1,j,k}^{t+1} + \frac{\partial q_{x_{i-1/2,j,k}}}{\partial \theta_{i,j,k}} \Delta \theta_{i,j,k}^{t+1} \]

(9)

The linearized Darcy fluxes in the \(y \) and \(z \) directions are computed similarly. Substituting

equation (9) in equation (8) results in a banded matrix of the form

\[a \Delta \theta_{i-1,j,k}^{t+1} + \beta \Delta \theta_{i,j-1,k}^{t+1} + \gamma \Delta \theta_{i,j,k-1}^{t+1} + \eta \Delta \theta_{i+1,j,k}^{t+1} + \mu \Delta \theta_{i,j+1,k}^{t+1} + \nu \Delta \theta_{i,j,k+1}^{t+1} \]

\[+ \zeta \Delta \theta_{i,j,k}^{t+1} = \varphi \]

(10)

where \(a \), \(\beta \), \(\gamma \) and \(\eta \), \(\mu \), and \(\nu \) are subdiagonal entries; \(\eta \), \(\mu \), and \(\varphi \) are superdiagonal entries; \(\zeta \) is

diagonal entry of the banded matrix is given by
\[
\begin{align*}
\alpha &= \frac{\partial q_{z_{i-1/2,j,k}}}{\partial \theta_{i-1,j,k}} \Delta y \Delta z \\
\beta &= \frac{\partial q_{y_{i-1/2,j,k}}}{\partial \theta_{i-1,j,k}} \Delta x \Delta z \\
\gamma &= \frac{\partial q_{z_{i,j,k-1/2}}}{\partial \theta_{i,j,k-1}} \Delta x \Delta y \\
\eta &= \frac{\partial q_{z_{i+1/2,j,k}}}{\partial \theta_{i+1,j,k}} \Delta y \Delta z \\
\mu &= \frac{\partial q_{y_{i+1/2,j,k}}}{\partial \theta_{i+1,j,k}} \Delta x \Delta z \\
\phi &= \frac{\partial q_{z_{i,j,k+1/2}}}{\partial \theta_{i,j,k+1}} \Delta x \Delta y \\
\zeta &= \left(\frac{\partial q_{z_{i-1/2,j,k}}}{\partial \theta_{i,j,k}} \Delta y \Delta z \right) + \left(\frac{\partial q_{z_{i+1/2,j,k}}}{\partial \theta_{i,j,k}} \Delta x \Delta z \right) \\
&\quad + \left(\frac{\partial q_{z_{i,j,k-1/2}}}{\partial \theta_{i,j,k}} \Delta x \Delta y \right) + \frac{\Delta x \Delta y}{\Delta t} \\
\end{align*}
\]

The column vector \(\varphi \) is given by

\[
\varphi = -\left(q_{x_{i-1/2,j,k}} - q_{x_{i+1/2,j,k}} \right) \Delta y \Delta z - \left(q_{y_{i,j-1/2,k}} - q_{y_{i,j+1/2,k}} \right) \Delta x \Delta z \\
- \left(q_{z_{i,j,k-1/2}} - q_{z_{i,j,k+1/2}} \right) \Delta x \Delta y + Q^{+}_{i,j,k} \Delta x \Delta z
\]

The coefficients of equation (10) described in equation (11)-(18) are for an internal grid

cell with six neighbors. The coefficients for the top and bottom grid cells are modified for

infiltration and interaction with the unconfined aquifer in the same manner as Oleson (2013a). Similarly, the coefficients for the grid cells on the lateral boundary are modified

for a no-flux boundary condition. See Oleson (2013a) for details about the computation of

hydraulic properties and derivative of Darcy flux with respect to soil liquid water content.
Subsurface thermal

ALMv0 solves a tightly coupled system of equations for soil, snow, and standing water temperature (Oleson, 2013b). The model solves the transient conservation of energy:

\[
c \frac{\partial T}{\partial t} = -\nabla \cdot F
\]

(19)

where \(c \) is the volumetric heat capacity [J m\(^{-3}\) K\(^{-1}\)], \(F \) is the heat flux [W m\(^{-2}\)], and \(t \) is time [s]. The heat conduction flux is given by

\[
F = -\lambda \nabla T
\]

(20)

where \(\lambda \) is thermal conductivity [W m\(^{-1}\) K\(^{-1}\)] and \(T \) is temperature [K]. Applying a finite volume integral to equation (20) and divergence theorem yields

\[
c \int_{\Omega_n} \frac{\partial T}{\partial t} = -\int_{\Gamma_n} \vec{F} \cdot d\vec{A}
\]

(21)

The spatially discretized equation for a \(n \)-th grid cell that has \(V_n \) volume and \(n' \) neighbors is given by

\[
c_n \frac{dT_n}{dt} V_n = -\sum_{n'} (\vec{F}_{nn'} \cdot \vec{A}_{nn'})
\]

(22)

Similar to the approach taken in Section 2.3.1, ALM-3D assumes a 3-D Cartesian grid with each grid cell having a thickness of \(\Delta x \), \(\Delta y \), and \(\Delta z \) in the \(x \), \(y \), and \(z \) directions, respectively. Temporal integration of equation (22) is carried out using the Crank-Nicholson method that uses a linear combination of fluxes evaluated at time \(t \) and \(t + 1 \):
where ω is the weight in the Crank-Nicholson method and set to 0.5 in this study.

Substituting a discretized form of heat flux using equation (20) in equation (23), results in a banded matrix of the form

$$\begin{align*}
\alpha T_{i-1,j,k}^{t+1} + \beta T_{i,j,k-1}^{t+1} + \gamma T_{i,j,k+1}^{t+1} + \eta T_{i+1,j,k}^{t+1} + \mu T_{i,j+1,k}^{t+1} + \phi T_{i,j,k+1}^{t+1} + \zeta \Delta T_{i,j,k}^{t+1} = \varphi
\end{align*}$$

(24)

where α, β, and γ are subdiagonal entries; η, μ, and ϕ are superdiagonal entries; ζ is diagonal entry of the banded matrix is given by

$$\alpha = \frac{- (1 - \omega) \Delta t}{c_{n,i,j,k} \Delta x} \left(\frac{\lambda_{i-1/2,j,k}}{x_{i-1,j,k} - x_{i-1,j,k}} \right)$$

(25)

$$\beta = \frac{- (1 - \omega) \Delta t}{c_{n,i,j,k} \Delta y} \left(\frac{\lambda_{i,j-1/2,k}}{y_{i,j,k} - y_{i-1,j,k}} \right)$$

(26)

$$\gamma = \frac{- (1 - \omega) \Delta t}{c_{n,i,j,k} \Delta z} \left(\frac{\lambda_{i,j,k-1/2}}{z_{i,j,k} - z_{i,j,k-1}} \right)$$

(27)

$$\eta = \frac{- (1 - \omega) \Delta t}{c_{n,i,j,k} \Delta x} \left(\frac{\lambda_{i+1/2,j,k}}{x_{i+1,j,k} - x_{i,j,k}} \right)$$

(28)
The coefficients of equation (24) described in equation (25)-(32) are for an internal grid cell with six neighbors. The coefficients for the top grid cells are modified for presence of snow and/or standing water, A no-flux boundary condition was applied on the bottom grid cells, thus no geothermal flux was accounted for in this study. The coefficients for the grid cells on the lateral boundary are modified for a no-flux boundary condition. ALM handles ice-liquid phase transitions by first predicting temperatures at the end of a time step and then updating temperatures after accounting for deficits or excesses of energy during melting or freezing. See Oleson (2013a) for details about the computation of thermal properties and phase transition.
2.3.3 **PETSc Numerical solution.**

ALMv0, which considers flow only in the vertical direction, solves a tridiagonal and banded tridiagonal system of equations for water and energy transport, respectively. In ALM-3D, accounting for lateral flow in the subsurface results in a sparse linear system, equations (10) and (24), where the sparsity pattern of the linear system depends on grid cell connectivity. In this work, we use the PETSc (Portable, Extensible Toolkit for Scientific Computing) library (Balay et al., 2016) developed at the Argonne National Laboratory to solve the sparse linear systems. PETSc provides object-oriented data structures and solvers for scalable scientific computation on parallel supercomputers. Description about the numerical tests that were conducted to ensure the lateral coupling of hydrologic and thermal processes was correctly implemented is presented in supplementary material (Figure S1 and S2).

2.4 **Snow Model and Redistribution**

The snow model in ALM-3D is the same as that in the default ALMv0 and CLM4.5 (Anderson, 1976; Dai and Zeng, 1997; Jordan, 1991), except for the inclusion of snow redistribution (SR). The snow model allows for a dynamic snow depth and up to five snow layers, and explicitly solves the vertically-resolved mass and energy budgets. Snow aging, compaction, and phase change are all represented in the snow model formulation. Additionally, the snow model accounts for the influence of aerosols (including black and organic carbon and mineral dust) on snow radiative transfer (Oleson, 2013a). ALMv0 uses the methodology of Swenson and Lawrence (2012) to compute fractional snow cover area, which is appropriate for ESM-scale grid cells (~100 km x 100 km). Since the grid cell resolution in this work is sub-meter, we modified the fractional cover to be either 1 (when snow was present) or 0 (when snow was absent).

Two main drivers of SR include topography and surface wind (Warscher et al., 2013); previous SR models include mechanistically- (Bartelt and Lehning, 2002; Liston and Elder, 2006) and empirically- (Frey and Holzmann, 2015; Helfricht et al., 2012) based approaches. To mimic the effects of wind, we used a conceptual model to simulate SR over the fine-resolution topography of our site by instantaneously re-distributing the incoming snow flux such that lower elevation areas (polygon center) receive snow before higher.
elevation areas (polygon rims). This relatively simple and parsimonious approach is reasonable given the observed snow depth heterogeneity, as described below, and small spatial extent of our domain.

2.5 System Characterization

Hydrologic and thermal properties differ by depth and landscape type. We used the horizontal distribution of organic matter (OM) content from Wainwright et al. (2015) to infer soil hydrologic and thermal properties following the default representations in ALM. Vegetation cover was classified as arctic shrubs in polygon centers and arctic grasses in polygon rims. The default representation of the plant wilting factor assigns a value of zero for a given soil layer when its temperature falls below a threshold ($T_{\text{threshold}}$) of -2 °C. This default value leads to overly large predicted latent and sensible heat fluxes during winter, compared to nearby eddy covariance measurements. We modified $T_{\text{threshold}}$ to be 0 °C in this study, resulting in improved predicted wintertime latent heat fluxes compared to the default version of the model (Figure S3). Although biases compared to the observations remain, particularly for sensible heat fluxes in the spring, the improvement is substantial and, given the observational uncertainties, we believe sufficient to justify our use of the model for investigations of the role of snow heterogeneity in this polygonal tundra system.

2.6 Simulation Setup, Climate Forcing, and Analyses

Because of computational constraints, we investigated the role of snow redistribution and physics representation using a two-dimensional transect through site A (Figure 1). The transect was 104 m long and 45 m deep and was discretized horizontally with a grid spacing of 0.25 m and an exponentially varying layer thickness in the vertical with 30 soil layers. No flow conditions for mass and energy were imposed on the east, west, and bottom boundaries of the domain. Temporal discretization of 30 min was used in the simulations. All simulations were performed in the "satellite phenology" (SP) mode, i.e., Leaf Area Index (LAI) was prescribed from MODIS observations.

Simulations were run for 10 years using long-term climate data gathered at the Barrow, Alaska Observatory site (https://www.esrl.noaa.gov/gmd/obop/brw/) managed by the Global Monitoring Division of NOAA's Earth System Research Laboratory (Mefford et
The missing precipitation time series was gap-filled using daily precipitation at the Barrow Regional Airport available from the Global Historical Climatology Network (http://www1.ncdc.noaa.gov/pub/data/ghcn/daily). We tested the model by comparing predictions to high-frequency observations of snow depth and vertically resolved soil temperature for September 2012 – September 2013. Temperature observations were taken at discrete locations in a polygon center and rim (Figure 1), and were combined to analyze comparable landscape positions in the simulations (Figure 2).

After testing, the model was used to investigate the effects of snow redistribution and 2D subsurface hydrologic and thermal physics by analyzing three scenarios: (1) no snow redistribution and 1D physics; (2) snow redistribution and 1D physics; and (3) snow redistribution and 2D physics. Between these scenarios, we compared vertically-resolved soil temperature and liquid saturation, active layer depth, and mean and spatial variation of latent and sensible heat fluxes across the 10 years of simulations. For each soil column, the simulated soil temperature was interpolated vertically and the active layer depth was estimated as the maximum depth that had above-freezing soil temperature.

3 Results and Discussion

3.1 Snow depth

In the absence of SR, predicted snow depth exactly follows the topography. With SR, a much smaller dependence of winter-average snow depth on topography is predicted (Figure 2). Further, for the winter average, there are very small differences in snow depth between simulations with SR and 1D or 2D subsurface physics representations. Compared to observations, considering SR led to: (1) a factor of ~2 improvement in snow depth bias for the polygon center; (2) modest increase and decrease in average bias on the rims for September through February and March through June, respectively; and (3) a dramatic improvement in bias of the difference in snow depth between the polygon centers and rims (Figure 3). There was no discernible difference in snow depth bias between the 1D and 2D physics (Table 1), although the predicted subsurface temperature fields were different, as shown below.
The temporal variation of the mean snow depth (Figure 4a) and its spatial standard
deviation (Figure 4b) also differed based on whether SR was considered, but was not
affected by considering 2D thermal or hydrologic physics. With SR, the snow depth
coefficient of variation (Figure 4c) was about 0.5 from December through the beginning of
the snowmelt period, indicating relatively large spatial heterogeneity. Simulated snow
depth for the three simulation scenarios are included in Supplementary Material (4).

3.2 Soil Temperature and Active Layer Depth

Broadly, ALMv3D accurately predicted the polygon center soil temperature at depth
intervals corresponding to the temperature probes (0-20 cm, 20-50 cm, 50-75 cm, and 75-
100 cm; Figure 5a). Recall that the observed temperatures for the polygon center and rims
were taken at single points in site A (Figure 1) while the predicted temperatures were
calculated as averages across the transect for each of the two landscape position types. The
model was able to simulate early freeze up of the soil column under the rims as compared
to centers in November 2012 because of differences in accumulated snow pack. The
transition to thawed soil in the 0-20 cm depth interval in early June 2013 and the
subsequent temperature dynamics over the summer were very well captured by ALM-3D.

Minimum temperatures during the winter were also accurately predicted, although the
temperatures in the deepest layer (75-100 cm) were overestimated by ~3 °C in March. For
figure clarity we did not indicate the standard deviation of the observations, but provide
that information in Supplemental Material (Figure S5-S8).

Similarly, the soil temperatures were accurately predicted in the polygon rims
(Figure 5b). The largest discrepancies between measured and predicted soil temperatures
were in the shallowest layer (0 - 25 cm), where the predictions were up to a few °C cooler
than some of the observations between December 2012 and March 2013. In the polygon
center, a thicker snow pack acts as a heat insulator and keeps soil temperature higher in
winter as compared to the polygon rims.

Three recent studies have used other mechanistic models to simulate soil
temperature fields at this site, and achieved comparably good comparisons with,
observations (Kumar et al. 2016 applied a 3D version of PFLOTRAN; Atchley et al. 2015 and
Harp et al. 2016 applied a 1D version of ATS). However, those models used measured soil
temperatures near the surface as the top boundary condition. In contrast, the top boundary condition in this work is the climate forcing (air temperature, wind, solar radiation, humidity, precipitation), and the ground heat flux is prognosed based on ALM’s vegetation and surface energy dynamics. We note that no parameter calibration was done in this work or that of Kumar et al. (2016), while the ATS parameterizations were calibrated to match the soil temperature profile.

Snow redistribution impacts spatial variability of soil temperature throughout the soil column. Absence of SR results in no significant spatial variability of soil temperature (Figure 6a). Inclusion of SR on the surface modifies the amount of energy exchanged between the snow and the top soil layer, thereby creating spatial variability in the temperature of the top soil, which propagates down into the soil column (Figure 6b). With SR, energy dissipation in the lateral direction reduces the penetration depth of the soil temperature spatial variance (compare Figure 6c and Figure 6b).

With 1D physics, the average spatial and temporal difference of the active layer depth (ALD) between simulations with and without SR was 1.7 cm (Figure 7a), and the absolute difference was 6.5 cm. As described above, we diagnosed the ALD to be the maximum soil depth during the summer at which vertically interpolated soil temperature is 0 °C. On average, the rims had ~10 cm shallower ALD with (blue line) than without (green line) SR, consistent with the loss of insulation from SR on the rims during the winter. In the centers (e.g., at location 42 - 55 m), the thaw depth was deeper by ~5 cm with SR because of the higher snow depth there from SR. The effect of SR on the ALD was largest on the rims because, compared to centers, they (1) on average lost more snow with SR and (2) are more thermally conductive. Since rims are therefore colder at the time of snowmelt with SR, the ground heat flux during the subsequent summer was unable to thaw the soil column as deeply as when SR is ignored. For comparison, Atchley et al. (2015) found in their sensitivity analysis using the 1D version of ATS that SR resulted in deeper thaw depths in both polygon centers (by ~3 cm) and rims (~0.3 cm). Thus, their results for polygon centers are consistent in sign but lower in magnitude than ours, but opposite in sign for the rims.

Across ten years of simulation, the inter-annual variability (IAV) in ALD varied substantially between the three scenarios (Figure 7b). As expected, for the 1D physics
without SR scenario (green line), the IAV in ALD was determined by landscape position because of differences in soil and vegetation parameters. With SR and 1D physics, the model shows largest differences over the rims, again highlighting the relatively larger effects of SR on the rim soil temperatures.

The effect of 1D versus 2D physics on the ALD across the transect was modest (mean absolute difference ~3 cm). Generally, because 2D physics allows for lateral energy diffusion, the horizontal variation of ALD was slightly lower (i.e., the red line is smoother than the blue line; Figure 7a) than with 1D physics. This difference was also reflected in the thaw depth IAV across the transect, where 2D physics led to a smoother lateral profile of inter-annual variability than with 1D physics.

The impact of physics formulation (i.e., 1D or 2D) alone was investigated by analyzing differences between soil temperature profiles over time for polygon rims and centers in simulations with snow redistribution. Inclusion of 2D subsurface physics resulted in soil temperatures with depth and time that were lower in the polygon rims (Figure 8a) and higher in polygon centers (Figure 8b). Using the simulations from the scenario with SR and 2D physics, we evaluated the extent to which soils under rims and centers can be separately considered as relatively homogeneous single column systems by evaluating the soil temperature standard deviation as a function of depth and time (Figure 9). During winter, both polygon rims and centers were predicted to have soil temperature spatial variability >1 °C up to a depth of ~2 m. The soil temperature spatial variability in winter due to snow redistribution was dissipated over the summer. During the summer, polygon centers were relatively more homogeneous vertically compared to polygon rims.

3.3 Surface Energy Budget

Predicted monthly- and spatial-mean (μ) surface latent heat fluxes across the transect were very similar between the three scenarios (Figure 10a), with a growing seasonal mean difference of <1.0 W m⁻². However, the spatial variability (SV = σ; Figure 10b) and coefficient of variation (CV = σ/μ; Figure 10c) of latent heat fluxes were different between the scenarios with SR (1D and 2D physics) and without SR. With SR, the latent heat flux spatial standard deviation peaked after snowmelt and declined until the fall when snow began, from about ~100% to 10% of the mean. This relatively larger spatial variation...
in latent heat flux occurred because of large spatial heterogeneity in near surface soil moisture in the beginning of summer, indicating a residual effect of SR from the previous winter.

The predicted temporal monthly-mean and spatial-mean surface sensible heat fluxes across the transect were also similar between the three scenarios (Figure 11a), with a growing season mean absolute difference of < 3.5 W m⁻². Also, the sensible heat flux spatial variability differences occurred earlier than snowmelt, in contrast to the latent heat flux. Both the standard deviation and CV of the sensible heat fluxes were larger than those of the latent heat fluxes, with early season standard deviations of ~50 W m⁻² (Figure 11b) and CV’s of ~1.5 (Figure 11c). As for the latent heat fluxes, the differences in standard deviation and CV of sensible heat fluxes were small between the 1D and 2D scenarios with SR, arguing that the subsurface lateral energy exchanges associated with the 2D physics did not propagate to the mean surface heat fluxes. However, as for the latent heat flux, there was a relatively large difference in spatial variation between the scenarios with and without SR (e.g., of about 25 W m⁻² in May; Figure 10b).

3.4 Soil Moisture

Neither SR nor 2D lateral physics affected the spatial mean moisture across time (not shown). However, spatial heterogeneity of predicted soil moisture content differed substantially between scenarios during the snow free period (Figure 12). For the 1D simulations, the effect of SR was to increase growing season soil moisture spatial heterogeneity by factors of 5.2 and 1.6 for 0-10 cm and 10-65 cm depth intervals, respectively (compare Figure 12a and Figure 12b). Compared to 1D physics, simulating 2D thermal and hydrologic physics led to an overall reduction in soil moisture spatial heterogeneity by factors of 0.8 and 0.7 for 0-10 cm and 10-65 cm depth intervals, respectively (compare Figure 12b and Figure 12c). Thus, with respect to dynamic spatial mean soil moisture, SR effects dominated those associated with lateral subsurface water movement.
3.5 Caveats and Future Work

The good agreement between ALM-3D predictions and soil temperature observations demonstrate the model's capabilities to represent this very spatially heterogeneous and complex system. However, several caveats to our conclusions remain due to uncertainties in model parameterizations, model structure, and climate forcing data.

ALMv0, a one-dimensional model, is embarrassing parallel with no cross processor communication. The current implementation of the three-dimensional solver in ALM-3D only supports serial computing. Support of parallel computing will be included in a future version of the model. Because of computational constraints, we applied a 2D transect domain to the site, instead of a full 3D domain. We are working to improve the computational efficiency of the model, which will facilitate a thorough analysis of the effects of 3D subsurface energy and water fluxes. A related issue is our simplified treatment of surface water flows. A thorough analysis of the effects of surface water redistribution would require integration of a 2D surface thermal flow model in a 3D domain, which is another goal for our future work. However, we note that the good agreement using the 2D model domain supports the idea that a two-dimensional simplification may be appropriate for this system. The expected geomorphological changes in these systems over the coming decades (e.g., Liljedahl et al. 2016), which will certainly affect soil temperature and moisture, are not currently represented in ALM, although incorporation of these processes is a long-term development goal.

The current representation of vegetation in ALM-3D for these polygonal tundra systems is over-simplified. For example, non-vascular plants (mosses and lichens) are not explicitly represented in the model, but can be responsible for a majority of evaporative losses (Miller et al., 1976) and are strongly influenced by near surface hydrologic conditions (Williams and Flanagan, 1996). Our use of the 'satellite phenology' mode, which imposes transient LAI profiles for each plant functional type in the domain, ignores the likely influence of nutrient constraints (Zhu et al., 2016) on photosynthesis and therefore the surface energy budget. Other model simplifications, e.g., the simplified treatment of radiation competition may also be important, especially as simulations are extended over periods where vegetation change may occur (e.g., Grant 2016).
Development of sub grid parameterizations to parsimoniously capture fine scale processes will be pursued in the future. For example, a two-tile approach to represent hydrologic and thermal processes in coupled polygon rims and centers with snow redistribution should be evaluated. Inclusion of lateral subsurface processes has a greater impact on predicted subgrid variability than on spatially averaged states. Thus, one possible extension of the current model would be to explicitly include an equation for the temporal evolution of sub grid variability using the approach of Montaldo and Albertson (2003). The use of reduced-order models (e.g., Pau et al. (2014); Liu et al. (2016)) is an alternate approach to estimate fine scale hydrologic and thermal states from a coarse resolution representation. Additionally, lateral subsurface processes can be included in the land surface model via a range of numerical discretization approaches of varying complexity, e.g., adding lateral water and energy fluxes as source/sink terms in the existing 1D model, implementing an operator split approach to solve vertical and lateral processes in a non-iterative approach, or solving a fully coupled 3D model. Tradeoffs between various approaches to include lateral processes and computational needs to be carefully studied before developing quasi or fully three-dimensional land surface models. While the present study focused on application and validation of ALM-3D at fine-scale, future work will focus on regional scale applications using comprehensive datasets and modeling protocol of the Distributed Model Intercomparison Project Phase 2 (Smith et al., 2012).

4 Summary and Conclusions

In a polygonal tundra landscape, we analyzed effects of microtopographical surface heterogeneity and lateral subsurface transport on soil temperature, soil moisture, and surface energy exchanges. Starting from the climate-scale land model ALMv0, we incorporated in ALM-3D numerical representations of subsurface water and energy lateral transport that are solved using PETSc. A simple method for redistributing incoming snow along the microtopographic transect was also integrated in the model.

Over the observational record, ALM-3D with snow redistribution and lateral heat and hydrological fluxes accurately predicted snow depth and soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R^2 of 0.59°C, 1.82°C and
0.99, respectively). In the rims, the transition to thawed soil in spring, summer
temperature dynamics, and minimum temperatures during the winter were all accurately
predicted. In the centers, a ~2°C warm bias in April in the 75-100 cm soil layer was
predicted, although this bias disappeared during snowmelt.

The spatial heterogeneity of snow depth during the winter due to snow
redistribution generated surface soil temperature heterogeneity that propagated into the
soil over time. The temporal and spatial variation of snow depth was affected by snow
redistribution, but not by lateral thermal and hydrologic transport. Both snow
redistribution and lateral thermal fluxes affected spatial variability of soil temperatures.
Energy dissipation in the lateral direction reduced the depth to which soil temperature
variance penetrated. Snow redistribution led to ~10 cm shallower active layer depths
under the polygon rims because of the residual effect of reduced insulation during the
winter. In contrast, snow redistribution led to ~5 cm deeper maximum thaw dept
under the polygon centers. The effect of lateral energy fluxes on active layer depths was ~3 cm.

Compared to 1D physics, the 2D subsurface physics led to lower (higher) soil temperatures
with depth and time in the polygon rims (centers). The larger than 1 °C wintertime spatial
temperature variability down to ~2 m depth in rims and centers indicates the uncertainty
associated with considering rims and centers as separate 1D columns. During the summer,
polygon center temperatures were relatively more vertically homogeneous than
temperatures in the rims.

The monthly- and spatial-mean predicted latent and sensible heat fluxes were
unaffected by snow redistribution and lateral heat and hydrological fluxes. However, snow
redistribution led to spatial heterogeneity in surface energy fluxes and soil moisture during
the summer. Excluding lateral subsurface hydrologic and thermal processes led to an over
prediction of spatial variability in soil moisture and soil temperature because subsurface
gradients were artificially prevented from laterally dissipating over time. Snow
redistribution effects on soil moisture heterogeneity were larger than those associated
with lateral thermal fluxes.

Overall, our analysis demonstrates the potential and value of explicitly representing
snow redistribution and lateral subsurface hydrologic and thermal dynamics in polygonal
ground systems and quantifies the effects of these processes on the resulting system states
and surface energy exchanges with the atmosphere. The integration of a 3D subsurface
model in the ACME Land Model also allows for a wide range of analyses heretofore
impossible in an Earth System Model context.
5 Code availability

The ALM-3D v1.0 code and data used in study are publicly available at
https://bitbucket.org/gbisht/lateral-subsurface-model and

Gautam Bisht 8/23/2017 5:29 AM
Formatted: Normal, Left
6 Tables

Table 1. Bias, root mean square error (RMSE), and correlation (R^2) between modeled and observed snow depth at polygon center, rim and difference between center and rim for 2013 for three cases: Snow redistribution (SR) off and 1D physics, SR on and 1D physics, and SR on and 2D physics.

<table>
<thead>
<tr>
<th></th>
<th>SR=Off, Physics=1D</th>
<th>SR=On, Physics=1D</th>
<th>SR=On, Physics=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center</td>
<td>Rim</td>
<td>Center-Rim</td>
</tr>
<tr>
<td>Bias</td>
<td>-0.08</td>
<td>0.02</td>
<td>-0.10</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.12</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>R^2</td>
<td>0.86</td>
<td>0.92</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table 2 Bias, root mean square error (RMSE) and correlation (R^2) between modeled and observed soil temperature at polygon center and rim at multiple soil depth for 2013 for three cases: Snow redistribution (SR) off and 1D physics, SR on and 1D physics, and SR on and 2D physics.

Bias

<table>
<thead>
<tr>
<th>Depth [m]</th>
<th>SR=Off, Physics=1D</th>
<th>SR=On, Physics=2D</th>
<th>SR=On, Physics=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center</td>
<td>Rim</td>
<td>Center</td>
</tr>
<tr>
<td>0.00 - 0.20</td>
<td>0.86</td>
<td>-1.73</td>
<td>-0.19</td>
</tr>
<tr>
<td>0.20 - 0.50</td>
<td>0.68</td>
<td>-1.52</td>
<td>-0.46</td>
</tr>
<tr>
<td>0.50 - 0.75</td>
<td>0.53</td>
<td>-1.49</td>
<td>-0.64</td>
</tr>
<tr>
<td>0.75 - 1.00</td>
<td>0.49</td>
<td>-1.44</td>
<td>-0.67</td>
</tr>
<tr>
<td>Average across four depths</td>
<td>0.64</td>
<td>-1.54</td>
<td>-0.49</td>
</tr>
</tbody>
</table>

RMSE

<table>
<thead>
<tr>
<th>Depth [m]</th>
<th>SR=Off, Physics=1D</th>
<th>SR=On, Physics=2D</th>
<th>SR=On, Physics=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center</td>
<td>Rim</td>
<td>Center</td>
</tr>
<tr>
<td>0.00 - 0.20</td>
<td>2.11</td>
<td>3.39</td>
<td>2.20</td>
</tr>
<tr>
<td>0.20 - 0.50</td>
<td>1.49</td>
<td>2.73</td>
<td>1.39</td>
</tr>
<tr>
<td>0.50 - 0.75</td>
<td>1.60</td>
<td>2.42</td>
<td>1.22</td>
</tr>
<tr>
<td>0.75 - 1.00</td>
<td>1.50</td>
<td>2.15</td>
<td>1.12</td>
</tr>
<tr>
<td>Average across four depths</td>
<td>1.67</td>
<td>2.67</td>
<td>1.44</td>
</tr>
</tbody>
</table>

R^2

<table>
<thead>
<tr>
<th>Depth [m]</th>
<th>SR=Off, Physics=1D</th>
<th>SR=On, Physics=2D</th>
<th>SR=On, Physics=2D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center</td>
<td>Rim</td>
<td>Center</td>
</tr>
<tr>
<td>0.00 - 0.20</td>
<td>0.98</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>Depth</td>
<td>0.20 - 0.50</td>
<td>0.50 - 0.75</td>
<td>0.75 - 1.00</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>0.20 - 0.50</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>0.50 - 0.75</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>0.75 - 1.00</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Average across four depths</td>
<td>0.99</td>
<td>0.96</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Figure 1 The NGEE-Arctic study area A, which characterized as a low-centered polygon field. Dotted line indicate the transect along which simulation in this paper are preformed to demonstrate the effects of snow redistribution on soil temperature. The locations where snow and temperature sensors are installed within the study site are denoted by triangle and circle, respectively.
Figure 2. Simulated average winter snow surface elevation across the transect for three scenarios: (1) snow redistribution (SR) turned off and 1D subsurface physics, (2) snow redistribution turned on and 1D subsurface physics, and (3) snow redistribution turned on and 2D subsurface physics. Surface elevation of the transect is shown by solid black line. The dashed line indicates the boundary for comparison to observations in relatively lower (centers) and relatively higher (rims) topographical positions.
Figure 3 Monthly-mean comparison of observation and simulated snow depth (a) in polygon rim, (b) in polygon center; (c) difference between polygon center and rim for 2013.
Figure 4. Mean, standard deviation and coefficient of variation of simulated snow depth across the entire domain for 1D and 2D subsurface physics.
Figure 5 Comparison of soil temperature observations and predictions in polygon centers (a) and rims (b). Simulation was performed with snow redistribution on and 2D subsurface physics, between September 2012 and September 2013. Simulation results are shown at an interval of 10 days, while observations are shown at daily interval.
Figure 6: Simulated daily spatial standard deviation averaged across 10-year of near surface soil temperature for simulation performed with snow redistribution turned off and 1D subsurface physics (top panel); snow redistribution turned on and 1D subsurface physics (middle panel); and snow redistribution turned on and 2D subsurface physics (bottom panel).
Figure 7 Temporal mean of the bottom of the active layer (top panel) and standard deviation of the active layer depth (bottom panel) over the 10-year period across the modeling domain.
Figure 8 Time series of spatial mean soil temperature differences between “SR=On + Physics=1D” and “SR=On + Physics=2D” at polygon rim (top panel) and polygon center (bottom panel).
Figure 9 Time series of soil temperature spatial standard deviation for “SR=On + Physics=2D” at polygon rim (top panel) and polygon center (bottom panel).
Figure 10. Latent heat flux inter-annual (a) mean, (b) standard deviation, and (c) coefficient of variation across the site A transect.
Figure 11. Same as Figure 10 except for sensible heat flux.
Figure 12. Same as Figure 6 except for liquid saturation.
Acknowledgements.

This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the NGEE-Arctic and Accelerated Climate Modeling for Energy (ACME) programs.
References

Jordan, R. E.: One-dimensional temperature model for a snow cover: technical documentation for SNThERM.89, Cold Regions Research and Engineering Laboratory (U.S.) Engineer Research and Development Center (U.S.), 1991.

Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J. K., Hoffman, F. M., Mahowald, N. M., and Doney, S. C.: Multicentury changes in ocean and land contributions to the climate-carbon feedback, Global Biogeochemical Cycles, 29, 744-759, 2015.

Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H., Mazhitova, G., Nelson, F. E., Rinke, A.,
Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S.
A.: Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon
Seppala, M., Gray, J., and Ricard, J.: Development of low–centred ice–wedge polygons in the
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P.,
terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five
Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing Arctic Lakes,
Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N.,
Anderson, E. A., and Cosgrove, B. A.: The distributed model intercomparison project – Phase 2:
Smith, N. V., Saatchi, S. S., and Randerson, J. T.: Trends in high northern latitude soil freeze and
2004.
Sturm, M., Douglas, T., Racine, C., and Liston, G. E.: Changing snow and shrub conditions
affect albedo with global implications, Journal of Geophysical Research: Biogeosciences, 110,
G01004, 2005.
Sullivan, P.: Snow distribution, soil temperature and late winter CO2 efflux from soils near the
Swenson, S. C. and Lawrence, D. M.: A new fractional snow-covered area parameterization for
the Community Land Model and its effect on the surface energy balance, Journal of Geophysical
Research: Atmospheres, 117, n/a-n/a, 2012.

