231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)

Sifan Gu1, Zhengyu Liu1,2

1Department of Atmospheric and Oceanic Sciences and Center for Climate Research, University of Wisconsin-Madison, Madison, WI, USA
2. Now, affiliated with: Atmospheric Science Program, Department of Geography, Ohio State University

Correspondence to: Sifan Gu (sgu28@wisc.edu)

Abstract

Sediment 231Pa/230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of sediment 231Pa/230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the p-coupled 231Pa and 230Th that is fully coupled with the active marine ecosystem module, another form of p-fixed 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate. The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of circulation. Under present day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and sediment 231Pa/230Th activity ratio in good agreement with available observations.

In addition, the p-coupled and p-fixed sediment 231Pa/230Th activity ratios behave similarly over large areas of low productivity on long timescale to freshwater forcing, but can differ substantially in some regions of high productivity and on short timescale, indicating the importance of biological productivity in addition to physical circulation. Therefore, our model provides a potentially powerful tool to help our interpretation of sediment 231Pa/230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.
1. Introduction

Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio has been used as a proxy to reconstruct ocean circulation in the past (e.g. Yu et al. 1996; McManus et al. 2004; Gherardi et al. 2009). ^{231}Pa (32.5 ka half-life) and ^{230}Th (75.2 ka half-life) are produced at a constant rate approximately uniformly in the ocean by the α decay of ^{235}U and ^{234}U, respectively, with a production activity ratio of 0.093 (Henderson and Anderson, 2003). Water column ^{231}Pa and ^{230}Th are subject to particle scavenging and transport to sediments (Bacon and Anderson, 1982; Nozaki et al., 1987). Differential scavenging efficiency results in different ocean residence time: ^{231}Pa has a residence time of approximately 111 years and ^{230}Th has a residence time of approximately 26 years (Yu et al., 1996). Longer residence time of ^{231}Pa than ^{230}Th makes ^{231}Pa more subject to ocean transport and therefore in modern ocean about 45% of ^{231}Pa produced in the Atlantic is transported to the Southern Ocean (Yu et al., 1996), resulting a lower than 0.093 sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio in the North Atlantic and higher than 0.093 sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio in the Southern Ocean.

The application of the principle above to interpret sediment $^{231}\text{Pa}/^{230}\text{Th}$ as the strength of Atlantic Meridional Overturning Circulation (AMOC), however, can be complicated by other factors, leading to uncertainties in using $^{231}\text{Pa}/^{230}\text{Th}$ as a proxy for paleocirculation (Keigwin and Boyle, 2008; Lippold et al., 2009; Scholten et al., 2008). In addition to ocean transport, sediment $^{231}\text{Pa}/^{230}\text{Th}$ is also influenced by particle flux and composition (Chase et al., 2002; Geibert and Usbeck, 2004; Scholten et al., 2008; Siddall et al., 2007; Walter et al., 1997). The region of a higher particle flux tends to have a higher $^{231}\text{Pa}/^{230}\text{Th}$ (Kumar et al., 1993; Yong Lao et al., 1992), which is referred to as the “particle flux effect” (Siddall et al., 2005). High particle flux in the water column in a region will favor the removal of isotopes into the sediment, which leads to more isotopes transported into this region due to the down-gradient diffusive flux into this region and subsequently more removal of isotopes into the sediment. Since ^{231}Pa has a longer residence time, this effect is
more prominent on \(^{231}\text{Pa}\) than on \(^{230}\text{Th}\) and therefore sediment \(^{231}\text{Pa}/^{230}\text{Th}\) will be higher in high productivity regions. Also, opal is able to scavenge \(^{231}\text{Pa}\) much more effectively than \(^{230}\text{Th}\), leading to higher \(^{231}\text{Pa}/^{230}\text{Th}\) in high opal flux regions such as the Southern Ocean (Chase et al., 2002). Moreover, sediment \(^{231}\text{Pa}/^{230}\text{Th}\) is suggested to record circulation change only within 1000 m above the sediment, instead of the whole water column, complicating the interpretation of sediment \(^{231}\text{Pa}/^{230}\text{Th}\) reconstructions (Thomas et al., 2006). For example, sediment \(^{231}\text{Pa}/^{230}\text{Th}\) approaching 0.093 during Heinrich Stadial event 1 (HS1) from the subtropical North Atlantic is interpreted as the collapse of the Atlantic Meridional Overturning Circulation (AMOC) (McManus et al., 2004). If sediment \(^{231}\text{Pa}/^{230}\text{Th}\) only records deepest water mass, it is possible that during HS1, AMOC shoals, as opposed to fully collapse, yet an increase of deep water imported from the Southern Ocean featuring high \(^{231}\text{Pa}/^{230}\text{Th}\) can increase the sediment \(^{231}\text{Pa}/^{230}\text{Th}\) approaching the production ratio (0.093) (Thomas et al., 2006). All these suggest the importance of incorporating \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) into climate models for a direct model-data comparison for a thorough understanding of sediment \(^{231}\text{Pa}/^{230}\text{Th}\) as well as past ocean circulation.

\(^{231}\text{Pa}\) and \(^{230}\text{Th}\) have been simulated in previous modeling studies (Dutay et al., 2009; Luo et al., 2010; Marchal et al., 2000; Rempfer et al., 2017; Siddall et al., 2005). Marchal et al., (2000) simulates \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) in a zonally averaged circulation model, using the reversible scavenging model of Bacon and Anderson, (1982). One step further, Siddall et al. (2005) extends Marchal et al., (2000) by including particle dissolution with prescribed particle export production in a 3-D circulation model. Rempfer et al., (2017) further couples \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) with active biogeochemical model and includes boundary scavenging and sediment resuspensions to improve model performance in simulating water column \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) concentration. Here we follow previous studies to implement \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) into the Community Earth System Model (CESM). Our model \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) are coupled with active marine ecosystem model ("p-coupled") and therefore can be used to study the impact of ecosystem change on \(^{231}\text{Pa}\) and \(^{230}\text{Th}\) directly. To help to understand the influence of the particle flux, we have also implemented a “p-fixed”
version of \(^{231}\)Pa and \(^{230}\)Th, for which the particle fluxes are fixed at prescribed values. By comparing the p-fixed \(^{231}\)Pa and \(^{230}\)Th with the p-coupled \(^{231}\)Pa and \(^{230}\)Th, we will be able to separate the effect of circulation change from particle field change. In addition, the p-fixed \(^{231}\)Pa and \(^{230}\)Th can be run without the marine ecosystem module, reducing computational cost by a factor of 3 in the ocean-alone model simulation and therefore making it a computationally efficient tracer for sensitivity studies.

This paper describes the details of \(^{231}\)Pa and \(^{230}\)Th in CESM and serves as a reference for future studies using this tracer module. In section 2, we describe the model and the implementation of \(^{231}\)Pa and \(^{230}\)Th. In sections 3, we describe the experimental design. We will finally compare simulated \(^{231}\)Pa and \(^{230}\)Th fields with observations, show model sensitivities on the parameter and also sediment \(^{231}\)Pa/\(^{230}\)Th ratio response to freshwater forcing in Section 4.

2. Model Description

2.1 Physical Ocean Model

We implement \(^{231}\)Pa and \(^{230}\)Th in the ocean model (Parallel Ocean Program version 2, POP2) (Danabasoglu et al., 2012) of CESM (Hurrell et al., 2013). CESM is a state-of-the-art coupled climate model and studies describing model components and analyzing results can be found in a special collection in Journal of Climate (http://journals.ametsoc.org/topic/ccsm4-cesm1). We run the ocean-alone model, which is coupled to data atmosphere, land, ice and river runoff under the normal year forcing of CORE-II data (Large and Yeager, 2008), using the low-resolution version of POP2 with a nominal 3° horizontal resolution and 60 vertical layers.

2.2 Biogeochemical component (BGC)

CESM has incorporated a marine ecosystem module that simulates biological variables (Moore et al., 2013). The marine ecosystem module has been validated against present day observations extensively (e.g. Doney et al., 2009; Long et al., 2013; Moore et al., 2002, 2004; Moore and Braucher, 2008). The implementation of \(^{231}\)Pa and \(^{230}\)Th requires particle fields: CaCO\(_3\), opal and particulate organic carbon
These particle fields can be obtained from the ecosystem driver from the ecosystem module (Jahn et al., 2015). The ecosystem module simulates the particle fluxes in reasonable agreement with the present day observations. The pattern and magnitude of the annual mean particle fluxes (CaCO$_3$, opal, POC) leaving the euphotic zone at 105m are similar to the satellite observations (Fig. 7.2.5 and 9.2.2 in Sarmiento and Gruber 2006) (Fig. 1 a~c): particle fluxes are higher in the high productivity regions such as high latitudes and equatorial Pacific; opal flux is high in the Southern Ocean. The remineralization scheme of particle is based on the ballast model of Armstrong et al., (2002). Detailed parameterizations for particle remineralization are documented in Moore et al., (2004) with temperature dependent remineralization length scales for POC and opal. We do not consider dust because it is suggested to be unimportant for 231Pa and 230Th fractionation (Chase et al., 2002; Siddall et al., 2005).

2.3 231Pa and 230Th implementation

231Pa and 230Th are produced from the α decay of 235U and 234U uniformly everywhere at constant rate β^i ($\beta^\mathrm{Pa} = 2.33 \times 10^{-3}$ dpm m$^{-3}$ yr$^{-1}$, $\beta^\mathrm{Th} = 2.52 \times 10^{-2}$ dpm m$^{-3}$ yr$^{-1}$). 231Pa and 230Th are also subjective to radioactive decay with the decay constant of λ^i ($\lambda^\mathrm{Pa} = 2.13 \times 10^{-5}$ yr$^{-1}$, $\lambda^\mathrm{Th} = 9.22 \times 10^{-6}$ yr$^{-1}$).

Another important process contributes to 231Pa and 230Th activity is the reversible scavenging by sinking particles (Bacon and Anderson, 1982), which describes the adsorption of isotopes onto sinking particles and desorption after the dissolution of particles. This process transports 231Pa and 230Th downward and leads to a general increase of 231Pa and 230Th activity with depth. The reversible scavenging considers total isotope activity (A^i_t) as two categories (Eq. (1)): dissolved isotopes (A^i_d) and particulate isotopes (A^i_p) (superscript i refers to 231Pa and 230Th) and A^i_p is the sum of the isotopes associated with different particle types ($A^i_{j,p}$) (subscript j refers to different particle types: CaCO$_3$, opal and POC):

$$A^i_t = A^i_d + A^i_p = A^i_d + \sum_j A^i_{j,p}$$ \hspace{1cm} (1)
Dissolved and particulate isotopes are assumed to be in equilibrium, which is a reasonable assumption in the open ocean (Bacon and Anderson, 1982; Henderson et al., 1999; Moore and Hunter, 1985). The ratio between the particulate isotope activity and the dissolved isotope activity is set by a partition coefficient, \(K \) (Eq. (2)):

\[
K^i_j = \frac{A^i_{j,p}}{A^i_d \cdot R_j}
\]

(2)

, where \(R_j \) is the ratio of particle concentration \((C_j) \) to the density of seawater (1024.5 kg m\(^{-3}\)). Subscript \(j \) refers to different particle types (CaCO\(_3\), opal and POC).

Values of partition coefficient \(K \) used in our control simulation follows Chase et al., 2002 and Siddall et al., 2005 (Table 2).

Particulate isotopes \((A^i_p) \) will be transported by sinking particles, which is described by \(w_s \frac{\partial A^i_p}{\partial z} \), where \(w_s \) is sinking velocity. We don’t differentiate between slow sinking small particles and rapid sinking large particles as in Dutay et al., (2009) and consider all particles as slowly sinking small particles with sinking velocity of \(w_s = \)1000 m yr\(^{-1}\) (Arsouze et al., 2009; Dutay et al., 2009; Kriest, 2002) as in Rempfer et al., (2017) and Siddall et al., (2005). Any particulate isotopes \((A^i_p) \) at the ocean bottom layer are removed from the ocean as sediment, which is the sink for the isotope budget. Detailed vertical differentiation scheme to calculate this term in the model is in the supplementary material. The reversible scavenging scheme applied here is the same as the neodymium implementation in POP2 (Gu et al., 2017).

Particle fields used in the reversible scavenging can be either prescribed or simultaneously generated from the marine ecosystem module. Therefore, two forms of \(^{231}\)Pa and \(^{230}\)Th are implemented in POP2: “p-fixed” and “p-coupled”. P-fixed \(^{231}\)Pa and \(^{230}\)Th use particle fluxes prescribed as annual mean particle fluxes generated from the marine ecosystem module under present day climate forcing (Fig.1). P-coupled \(^{231}\)Pa and \(^{230}\)Th use particle fluxes computed simultaneously from the
marine ecosystem module. P-fixed and p-coupled 231Pa and 230Th can be turned on at the case build time and the p-coupled 231Pa and 230Th requires the ecosystem module to be turned on at the same time.

Therefore, the conservation equation for 231Pa and 230Th activity can be written as

$$\frac{\partial A^i_t}{\partial t} = \beta^i - \chi^i A^i_t - w_s \frac{\partial A^i_p}{\partial z} + \text{Transport}$$

where the total isotope activity is controlled by decay from U (first term), radioactive decay (second term), reversible scavenging (third term) and physical transport by the ocean model (fourth term, including advection, convection and diffusion). A^i_p can be calculated by combining Eq. (1) and Eq. (2):

$$A^i_t = A^i_d + A^i_d \cdot (K^i_{POC} \cdot R_{POC} + K^i_{CaCO_3} \cdot R_{CaCO_3} + K^i_{opal} \cdot R_{opal})$$

$$= A^i_d \cdot (1 + K^i_{POC} \cdot R_{POC} + K^i_{CaCO_3} \cdot R_{CaCO_3} + K^i_{opal} \cdot R_{opal}),$$

which leads to

$$A^i_d = \frac{A^i_t}{1 + K^i_{POC} \cdot R_{POC} + K^i_{CaCO_3} \cdot R_{CaCO_3} + K^i_{opal} \cdot R_{opal}},$$

put this back to Eq. (1), we get

$$A^i_p = A^i_t \cdot (1 - \frac{1}{1 + K^i_{POC} \cdot R_{POC} + K^i_{CaCO_3} \cdot R_{CaCO_3} + K^i_{opal} \cdot R_{opal}})$$

Comparing with previous studies of modeling 231Pa and 230Th, our p-fixed version is the same as Siddall et al., (2002), except that different prescribed particle fluxes are used. The p-coupled version allows coupling to biogeochemical module, which is similar in Rempfer et al., (2017), but we do not include boundary scavenging and sediment resuspensions as in Rempfer et al., (2017) because boundary scavenging and sediment resuspensions are suggested to be unimportant to influence the relationship between 231Pa/230Th and AMOC strength (Rempfer et al., 2017).
3. Experiments

We run a control experiment (CTRL) and two experiments with different partition coefficients to show model sensitivity to partition coefficient. We have both p-fixed and p-coupled 231Pa and 230Th in CTRL, but only p-fixed 231Pa and 230Th in sensitivity experiments. Equilibrium partition coefficients for 231Pa and 230Th vary among different particle types and the magnitude of the partition coefficients for different particle types remains uncertain (Chase et al., 2002; Chase and Robert F, 2004; Luo and Ku, 1999). Since the control experiment in Siddall et al., (2005) is able to simulate major features of 231Pa and 230Th distributions, we use the partition coefficients from the control experiment in Siddall et al., (2005) in our CTRL (Table 2). Two sensitivity experiments are performed with decreased (EXP_1) and increased (EXP_2) partition coefficients by a factor of 5 (Table 2).

All the experiments are ocean-alone experiments with the normal year forcing by CORE-II data (Large and Yeager, 2008). The 231Pa and 230Th activities are initiated from 0 in CTRL and are integrated for 2,000 model years until equilibrium is reached. EXP_1 and EXP_2 are initiated from 1,400 model year in CTRL and are integrated for another 800 model years to reach equilibrium.

Since sediment 231Pa/230Th in North Atlantic has been used to reflect the strength of AMOC, to test how sediment 231Pa/230Th in our model responds to the change of AMOC, we carried out a fresh water perturbation experiment (HOSING) with both p-fixed and p-coupled 231Pa and 230Th. Starting from 2,000 model year of CTRL, a freshwater flux of 1 Sv is imposed over the North Atlantic region of 50$^\circ$N–70$^\circ$N and the experiment is integrated for 1400 model years until both p-fixed and p-coupled sediment 231Pa/230Th ratio have reached quasi-equilibrium. The partition coefficients used in HOSING are the same as in CTRL.

4. Results

4.1 Control Experiment

P-fixed and p-coupled version of 231Pa and 230Th in CTRL show identical results (Fig. 2-4). P-fixed and p-coupled dissolved and particulate 231Pa and 230Th in CTRL are highly correlated with each other with correlations larger than 0.995 and
Regression coefficients are all near 1.0 ($R^2 > 0.995$). The correlation coefficient between p-fixed and p-coupled sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratios in CTRL is 0.99 and the regression coefficient is 0.9 ($R^2 = 0.98$) (Fig. 4a). This is expected because the particle fields used in p-fixed version are the climatology of the particle fields used in the p-coupled version. Therefore, under the same climate forcing, p-fixed and p-coupled version of ^{231}Pa and ^{230}Th should be very similar. For the discussion of results in CTRL below, we only discuss the p-fixed ^{231}Pa and ^{230}Th.

The residence time of both ^{231}Pa and ^{230}Th in CTRL are comparable with observations. The residence time is calculated as the ratio of global average total isotope activity and the radioactive ingrowth of the isotope. Residence time in CTRL is 118 yr for ^{231}Pa and 33 yr for ^{230}Th (Table 2), which are of the same magnitude as 111 yr for ^{231}Pa and 26 yr for ^{230}Th in observation (Yu et al., 1996).

CTRL can simulate the general features of dissolved water column ^{231}Pa and ^{230}Th activities. Dissolved ^{231}Pa and ^{230}Th activities increase with depth in CTRL, as shown in two GEOTRACES transects (Deng et al., 2014; Hayes et al., 2015) in the Atlantic (Fig. 2 and 3). The dissolved ^{231}Pa and ^{230}Th activities in CTRL are also at the same order of magnitude as in observations in the most of the ocean, except that simulated values are larger than observations in abyssal, which is also the case in Siddall et al., (2005) and Rempfer et al., (2017) (their Fig. 2 and 3, experiment Re3d). Our model is unable to simulate the realistic dissolved ^{231}Pa and ^{230}Th activities in abyssal because boundary scavenging and sediment resuspensions are not included in our model. With boundary scavenging and sediment resuspensions added, dissolved ^{231}Pa and ^{230}Th activities in the abyssal should be reduced (Rempfer et al., 2017).

A more quantitative model-data comparison is shown in Fig. 5. The linear regression coefficient, an indication of model ability to simulate ^{231}Pa and ^{230}Th activity (Dutay et al., 2009), is near 1.0 for dissolved ^{231}Pa and ^{230}Th (1.02 for $[^{231}\text{Pa}]_d$ and 1.14 for $[^{230}\text{Th}]_d$), suggesting that CTRL can simulate the dissolved ^{231}Pa and ^{230}Th in good agreement with observations. However, the simulation of the particulate activity is not as good as the dissolved activity. Particulate activity is overall larger than observations in the surface ocean and smaller than observation.
in the deep ocean for both particulate 231Pa and 230Th. The regression coefficient for particulate 231Pa and 230Th is 0.02 for $[^{231}$Pa]$_p$ and 0.05 for $[^{230}$Th]$_p$. The poor performance in simulating water column particulate 231Pa and 230Th activities is also in previous modeling studies (Dutay et al., 2009; Siddall et al., 2005), because of similar modelling scheme are applied. However, the simulated 231Pa$_p$/230Th$_p$ is reasonable. The 231Pa$_p$/230Th$_p$ along two GEOTRACES tracks (Fig. 2 and 3) show the similar pattern and magnitude as in Rempfer et al., (2017). Decrease of 231Pa$_p$/230Th$_p$ with depth is well simulated, which is suggested to be caused by the lateral transport of 231Pa from North Atlantic to Southern Ocean by AMOC (Gherardi et al., 2009; Lippold et al., 2011, 2012a; Luo et al., 2010; Rempfer et al., 2017).

The sediment 231Pa/230Th in CTRL is overall consistent with observations (references of observations are listed in Table 3). The North Atlantic shows low sediment 231Pa/230Th activity ratio as in observations because 231Pa is more subject to transport southward to the Southern Ocean by active ocean circulation than 230Th because of longer residence time. The Southern Ocean maximum in the sediment 231Pa/230Th activity ratio is also simulated in CTRL. High opal fluxes in the Southern Ocean, which preferentially removes 231Pa into sediment (K_{opat}^{231}Pa > K_{opat}^{230}Th) (Chase et al., 2002), leading to increased sediment 231Pa/230Th activity ratio. In addition, upwelling in the Southern Ocean brings up deep water enriched with 231Pa, which is transported from the North Atlantic, to shallower depth and further contribute to the scavenging. CTRL can also produce higher sediment 231Pa/230Th activity ratio in regions with high particle production (e.g. the Eastern equatorial Pacific, the North Pacific and the Indian Ocean) due to the “particle flux effect”. Specifically, in North Atlantic, the distribution of sediment 231Pa/230Th matches the distribution of particle, especially opal, production: sediment 231Pa/230Th is higher where opal production is high, and vice versa.

4.2 Sensitivity on partition coefficient K

In this section, we show model sensitivity on partition coefficient by increasing and decreasing the partition coefficient, K, by a factor of 5, but keep the
relative ratio for different particles the same (Table 2). Our model shows similar model sensitivity as in Siddall et al., (2005) as discussed below.

Increasing K will decrease water column dissolved 231Pa and 230Th activities but won’t change particulate 231Pa and 230Th too much (Fig. 6). Larger K will lead to more 231Pa and 230Th attached to particles and further buried into sediment, which increases the sink for the 231Pa and 230Th budget. With the sources for 231Pa and 230Th staying the same, dissolved 231Pa and 230Th will be reduced. Increasing K will also reduce the vertical gradient of dissolved 231Pa and 230Th as reversible scavenging act as the vertical transport and increase this vertical transport can decrease the vertical gradient. However, change in the particulate 231Pa and 230Th is small. As stated in Siddall et al., (2005), if we neglect the transport term and the decay term in Eq. (3) and assume particulate phase activity at the surface as 0, when reach equilibrium, the activity of particulate phase will be as in Eq. (7). The particulate phase activity only depends on the production rate, the particle settling velocity and depth. The particulate phase activity will increase linearly with depth and any departure from this linear relationship with depth is due to ocean transport, which is suggested by observations (Bacon and Anderson, 1982; Roy-Barman et al., 1996). Therefore, changing K will have limited influence on particulate phase activity.

$$A_p^i(z) = \frac{\beta i}{w_s} \cdot z$$ \hspace{1cm} (7)

Increasing K will also reduce the spatial gradient in sediment 231Pa/230Th activity ratio and vice versa (Fig. 7). Larger K will decrease the 231Pa and 230Th residence time and most isotopes produced in the water column are removed into sediment locally (Table 2). Therefore, sediment 231Pa/230Th ratio becomes more homogeneous and approaching the production ration of 0.093 (Fig. 7b). The sediment 231Pa/230Th activity ratio in EXP_1 and EXP_2 departures from observations significantly, suggesting the partition coefficient in CTRL is of the right magnitude.
4.3. Sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio in HOSING

Potential changes in the export of biogenic particles makes using $^{231}\text{Pa}/^{230}\text{Th}$ ratio to reconstructing AMOC strength under debate. In response to freshwater perturbation in the North Atlantic, both biological productivity and AMOC strength will change and will influence sediment $^{231}\text{Pa}/^{230}\text{Th}$. Our model with p-fixed and p-coupled ^{231}Pa and ^{230}Th can help detangle these two effects. In this section, we examine the sediment $^{231}\text{Pa}/^{230}\text{Th}$ (p-fixed and p-coupled) response in the North Atlantic to fresh water perturbation.

In HOSING, after applying freshwater forcing to the North Atlantic, AMOC strength quickly decreases to a minimum of 2 Sv (AMOC_off) (Fig. 9a). During the AMOC_off state, compared with CTRL with active AMOC (AMOC_on), p-fixed sediment $^{231}\text{Pa}/^{230}\text{Th}$ shows an overall increase in the North Atlantic and a decrease in the South Atlantic (Fig. 10b) because of the reduced southward transport of ^{231}Pa from the North Atlantic by AMOC, consistent with paleo proxy evidence there (e.g. Gherardi et al., 2005, 2009; McManus et al., 2004). The overall increase of sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio in the North Atlantic in response to AMOC collapse can be seen more clearly in the time evolution of the sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio averaged from 20°N to 60°N in the North Atlantic (Fig. 9b, green). Quantitatively, the $^{231}\text{Pa}/^{230}\text{Th}$ increases from 0.074 in AMOC_on to 0.098 in AMOC_off in the p-fixed version, approaching the production ration of 0.093. This increase of $^{231}\text{Pa}/^{230}\text{Th}$ is also in the subtropical North Atlantic from the two sites near Bermuda Rise (Fig. 9e and f), which is of comparable magnitude with the change from LGM to HS1 in reconstructions there (McManus et al., 2004). In addition, the pattern of p-fixed (Fig. 10a) sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio during the Atlantic in AMOC_off state is similar to the opal distribution (Fig. 1b) because, without active circulation, sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio is more controlled by particle flux effect, which is similar to Pacific in CTRL. It is further noted that our p-fixed sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio in HOSING behaves similarly to that in Siddall et al., (2007).

The overall increase in p-fixed sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio in the North Atlantic is not homogenous and the magnitude of the change between AMOC_on and
AMOC_off varies with location because of the distribution of particle flux, especially opal flux (Fig. 9 and 10). The maximum increase in p-fixed sediment 231Pa/230Th ratio occurs near 40°N western Atlantic, where the opal production in our model is maximum in North Atlantic (Fig. 1b). The sediment 231Pa/230Th ratio in this region during AMOC_on is larger than production ratio of 0.093 because opal maximum provides extra 231Pa to this region ("particle flux effect"), which overwhelms the active ocean circulation transporting 231Pa southward outside this region (Fig. 9d, green). During AMOC_off, without active ocean circulation, the particle flux effect becomes even stronger because less 231Pa is transported out of the North Atlantic and p-fixed sediment 231Pa/230Th ratio gets even larger.

Most regions in the Atlantic, p-coupled sediment 231Pa/230Th show similar response to p-fixed 231Pa/230Th in HOSING. The evolution of p-fixed and p-coupled sediment 231Pa/230Th activity ratio in HOSING are highly correlated (Fig. 11a). The change of sediment 231Pa/230Th ratio from AMOC_on to AMOC_off are similar in both p-fixed and p-coupled version (Fig. 11b). The correlation between p-fixed and p-coupled sediment 231Pa/230Th ratio change is 0.72 (1455 points) and the linear regression coefficient is 0.71 ($R^2 = 0.52$). High correlation between p-fixed and p-coupled response mainly happens over low productivity region (Fig. 1, 10, and 11), where circulation effect on sediment 231Pa/230Th is more important than the particle change in HOSING.

However, the responses of p-fixed and p-coupled sediment 231Pa/230Th to the fresh water forcing can differ significantly in high productivity regions because of the change of productivity. With persistent freshwater forcing in the North Atlantic, most regions in the North Atlantic show reduced production of CaCO$_3$, opal and POC (Fig. 8). Productivity in North Atlantic is suggested to be halved during AMOC collapse because of increased stratification, which reduces nutrient supply from deep ocean (Schmittner, 2005). In our model, the productivity in mid-latitude North Atlantic is indeed greatly reduced after the freshwater forcing. For example, opal production from 30°N-50°N in the Atlantic at the end of HOSING is reduced by 50%~90% of its original value in CTRL. However, opal production increases in high latitude North Atlantic at north of 50°N. The pattern of opal production changes
with high opal production region shifts northward in HOSING (Fig. 8 d, e and f). The particle flux change will influence sediment $^{231}\text{Pa}/^{230}\text{Th}$ as discussed below.

In subpolar region, the opal productivity increases during AMOC_off and will result an increase in sediment $^{231}\text{Pa}/^{230}\text{Th}$, which is enhance the increase of sediment $^{231}\text{Pa}/^{230}\text{Th}$ caused by reduced AMOC. Therefore, the increase in p-coupled sediment $^{231}\text{Pa}/^{230}\text{Th}$ between AMOC_off and AMOC_on is larger than p-fixed sediment $^{231}\text{Pa}/^{230}\text{Th}$ (Fig.9c).

In the mid-latitude North Atlantic, the opal productivity decreases during AMOC_off and will lead to a decrease in sediment $^{231}\text{Pa}/^{230}\text{Th}$, which is opposite to the effect of reduced AMOC. Therefore, p-coupled sediment $^{231}\text{Pa}/^{230}\text{Th}$ shows an initial decrease in first 200 years (Fig.9 d, e, and f, red dash) caused by the reduced opal productivity. But this decrease trend is reversed eventually, suggesting the influence of particle flux change is overwhelmed by the effect of reduced AMOC. It the long run, most regions in the subtropical and mid-latitude Atlantic show increased sediment $^{231}\text{Pa}/^{230}\text{Th}$ in HOSING, indicating the dominant effect of reduced AMOC. But sediment $^{231}\text{Pa}/^{230}\text{Th}$ at 40°N west Atlantic, where opal productivity is maximum in AMOC_on, show a decrease from AMOC_on to AMOC_off. During AMOC_on, the opal productivity maximum at 40°N west Atlantic lead to regional maximum sediment $^{231}\text{Pa}/^{230}\text{Th}$ because of the particle flux effected, which has been explained previously. During AMOC_off, this opal productivity maximum is eliminated and no more extra ^{231}Pa is supplied by surroundings to this region. The decrease in sediment $^{231}\text{Pa}/^{230}\text{Th}$ caused by productivity change is larger than the increase caused by the reduced AMOC. Therefore, sediment $^{231}\text{Pa}/^{230}\text{Th}$ experienced a decrease from AMOC_on to AMOC_off. Our results suggest that although the circulation effect is more dominant than the particle change in controlling sediment $^{231}\text{Pa}/^{230}\text{Th}$ on long time scale in most of North Atlantic, particle flux change can be important on short time scale and in high productivity regions. Therefore, we should be cautious when using sediment $^{231}\text{Pa}/^{230}\text{Th}$ to reconstruct AMOC variations in the past.
It is suggested that the particulate $^{231}\text{Pa}/^{230}\text{Th}$ response to the change of AMOC depends on the location and depth. Above 2km and high latitude North Atlantic, particulate $^{231}\text{Pa}/^{230}\text{Th}$ decreases with the increased AMOC (Rempfer et al., 2017). Our results are consistent with this finding (Fig. 12 a and b). Both p-fixed and p-coupled particulate $^{231}\text{Pa}/^{230}\text{Th}$ show similar patterns of change between AMOC_on and AMOC_off: decrease in particulate $^{231}\text{Pa}/^{230}\text{Th}$ at shallow depth and north of 60°N and increase in particulate $^{231}\text{Pa}/^{230}\text{Th}$ below 2km and south of 60°N during AMOC_off. Therefore, sediment depth should be taken into consideration when interpreting sediment $^{231}\text{Pa}/^{230}\text{Th}$. Since the pattern in p-coupled is similar to the pattern in p-fixed, the opposite particulate $^{231}\text{Pa}/^{230}\text{Th}$ changes in shallow and deep North Atlantic is associated with AMOC. During AMOC_on, upper limb of AMOC (about upper 1km) transport water northward, which provides extra ^{231}Pa to North Atlantic and particulate $^{231}\text{Pa}/^{230}\text{Th}$ is larger than the production ratio of 0.093. In contrast, the lower limb of AMOC (2km-3km) features southward transport, which transports ^{231}Pa to the Southern Ocean and particulate $^{231}\text{Pa}/^{230}\text{Th}$ is smaller than the production ratio of 0.093 (Fig. 12 solid). During AMOC_off, ocean transport of ^{231}Pa is greatly reduced. Therefore, shallow (deep) depth experiences a decrease (increase) in particulate $^{231}\text{Pa}/^{230}\text{Th}$ and the vertical gradient in the particulate $^{231}\text{Pa}/^{230}\text{Th}$ is also greatly reduced (Fig. 12 c). Our results support that the depth dependence of particulate $^{231}\text{Pa}/^{230}\text{Th}$ is mainly caused by lateral transport of ^{231}Pa by circulation (Gherardi et al., 2009; Lippold et al., 2011, 2012a; Luo et al., 2010; Rempfer et al., 2017).

Overall, our model is able to simulate the correct magnitude of the sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio response to the freshwater forcing. Change of circulation has the dominant influence on sediment $^{231}\text{Pa}/^{230}\text{Th}$ on long time scale over most of regions in the hosing experiment, although the detailed difference between p-fixed and p-coupled sediment $^{231}\text{Pa}/^{230}\text{Th}$ ratio response to freshwater forcing in different locations can be complicated.

5. Summary
231Pa and 230Th have been implemented in the ocean model of the CESM in both the p-coupled and p-fixed forms. Our control experiment under present day climate forcing is able to simulate most 231Pa and 230Th water column activity and sediment 231Pa/230Th activity ratio consistent with observations by using the parameters that are suggested by Chase et al., (2002) and used in Siddall et al. (2005). Our sensitivity experiments with varying parameters suggest that these parameters are of the right magnitude.

Furthermore, our model is able to simulate the overall sediment 231Pa/230Th ratio change in the North Atlantic with a magnitude comparable to the reconstruction in response to the collapse of AMOC, although the detailed response can be complicated in different regions. Finally, the p-fixed form is able to capture many major features of that of the p-coupled form over large ocean areas on long time scale, although the two forms can also differ significantly in some regions, especially the region with high opal productivity. Therefore, with both p-fixed and p-coupled 231Pa and 230Th, our model can serve as a useful tool to improve our understanding of the processes of 231Pa and 230Th and also interpretations of sediment 231Pa/230Th reconstructions for past ocean circulation and climate changes.

Code availability:
The 231Pa and 230Th isotope source code of both p-fixed and p-coupled versions for CESM1.3 is included as supplementary material here.

Acknowledgement:
This work is supported by US NSF P2C2 program and the National Science Foundation of China No. 41630527. Computing resources (ark:/85065/d7wd3xhc) were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies.
References:

DeMaster, D. J.: The marine budgets of silica and 32Si, Yale., 1979.

Henderson, G. M. and Thomas, A. L.: Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean, Earth Planet.

Kumar, N.: Trace metals and natural radionuclides as tracers of ocean productivity, Columbia., 1994.

Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C. and Misumi, K.: Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios, J. Clim., 26(23), 9291–9312, doi:10.1175/JCLI-D-12-00566.1,
Moore, R. M. and Hunter, K. A.: Thorium adsorption in the ocean: reversibility and
distribution amongst particle sizes, Geochim. Cosmochim. Acta, 49(11), 2253–2257,
Moore, W. S.: The thorium isotope content of ocean water, Earth Planet. Sci. Lett.,
232Th in the Norwegian Sea and Denmark by thermal ionization mass
and Edwards, R. L.: Constraints on deep water age and particle flux in the Equatorial
and South Atlantic Ocean based on seawater 231Pa and 230Th data, Geophys. Res.
Lett., 28(18), 3437–3440 [online] Available from:
L.: Dissolved and particulate 231Pa and 230Th in the Atlantic Ocean: Constraints on
intermediate/deep water age, boundary scavenging, and 231Pa/230Th
821X(02)00928-7, 2002.
Müller, P. J. and Mangini, A: Organic carbon decomposition rates in sediments of the
pacific manganese nodule belt dated by 230Th and 231Pa, Earth Planet. Sci. Lett.,
Negre, C., Zahn, R., Thomas, A. L., Masqué, P., Henderson, G. M., Martínez-Méndez, G.,
Hall, I. R. and Mas, J. L.: Reversed flow of Atlantic deep water during the Last Glacial
Nozaki, Y. and Horibe, Y.: Alpha-emitting thorium isotopes in northwest Pacific deep
1983.
Nozaki, Y. and Nakanishi, T.: 231Pa and 230Th profiles in the open ocean water
Nozaki, Y. and Yamada, M.: Thorium and protactinium isotope distributions in
Nozaki, Y. and Yang, H. S.: Th and Pa isotopes in the waters of the western margin of
the pacific near Japan: Evidence for release of 228Ra and 227Ac from slope
Nozaki, Y., Horibe, Y. and Tsubota, H.: The water column distribution of thorium
Nozaki, Y., Yang, H.-S. and Yamada, M.: Scavenging of thorium in the ocean, J.
Andaman Sea: Rapid deep-sea renewal, Geophys. Res. Lett., 31(22), 1–5,

Yu, E.-F., Francois, R. and Bacon, M. P.: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data, Nature, 379(6567), 24
689–694, doi:10.1038/379689a0, 1996.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of 231Pa from U decay</td>
<td>β^Pa</td>
<td>2.33×10^{-3}</td>
<td>dpm m$^{-3}$ yr$^{-1}$</td>
</tr>
<tr>
<td>Production of 230Th from U decay</td>
<td>β^Th</td>
<td>2.52×10^{-2}</td>
<td>dpm m$^{-3}$ yr$^{-1}$</td>
</tr>
<tr>
<td>Decay constant of 231Pa</td>
<td>λ^Pa</td>
<td>2.13×10^{-5}</td>
<td>yr$^{-1}$</td>
</tr>
<tr>
<td>Decay constant of 230Th</td>
<td>λ^Th</td>
<td>9.22×10^{-6}</td>
<td>yr$^{-1}$</td>
</tr>
</tbody>
</table>

854 Table 1. List of parameters, abbreviations and values.

855

856

<table>
<thead>
<tr>
<th>CTRL</th>
<th>EXP_1</th>
<th>EXP_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>231Pa</td>
<td>230Th</td>
<td>231Pa</td>
</tr>
<tr>
<td>K_{CaCO_3}</td>
<td>2.5×10^5</td>
<td>1.0×10^7</td>
</tr>
<tr>
<td>K_{opal}</td>
<td>1.67×10^6</td>
<td>5×10^5</td>
</tr>
<tr>
<td>K_{POC}</td>
<td>1.0×10^7</td>
<td>1.0×10^7</td>
</tr>
<tr>
<td>T(yr)</td>
<td>118</td>
<td>33</td>
</tr>
</tbody>
</table>

857 Table 2. Partition coefficients for different particle types and residence time for 231Pa and 230Th in different experiments. Partition coefficients used in CTRL follows (Chase et al., 2002; Siddall et al., 2005)

858

<table>
<thead>
<tr>
<th>WATER COLUMN ACTIVITY</th>
<th>Holocene core-top 231Pa/230Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Guo et al., 1995)</td>
<td>(Yu, 1994)</td>
</tr>
<tr>
<td>(Cochran et al., 1987)</td>
<td>(DeMaster, 1979)</td>
</tr>
<tr>
<td>(Nozaki et al., 1987)</td>
<td>(Bacon and Rosholt, 1982)</td>
</tr>
<tr>
<td>(Bacon and Anderson, 1982)</td>
<td>(Mangini and Diester-Hass, 1983)</td>
</tr>
<tr>
<td>(Bacon et al., 1989)</td>
<td>(Kumar, 1994)</td>
</tr>
<tr>
<td>(Huh and Beasley, 1987)</td>
<td>(Yang et al., 1986)</td>
</tr>
<tr>
<td>(Rutgers van der Loeff and Berger, 1993)</td>
<td>(Anderson et al., 1983)</td>
</tr>
<tr>
<td>(Nozaki et al., 1981)</td>
<td>(Anderson et al., 1994)</td>
</tr>
<tr>
<td>(Nozaki and Nakanishi, 1985)</td>
<td>(Ku, 1966)</td>
</tr>
<tr>
<td>(Mangini and Key, 1983)</td>
<td>(Ku et al., 1972)</td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>(Nozaki and Horibe, 1983)</th>
<th>(Frank et al., 1994)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Moore, 1981)</td>
<td>(Shimmield et al., 1986)</td>
</tr>
<tr>
<td>(Nozaki and Yamada, 1987)</td>
<td>(Frank, 1996)</td>
</tr>
<tr>
<td>(Roy-Barman et al., 1996)</td>
<td>(Yong Lao et al., 1992)</td>
</tr>
<tr>
<td>(Nozaki and Yang, 1987)</td>
<td>(Francois et al., 1993)</td>
</tr>
<tr>
<td>(Moran et al., 1995)</td>
<td>(Anderson et al., 1990)</td>
</tr>
<tr>
<td>(Luo et al., 1995)</td>
<td>(Mangini and Sonntag, 1977)</td>
</tr>
<tr>
<td>(Colley et al., 1995)</td>
<td>(Schmitz et al., 1986)</td>
</tr>
<tr>
<td>(Scholten et al., 1995)</td>
<td>(Shimmield and Price, 1988)</td>
</tr>
<tr>
<td>(Cochran et al., 1995)</td>
<td>(Yong-Liang Yang et al., 1995)</td>
</tr>
<tr>
<td>(Vogler et al., 1998)</td>
<td>(Müller and Mangini, 1980)</td>
</tr>
<tr>
<td>(Moran et al., 1997)</td>
<td>(Mangini and U., 1987)</td>
</tr>
<tr>
<td>(Edmonds et al., 1998)</td>
<td>(Scholten et al., 1995)</td>
</tr>
<tr>
<td>(Moran et al., 2001)</td>
<td>(Walter et al., 1997)</td>
</tr>
<tr>
<td>(Edmonds et al., 2004)</td>
<td>(Lippold et al., 2011)</td>
</tr>
<tr>
<td>(Okubo et al., 2004)</td>
<td>(Lippold et al., 2012b)</td>
</tr>
<tr>
<td>(Coppola et al., 2006)</td>
<td>(Bradtmiller et al., 2007)</td>
</tr>
<tr>
<td>(Moran et al., 2002)</td>
<td>(Gherardi et al., 2005)</td>
</tr>
<tr>
<td>(Okubo et al., 2004)</td>
<td>(Gutjahr et al., 2008)</td>
</tr>
<tr>
<td>(Okubo et al., 2007a)</td>
<td>(Hall et al., 2006)</td>
</tr>
<tr>
<td>(Okubo et al., 2012)</td>
<td>(Lippold et al., 2011)</td>
</tr>
<tr>
<td>(Robinson et al., 2004)</td>
<td>(Roberts et al., 2014)</td>
</tr>
<tr>
<td>(Thomas et al., 2006)</td>
<td>(Bradtmiller et al., 2014)</td>
</tr>
<tr>
<td>(Trimble et al., 2004)</td>
<td>(Burckel et al., 2016)</td>
</tr>
<tr>
<td>(Venchiarutti et al., 2011)</td>
<td>(Hoffmann et al., 2013)</td>
</tr>
<tr>
<td>(Hsieh et al., 2011)</td>
<td>(Jonkers et al., 2015)</td>
</tr>
<tr>
<td>(Scholten et al., 2008)</td>
<td>(Negre et al., 2010)</td>
</tr>
<tr>
<td>(Luo et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>(Deng et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>(Hayes et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>(Hayes et al., 2015)</td>
<td></td>
</tr>
</tbody>
</table>
Figures:
Figure 1. Annual mean particle fluxes in CESM. (a) CaCO$_3$ flux at 105m (mol m$^{-2}$ yr$^{-1}$). (b) Opal flux at 105m (mol m$^{-2}$ yr$^{-1}$). (c) POC flux at 105m (mol m$^{-2}$ yr$^{-1}$).
Figure 2. Dissolved 231Pa, dissolved 230Th and particulate 231Pa/230Th in CTRL along GEOTRACES transect GA02S (Deng et al., 2014) (the track is indicated in Fig. S4) for both p-fixed and p-coupled 231Pa and 230Th. Observations of dissolved 231Pa and 230Th activity are superimposed using the same colormap.
Figure 3. Dissolved 231Pa, dissolved 230Th and particulate 231Pa/230Th in CTRL along GEOTRACES transect GA03 (Hayes et al., 2015) (the track is indicated in Fig. S4) for both p-fixed and p-coupled 231Pa and 230Th. Observations of dissolved 231Pa and 230Th activity are superimposed using the same colormap.
Figure 4. Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio in CTRL for both p-fixed (a) and p-coupled version (b). Observations are attached as filled cycles using the same color map. The $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio is plotted relative to the production ratio of 0.093 on a log$_{10}$ scale.
Figure 5. Scatter plot of global dissolved and particulate 231Pa and 230Th between observation and CTRL (p-fixed) (unit: dpm/m3). (a) dissolved 231Pa; (b) particulate 231Pa; (c) dissolved 230Th; (d) particulate 230Th. Observations in different depth range are indicated by different colors: green for 0-100m; red for 100m-1000m; blue for 1000m-3000m and yellow for deeper than 3000m. Purple line is the least squared linear regression line and slope is the linear regression coefficient.
Figure 6. Atlantic zonal mean dissolved and particulate 231Pa and 230Th in EXP_1 and EXP_2 (unit: dpm/m3). EXP_1: (a) dissolved 231Pa; (b) dissolved 230Th; (c) particulate 231Pa; (d) particulate 230Th. EXP_2: (e) dissolved 231Pa; (f) dissolved 230Th; (g) particulate 231Pa; (h) particulate 230Th.
Figure 7. Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio in EXP_1 (a) and EXP_2 (b). Observations are attached as filled cycles using the same color map. The $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio is plotted relative to the production ratio of 0.093 on a log$_{10}$ scale.
Figure 8. Comparison of particle fluxes between AMOC_on and AMOC_off. CaCO$_3$ flux at 105m (mol m$^{-2}$ yr$^{-1}$) during AMOC_on (a), AMOC_off (b) and difference between AMOC_off and AMOC_on (c). Opal flux at 105m (mol m$^{-2}$ yr$^{-1}$) during AMOC_on (d), AMOC_off (e) and difference between AMOC_off and AMOC_on (f). POC flux at 105m (mol m$^{-2}$ yr$^{-1}$) during AMOC_on (g), AMOC_off (h) and difference between AMOC_off and AMOC_on (i).
Figure 9. Time evolutions in HOSING. (a) Freshwater forcing (black) and AMOC strength (navy), which is defined as the maximum of the overturning streamfunction below 500m in the North Atlantic. (b) North Atlantic average sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio from 20°N to 60°N: p-fixed (green) and p-coupled (red). Production ratio of 0.093 is indicated by a solid black line (similar in c, d, e and f). (c) Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio at (55°N, 30°W). (d) Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio at (40°N, 40°W). (e) Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio at (35°N, 58°W). (f) Sediment $^{231}\text{Pa}/^{230}\text{Th}$ activity ratio at (34°N, 60°W). (e) and (f) are near Bermuda Rise. Locations of each site are shown as dots in Fig. 8b.
Figure 10. Sediment 231Pa/230Th activity ratio during AMOC off state and the difference between AMOC off and CTRL. (a) P-fixed $\log_{10}([^{231}\text{Pa}/^{230}\text{Th}]/0.093)$ in AMOC_off. (b) Difference of p-fixed sediment 231Pa/230Th activity ratio between AMOC_off and AMOC_on. (c) and (d) are similar to (a) and (b) for p-coupled sediment 231Pa/230Th activity ratio. Black dots in (b) shows the locations of sites in Fig. 7 from North to South.
Figure 11. (a) Correlation of p-fixed and p-coupled evolution of sediment 231Pa/230Th activity ratio in HOSING. (b) Scatter plot of p-fixed and p-coupled sediment 231Pa/230Th activity ratio change from AMOC_on to AMOC_off in the Atlantic and the Southern Ocean (70°W-20°E). Purple line is the least squared linear regression line and slope is the linear regression coefficient.

Figure 12. Difference of Atlantic zonal mean particulate 231Pa/230Th between AMOC_off and AMOC_on: (a) p-fixed and (b) p-coupled. (c) North Atlantic (20°N-60°N) average profile during AMOC_on (solid) and AMOC_off (dash) for p-fixed (green) and p-coupled (red) particulate 231Pa/230Th.