
Multi-Model-Driver (MMD)
User Manual

Version 2.0

Astrid Kerkweg1,2, Christiane Hofmann1,2,

Gregor Pante 1,3 and Patrick Jöckel4

1 Institute for Atmospheric Physics
University of Mainz

55099 Mainz, Germany

2 Meteorological Institute
University of Bonn

53121 Bonn, Germany
kerkweg@uni-bonn.de

3 Institute of Meteorology and Climate Research
Department Troposphere Research (IMK-TRO)

Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany
gregor.pante@kit.edu

4 Deutsches Zentrum für Luft-und Raumfahrt (DLR),
Institut für Physik der Atmosphäre,

Oberpfaffenhofen, D-82234 Weßling, Germany
patrick.joeckel@dlr.de

This manual is available as electronic supplement of our article “Expanding the Multi-Model-
Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.1)” in
Geosci. Model Dev. Discuss. (2016), available at: http://www.geosci-model-dev.net

Date: January 20, 2017

2 Kerkweg et al.: MMD user manual

Kerkweg et al.: MMD user manual 3

Contents

1 Introduction 6

2 The run-scrip xmessy mmd 8

3 The MMD2WAY namelists 12

3.1 &CTRL . 12

3.2 &CPL CHILD . 13

3.3 &CPL CHILD ECHAM and &CPL CHILD COSMO 14

3.4 &CPL PAR CHILD . 18

4 Basic coupling setup 20

4.1 MMD setup . 20

4.2 Synchronisation . 20

4.2.1 Exchange of stop and restart triggers . 23

4.3 Data exchange initialisation . 23

4.4 The data exchange . 24

4.5 Finalisation phase . 24

5 Coupling of a child model instance to a parent model instance (1-way, child-to-
parent coupling) 25

5.1 The child instance . 25

5.1.1 Initialisation Phase . 28

5.1.2 Integration Phase . 42

5.1.3 Finalisation Phase . 49

5.1.4 Grid definitions and parallel decomposition of INT2COSMO 49

5.2 The parent instance . 55

5.2.1 Initialisation Phase . 56

5.2.2 Integration Phase . 60

5.2.3 Finalisation Phase . 60

6 Coupling of the parent instance to child (2-way, parent-to-child coupling) 61

6.1 The parent instance . 61

6.1.1 mmd2way parent initialise . 65

6.1.2 mmd2way parent init memory . 65

6.1.3 mmd2way parent init coupling . 65

6.1.4 mmd2way parent global start . 68

6.1.5 mmd2way parent global end . 68

4 Kerkweg et al.: MMD user manual

6.1.6 mmd2way parent free memory . 69

6.2 The child instance . 69

6.2.1 mmd2way child setup . 74

6.2.2 mmd2way child init memory . 74

6.2.3 mmd2way child init loop . 79

6.2.4 mmd2way child global end . 79

6.2.5 mmd2way child write output . 81

6.2.6 mmd2way child read restart . 81

6.2.7 mmd2way child write restart . 81

6.2.8 mmd2way child free memory . 81

7 Changes in INT2LM code required for the MESSy submodel INT2COSMO 81

7.1 data fields lm.f90 /data fields in.f90 . 81

7.2 data grid in.f90 . 82

7.3 data grid lm.f90 . 82

7.4 data int2lm control.f90 . 83

7.5 data int2lm io.f90 . 83

7.6 data int2lm parallel.f90 . 83

7.7 data parameters.f90 . 84

7.8 external data.f90 . 84

7.9 interp utilities.f90 . 84

7.10 setup int2lm.f90 . 85

7.11 src 2d fields.f90 . 85

7.12 src cleanup.f90 . 86

7.13 src coarse interpol.f90 . 86

7.14 src decomposition.f90 . 86

7.15 src lm fields.f90 . 86

7.16 src lm output.f90 . 87

7.17 src namelists.f90 . 87

7.18 src read coarse grid.f90 . 89

7.19 src read ext.f90 . 89

7.20 src read hhl.f90 . 89

7.21 src vert inter lm.f90 . 89

7.22 src vert interpol.f90 . 90

Kerkweg et al.: MMD user manual 5

8 Changes in the COSMO code required for the on-line coupling 90

8.1 Application of the preprocessor directive I2CINC . 90

8.2 Application of the preprocessor directive MESSYMMD . 91

8.2.1 environment.f90 . 91

8.2.2 src setup.f90 . 91

9 Changes in the ECHAM5 code required for the on-line coupling 91

9.1 mo mpi.f90 . 91

9.2 scan1.f90 . 92

6 Kerkweg et al.: MMD user manual

1 Introduction

This manual is one part of a detailed description of the on-line coupling via the Multi-Model-Driver
(MMD v2.0). MMD couples models following a client-server approach. It consists of two parts:

• The MMD library managing the data exchange between the different executables/models,

• the MESSy submodel MMD2WAY consisting of two sub-submodels

– MMD2WAY PARENT, providing the coarse grid data required by the client/child model
and requesting the data coupled back to the parent model, and

– the client MESSy sub-submodel MMD2WAY CHILD, requesting the input data from the
server / parent, subsequently interpolating these data for use in the model and providing
the regridded data to the parent model.

The MMD library is described in the MMD library manual, which is part of the same electronic
supplement as this manual. This manual, in contrast, is dedicated to the MMD MESSy submodel
MMD2WAY. In the current implementation, the ECHAM5/MESSy general circulation model is sup-
ported as server/parent model, and the limited-area model COSMO/MESSy as server/parent and/or
client/child model. Fig. 1 illustrates such a coupling setup for the MECO(n) system. The coupling
layout, (i.e., which and how many model instances are operated concurrently and which instance op-
erates on how many (and which) processing entities (PEs)) is determined within the MMD library.
The child model sub-submodel MMD2WAY CHILD organises the data transfer from the parent to
the child model1.

Within the MMD2WAY CHILD namelist file the coupling frequency, i.e., how often data is exchanged
between the parent and the child model, and the exchange fields2 are specified.

After the data exchange from the parent to the child model, MMD2WAY CHILD interpolates the
coarse grid data to the COSMO model grid using its submodel INT2COSMO. INT2COSMO is based
on INT2LM as provided by the German Weather Service (DWD) for the interpolation of the initial
and boundary data for the COSMO model. INT2COSMO and INT2LM contain basically the same
code, but for distinction we hereafter refer to the MMD2WAY CHILD submodel as INT2COSMO, i.e.,
the on-line preprocessing tool, and to INT2LM as the standard off-line (or stand-alone) application.

For the backward coupling, the child model maps the data from the child model grid to the parent
model grid using the MESSy infrastructure submodel GRID. These interpolated data are afterwards
sent to the parent model.

The basic tasks of the parent model are to impose its time and date setting (except the time step
length) on the child and to provide the requested data to the client. Additionally, if 2-way coupling
is required, it requests data from the child model and applies these to the parent model variables.

In the first part of the manual those files, which have to be modified by a user of the system are
explained:

1The terms “model”, “model instance” and “instance” do not mean exactly the same thing. A “model” is the model
itself (e.g., for the MECO(n) system these are COSMO/MESSy or EMAC). In an MMD coupled system different instances
of these models are run concurrently. Thus a “model instance” or “instance” is one realisation of the model configuration
within the coupled setup. However, as it is intuitively clear whether a “model” or an “instance” is addressed, we will
use these terms synonymously.

2The Appendix contains a glossary explaining some terms repeatedly used here. The terms from the glossary are
written in italics throughout the article. Especially, Fig. 17 in the glossary illustrates the meaning of the different coupling
fields.

Kerkweg et al.: MMD user manual 7

ECHAMECHAM COSMOCOSMO
“base
models”

MESSy
sub-
models

ECMWF
“nudging”

(optional !)

LNOXCONVECT MECCA JVAL ...OFFEMIS

CHANNEL IMPORTTRACER TIMER

Modular Earth Submodel System Infrastructure

...

MMD

on-line nesting

Figure 1: Illustration of a MECO(n) coupled setup. Each of the basemodels, ECHAM and COSMO,
are coupled internally to MESSy. Externally, different instances of these model are nested into each
other via MMD.

• Sect. 2 illustrates the run-script settings,

• Sect. 3 describes the details about the individual namelist entries in the MMD2WAY namelist
file, which contains namelists for the child coupling (Sect. 3.3) and for the parent coupling (Sect.
3.4), and

• for an overview, Sect. 4 roughly summarises the coupling work flow.

The second part of the manual is for those users, which want to expand the coupling or simply want
to know more details about the coupling implementation: in Sect. 5 the 1-way coupling procedure
is explained, while Sect. 6 describes the additions which have been implemented for the backward
(or parent-to-child) coupling. The superposition of the parallel decomposed COSMO model and
INT2COSMO grids poses a specific challenge, which solution is discussed in Sect. 5.1.4.

Last but not least, the code changes of the individual model codes, which are required in order to
enable the on-line coupling, are listed for the different code sources, i.e., INT2COSMO, the COSMO
model and the ECHAM5 model, in the Sections 7, 8 and 9, respectively.

8 Kerkweg et al.: MMD user manual

2 The run-scrip xmessy mmd

The run-script consists of three major sections:

1. The first section contains batch job scheduler (queueing system) settings. All schedulers MESSy
was, so far, used with, are listed in this run-script. New queueing systems can be added easily.
The user has to activate the appropriate setup for the computing system he/she is using.

2. The second section is the one which needs specifications according to the intended model simu-
lation. Thus this section is subject to changes by every user for a specific simulation.

3. The last section contains all MESSy and machine specific settings. These should normally not
be changed by a model user. Only, if a new system is added, changes are also required in this
part of the run-script.

Here, we focus on the second block of the run-script, i.e., that part that needs to be adapted by the
user for a specific model setup. Its start is indicated in the run-script by the comment:

###

USER DEFINED GLOBAL SETTINGS

###

The settings are described one after the other as they are aligned in the script:

• EXP_NAME: This is the name of the experiment. This variable is copied to the CHANNEL3

namelist. All CHANNEL output files will start with this experiment name. Its maximal length
is 14 characters.

• WORKDIR: This is the directory in which the simulation is actually performed. In this directory
subdirectories are created by the run-script and all data written during the simulation are placed
into these (sub-)directories. For each model instance (see below) a subdirectory named by the
instance number is created. Note: for most scheduling systems the log-file will be placed in the
directory from which the run-script is submitted.

• START_YEAR, START_MONTH, START_DAY, START_HOUR, START_MINUTE, START_SECOND: These are
the start date/time components. They are copied to the TIMER4 namelist defining the start
date/time of the simulation. Additionally, they are copied to all namelists which require start
time dependent entries. For instance, for an emission file containing monthly averaged emission
fluxes the knowledge of the month in which the simulation starts is required. Nudging is another
important example depending on the start date components.

• STOP_YEAR, STOP_MONTH, STOP_DAY, STOP_HOUR, STOP_MINUTE, STOP_SECOND: These date com-
ponents are copied to the TIMER and nudging namelists to determine the end of a simulation.

• RESTART_INTERVAL=1, RESTART_UNIT=months: These entries determine the frequency with
which restart files are written. RESTART_UNIT provides the unit of the interval, while
RESTART_INTERVAL defines the number of steps in unit RESTART_UNIT. These parameters are
copied to the TIMER namelist. —

3The CHANNEL submodel is described in detail in the electronic supplement of Jöckel et al. (2010).
4The TIMER submodel is described in detail in the electronic supplement of Jöckel et al. (2010).

Kerkweg et al.: MMD user manual 9

• NML_SETUP: This variable determines which namelist setup is used. In the subdirectory
messy/nml/ within the MESSy distribution different namelist setups are available. NML_SETUP

selects the name of the subdirectory, which should be used. If an ECHAM5/MESSy-only simula-
tion is performed, the subdirectory contains only the namelists required for an ECHAM5/MESSy
simulation. For a COSMO/MESSy only simulation, the namelist subdirectory contains only the
namelists required for one COSMO/MESSy model instance. For the coupled simulations the
respective directory contains as many subdirectories as coupled instances exist. The numbers in
the coupling layout (see below) are the same as the numbers of the namelist subdirectories. The
namelists for the coupled setups are all placed in a subdirectory called MMD.

• OFT (Output File Type): At the time being it can be chosen between netCDF5 and parallel-
netCDF6, if the latter is available. This flag is copied to the CHANNEL namelist.

• QWCH: This should be set to the available wall-clock hours defined by the schedule and is copied
to the QTIMER7 namelist.

• INSTANCE: This gives the number and type of model instances running simultaneously in the
MPI environment. The names “ECHAM5” and “COSMO” indicate whether in this instance an
ECHAM5/MESSy model or a COSMO/MESSy model is executed.

===

SELECT MODEL INSTANCES:

- ECHAM5, MPIOM, CESM1 (always first, if used)

- COSMO

- other = MBM

===

INSTANCE[1]=ECHAM5

INSTANCE[2]=COSMO

INSTANCE[3]=COSMO

If ECHAM5/MESSy is the coarsest parent model (master parent or patriarch), this needs to be
the first instance. If ECHAM5/MESSy or COSMO/MESSy are run alone, only one instance
is set. The run-script can also be used to run other MESSy models, e.g., the generic MESSy
basemodel BLANK (INSTANCE[1]=blank), CAABA (INSTANCE[1]=caaba, Sander et al. (2011)),
MPIOM (INSTANCE[1]=mpiom, Pozzer et al. (2011)) or CESM1 (INSTANCE[1]=CESM1, Baum-
gaertner et al. (2016)) can be run as autonomous model with the same run-script.

• MMDPARENTID: For each model instance the server of the model needs to be determined. The
server of a model is defined by its instance number.

===

SET MMD PARENT IDs (-1: PATRIARCH)

===

MMDPARENTID[1]=-1

MMDPARENTID[2]=1

MMDPARENTID[3]=2

5http://www.unidata.ucar.edu/software/netcdf/
6http://www.mcs.anl.gov/parallel-netcdf
7The QTIMER submodel is described in Jöckel et al. (2010).

10 Kerkweg et al.: MMD user manual

The patriarch is indicated by “-1” because the patriarch has no server itself. For the above
example, the server of instance number 2 is the first instance, i.e., the ECHAM5/MESSy model.
The second instance itself is server to the third instance. MMDPARENTID[3]=1 would mean that
the third model also gets its data directly from ECHAM5/MESSy.

• NPX, NPY and NVL: NPX and NPY determine the parallel domain decomposition of the model
instances in x and y direction, respectively. For the COSMO model these are copied to
nprocx and nprocy in the COSMO namelist &RUNCTL in the INPUT_ORG.nml namelist file. For
ECHAM5/MESSy these entries are copied to NPROCA and NPROCB in the &RUNCTL namelist of
the ECHAM5.nml namelist file. So far, NVL was only of importance for ECHAM5/MESSy, as
the vector length NPROMA is set to NVL. For the COSMO model versions containing the unified
COSMO-ICON model physics NVL also defines the block length used in the COSMO physics.

• ECHAM5 specific settings:

– ECHAM5_HRES,ECHAM5_VRES: Spectral and vertical resolution of ECHAM5. ECHAM5_HRES is
for example one of (T106, T85, T63, T42, T31, T21, T10), whereas ECHAM5_VRES is for
example, one of (L19, L31ECMWF, L41DLR, L39MA, L90MA). Note that ECHAM5 always
requires initial data in the chosen resolution.

– MPIOM_HRES, MPIOM_VRES: horizontal and vertical resolution of MPIOM, when it is chosen
as a submodel. MPIOM_HRES is for example one out of (GR60, GR30, GR15, TP04, TP40)

and MPIOM_VRES one out of (L3, L20, L40).

– ECHAM5_NUDGING: This LOGICAL is set to T, if nudging of the ECHAM5 model is requested.
The nudging coefficients in the ECHAM5 namelist file (namelist &NDGCTL) must be set
accordingly.

– ECHAM5_LAMIP: Switch for using sea-surface temperature (sst) and sea-ice forcing via AMIP-
like data for ECHAM5.

– NML_ECHAM: name of the ECHAM5 namelist file. As the ECHAM5 namelists include some
resolution dependent entries, it is convenient to work with resolution dependent ECHAM5
namelist files.

• user-defined specific namelist files, e.g., depending on the resolution, the start date, etc.

• COSMO specific settings: COSMO_SUBDIR, COSMO_EXTNAME and COSMO_EXTGRID: These entries
are used to determine the INT2COSMO namelist entries required to access the external data
file. COSMO_EXTNAME fills the namelist entry ylmext_lfn and COSMO_EXTGRID contains the hori-
zontal grid sizes of the external data file, which naturally depend on the external data file and
are required as individual entries in the INT2COSMO namelist &DATA. ylmext_cat is filled by
COSMO_EXTDIR, which is composed of a general data input path (INPUTDIR_COSMO_EXT) and a
subdirectory (COSMO_SUBDIR) in this input path. COSMO_SUBDIR has to be defined individually
for each instance, while a default value (as part of the standard MESSy input directory) ex-
ists for INPUTDIR_COSMO_EXT. However, INPUTDIR_COSMO_EXT can also be user-defined for each
individual instance.

-> COSMO_EXTDIR[.] = ${INPUTDIR_COSMO_EXT[.]}/$COSMO_SUBDIR[.]

COSMO_SUBDIR[1]=

COSMO_EXTNAME[1]=

COSMO_EXTGRID[1]=

Kerkweg et al.: MMD user manual 11

COSMO_SUBDIR[2]=climatology

COSMO_EXTNAME[2]=europe.nc

COSMO_EXTGRID[2]="ie_ext=101, je_ext=107,"

COSMO_SUBDIR[3]=external

COSMO_EXTNAME[3]=lm_d1_g0.165_463x383

COSMO_EXTGRID[3]="ie_ext=463, je_ext=383,"

The number in brackets is the instance number. In the example with ECHAM5/MESSy as first
instance, the block with instance number 1 must be empty.

The above listed variables need to be set. Here, additional variables are listed, which can be set, if
the default settings should not be used:

• BASEDIR: This is the directory of the model distribution.

• DATABASEDIR: Base directory for model initial data.

• INPUTDIR_ECHAM5_INI: Directory containing the input data for the ECHAM5 model.

• INPUTDIR_ECHAM5_SPEC: Directory containing the *_spec and *_surf files for the ECHAM5
initialisation. These depend on the resolution and start date. With INPUTDIR_ECHAM5_SPEC,
the user can put the initial files specific for the start date of his/her simulation into a private
directory and use the default directory for the others.

• INPUTDIR_NUDGE: Directory of the nudging data files for ECHAM5.

• FNAME_NUDGE: Name template of the ECHAM5 nudging data files. This differs depending on the
source of the data. (ERA40/ERA-Interim or analysis (ANALY)).

• INPUTDIR_AMIP: Directory of the sst and sea-ice data for ECHAM5.

• INPUTDIR_MPIOM: Directory containing MPIOM input data.

• INPUTDIR_COSMO_EXT: Directory containing COSMO input (“external”) data.

• INPUTDIR_COSMO_BND: Directory containing COSMO initial and boundary data, if COSMO is
run in stand-alone mode or as patriarch.

• INPUTDIR_CESM1: Directory containing CESM1 input data.

• INPUTDIR_MESSY: Directory containing input data for the MESSy submodels.

• USE_PREREGRID_MESSY: It is possible to provide the MESSy input data on the specific horizontal
Gaussian grid, i.e., in pre-regridded form. This is used when USE_PREREGRID_MESSY = T. Note:
this only works for ECHAM5/MESSy.

• SPECIAL MODES:

– SERIALMODE: switch on, if basemodel was compiled without MPI8 parallelisation.

– TESTMODE: Test mode of the run-script, exits before starting the executable.

8message passing interface

12 Kerkweg et al.: MMD user manual

– MEASUREMODE: Measure memory use. This is only available on specific machines.

– PROFMODE: A special mode, for performance monitoring, which is only available on specific
machines: Possible settings are TPROF, VAMPIR or SCALASCA. Additionally, the parameter
PROFCMD is required.

The user specified block ends with the marker:

###

###

===

###

DO NOT CHANGE ANYTHING BELOW THIS LINE !!!

###

===

###

###

3 The MMD2WAY namelists

The namelist file of the submodel MMD2WAY consists of five different namelists:

• &CTRL: the overall control namelist read by the child model

• &CPL_PARENT: a namelist generally driving the coupling from the parent model side (read by the
parent model).

• &CPL_PAR_CHILD: an arbitrary number of these namelists, specifying the transfer of child fields
to the parent model individually for each coupled instance (read by the parent model).

• &CPL_CHILD: a namelist generally driving the coupling from the child model side (read by the
child model).

• &CPL_CHILD_ECHAM or &CPL_CHILD_COSMO: namelist specifying which fields are required from the
parent model for the child model (read by the child model). For simplicity reasons two different
namelists are provided for the two possible parent models ECHAM5 or COSMO.

In the following the individual namelists are described. First the namelists read by the child models
are explained.

3.1 &CTRL

The &CTRL-namelist (Fig. 2) consists of two blocks of namelist variables: one to trigger original
INT2LM output and the other for an improved initialisation of the soil variables:

• two variables are required to trigger the original output: one LOGICAL switch and one event9:

9The generic submodel TIMER and the definition and functionality of events are described in the manual about
TIMER within the electronic supplement of Jöckel et al. (2010).

Kerkweg et al.: MMD user manual 13

! -*- f90 -*-

&CTRL

! WRITE ORIGINAL INT2COSMO OUTPUT

l_I2Cori_output = .FALSE.

! do not use steps

WRITEI2C_IOEVENT = 1,’hours’,’exact’,0

! INITIALSE VARIABLES

!l_forcevars = .TRUE.,

!forcevars = "T_SO;W_SO;T_S;W_I;QV_S;W_SNOW;T_SNOW",

!forcefile = "/DATA/COSMO/soil_ini/lffd2001010100.nc"

/

Figure 2: Example &CTRL-namelist of the MMD2WAY namelist file (mmd2way.nml)

– If the LOGICAL l_I2Cori_output is set .TRUE. (default: .FALSE.), INT2COSMO produces
its original output, i.e., the initial and boundary files are written during the on-line coupled
simulation. They can be used later on to perform off-line COSMO simulations. Note: this
only works for original INT2LM output, implying that MESSy specific boundary data (e.g.,
for chemical species) are not written to these files.

– The event (WRITEI2C_IOEVENT) determines the temporal interval in which files are written,
if l_I2Cori_output = .TRUE..

• the forcing of specific variables requires three namelist variables:

– the LOGICAL l_forcevars to switch on this specific feature (default: .FALSE.).

– the string variable forcevars containing the names of all variables to be re-initialised by
this procedure.

– the string variable forcefile providing the path and the name of the file containing the
data.

Note: the COSMO domain definition in forcefile has to be exactly the same as in the simu-
lation performed.

3.2 &CPL CHILD

The &CPL_CHILD-namelist (Fig. 3) is read by MMD2WAY CHILD and determines the interval of
coupling between this specific child and its parent model. The namelist contains two events:

• the first (CPL_IOEVENT) determines the interval of the coupling to the parent model, i.e., how
often data are exchanged between parent and child model,

• the second event (READEXT_IOEVENT) determines the update interval of the external data required
by INT2COSMO.

For the definition of the coupling event the user has to be aware of two limitations:

• To simplify the data exchange between the coupled models, the coupling interval is internally
converted to seconds. As this conversion is not well defined for the units ’months’ and ’years’,
the coupling interval must be specified in ’steps’, ’seconds’, ’minutes’, ’hours’ or ’days’.

• As for all other events, the user has to define a multiple of the model time step length, otherwise
the simulation is terminated. Especially, the coupling interval is a multiple of the time steps of
the child and the parent model.

14 Kerkweg et al.: MMD user manual

&CPL_CHILD

CPL_IOEVENT = 10,’minutes’,’first’,0

READEXT_IOEVENT = 1,’years’,’none’,0

/

Figure 3: Example &CPL CHILD-namelist of the MMD2WAY namelist file (mmd2way.nml).

3.3 &CPL CHILD ECHAM and &CPL CHILD COSMO

The second part of the namelist file, which is child model relevant, contains a list of exchange fields
required to fully initialise and drive the respective child COSMO/MESSy model. The exchange fields
are unambiguously identified by their channel and channel object names. As these usually differ
between ECHAM5/MESSy and COSMO/MESSy, the namelists depend on the parent model.

Figure 4 shows a typical &CPL_CHILD_ECHAM namelist for the coupling to ECHAM5/MESSy and Fig.
5 shows the namelist &CPL_CHILD_COSMO used for the coupling to a COSMO/MESSy model as parent.
The structure of the two namelists is identical. Each exchange field is defined by one namelist entry
of TYPE FIELD:

FIELD(.) = ’PARENT_CHANNEL’, ’PARENT_OBJECT’, ’CHILD_CHANNEL’, ’CHILD_OBJECT’

, ’INTERPOL_METHOD’, L_INITIAL, L_BOUND, L_INPUT, ’CHILD_REPR’

FIELD is a variable of TYPE T_C_EXCH_IO:

TYPE CHAOBJ_NAMES

CHARACTER(LEN=STRLEN_CHANNEL) :: CHA = ’’ ! CHANNEL NAME

CHARACTER(LEN=STRLEN_OBJECT) :: OBJ = ’’ ! OBJECT NAME

END TYPE CHAOBJ_NAMES

TYPE T_C_EXCH_IO

TYPE(CHAOBJ_NAMES) :: PARENT

TYPE(CHAOBJ_NAMES) :: CHILD

CHARACTER(LEN=4) :: C_INTERPOL = ’’ ! INTERPOLATION METHOD

! Specify target field

LOGICAL :: L_INITIAL = .FALSE. ! INITIAL FIELD

LOGICAL :: L_BOUND = .FALSE. ! BOUNDARY FIELD

LOGICAL :: L_INPUT = .FALSE. ! INPUT FIELD

CHARACTER(LEN=STRLEN_MEDIUM) :: C_REPR =’’ ! REPRESENTATION STRING

END TYPE T_C_EXCH_IO

! MAXIMAL NUMBER OF EXCHANGE FIELDS

INTEGER, PARAMETER :: NMAX_EXCH = 1000

TYPE(T_C_EXCH_IO), DIMENSION(NMAX_EXCH), SAVE :: FIELD

• The first two structure components of TYPE CHARACTER specify the channel and channel ob-
ject name of the exchange field on the parent side. For instance, the surface pressure field
in ECHAM5/MESSy is defined in the channel ’g3b’ with the channel object name ’aps’ (see
FIELD(1) in Fig. 4).

• The third and fourth structure components of TYPE CHARACTER name the channel and channel
object of the exchange field in the client model. For FIELD(1) in Fig. 4 this is the channel
’COSMO ORI’ and the channel object ’PS’.

Kerkweg et al.: MMD user manual 15

&CPL_CHILD_ECHAM

! ###

!

! ###

! ### MANDATORY FIELDS

! ###

!**

FIELD(1) = ’g3b’,’aps’, ’COSMO_ORI’, ’PS’, ’’, F, F, F , ’’

!**

FIELD(2) = ’ec2cosmo’,’T_S’, ’COSMO_ORI’,’T_S’, ’’, T, T, F, ’’

!**

FIELD(3) = ’g3b’,’slf’, ’COSMO_ORI’,’FR_LAND’, ’’, T, F, F, ’’

!**

FIELD(4) = ’g1a’,’tm1’, ’COSMO_ORI’,’T’, ’’, T, T, F, ’’

!**

FIELD(5) = ’g1a’,’qm1’, ’COSMO_ORI’,’QV’, ’’, T, T, F, ’’

!**

FIELD(6) = ’g1a’,’xlm1’, ’COSMO_ORI’,’QC’, ’’, T, T, F, ’’

!**

FIELD(7) = ’g1a’,’xim1’, ’COSMO_ORI’,’QI’, ’’, T, T, F, ’’

!**

FIELD(8) = ’g2a’,’um1’, ’COSMO_ORI’,’U’, ’’, T, T, F, ’’

!**

FIELD(9) = ’g2a’,’vm1’, ’COSMO_ORI’,’V’, ’’, T, T, F, ’’

!**

FIELD(10) = ’g3b’,’geosp’, ’#XXX’,’FIS’, ’’, F, F, F, ’’

!**

FIELD(11) = ’g3b’,’wl’, ’COSMO_ORI’,’W_I’, ’’, T, F, F, ’’

!**

FIELD(12) = ’g3b’,’sni’, ’COSMO_ORI’,’W_SNOW’, ’’, T, T, F, ’’

!**

FIELD(13) = ’g3b’,’tsi’, ’COSMO_ORI’,’T_SNOW’, ’’, T, T, F, ’’

!**

FIELD(14) = ’ec2cosmo’,’W_SO_REL’, ’COSMO_ORI’,’W_SO’, ’’, T, F, F, ’’

! ###

! ### OPTIONAL FIELDS

! ###

FIELD(20) = ’Test’,’Test_Ar’, ’mmd2way_child’,’Test_Ar’, ’’, F, F, F, ’’

!**

FIELD(21) = ’tracer_gp_m1’,’O3’, ’tracer_gp’,’O3’, ’QFTV’, T, T, F, ’’

!**

FIELD(22) = ’ptrac_gp’,’wetradius’, ’ptrac_gp’,’wetradius’, ’QTFV’, T, F, F, ’’

!**

FIELD(23) = ’jval_gp’,’J_O1D’, ’mmd2way_child’,’J_O1D’, ’QFTV’, F, F, T, ’GP_3D_MID’

!**

FIELD(24) = ’import_grid’,’RGT0012_CO’,’mmd2way_child’,’RGT0012_CO’,’M’,F,F,T,’#UNKNOWN’

! ###

/

Figure 4: Example &CPL CHILD ECHAM namelist of MMD2WAY namelist file (mmd2way.nml).

For the child channel object names wildcards are allowed. A ’*’ replaces an arbitrary number
of characters or digits, whereas ’?’ replaces exactly one character or digit. Based on wildcards,
it is possible to address a number of channel objects of one channel with one namelist entry. The
only restriction for wildcard usage is that the name of the channel object on the parent side must
be identical to that on the child side10, because the names for the parent channel objects are over-

10This is usually not the case for the basemodels ECHAM5 and COSMO, but for the MESSy submodels.

16 Kerkweg et al.: MMD user manual

&CPL_CHILD_COSMO

! ###

!

! ###

! ### MANDATORY FIELDS

! ###

FIELD(1) = ’COSMO’,’ps’, ’COSMO_ORI’,’PS’, ’’, F, F, F, ’’

!**

FIELD(2) = ’COSMO’,’t_s’, ’COSMO_ORI’,’T_S’, ’’, T, T, F, ’’

!**

FIELD(3) = ’COSMO_ORI’,’FR_LAND’, ’COSMO_ORI’,’FR_LAND’, ’’, T, F, F, ’’

!**

FIELD(4) = ’COSMO’,’tm1’,’COSMO_ORI’,’T’, ’’, T, T, F, ’’

!**

FIELD(5) = ’COSMO’,’qv’,’COSMO_ORI’,’QV’, ’’, T, T, F, ’’

!**

FIELD(6) = ’COSMO’,’qc’,’COSMO_ORI’,’QC’, ’’, T, T, F, ’’

!**

FIELD(7) = ’COSMO’,’qi’,’COSMO_ORI’,’QI’, ’’, T, T, F, ’’

!**

FIELD(8) = ’COSMO’,’um1’,’COSMO_ORI’,’U’, ’’, T, T, F, ’’

!**

FIELD(9) = ’COSMO’,’vm1’, ’COSMO_ORI’,’V’,’’, T, T, F, ’’

!**

FIELD(10) = ’COSMO’,’t_so’, ’COSMO_ORI’,’T_SO’, ’’, T, F, F, ’’

!**

FIELD(11) = ’COSMO’,’w_so’,’COSMO_ORI’,’W_SO’, ’’, T, F, F, ’’

!**

FIELD(12) = ’COSMO’,’t_snow’, ’COSMO_ORI’,’T_SNOW’, ’’, T, T, F, ’’

!**

FIELD(13) = ’COSMO’,’w_snow’, ’COSMO_ORI’,’W_SNOW’, ’’, T, T, F, ’’

!**

FIELD(14) = ’COSMO’,’w_i’, ’COSMO_ORI’,’W_I’, ’’, T, F, F, ’’

!**

FIELD(15) = ’COSMO’,’qv_s’, ’COSMO_ORI’,’QV_S’, ’’, T, T, F, ’’

!**

FIELD(16) = ’COSMO_ORI’,’FRESHSNW’, ’COSMO_ORI’,’FRESHSNW’, ’’, T, F, F, ’’

!**

FIELD(17) = ’COSMO_ORI’,’HSURF’, ’COSMO_ORI’,’HSURF’, ’’, T, F, F, ’’

!**

FIELD(18) = ’COSMO’,’ppm1’, ’COSMO_ORI’,’PP’, ’’, T, T, F, ’’

!**

FIELD(19) = ’COSMO_ORI’,’SOILTYP’, ’COSMO_ORI’,’SOILTYP’, ’’, T, F, F, ’’

!***

! ###

! ### OPTIONAL FIELDS

! ###

FIELD(20) = ’Test’,’Test_Ar’, ’mmd2way_child’,’Test_Ar’, ’’, F, F, F, ’’

!**

!**

FIELD(21) = ’tracer_gp_m1’,’all’, ’tracer_gp’,’*’, ’QFTV’, T, T, F, ’’

!**

! ###

/

Figure 5: Example &CPL CHILD COSMO-namelist of MMD2WAY namelist file (mmd2way.nml).

written by the child channel object names, if wildcards are used. For instance, an entire tracer
set can be coupled by setting ’CHILD_CHANNEL’, ’CHILD_OBJECT’ to ’tracer_gp’, ’*’ or all

Kerkweg et al.: MMD user manual 17

photolysis rates are coupled by ’jval_gp’, ’J_*’. Due to the initialisation of prognostic vari-
ables at the beginning of each time step in COSMO/MESSy in the subroutine initialize_loop
in lmorg.f90 the parent channel for the coupling of the tracers needs to be ’tracer_gp’. In
case of ECHAM5 the fields in ’tracer_gp’ and ’tracer_gp_m1’ are identical at the beginning
of the time loop.

• The fifth structure component is a CHARACTER of length 4. It determines the interpolation
method. This is only required for the additional fields, as for the INT2COSMO inherent fields
the interpolation method is determined inside of INT2COSMO. Possible interpolation methods
are: ’Q’ for quadratic; ’L’ for linear and ’M’ for match point interpolation. Additionally ’C’ for
conservative remapping via the MESSy submodel GRID has been added to INT2COSMO. Thus
the first character must be set to one of ’Q’, ’L’, ’M’ or ’C’. The second and the third character
demand monotonicity and positive definiteness, respectively, if set to T. The default value,
however, is F. If the fourth character is ’V’ or ’W’, the field will additionally be interpolated
in the vertical direction via the INT2COSMO inherent spline method (’V’) or via NREGRID
(’W’). However, this is only possible for 3D- or 4D-fields of which the number of vertical levels
equals the number of vertical levels in the model. For instance, the fifth string of FIELD(21) in
&CPL_CHILD_ECHAM determines that the ozone tracer is interpolated horizontally by quadratic
interpolation and in addition vertically using the spline method. No care is taken to ensure
monotonicity, but positive definiteness is requested.

• The next three logicals in the FIELD(:) entry indicate the data destination (initial, boundary
or input) of the interpolated field. Mandatory fields can be initial and boundary fields. For the
mandatory fields the entries for the data destination types in the namelist could be omitted, as
they are set according to the COSMO variables yvarini and yvarbd. These variables list the
initial and boundary fields required for the chosen COSMO setup. If initial or boundary fields
are required according to yvarini or yvarbd and the data destination flags are not set .TRUE.

in the namelist, the namelist settings are ignored. If a field destination is requested (in addition
to yvarini or yvarbd) as initial or boundary field, however, this request is not overwritten. In
other words, if the field is requested in the namelist or the COSMO model, it will be processed.

For the optional fields the choice of initial and/or boundary and of input destination is exclusive,
as input already implies initial and the provision of boundary data is meaningless, since the
field is overwritten each coupling time step. For instance, for the prognostic variables water
vapour and cloud water (FIELD(5) and FIELD(6) in Fig. 4) the calculation of the initial and
boundary fields is requested, whereas for the land fraction (FIELD(3) in Fig. 5) only the initial
field is calculated. As tracers are prognostic variables, initial and boundary fields are requested
for ozone (FIELD(21)). In contrast, the fields FIELD(23) and FIELD(24) are input fields.

• The last component of the variable FIELD contains the representation11 of the childs channel
object. It is only required for additional fields, for which L_INPUT is .TRUE.. In this case the
memory for a field is neither defined by a MESSy submodel nor by the basemodel itself and
consequently, the submodel MMD2WAY CHILD has to define the respective channel object
itself, which is indicated by giving ’mmd2way_child’ as child channel name in the third FIELD

entry in the &CPL_CHILD_ECHAM namelist. For these fields the representation must be known as
MMD2WAY CHILD needs to allocate the memory for the respective field itself.

For instance, in FIELD(23) in the &CPL_CHILD_ECHAM namelist, the photolysis rate of O1D from
the ECHAM5/MESSy submodel JVAL (channel name ’jval_gp’, channel object name ’J_O1D’)

11For a description of representations see the CHANNEL manual, which is part of the electronic supplement of Jöckel
et al. (2010).

18 Kerkweg et al.: MMD user manual

is defined as input field of the regional model. If JVAL is not switched on in COSMO/MESSy,
MMD2WAY CHILD needs to define the channel object itself. The photolysis rates are defined
at the center of the grid boxes. Thus the representation of a photolysis rate is a priori known
and the representation name for the child model can be specified (here, ’GP_3D_MID’).

In cases where the representation is not a priori known, it is deduced from the representation
of the parent channel object. This heuristic procedure, triggered by the entry ’#UNKNOWN’ (see
FIELD(24) in Fig. 4), is described in detail in Sect. 5.1.1.2.

In addition to the coupling of standard 2D and 3D data fields, the coupling of 4D data fields is imple-
mented. They are treated exactly in the same way. However, due to differences in the implementation
of tracers (Jöckel et al., 2008) and the implementation of prognostic variables in the COSMO model,
it is not possible to couple the 4D tracer field directly. Nevertheless, each individual tracer can be
coupled, as the individual tracers are accessible as 3D channel objects (e.g., FIELD(21) in Fig. 4). To
simplify the handling of large tracer sets, wildcards can be used for the child channel object names in
the namelist: ’*’ replaces an arbitrary number of characters, ’?’ replaces exactly one character. For
instance, FIELD(25) would request all tracers available in the channel ’tracer_gp_m1’. Of course,
wildcards in the channel object names can be used for other channels as well.

3.4 &CPL PAR CHILD

&CPL_PAR_CHILD

INSTANCE=’002’

lgrh = .FALSE.,

ldiagonly = .TRUE.,

i_rmy_px = 21,

rdefpc = 30000.,

itype_fw = 2,

PFIELD(1) = ’g1a’,’qm1’, ’scnbuf’,’qte’, ’tracer_gp’,’QV’, ’GP_3D_MID’,1,1,1.

PFIELD(2) = ’g1a’,’xlm1’,’scnbuf’,’xlte’,’tracer_gp’,’QC’, ’GP_3D_MID’,1,1, 0.5

/

Figure 6: Example &CPL PAR CHILD-namelist of MMD2WAY namelist file (mmd2way.nml). This
namelist is specific for the case of ECHAM5/MESSy as parent model.

&CPL_PAR_CHILD

INSTANCE=’003’

RCF = 100,

RCF_IN = 100,

i_rmy_px = 25

PFIELD(1) = ’tracer_gp’,’QV’, ’’,’’, ’tracer_gp’,’QV’, ’GP_3D_MID’,1,1, 1.

PFIELD(2) = ’tracer_gp’,’QC’, ’’,’’, ’tracer_gp’,’QC’, ’GP_3D_MID’,1,1, 0.5

PFIELD(5) = ’COSMO_ORI’,’PS’,’ ’,’ ’,’COSMO_ORI’,’PS’,’GP_2D_HORIZONTAL’,1,1,1.

/

Figure 7: Example &CPL PAR CHILD-namelist of MMD2WAY namelist file (mmd2way.nml). This
namelist is specific for the case of COSMO/MESSy as parent model.

Figures 6 and 7 show two typical examples for parent coupling namelists. Figure 6 is specific for
ECHAM5/MESSy as parent model and Fig. 7 for COSMO/MESSy as parent model.

The following parameters can be part of the &CPL_PAR_CHILD:

Kerkweg et al.: MMD user manual 19

• INSTANCE: a mmd2way.nml namelist file may contain an arbitrary number of &CPL_PAR_CHILD
namelists. The CHARACTER string of length 3, ’INSTANCE’, is required to attribute each of
these namelist blocks to one specific coupling instance. The number provided by the namelist
parameter INSTANCE refers to the instance number as set in the MMD coupling namelist file
MMD_layout.nml written and defined by the run-script xmessy_mmd.

• itype_fw: weight function (see page 72). Default: itype_fw = 2

• icosexp: factor as required for itype_fw = 1. Default value is icosexp = 14.

• damprel: factor as required for itype_fw = 2. Default value is damprel = 0.02.

• i_rmy_px: number of grid boxes which are not coupled back in addition to the damping zone of
the child COSMO model domain. Default is i_rmy_px = 0.

• RCF: scaling factor to avoid grid rounding errors as much as possible (depends on child model
grid resolution). Default value: RCF = 10000.

• RCF_IN: scaling factor to avoid grid rounding errors as much as possible (depends on parent
model grid resolution). Default value: RCF_IN = 10000.

• PFIELD: definition of the coupling fields. PFIELD has the form

PFIELD(.)= ’parent_channel’,’parent_object’,

’parent_tendency_channel’,’parent_tendency_object’,

’child_channel’,’child_object’, ’representation’,

interpol_method, application_method, nudg_fac

– parent_channel, parent_object, parent_tendency_channel,
parent_tendency_object: specification of the data object which is the target of
the exchange process:

∗ If the tendency of a prognostic variable should be changed, parent_tendency_channel
and parent_tendency_object contain the specification of the tendency object and
parent_channel and parent_object the specification of the data field of the previous
(’-1’) time step.

∗ If the field itself is changed directly, parent_channel and parent_object con-
tain the specification of the field to change and parent_tendency_channel and
parent_tendency_object are empty strings. In the special case, that the sub-
model MMD2WAY PARENT needs to allocate the memory for the field itself,
parent_channel equals ’mmd2way_parent’.

– child_channel, child_object: specification of the field in the child model coupled back
to the parent model.

– representation: representation of the parent object, if it is created in
MMD2WAY PARENT itself.

– interpol_method: defines the interpolation method. Currently, only conservative remap-
ping (interpol_method = 1) is implemented.

– application_method: determining the application method. Currently, only
application_method = 0 for input fields, which should not be weighted in any way and
grid point space (application_method = 1) are defined (see page 69).

20 Kerkweg et al.: MMD user manual

– nudg_fac: nudging factor determining the strength of the forcing of this specific parent
field

• lgrh (experimental): use generalised humidity for back remapping to mirror procedure of
INT2COSMO. Default value lgrh = .FALSE..

• lfreeslip (experimental): allows for free (non-nudged) layers at the surface. Default value
lfreeslip = .FALSE..

• rdefpc (experimental): control level (in Pa) for vertical integration, should be the same as
defined for INT2COSMO. Default value rdefpc = 30000. Pa, i.e., identical to the COSMO
namelist default value.

• lcpl_gs (experimental): child to parent coupling in global_start. Default value:
lcpl_gs = .FALSE..

• itype_VI (experimental): type of vertical interpolation for child-parent coupling. Currently,
only itype_VI = 1, i.e., interpolation via NREGRID is implemented

• ldiagonly: avoid iteration for vertical interpolation, if only diagnostic fields are coupled. Default
value: ldiagonly = .FALSE.

4 Basic coupling setup

The diagrams in Fig. 8 and Fig. 9 sketch the sequence of operations in a coupled simulation.

For the basic coupling of the models, five phases are passed through, described in the following sections
4.1 to 4.5:

4.1 MMD setup

Before any submodel specific initialisation takes place, the Multi-Model-Driver (MMD) is initialised.
The MMD library routines setting up the message passing interface (MPI) environment are called
from the basemodels. The determination of the model topology and the communicator definition
are explained in an extra manual about the MMD library12, as these routines work inside the MMD
library. As model topology, we understand the layout of all parent and child model dependencies and
the distribution of the models on the available number of process entities (PEs) or MPI tasks.

The topology is determined by the MMD library namelist MMD_layout.nml, which is written by the
run-script xmessy_mmd as determined by the user. The MMD library namelist file MMD_layout.nml

is read, broadcasted and interpreted within the MMD library. All communicators for intra- and
inter-instance communication are determined in accordance to the model topology.

4.2 Synchronisation

To ensure that all instances start, restart and stop at the same date and time, the date and time
settings of all coupled models need to be synchronised. This is achieved, if one instance determines
the timing of all other instances. If in each parent-child model pair the parent dictates the time setup,

12The MMD library manual is part of the same electronic supplement as this manual.

Kerkweg et al.: MMD user manual 21

MMD2WAY_CHILD MMD2WAY_PARENT

In
iti

al
is

at
io

n
 mmd2way_child _setup mmd2way_parent_initialize

 MMD_C_Init

 get_ParentTiming

 MMD_P_Allocate_Child
 MMD_P_Init

 mmd2way_init_memory

mmd2way_init_memory
 Setup_Child_Timer

 mmd2way_child_setup_int2cosmo
 * setup_int2lm
 * MMD_testC_Setup
 CALC_lonlat_lm
 CALC_forward_weights

 MMD_C_Set_DataArray_Name
 exchange_grids

 Setup_Data_Exchange_with_Parent

* MMD_C_Get_Indexlist
 mmd2way_child_set_CPLDATA

(*MMD_C_Get_Repr)
(*MMD_testC_GetTestPtr)

 Define_data_arrays
*MMD_C_GetNextArray
*MMD_C_Set_DataArray

 MMD_P_Get_DataArray_Name
 Setup_Child_Area

 Setup_Data_Exchange_with_Child
* MMD_testP_setup
* locate_in_decomp
* MMD_testP_Fill
* MMD_P_Set_Indexlist
* MMD_testP_FinishFill

 Define_data_arrays
*MMD_P_GetNextArray
 *MMD_P_Set_DataArray

 interpret_namelist

 mmd2way_child_read_nml_ctrl
 mmd2way_child_read_nml_cpl
 mmd2way_childread_nml_cpl_serv

 mmd2way_parent_read_nml_cpl_child

mmd2way_init_coupling
 interpret_parent_namelist

 MMD_C_Get_ParDataArray_Name
 MMD_Inter_Bcast
 MMD_Send_to_Parent (rdheight)

 MMD_Inter_Bcast

 MMD_P_Set_ParDataArray_Name MMD_P_Set_ParDataArray_Name
 MMD_Inter_Bcast (namelist parameter)

 MMD_Recv_from_Child
 MMD_Inter_Bcast (kmin)

 parent_assign_ParData

 Setup_ParData_Exchange
 match_parent_grid
 Setup_ParData_Exchange
 parent_make_representations
 parent_set_ParData

 MMD_P_GetNextParArray
 *MMD_P_Set_ParDataArray

 init_parent_coupling

 exchange_interpol_data
 (only for lstart=true, see timeloop)

 exchange_grids

 MMD_C_SetInd_and_AllocMem MMD_P_SetInd_and_AllocMem

Figure 8: Call sequence of the 2-way on-line coupling routines in the parent and child submodels in
ECHAM5/MESSy (→ COSMO/MESSy)n in the initial phase: Colour code of subroutine names: the
MESSy entry points directly called by messy main control: red; MMD library routines: blue; original
INT2LM routines: orange. The dark blue and light blue boxes indicate subroutine calls required for
child-to-parent (1-way) and the parent-to-child coupling, respectively. Arrows indicate the direction
of the data exchange between child and parent.

22 Kerkweg et al.: MMD user manual

 exchange_interpol_data
* MMD_C_GetBuffer
* MMD_testC_Compare

 switch_par_utilities(1)
 mmd2way_prepare_external_data
 * external_data
 * org_read_coarse_data
 mmd2way_child_interpolation
 * org_coarse_interpol
 * org_vert_inter_lm / org_vert_interpol
 * org_2d_fields
 * / org_lm_fields
 * org_lm_output
 Interpol_AddiArrays
 * interpol_coarse_OneLayer / scrip_control
 * interpol_vert_AddiArray / vert_ncinterpol
 switch_par_utilities(2)
 (move_initial_arrays_to_COSMO)
 flag_fields
 move_boundary_arrays_to_COSMO
 flag_fields
 (force_vars_from_file)

MMD2WAY_CHILD MMD2WAY_PARENT
Ti

m
e

Lo
op

 mmd2way_child _init_loop mmd2way_parent_global_start

 MMD_P_FillBuffer MMD_P_FillBuffer

mmd2way_parent_global_end mmd2way_child_global_end

 interpol_parent_data
 SCRIP_CONTROL
 vert_interpol_lm2echam / vert_interpol_lm2lm

 exchange_parent_data
 MMD_C_FillBuffer MMD_P_GetBuffer

 mmd2way_parent_couple_gp

 mmd2way_child_free_memory mmd2way_parent_free_memory

 org_cleanup
 MMD_testC_FreeMem

 MMD_Inter_Bcast
 exchange_breakinfo
 MMD_Inter_Bcast

 MMD_C_FreeMem MMD_P_FreeMem

 MMD_testP_FreeMem

cl
ea

n
up

 mmd2way_child_write_output
 (mmd2way_child_read_restart)
 (mmd2way_child_write_restart)

Figure 9: Call sequence of the 2-way on-line coupling routines in the parent and child submodels in
ECHAM5/MESSy (→ COSMO/MESSy)n during the time loop and in the finishing phase: Colour
code of subroutine names: the MESSy entry points directly called by messy main control: red; MMD
library routines: blue; original INT2LM routines: orange. The dark blue and light blue boxes indicate
subroutine calls required for child-to-parent (1-way) and the parent-to-child coupling, respectively.
Arrows indicate the direction of the data exchange between child and parent.

Kerkweg et al.: MMD user manual 23

Table 1: LOGICAL switches determining the restart behaviour.
switch description (if .TRUE.)

lbreak interruption or stop of model simulation

lstop stop of model simulation

l rerun write restart files

l TRIGGER RESTART force model interruption

in the end the patriarch determines the timing of all instances. Consequently, the TIMER namelist of
the patriarch determines the time setup of all child instances. However, it is important to note, that
only the date and time are synchronised, but each model instance uses its own time step length.

4.2.1 Exchange of stop and restart triggers

To ensure the synchronisation of the models, information is exchanged during the integration phase of
the simulation, whether the simulation is to be interrupted. Such an exchange is necessary, as, apart
from the scheduled restart, exceptional simulation interruptions are triggered, e.g., by QTIMER, when
the available scheduler time is consumed. Table 1 lists the LOGICAL variables, which determine the
behaviour of the simulation.

For the synchronisation, an exchange of this information has to take place every parent model time step.
The timing of the data exchange is realised by an event. The so-called BREAK_EVENT is set up in the
child model triggering for each parent model time step the exchange of the required LOGICALs. If the
event is scheduled, the subroutine exchange_breakinfo is called. The parent model sends the contents
of its TIMER LOGICALs lbreak, l_rerun and lstop, via the MMD library routine MMD_Inter_Bcast.
As this subroutine is not overloaded for LOGICALs, these are transferred as INTEGERs: .TRUE. is 1
and .FALSE. is 0. lbreak indicates, if a simulation is going to be interrupted, lstop shows, if the
simulation will be stopped and l_rerun signals, if restart files shall be written at the end of the time
step.

The contents of the parent models lbreak and l_rerun switches are directly written to the respective
child model switches. There is only one case, which requires more thoughtful action: if the parent
lstop-switch is .TRUE., this indicates that the model simulation is going to be terminated. But in
most cases, the child model uses a shorter time step than the parent model. In this case, the child
models stop_date is not yet reached and the child model must not directly trigger a restart and
exit, but rather continue the simulation until the stop_date is reached. Thus, if the parent indicates
the end of the simulation, the variable lServstop is set .TRUE., indicating, that the parent model
terminates the simulation. If the child model itself does not yet indicate the end of the simulation
(i.e., lstop = .FALSE.), lbreak will be reset to .FALSE., to allow the child model to continue its
calculation until the stop_date is reached.

Additionally, if lbreak is .TRUE., l_rerun and L_TRIGGER_RESTART are set .TRUE.. Table 2 lists the
settings of the respective LOGICALs of the child model dependent on the status of the parent model.

4.3 Data exchange initialisation

Different types of data are exchanged between the parent and the child model and vice versa. While
each model requests the data required for the forcing of the same model, the child model determines

24 Kerkweg et al.: MMD user manual

Table 2: Setting of child model LOGICALs, which determine the restart behaviour. If the simulation is
being terminated (parent status “stop”) lbreak and l stop of the child model are usually set .FALSE..
Only if the parent and the child model use the same time step length, lbreak and l stop are also
.TRUE. for the child model.

parent status lbreak l rerun l stop

continue .FALSE. .FALSE. .FALSE.

write restart file, continue .FALSE. .TRUE. .FALSE.

restart .TRUE. .TRUE. .FALSE.

stop .FALSE. (.TRUE.) .TRUE. .FALSE. (.TRUE.)

the timing of the forcing. Note: the frequence of the data transfer of the parent-to-child coupling is
always equal to the frequence of the child-to-parent coupling.

• In contrast to the time settings of the instances, the timing of the data exchange during the cou-
pling process is completely controlled by the child instance, i.e., the child namelist &CPL_CHILD
determines the frequency of the data exchange for all exchanged data.

• Each model instance requests the data from its remote model, i.e.,

– the child model instances request data for their specific model domain from the parent
model. The child model namelists &CPL_CHILD_ECHAM or &CPL_CHILD_COSMO determine
which data fields are exchanged. These requests are processed by the parent model during
the initialisation phase.

– the parent model instances request the required data from their children according to the
&CPL_PAR_CHILD namelists (see Sect. 3.4). Note, that from each child model instance
different data fields can be requested. If the same target fields are named and the child
domains overlap, the child data is applied successively from each child model, giving the
last coupled child the highest weight in determining the new value of the target field. These
requests are processed by the child models during the initialisation phase.

• The child and the parent acquire POINTERs to the data fields required for the data exchange
and (in a child instance) for the interpolation.

• Additionally, the buffers for the data exchange are allocated within the MMD library.

4.4 The data exchange

During the time loop or the integration phase the exchange fields are made available by the parent
submodel MMD2WAY PARENT (subroutine MMD_P_FillBuffer). These fields are copied by the
child instance (subroutine MMD_C_GetBuffer) and interpolated according to the namelist settings.
Afterwards, the child instance interpolates the data requested by the parent instance to the parent
grid and sends these fields using the MMD library subroutine MMD_C_FillBuffer. Finally, these fields
are copied by the parent model using the MMD library subroutine MMD_P_GetBuffer.

4.5 Finalisation phase

At the end of the integration coupling specific memory is deallocated.

Kerkweg et al.: MMD user manual 25

5 Coupling of a child model instance to a parent model instance
(1-way, child-to-parent coupling)

In case of a regional model instance driven by a parent model instance, data exchange in the direction
from the parent to the child model is indispensible. Initial and boundary data for all prognostic
variables and initial data for additional fields are required. Therefore, this section is dedicated to
the 1-way data exchange between the parent and the child instance, as required for a simple 1-way
coupling. First, the program flow on the child side and afterwards on the parent side are discussed.

5.1 The child instance

For the child, the MMD2WAY submodel MMD2WAY CHILD provides everything required for the
coupling of the child model to the parent model. All information required during the coupling process
are contained within the variable CplData, which TYPE is a Fortran95 structure (T_C_COUPLE_DATA)
and which is allocated to the actual number of coupling fields.

TYPE PTR_4D_ARRAY

REAL(DP), DIMENSION(:,:,:,:), POINTER :: PTR => NULL()

END TYPE PTR_4D_ARRAY

TYPE CHAOBJ_NAMES

CHARACTER(LEN=STRLEN_CHANNEL) :: CHA = ’’ ! CHANNEL NAME

CHARACTER(LEN=STRLEN_OBJECT) :: OBJ = ’’ ! OBJECT NAME

END TYPE CHAOBJ_NAMES

TYPE T_C_COUPLE_DATA

! CHANNEL AND CHANNEL OBJECT NAMES IN PARENT AND CHILD

TYPE(CHAOBJ_NAMES) :: PARENT

TYPE(CHAOBJ_NAMES) :: CHILD

! ORDER OF AXES IN REPRESENTATION (’X’,’Y’,’Z’,’N’)

CHARACTER(LEN=4) :: AXIS= ’’

! DIMENSION LENGTH

INTEGER, DIMENSION(4) :: ldimlen=0

! INTERPOLATION METHOD (only valid for arrays not included in vartab)

! 1.CHAR ’Q’ quadratic; ’L’: linear; ’M’ match interpolation;

! ’C’ conservative remapping

!

! 2.CHAR if ’T’ positive definiteness is required

! 3.CHAR if ’T’ monotonicity is required

! 4.CHAR if ’V’ vertical interpolation is required

! if ’W’ vertical interpolation via NCREGRID is required (only

! possible with ’C’ horizontal interpolation and only for

! additional fields

CHARACTER(LEN=4) :: C_INTERPOL

! INPUT FIELD DELIVERED BY MMD

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_in => NULL()

! INTERMEDIATE FIELD OF INT2COSMO

26 Kerkweg et al.: MMD user manual

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_i2c => NULL()

! POINTER(S) TO COSMO/MESSy FIELD(S): DIMENSION == number of time levels

TYPE(PTR_4D_ARRAY), DIMENSION(:), POINTER :: cosmo => NULL()

! POINTER TO COSMO/MESSy BOUNDARY FIELDs:

! (DIMENSION IS ALWAYS TWO FOR THE TWO BOUNDARY LAYER TIME LEVELS)

TYPE(PTR_4D_ARRAY), POINTER, DIMENSION(:) :: cosmo_bd => NULL()

! RANK OF CHILD FIELD (WITHOUT TIME LEVEL DIMENSION)

INTEGER :: rank = 0

! INDICATOR, IF FIELD IS IN VARTAB

LOGICAL :: lvartab = .FALSE.

! NAME OF VARIABLE IN VARTAB

CHARACTER(LEN=10) :: vartab_name = ’’

! INDEX OF FIELD in var_lm

INTEGER :: vartab_idx = 0

! INITIAL FIELDS REQUIRED ?

LOGICAL :: L_INITIAL = .FALSE.

! BOUNDARY FIELDS REQUIRED ?

LOGICAL :: L_BOUND = .FALSE.

! INPUT FIELD REQUIRED ?

LOGICAL :: L_INPUT = .FALSE.

! NAME OF REPRESENTATION

CHARACTER(LEN=STRLEN_MEDIUM) :: C_REPR = ’’

! Number of parent field (requested for shortcut test)

INTEGER :: scn = -99

END TYPE T_C_COUPLE_DATA

TYPE (T_C_COUPLE_DATA), DIMENSION(:), ALLOCATABLE :: CplData

This structure contains

• the channel and channel object names of the exchange fields for the parent model
(TYPE(CHAOBJ_NAMES) :: PARENT) and

• the channel and channel object names for the child model (TYPE(OCHOBJ_NAMES) :: CHILD).

• information about the dimensions of the fields:

– The axis string (AXIS) indicates the order of the ’X’, ’Y’, ’Z’ and ’N’ direction, and

– ldimlen contains the length of these four dimensions13.

• C_INTERPOL is the flag specifying the interpolation method.

• The structure contains four POINTERs or POINTER ARRAYs for the access to the different data
fields during the interpolation procedure and to the target fields. Depending on the source
(exchange field or from external data) and the target field (i.e., boundary or initial and input

13These are properties already defined and provided by the CHANNEL submodel. See the CHANNEL manual available
in the electronic supplement of Jöckel et al. (2010) for further information.

Kerkweg et al.: MMD user manual 27

fields) not all four POINTERs or POINTER ARRAYs are used for all coupling fields14:

– The first POINTER (ptr_in) is used for the in-fields, i.e., the raw data sent from the parent
model.

– The second POINTER (ptr_i2c) is associated to the intermediate fields generated by the
horizontal (and vertical) interpolation within INT2COSMO.

– The POINTER ARRAY cosmo is associated with the target field in the COSMO/MESSy
model. For prognostic variables the dimension of the POINTER ARRAY is given by the
number of time levels. Each of the POINTERs in the POINTER ARRAY is associated to one
time level of the target field. For diagnostic variables the array dimension is always 1.

For instance, the prognostic field for the temperature in COSMO is dimensioned by the three
space dimensions and a time level dimension. Depending on whether a two or three time
level integration scheme is used, this fourth dimension is allocated to 2 or 3. All time levels
have to be made accessible in MMD2WAY CHILD for the respective target field. Thus the
POINTER ARRAY cosmo is also dimensioned according to the number of the time levels re-
quired by the integration scheme. This yields the POINTERs CplData(ii)%cosmo(nt)%ptr,
where nt is an index ranging from 1 to the number of time levels used in the COSMO model,
allowing to access the different time levels of the target field. Thus, nt is one of the time
level indices nnew, nnow and nold, respectively. In contrast, a diagnostic variable does not
depend on the integration scheme, thus one POINTER is sufficient to access a diagnostic
target field.

– If boundary data is required for a field, the POINTER ARRAY cosmo_bd is allocated to
a length of 2 according to the two time levels required for the boundary data in the
COSMO/MESSy model. Each of the POINTERs is associated to one level of the bound-
ary data array.

To actually perform the coupling, additional information is required:

• The rank of the field,

• the information, if a field is part of the variable table in INT2COSMO (LOGICAL lvartab), i.e.,
if the field is an INT2COSMO inherent field,

• the name in the variable table (vartab_name), if lvartab = .TRUE., and

• the index of the variable in the variable table of INT2COSMO (vartab_idx), if
lvartab = .TRUE.,

• the LOGICALs L_INITIAL, L_BOUND and L_INPUT indicating if initial, boundary or input data is
required, and

• the string C_REPR.

14Note: the different meaning of the different fields:

– exchange fields are those fields exchanged with the parent, they are not necessarily associated to a target field, as
they might also be required for the interpolation and not as input for the child model.

– coupling fields are all those fields contained in the variable CplData, i.e., either exchange fields or fields additionally
provided by INT2COSMO, e.g., calculated from the external data.

– target field can be an input or initial field, or the respective boundary field for prognostic variables.

The meaning of the individual fields is clarified within the remainder of the child description and in the glossary.

28 Kerkweg et al.: MMD user manual

The meaning of these variables was already illustrated in the section about the namelist (Sect. 3) and
will become clearer in the remainder of the child model description.

5.1.1 Initialisation Phase

The main entry point for submodel initialisation in MESSy is messy_initialize. In contrast to this,
MMD2WAY CHILD uses an even earlier entry point, i.e., messy_setup. This is necessary, as the
patriarch determines the date und time setup, of all instances in the cascade, which is performed very
early during the model setup. Thus a very early entry point for MMD2WAY was required. The second
entry point used from the MESSy infrastructure is messy_init_memory in which the INT2COSMO
setup is completed, all required data is allocated and the first coupling is performed.

5.1.1.1 mmd2way child setup:
This subroutine performs the basic setup of MMD2WAY CHILD and defines the date and time

setup of the child instance.

• Setting of model wide variables: At the beginning two LOGICALs need to be set, which
determine the information flow in the basemodel and the MESSy generic submodels:

– The LOGICAL variable L_IS_CHILD defined in messy_main_data_bi is set .TRUE.. It is
used in the COSMO model itself to switch off certain parts of the code dealing with the
import of initial and boundary data (in src_input.f90).

– lforcedtime is required for the synchronisation of the parent and child model instances.
Setting lforcedtime = .TRUE. prevents the calculation of the trigger of the RERUN event
l_rerun in timer_global_start. If l_rerun would be determined in the child instances
TIMER itself, the child model could finish unnoticed by the parent model and a dead lock
in MPI would occur resulting in a model hang up.

• Namelist input: Subsequently, the MMD2WAY CHILD namelists are read and the content is
written to the log-file.

– First, the &CTRL-namelist is read in subroutine mmd2way_child_read_nml_ctrl.

The &CTRL-namelist contains five entries. One switch, which forces the original output
of int2lm to be written (l_I2Cori_output) and the respective event (WRITEI2C_IOEVENT)
determining the frequency of this output. The additional three variables define whether
(l_forcevars) certain variables (forcevars) should be overwritten at the start of a new
model simulation. This is required, e.g., for a more comprehensive soil moisture initialisa-
tion. forcefile provides the path and the filename of the file containing the data required
for this procedure (see Sect. 3.1).

– Second, the &CPL_CHILD-namelist is read in subroutine mmd2way_child_read_nml_cpl.
This namelist defines the two IO_TIME_EVENTs CPL_IOEVENT and READEXT_IOEVENT

scheduling the coupling dates and the dates at which new external data should be read
(see Sect.3.2).

– Third, the parent model specific coupling namelist (&CPL_CHILD_ECHAM
or &CPL_CHILD_COSMO, see Sect. 3.3) is read in the subroutine
mmd2way_child_read_nml_cpl_serv. Whether the ECHAM5/MESSy or the
COSMO/MESSy specific namelist is read, is determined with the help of the MMD
library function MMD_C_GetParentType (located in mmd_child.f90).

Kerkweg et al.: MMD user manual 29

As reading and printing is performed by one task only, the namelist content is broadcasted to
all tasks afterwards.

• Initialisation of MMD library: In addition to the child submodel setup, the child model part
of the MMD library has to be initialised. This is done by the MMD library routine MMD_C_Init.
Within this subroutine the C-language group communicators are determined and the number of
PEs covered by the parent model is retrieved. Variables of the MMD library internal information
structure (named “Me”), of which the dimensions depend on the number of parent PEs are
allocated within MMD_C_Init15.

• Adjustment to parent time setting: To get a meaningful simulation, the time and date
setups of the coupled instances need to be synchronised. To achieve this, two important infor-
mations are exchanged between the child and the parent in the subroutine get_ParentTiming:

1.) The coupling interval determined in the child namelist CPL_CHILD is sent to the parent
model:
In the subroutine get_ParentTiming first the time interval of the coupling event
CPL_IOEVENT is converted into seconds, as this is the unambiguous unit to exchange be-
tween the two models. The number of seconds equivalent to the coupling interval is sent
to the parent, which accordingly defines a coupling event. If the coupling interval is not a
multiple of the parent model time step length the simulation is terminated.

2.) The parent model sends the complete date and time settings to the child model in order to
initialise the date and time of the child basemodel:
The current_date, the resume_date, the start_date and the stop_date are sent from
the parent to the child. The child re-initialises its date settings according to the parent
dates. However, the following has to be taken into account:

∗ If the child simulation is starting (lstart=.TRUE.), the child’s start_date is set to
the resume_date of the parent model. This is done, as it is possible, that the parent
performs a restart, while the child is started for the first time. Note that, if lstart is
also .TRUE. for the parent, the resume_date and the start_date are equal anyway.
The current_date of the parent is copied to the current_date of the child.

∗ If the child simulation is continued (lresume=.TRUE.), the current_date is not set at
all, as it is set by the TIMER later on anyway. More important, the child’s resume_date
is not identical to the parent model resume_date. It needs to be calculated from the
parent model’s resume_date. This is necessary, as the restart files for child and parent
are usually not output at the same time: They both stop after l_rerun was set .TRUE.,
thus the child’s resume_date is behind the parent’s resume_date by the difference of
the parent and the child time step lengths. Based on this, the child’s resume_date is
calculated from the time step lengths of the two instances and the parent’sresume_date.

The child’s stop_date is always a copy of the parent’s stop_date. Additionally, the
COSMO variables hstop and nstop are calculated.

The COSMO/MESSy date and time settings and counters are re-initialised within the
subroutine messy_timer_COSMO_reinit_time provided by messy_main_timer_bi.

Additionally to the dates and times, the time step length of the parent is sent to the child.
This is important as the parent time step sets the interval for the check-pointing. From
this information the so-called BREAK_IOEVENT is defined.

15The MMD library routines are described in detail in the MMD library manual, which is part of the same electronic
supplement as the MMD user manual.

30 Kerkweg et al.: MMD user manual

Last but not least, the TIMER-Manager needs to be initialised in case of a new simulation
(lstart = .TRUE.) at this point, directly after the date and time setting.

5.1.1.2 mmd2way child init memory
The second part of the initialisation takes place in mmd2way_child_init_memory, as the memory

allocation and field definitions are to be conducted here.

• Initialision of events: Due to technical reasons, the events themselves can not be initialised
before the MESSy entry point messy_init_memory. Thus first of all, the four TIMER events

(i) for the coupling (CPL_EVENT),

(ii) for reading the external data (READEXT_EVENT),

(iii) for the output interval of INT2LM original output (WRITEI2C_EVENT) and

(iv) for the check-pointing (BREAK_EVENT)

are initialised. The BREAK_EVENT is used to encounter every parent time step, whether the
simulation is interrupted at the end of the time step. This is inevitably necessary to ensure
that the parent and the child are interrupted at the same time. Otherwise, if the check-pointing
information would not be exchanged each parent time step, one instance hangs up in MPI
communication, because the other instance was interrupted and does not answer the MPI calls
anymore. This implies that the parent time step length needs to be a multiple of the child time
step length.

• Namelist interpretation: After these preparations, the contents of the MMD2WAY CHILD
namelist are interpreted. The subroutine interpret_namelist serves two purposes:

– The wildcards in the child channel object names are analysed and translated into individual
exchange fields.

For the tracer channel tracer_gp two exceptions are made from the general application of
the wildcards:

∗ The tracers defined by the COSMO model itself (i.e., the humidity / water variables),
are not requested from the parent model and have to be listed individually;

∗ If ECHAM is the parent model, the liquid and ice tracers (usually defined by SCAV)
are automatically omitted.

– The namelist settings for the mandatory fields are cross-checked with the COSMO variables
yvarini and yvarbd:
The LOGICALs L_INITIAL and L_BOUND are set .TRUE., if the field is required by the
COSMO model. Furthermore, fields listed in yvarini or yvarbd, but not in the coupling
namelist, are added to the variable CplData. These are data fields, which are calculated by
INT2COSMO, but do not require direct input from the parent. Examples are the external
parameters root depth, leaf area index or orography. Note: mandatory fields requiring
an input field from the parent model, have to be listed in the namelist. Otherwise the
information about the channel and channel object names in the parent model are missing.

The settings for the INT2COSMO inherent fields can partly be overwritten by the namelist
settings in CPL_CHILD_XXX. Later on in the subroutine mmd2way_child_set_CplData the in-
terpolation flags set in the vartab of INT2COSMO are overwritten, if interpolation flags are

Kerkweg et al.: MMD user manual 31

given in the CPL_CHILD_XXX. In this way, the INT2COSMO inherent fields can also be horizon-
tally remapped by conservative remapping using SCRIP (flag ’C’) or vertically transformed by
NREGRID (flag ’W’).

CplData contains data of different sources. The first part of CplData stems from the namelist
and lists the exchange fields, i.e., fields that are provided by the parent. During the namelist
interpretation other fields are added to CplData. These fields are calculated by INT2COSMO and
are required by the COSMO model. Both types of fields are summarised by the term coupling
fields. Therefore, two important numbers characterising CplData are determined during this
analysis:

– NEXCH is the number of fields that need to be exchanged with the parent.

– NCOPY is the dimension of the variable CplData containing all coupling fields, i.e., the
exchange fields and the ones determined from external data and copied from INT2LM to
the basemodel variables.

Additionally, the subroutine interpret_namelist checks for the interpolation methods required.
If conservative remapping using SCRIP or vertical transformation via NREGRID is required,
the LOGICAL l_i2cscrip is set .TRUE.. This variable is used later on, to determine, if the
calculation of the weights for the conservative remapping is necessary.

At the end of the subroutine interpret_namelist the final list of all CplData fields is output
to the log-file.

• Definition of the test field: The MMD library includes the possibility to test the hor-
izontal grid exchange. Therefore a channel object for the test_array (channel name =
’mmd2way_child’, channel object name = ’Test_Ar’) is created.

• Exchange of field information with parent instance: The information set in the namelist
relevant for the MMD library and the parent, i.e., the channel and channel object names and
the representation of the respective exchange field, are forwarded to the MMD library using the
MMD library subroutine MMD_C_Set_DataArray_Name. The subroutine is called for each of the
exchange fields. Within the library, the MMD internal information structure on child and parent
side are set up within this subroutine and its counterpart (MMD_P_Get_DataArray_Name) of the
parent. The end of the list is indicated by the presence of the optional parameter LastEntry

which must be set .TRUE. to end the list.

• exchange grids: The parent automatically determines the segment of the parent domain re-
quired for the interpolation in INT2COSMO using the geographical information about the child
domain. This is provided by the child within the subroutine exchange_grids. The local fields
rlon and rlat containing the geographical coordinates of the grid points are gathered, yielding
one non-decomposed field and sent to the parent. In addition, the number of exchange fields
is sent to the parent. From the geographical information the parent calculates the size of the
domain, which is required to interpolate the initial and boundary fields. The grid definition
for the in-coming data fields is afterwards sent back from the parent to the child. The child
uses this information to define the in-grid and consequently determines the dimensions / the
representation of the in-fields (ptr_in). The grid definition received from the parent replaces
the &grid_in namelist of INT2LM in case of the on-line coupling. Consequently, the following
(INT2COSMO) parameters are defined by the parent and sent to the child:

– PARAMETERs describing the (rotated) parent grid and the type of the soil water content
and soil temperature:

32 Kerkweg et al.: MMD user manual

startlat_tot, startlon_tot, endlat_tot, endlon_tot, pollat, pollon, dlat, dlon,
ie_coarse, je_coarse, ke_coarse, ke_soil_coarse, itype_w_so_rel, itype_t_cl16.

– If the parent is a COSMO/MESSy model (llm2lm = .TRUE.), additionally the information
about the vertical coordinate system and the reference atmosphere of the parent COSMO
model setup are required: vcflat, p0sl, t0sl, dt0lp, delta_t, h_scal, svc1, svc2,
ivctype, irefatm.

– The vertical coordinates (vct for ECHAM5/MESSy as parent and vcoord_in%sigm_coord

or vcoord_in%vert_coord, if COSMO/MESSy is parent) and the depth of the soil layers
(czmls_in) are exchanged.

– Next, the child receives two fields containing the latitude and longitude information for the
in-fields (latitude_in and longitude_in).

– Finally, if ECHAM5/MESSy is the parent, the hybrid coefficients for the interface levels
ak_in and bk_in are set using the vertical coordinate variable vct, which has already been
sent by the parent. Subsequently, the hybrid coordinates for the full levels (akh_in and
bkh_in) and the differences of the interface level hybrid coordinates (dak_in and dbk_in)
are calculated. If COSMO/MESSy is the parent, all four coefficients are calculated by the
subroutine calc_hybrid_coeff.

• mmd2way child setup int2cosmo:
This subroutine performs the setup of INT2COSMO:

– At the beginning some switches originally determined in the INT2LM &CONTRL namelist
are defined:

∗ The LOGICALs indicating the driving model (lgme2lm, lec2lm, lhm2lm, lcm2lm and
llm2lm) are set to .FALSE.; if ECHAM5/MESSy is parent lcm2lm is .TRUE.; if a
COSMO/MESSy model is parent llm2lm is .TRUE..

∗ The LOGICAL ARRAYs lushift_in and lvshift_in indicating if and which
type of a staggered grid is used for the horizontal wind components are
set: For ECHAM5/MESSy as parent all entries are .FALSE., for the
COSMO/MESSy model as parent it is: lushift_in = (.TRUE. , .FALSE.) and
lvshift_in = (.FALSE., .TRUE.). Additionally, the switches lcm_hgt_coor and
lcm_pres_coor are set .FALSE. in both cases.

– The INT2COSMO LOGICAL variable linitial is set .TRUE. for the first time step of a new
or restarted simulation, as only for this time step initial data need to be calculated, which
is indicated by linitial in INT2LM. lcomp_bound is another INT2LM switch, indicating
that boundary data need to be calculated. It is .TRUE. except for the first time step.

– Based on the in-grid definition and the longitudes and latitudes of the in-fields as received in
the subroutine exchange_grids, the staggered longitudes and latitudes (slongitude_in /
slatitude_in) are calculated. As ECHAM5 does not use a staggered grid, slatitude_in
and slongitude_in are set to latitude_in and longitude_in.

– Subsequently, the original INT2LM subroutine setup_int2lm is called. The same code
is processed, apart from the initialisation and decomposition of the grid and the initial-
isation of many namelist parameters, which are determined directly by the setup of the
COSMO/MESSy model during the on-line coupling initialisation. The changes made to

16For further details about the namelist parameters see the INT2LM documentation: http://www.cosmo-
model.org/content/model/documentation/core/cosmoInt2lm.pdf: last access: 11.10.2016

Kerkweg et al.: MMD user manual 33

the original INT2LM code in order to implement it as MESSy sub-submodel (i.e., directly
coupled to COSMO/MESSy) are described in Sect. 7.

– In setup_int2lm the INT2COSMO namelists are read, thus the INT2COSMO LOGICAL

switch lbd_frame_cur is set according to the namelist parameter lbd_frame after process-
ing setup_int2lm.

– Finally, as the local dimensions of the parallel decomposed in-fields have been calculated
in setup_int2lm, the MMD test_array can be allocated by the MMD library subroutine
MMD_testC_Setup with the corresponding dimensions.

At this point the initialisation of INT2COSMO is complete.

• CALC lonlat lm
This subroutine calculates the (geographical and rotated) longitude and latitude fields in grid
mid points and interfaces for the INT2LM specific grid (which is larger by one grid box in each
direction compared to the COSMO grid):

– rotated longitude / latitude field on grid mid points (lon_lm, lat_lm)

– geographical longitude / latitude field on grid mid points (geolon_lm, geolat_lm)

– rotated longitude / latitude field on grid interfaces (loni_lm, lati_lm)

– geographical longitude / latitude field on grid interfaces (geoloni_lm, geolati_lm)

• CALC forward weights
For MMD v2.0 the conservative remapping via SCRIP for additional fields and INT2COSMO
inherent fields as well as the vertical interpolation via NREGRID (both by calling the generic
MESSy submodel GRID TRAFO) have been implemented. If conservative remapping is
required, MMD2WAY CHILD needs to calculate the remapping weights. The subroutine
calc_forward_weights performs this calculation by,

– firstly, defining the in-grid and the INT2LM intermediate grid as geo-hybrid grids (see
Manual of GRID),

– secondly, converting the geo-hybrid grids to the data format required by SCRIP by calling
CALC_SCRIPDATA, and

– thirdly, calculating the weights by calling the subroutine CALC_SCRIP_WEIGHTS.

The conservative remapping is invoked by placing ’C’ as interpolation method in the namelist.

• Setup data exchange with Parent: One of the crucial points of the efficient field exchange
by MMD is the index list, which directly associates for each child model PE the grid points of
the parallel decomposed in-field with the grid points and PE of the parallel decomposed parent
grid. The index list consists of six entries for each grid point of the local child model in-grid17:

1.) the first horizontal index of the grid point in the local grid of the parent PEp (ip)

2.) the second horizontal index of the grid point in the local grid of PEp (jp),

3.) the first horizontal index (ic) in the local child model in-grid,

4.) the second horizontal index (jc) in the local child model in-grid,

5.) the process entity (PEc) on which the local child grid point is located,

17i.e., the index list consists of 6 entries per number of coupled grid points: index list(6,number of grid points)

34 Kerkweg et al.: MMD user manual

6.) the parent PE (PEp) on which the respective grid point is located18.

This grid association is performed by the parent instance. Thus the child has to send its grid
definition and decomposition to the parent:

– On each child PE the longitudes and latitudes of the in-fields latitude_in and
longitude_in are written to the local fields my_lon and my_lat.

– These fields are gathered on one PE in the 3D fields (all_lon(nx,ny,nPE) and
all_lat(nx,ny,nPE)) with nx, ny number of grid points in x and y direction and nPE

number of child PEs.

– Finally, the 3D fields are sent to the parent model for further calculations.

Due to their structure, the fields inherently contain the information required to set up the index
list. The third index gives the number of the child model PE and the first and second index are
equal to the indices in the local grid of the respective child model PE, where the point of the
given geographical coordinates is located.

After receiving this list, the parent model associates the (local) source points for each local child
grid point to its own parallel decomposed grid and sends back the list containing the sextuples
associating the child and the parent model grid points with each other. This list is received and
analysed by the child part of the MMD library within the subroutine MMD_C_Get_Indexlist,
which is called at the end of this subroutine (compare Fig. 8).

• mmd2way child set CplData:
So far, only those parts of the variable CplData have been initialised, which are set by the

namelist. In the subroutine mmd2way_child_set_CplData the POINTERs and POINTER AR-

RAYs to the data fields are associated or allocated. Three different types of coupling fields are
distinguished:

A) fields, which require an in-field from the parent, which is remapped and afterwards copied
to the initial, boundary or input field;

B) fields exchanged with the parent, which have no direct target variable: one example is the
surface geopotential, which is required for the remapping itself, but has no corresponding
target field in the COSMO/MESSy model. This is indicated by setting the corresponding
child channel name to ’#XXX’ (see FIELD(10) in the &CPL_CHILD_ECHAM namelist in Fig.
4);

C) fields, which result from the INT2COSMO interpolation/preprocessing routines but have
no corresponding in-field. For instance, all external data fields as orography, leaf area index
and so on. These fields are located at the end of the CplData variable (indices NEXCH+1 to
NCOPY).

The subroutine contains one loop over all entries of CplData. The individual entries are indicated
by the loop index ii in the following. The loop is split into five logical units:

1. association / allocation of the CplData(ii)%cosmo POINTER ARRAY;

2. association / allocation of the CplData(ii)%cosmo_bd POINTER ARRAY;

3. inquiry, if the coupling field is an INT2COSMO inherent field. If ’yes’,

18A more detailed example is provided in the MMD library manual, which is part of the same electronic supplement
as this manual.

Kerkweg et al.: MMD user manual 35

– the structure component CplData(ii)%lvartab is set .TRUE.,

– the CplData(ii)%vartab_name is set, and

– the index of the variable in the INT2COSMO variable table
(CplData(ii)%vartab_idx) is set.

4. association / allocation of the intermediate fields (CplData(ii)%ptr_i2c);

5. association / allocation of the in-fields (CplData(ii)%ptr_in).

At the beginning of the loop, the POINTERs CplData(ii)%ptr_i2c and CplData(ii)%ptr_in

are NULLIF(Y)ied and the structure components CplData(ii)%rank, CplData(ii)%lvartab,
CplData(ii)%vartab_name and CplData(ii)%vartab_idx are initialised by the default values
0, .FALSE., ’’ and 0, respectively. In the following the allocation or determination of each of
the above listed CplData entries is described in detail:

1. determine CplData(ii)%cosmo:
This part is skipped for entries with child model channel name ’#XXX’ as this indicates
that the exchange field is only required in INT2COSMO.

For the determination of the memory for the COSMO/MESSy target field
(CplData(ii)%cosmo) basically two times two different cases (in all combinations except
for B2A2) have to be taken into account:

A) The fields can either be

A1) diagnostic or

A2) prognostic,

which require different memory allocation procedures.

B) The fields are

B1) either already allocated by another MESSy submodel or the basemodel , or

B2) required to be allocated within the MMD2WAY CHILD submodel itself.

Figure 10 comprises a flow chart showing the basic procedure for the association of the
CplData(ii)%cosmo POINTER ARRAY

Regarding A) The nature of the respective variable (diagnostic or prognostic) determines the dimen-
sion of the POINTER ARRAY CplData(ii)%cosmo:

A1) For a diagnostic variable the dimension is 1, as only one target field exists.

A2) For the prognostic variables the dimension equals the number of time levels of the
time integration scheme used. For instance, for the leap frog scheme the dimension
is 3, whereas for a two-time level scheme (e.g., Runge-Kutta) it is 2. This is due to
two reasons:

· For an integration scheme with more than 2 time levels, more than 1 time level
needs to be initialised by MMD2WAY CHILD.

· In the COSMO model prognostic variables are allocated with an extra rank for
the time level. For the sake of computational efficiency, the indices indicating
the different time levels (nnew, nnew and nold) are shifted instead of copying
the newly integrated value to the old field at the beginning of each time step.
Thus, it is not a priori known which time level (index in the prognostic field) is
required at a specific point in time. Hence, all time levels must be available for
the coupling.

36 Kerkweg et al.: MMD user manual

Does the
channel object exist?

C_REPR == '#UNKNOWN' ?

MMD_C_get_Reprget_representation_info

deduce/make
representation (ID)

new_channel_object

time dependent ?
 (prognostic / diagnostic)

allocate (CPLDATA(ii)%cosmo(1))

get_channel_object

allocate (CPLDATA(ii)%cosmo(nt))

get_channel_object

CONTINUE ...

NO (B2)

NO YES

YES (B1)

NO (A1) YES (A2)

1, ..nt

TRACER ?

get_tracer

allocate (CPLDATA(ii)%cosmo(2))

CPLDATA(ii)cosmo(1)%ptr => xt
CPLDATA(ii)%cosmo(2)%ptr=>xtm1

Figure 10: Flow-chart illustrating the association of the CplData(ii)%cosmo POINTER ARRAY. The
labels in brackets (A1, A2, B1 and B2) refer to the respective cases listed in the text. The yel-
low boxes point to those subroutine calls in which the individual POINTERs of the POINTER ARRAY

CplData(ii)%cosmo are finaly associated.

Each of the POINTERs of the POINTER ARRAY CplData(ii)%cosmo

(CplData(ii)%cosmo(nt)%ptr, with nt being the index for a time levels) is
associated to one time level of the prognostic variable. Thus, the correct time level
can be addressed by the indices (nnew and nnow) usually used in the COSMO
model to access the correct time levels.

Regarding B) The child model channel name includes the information, if MMD2WAY CHILD needs
to allocate the required memory itself (’mmd2way_child’ as child channel name in
the namelist), or if the target field is already allocated by other COSMO/MESSy sub-
models or the basemodel (all other cases). In the latter case the POINTERs of the
CplData(ii)%cosmo POINTER ARRAY are associated to the already existing memory:

B1) The required channel object exists already:
First, the nature of the channel object is inquired by looking for the chan-
nel object attribute number_of_timelevels using the CHANNEL subroutine
get_attribute.

A1) If the attribute does not exist, the variable is of diagnostic nature and the
POINTER ARRAY CplData(ii)%cosmo is allocated to the dimension 1 (as only
one POINTER is required for a diagnostic variable).
Afterwards, CplData(ii)%cosmo(1)%ptr is associated to the respective memory
by calling the CHANNEL subroutine get_channel_object19.
Then, the rank (CplData(ii)%rank) of the field is acquired by calling the
MMD2WAY CHILD subroutine get_rank. In the subroutine get_rank, first,
the channel object representation ID is determined by calling the CHANNEL
subroutine get_channel_object_info with the input parameters channel and

19See the CHANNEL manual, which is part of the electronic supplement of Jöckel et al., 2010.

Kerkweg et al.: MMD user manual 37

channel object name. Second, with the representation ID, the rank of a channel
object with this representation is found out by calling get_representation_info

with the representation ID as input and the CplData(ii)%rank as output pa-
rameter.

A2) If the attribute exists, the channel object is of prognostic nature and
CplData(ii)%cosmo is allocated to the number of time levels as denoted by
the attribute (timelev is the return value of the subroutine get_attribute

containing the number of required time levels). Afterwards, a loop over the
number of time levels is executed associating for each time level one POINTER

of the POINTER ARRAY to one time level of the target field using the subrou-
tine get_channel_object. Note: for all prognostic variables individual channel
objects for the single time levels must exist. Finally, the CplData(ii)%rank is
determined as in the diagnostic case.

XT) A special case exists for tracers:
In contrast to the prognostic COSMO variables, the tracer structure provides
individual variables for all time levels20, such that the index rotation instead of
the copying of one time level to the other at the end of one time step is not
possible for the tracers. Consequently, tracers must be treated differently:

(a) First, the tracer index idt is inquired by the TRACER subroutine
get_tracer.

(b) Next, CplData(ii)%cosmo is always allocated to 2 and the first POINTER of
the POINTER ARRAY always points to the current tracer field xt of that specific
tracer. The target of the second POINTER depends on the integration scheme.
For a 2 time level scheme it points to xtm1 and for a 3 level scheme to xtf.

(c) The rank of a tracer is always 3, thus CplData(ii)%rank is set to 3 for tracers
and

(d) the flag in the TRACER meta-structure indicating that a tracer is already ini-
tialised (ti_gp(idt)%tp%meta%cask_i(I_MMD_INIT)) is set to ON at simula-
tion start (lstart = .TRUE.), otherwise the tracer field would be overwritten
by subsequent tracer initialisation routines.

B2) MMD2WAY CHILD needs to allocate the memory itself, as no other submodel
provides the memory for the exchange field. This field is calculated from an in-
field provided by the parent model and supplied to other MESSy submodels (e.g.
emission fields could be down-scaled from the coarse grid instead of being directly
read in by IMPORT GRID).
If the representation is named in the MMD2WAY CHILD namelist
(&CPL_CHILD_ECHAM or &CPL_CHILD_COSMO) and stored in the structure component
CplData(ii)%C_REPR, this is an easy task. The representation ID repr_input

and the corresponding rank are inquired calling the CHANNEL subroutine
get_representation_info. Knowing the representation ID, the new channel
object can be defined calling the CHANNEL subroutine new_channel_object.
But the representation is not always a priori known. This is indicated in the
MMD2WAY CHILD namelist by setting the representation string to ’#UNKNOWN’.
A classical example are emission fields provided as multi-level emissions. They
are in the Nx2D-format (see Kerkweg et al., 2006), i.e., N levels attributed to dif-
ferent emission heights containing each 2D emission information. If the number

20Detailed information about the TRACER submodel are provided by Jöckel et al. (2008).

38 Kerkweg et al.: MMD user manual

of levels is not a priori known by the child model, the parent model provides
additional information about the representation, when the representation string
(CplData(ii)%C_REPR) is set to ’#UNKNOWN’. MMD2WAY CHILD acquires this
information by calling the MMD library subroutine MMD_C_Get_Repr which pro-
vides the representation name (par_repr), the axis string (par_axis), the global
dimensions (par_gdimlen) and the height attribute (par_att) of the exchange field
in the parent model. Based on this, MMD2WAY CHILD determines its own rep-
resentation:

i) If the representation name is one of ’GP_3D_MID’, ’GP_3D_INT’ or
’GP_2D_HORIZONTAL’ using the same representation names in the child model
automatically leads to the correct result, as these are standard representations.

ii) In case of the representation ’GP_3D_1LEV’ the representation is converted to
’GP_2D_HORIZONTAL’.

iii) In all other cases MMD2WAY CHILD has to define a new representation:

For the definition of a new representation the dimensions need to be defined first:
This is done by looping over the 4 CHARACTERS of the axis string par_axis.
Simultaneously,

- the rank of the array,

- the local dimension length dim_len and

- the axis string dim_axis

of the child array are determined. For instance, if the il’s component of par_axis
is ’X’, the rank is increased by one, dim_ids(il) is set to DIMID_LON, which is
the dimension ID for the longitude of the child model and dim_len(il) is set to
ie, which is the local dimension length for the COSMO arrays.

· The horizontal dimensions of the fields are different between the parent and the
child, but are implicitly given by the definition of the COSMO grid. Thus for
the ’X’ and ’Y’ dimension the sizes are known and the COSMO definitions can
be used.

· This is different for the ’Z’ and ’N’ dimensions, which can basically adopt every
arbitrary value, but these dimensions have to be the same in the parent and the
child. Thus new dimensions are defined for the ’Z’ and ’N’ dimensions, using
the dimensions provided by the server model (par_gdimlen). The newly defined
dimensions are named in a generic way:

(a) For the vertical dimension they start with ’DIM_’ followed by a string con-
taining the number of z-levels, and ending with ’LEV’. For instance, when the
number of z-levels is 5 this yields the name ’DIM_5LEV’. Before actually defin-
ing the dimension, it is tested if this dimension exists already. In this case, the
existing dimension ID is taken. This test prevents repeated definition of the
same dimension.

(b) For the number (’N’) dimension the same procedure takes place, only the
name of the dimension variable ends with ’N’ instead of ’LEV’.

After the loop over the axis string, the rank, the local axis string and the local
dimension lengths have been determined. This allows for the definition of the
representation:

· If rank is 2 and the ’Z’ and ’N’ dimension lengths are zero, the representation
is equal to the standard representation GP_2D_HORIZONTAL.

Kerkweg et al.: MMD user manual 39

· If the rank is larger than 2 and smaller or equal to 4, a new representation needs
to be defined,

· in all other cases the representation cannot be properly evaluated and the simula-
tion is terminated with the error message ’CANNOT IDENTIFY REPRESENTATION’.

The ECHAM5/MESSy model uses another order of dimensions as the
COSMO/MESSy model. Therefore the axis string characters, the dimension IDs
and the dimension lengths must be permutated, if ECHAM5/MESSy is server. For
instance, dim_axis = ’XZNY’ becomes dim_axis = ’XYNZ’ and the dim_len has
to be changed accordingly.
The new representations are constructed by the subroutine
make_cosmo_representation. Input to this subroutine are

· the lengths of the ’Z’ and ’N’ dimensions (these are zero if the corresponding
dimension is not required),

· the dimension IDs (dim_ids),

· the axis string (dim_axis), and

· the dimension lengths (dim_len).

Output of the subroutine is the representation ID of the newly created representa-
tion. Based on the incoming parameters, the respective representation is created.
The names of the representations are as generic as the dimension names. If ’Z’ and
’N’ dimensions are required, the representation is named ’REPR_4D_zzLEV_nnN’

where ’zz’ stands for the number of z-levels and ’nn’ for the number of n-
levels. The representation names for ’Z’-dimension only or ’N’-dimension only are
’REPR_3D_zzLEV’ or ’REPR_3D_nnN’, respectively. Using the CHANNEL subrou-
tine get_representation_info, it is inquired, if the representation exists already.
In this case the return variable reprid is set to the ID of the matching representa-
tion, otherwise, the representation needs to be created via the channel subroutine
new_representation. In both cases the representation ID is handed back to the
calling subroutine. After the representation is identified or newly created, the new
channel object of the ’mmd2way_child’ channel can be created as described above
for the case when the representation is known a priori. Additionally, a new attribute
to the channel object will be set, if it was sent from the parent model(par_att).
This is required in case of Nx2D emission fields, as the layer heights have to be
known in addition to the amount given by the field itself.

2. Determine CplData(ii)%cosmo bd:
As for CplData(ii)%cosmo, this part is skipped, if the child model channel name is ’#XXX’.
If L_BOUND is .TRUE., boundary data for the specific coupling field is required. In this case
CplData(ii)%cosmo_bd is allocated to 2, as the boundary fields always consist of two time
levels. In the standard COSMO model, these contain the fields at the beginning and the end
of the time interval for which the boundary data is valid. During this interval the boundary
data is linearly interpolated according to the elapsed time. In the on-line coupled setup
the two time levels for the boundary data are filled with the same values. Otherwise the
parent model needs to be run ahead by one boundary data time interval, which renders a 2-
way nesting impossible. As the on-line coupling enables and requires much higher coupling
frequencies, the error of this procedure is small.

Although the levels are filled with the same values and the linear interpolation in time is
not required anymore, the procedure is kept in order to leave untouched as much code as
possible of the COSMO model.

40 Kerkweg et al.: MMD user manual

For a boundary field, the 4D-POINTER to the full boundary data field is acquired with
the subroutine get_channel_object. Afterwards, the POINTERs of the POINTER ARRAY

CplData(ii)%cosmo_bd(1:2)%ptr are set dependent on the rank of the data field. For
instance,

IF ((CplData(ii)%rank == 3 .AND. &

(TRIM(CplData(ii)%CHILD%CHA) /= ’tracer_gp’)) THEN

CALL get_channel_object(status &

, TRIM(CplData(ii)%CHILD%CHA) &

, TRIM(CplData(ii)%CHILD%OBJ)//’_BD’ &

, p4=bdptr)

...

CplData(ii)%cosmo_bd(1)%ptr =>bdptr (:,:,:,1:1)

CplData(ii)%cosmo_bd(2)%ptr =>bdptr (:,:,:,2:2)

NULLIFY(bdptr)

For a rank=3 field the boundary field has 4 dimensions. Thus, the first boundary POINTER

is set to the first boundary time level and the second to the second one. Note: this proce-
dure does not work for 4D data fields, for which boundary fields would be 5-dimensional.
However, a coupling to the individual boundary time levels would still be possible (and
easily implementable), if required. So far such fields are not part of the model system apart
from tracers.

Tracers are again processed differently. The two time levels of the boundary data are
channel objects of the two TRACER CHANNELS tracer_gp_x001 and tracer_gp_x002.
Thus, the POINTERs to the boundary data can be associated directly by

CALL get_channel_object(status &

, TRIM(CplData(ii)%CHILD%CHA)//’_x001’ &

, TRIM(CplData(ii)%CHILD%OBJ) &

, p4=CplData(ii)%cosmo_bd(1)%ptr)

and

CALL get_channel_object(status &

, TRIM(CplData(ii)%CHILD%CHA)//’_x002’ &

, TRIM(CplData(ii)%CHILD%OBJ) &

, p4=CplData(ii)%cosmo_bd(2)%ptr)

3. Determine CplData(ii)%lvartab, CplData(ii)%vartab name and Cpl-
Data(ii)%vartab idx:
Some data manipulations require a distinction between INT2COSMO inherent fields
and additional fields. All INT2COSMO inherent fields are listed in the variable table
structure (var_lm) in INT2COSMO. This table determines -among other things- the
intermediate and the in-fields, as well as the interpolation method. CplData(ii)%lvartab,
CplData(ii)%vartab_name and CplData(ii)%vartab_idx are set in a loop over the
variable table of INT2COSMO:

– The structure component CplData(ii)%lvartab is .TRUE., if the variable is element
of the INT2COSMO variable table.

Kerkweg et al.: MMD user manual 41

– Additionally, the name of the field in the variable table is stored in the structure
component CplData(ii)%vartab_name. This is useful especially for one variable, the
roughness length, as only for this the names (and the meaning) of the variables are
different in INT2COSMO and in COSMO. In INT2COSMO the roughness length is
called ’Z0’ whereas the COSMO model treats the product of roughness length times
gravitational acceleration named ’gZ0’. These two need to be associated with each
other.

– Finally, the location, i.e., the index, of the field in the INT2COSMO variable table is
stored in the structure component CplData(ii)%vartab_idx.

4./5. Determine CplData(ii)%ptr in and CplData(ii)%ptr i2c:
The information, if a coupling field is part of INT2COSMO, is required for the association
of the POINTERs CplData(ii)%ptr_in and CplData(ii)%ptr_i2c. If the field is part
of the variable table, the memory for the in-field and the intermediate field have been
already allocated in INT2COSMO. Otherwise the memory for these fields is allocated in
MMD2WAY CHILD itself.

a) The memory for the intermediate and in-fields exists already:

∗ The POINTER CplData(ii)%ptr_in can be directly associated calling the subrou-
tine get_channel_object. For this call the object name is constructed by adding
the suffix _IN to the target field name and the name of the channel is ’MMDC4_IN’21.
When no object is found the simulation will be terminated.

∗ After the POINTER CplData(ii)%ptr_in is associated, the representation ID of
this object is obtained by calling get_channel_object_info.

∗ This ID is used to acquire the axis string (CplData(ii)%AXIS) and the local dimen-
sions (CplData(ii)%ldimlen). This information is required by the MMD library
for the data exchange.

∗ Afterwards, CplData(ii)%rank is determined dependent on the third dimension of
ptr_in to be 2 or 3.

∗ Additionally, the INT2COSMO field is marked as read
(var_in(itab)%lreadin = .TRUE.).

∗ The POINTER CplData(ii)%ptr_i2c to the intermediate field required in
INT2COSMO is set by the subroutine get_channel_object by using
CplData(ii)%vartab_name as channel object name and ’MMDC4’ as channel name.

b) The memory for the intermediate and in-fields needs to be allocated (additional fields
only):
The representation of the intermediate and in-fields is not a priori known. They are
determined depending on the rank of the field.

∗ For CplData(ii)%rank = 2 the in-field and the intermediate field are defined using
the existing representation IDs REPR_I2C_2D_IN and REPR_I2C_2D, for a 2D in-field
and a 2D intermediate field, respectively.

∗ If CplData(ii)%rank is 3 and CplData(ii)%C_REPR is ’GP_3D_MID’, the prior
defined representation IDs ’REPR_3D_MID_IN’ and ’REPR_I2C_3D_MID’ are used.

∗ In all other cases, the subroutine make_i2c_representation is called with the
vertical and number dimensions as input parameters. The subroutine determines

21One special case has to be considered: the in-field for ’W SO’ is not necessarily named ’W SO IN’, it can also be
’W SO REL IN’.

42 Kerkweg et al.: MMD user manual

similarly to the subroutine make_cosmo_representation the representations for
the intermediate field and the in-field.

Using these representations, the new channel objects for the in-field and the intermedi-
ate field are defined. The channel objects for the in-fields are added to the INT2COSMO
channel ’MMDC4_IN’. The intermediate fields are added to the channel ’MMDC4’ con-
taining all intermediate fields.
Additionally, the axis string (CplData(ii)%AXIS) and the local dimen-
sions (CplData(ii)%ldimlen) are determined by calling the subroutine
get_representation_info with the representation ID REPR_IN.

• Define data arrays:
After all data fields are associated or allocated, the respective POINTERs of the in-fields can
be forwarded to the MMD library routines. To address the correct exchange fields within the
MMD library, a loop over the exchange fields is performed by using the MMD library function
MMD_C_GetNextArray. For each field the MMD library subroutine MMD_C_Set_DataArray is
called, handing over the POINTER to the memory allocated for the in-field. Additionally, the axis
string and the local dimension length are communicated to the MMD library, which, internally
uses this information, later on, to unpack the data received from the parent model.

• MMD C SetInd and AllocMem
The initialisation is finalised by calling the MMD library subroutine
MMD_C_SetInd_and_AllocMem. It invokes the MMD internal calculation of the required
buffer sizes and the actual memory allocation via MPI_alloc_mem.

With this the initialisation phase for the MMD2WAY CHILD submodel is complete.

In case of a new start of a simulation (lstart = .TRUE.) the actual data exchange and interpolation
is performed at the end of mmd2way_init_memory instead of mmd2way_init_loop during the time
integration. This is necessary, as the initialisation of the fields in the COSMO model needs to take
place prior to the time loop.

5.1.2 Integration Phase

The procedure explained in this section is part of the subroutine mmd2way_init_loop, as the update
of the child model fields is required at the very beginning of the respective time step. The very first
time step of a model simulation (lstart = .TRUE.) builds an exception to this rule, because in the
very first initialisation not only input and boundary fields, but also the initial fields are calculated.
The latter are already used during the end of the initialisation phase in the COSMO model. Therefore
the very first data transfer and interpolation takes already place in mmd2way_child_init_memory.
Nevertheless, the procedure explained here is the same.

There are two chunks of information, which need to be exchanged during the integration phase of a
1-way coupled simulation: the coarse grid data and the TIMER status of the parent model. For the
2-way coupling, in addition, the data required by the parent is (after processing) sent to the parent.

5.1.2.1 Data exchange, interpolation and supply
First of all, the coupling event (CPL_EVENT) determines, if data exchange should occur in this time

step. If this is the case, the MMD2WAY CHILD private subroutine exchange_interpol_data is
called:

Kerkweg et al.: MMD user manual 43

1. First, the data exchange is performed by calling the MMD library subroutine MMD_C_GetBuffer,
which fills all in-fields with the updated values sent by the parent model. The subroutine
MMD_C_GetBuffer also provides a measure for the time required for coupling. It hands back
a variable containing the time in seconds, which the child model had to wait until the parent
model data was accessible. This information is written to the log-file.

2. As soon as the in-fields are filled, the MMD internal check of the consistency of the exchanged
horizontal data field is performed. This is invoked by calling the subroutine MMD_testC_compare.
As the content of the test_array does not change with time this check is only performed at the
beginning (start or restart) of a simulation.

3. The COSMO and the INT2COSMO implementation of the MPI data exchange routines for
scattering and gathering fields include dimension checks, which inhibit the exchange of data of
different horizontal dimensions. But the standard 2D- and 3D-COSMO fields and the in-fields
of INT2COSMO are of different horizontal resolution. This was no matter as long as COSMO
and INT2LM were independent programs. In the case of on-line coupling the easiest way to
cope with this, was to (re-)set the variables used for the dimension checks every time, when
changing between INT2COSMO and COSMO parallelisation. This is done within the subroutine
switch_par_utilities(flag). When flag=1 the check environment switches to INT2COSMO
parallelisation, in the case flag=2 it is switched back to COSMO parallelisation. Because the
subroutines called in the following in exchange_interpol_data are INT2COSMO routines (com-
pare flow chart Fig. 9), the parallel environment checks are switched to INT2COSMO at this
place. After those more general preparations the processing of the incoming data starts:

• mmd2way prepare external data: This subroutine collects all data required for the
interpolation and the calculation of the coupling fields: INT2COSMO basically distinguishes
three types of “external data”:

(a) the external parameters pre-defined by the EXTPAR software22 on the target COSMO
model grid,

(b) the external parameters as provided by the driving instance (parent), and

(c) the data fields provided by the driving instance (parent).

External parameters are constant or slowly changing fields given as boundary conditions
for the model domain, e.g., the soil type, the leaf area index, the root depth and so forth.

The external parameters for the target grid are read in from an extra file in the
INT2COSMO subroutine external_data. Based on the read-in values, the variables re-
quired in COSMO and INT2COSMO are calculated later on. At the time being, in INT2LM
all external parameters are read, meaning, even for monthly changing variables (in the cli-
mate mode of the model) the data for all twelve month is read at once. Thus reading the
external parameters is only required at the beginning and the restart of a simulation. For
the sake of higher computational efficiency, the read procedure is switched off for additional
time steps in MMD2WAY CHILD INT2COSMO. This is accomplished by the extra LOGI-

CAL variable lread, which is parameter to the subroutine external_data and switches off
the reading procedure23.

In the subroutine external_data, the reading of the external parameters of the coarse
grid is always omitted, because these variables are updated by the on-line data exchange.

22http://www2.cosmo-model.org/content/model/modules/Extpar_201408_user_and_implementation_manual.pdf
23In future it might be desirable to regularly read updated external parameters. For this we implemented the event

READEXT EVENT. Per default the adjustment of the event is set to ’none’, deactivating the event, i.e., the external data
are only read at start or restart of a simulation.

44 Kerkweg et al.: MMD user manual

The calculation of the external parameters following the read procedure is kept virtually
unchanged and the fields are processed in the same way as in INT2LM. For more details
about the code changes see Sect. 7.8.

Similarly as in external_data, in the subroutine org_read_coarse_grid the reading pro-
cedure is omitted, as the fields are already initialised by the on-line coupling.The subsequent
analysis of the data, the determination of LOGICAL switches and intermediate fields is kept
unchanged except for a few very small changes, which are discussed in detail in Sect. 7.18.

• mmd2way child interpolation: After the preparation of the data, the interpolation
begins. The interpolation of the INT2COSMO inherent fields proceeds exactly as in the
off-line INT2LM:

(a) The fields are interpolated horizontally by calling the INT2COSMO routine
org_coarse_interpol. In this subroutine a field specific interpolation is performed.
For 3D fields each vertical level is independently interpolated horizontally. In addition
to the original implementation, the conservative remapping of the MESSy submodel
GRID can be used.

(b) The horizontal interpolation is followed by the vertical interpolation. If
the COSMO/MESSy model is the server (llm2lm = .TRUE.) the subroutine
org_vert_inter_lm is called, otherwise the subroutine org_vert_interpol. As a
third option, NREGRID as provided by the MESSy submodel NREGRID can also be
chosen for the INT2COSMO inherent fields by setting the interpolation flag to ’W’.

(c) Subsequently, additional 2D-fields are calculated by the INT2COSMO subroutine
org_2d_fields.

(d) If the parent is not a COSMO/MESSy model instance, the fields need adjustment to
the non-hydrostatic grid of the COSMO model. This is done within the subroutine
org_lm_fields.

It is possible to request the original INT2LM output in the &CTRL namelist in namelist file
mmd2way.nml. If the LOGICAL switch l_I2Cori_output is set .TRUE., the original INT2LM
output routine org_lm_output is called.

• Interpol AddiArrays: The interpolation of the additional fields is based on the rou-
tines provided by INT2LM. In the subroutine a loop over all exchange fields (from 1 to
NEXCH) is processed. All fields with CplData(ii)%lvartab = .TRUE. are skipped because
they have already been interpolated in INT2COSMO. Additionally, the MMD test_array

is excluded as the test is performed for the in-field. Two different interpolation proce-
dures can be selected from MMD version 2.0 on. On the one hand side, the additional
fields can be interpolated via conservative remapping using the SCRIP implementation
in the submodel GRID. This is requested by setting the respective flag in the namelist
to ’C’. On the other hand, the int2lm standard interpolation routines can be called for
horizontal interpolation: In a loop over the vertical levels (or vertical levels and number
dimension length for 4D fields) the fields are interpolated horizontally by calling the sub-
routine interpol_coarse_OneLayer. This subroutine uses the weights calculated before
in org_coarse_interpol for the INT2COSMO inherent fields and calls for each field the
interpolation routines according to the CplData(ii)%C_INTERPOL flags set in the namelist
(as org_coarse_interpol does for the INT2COSMO inherent fields).

After interpolating the fields horizontally, they are vertically interpolated. Again, two
procedures are available

– Either the vertical interpolation proceeds in the subroutine
interpol_vert_AddiArray. This is indicated by setting the respective flag to

Kerkweg et al.: MMD user manual 45

’V’. If ’V’ is requested, again the INT2COSMO routines are used. If the parent
is ECHAM5/MESSy, the interpolation routines vert_interpol and vert_int_lm,
or, depending on the vertical grid vert_z_lm are subsequently called including the
adaption to the COSMO non-hydrostatic grid. For llm2lm = .TRUE. (parent instance
is a COSMO/MESSy model), the subroutine vert_interp performs the entire
interpolation. The vertical interpolation of the 4D fields proceeds for each number
dimension independently.

– Or the vertical remapping proceeds using NREGRID (provided by the generic MESSy
submodel GRID). This interpolation procedure is requested by setting the respective
flag to ’W’. In this case the subroutine vert_ncinterpol is called. This subroutine first
defines the geo-hybrid grids as required for the pure vertical regridding via NREGRID.
Second, the field, that should be remapped is converted to the 1D format as required by
GRID. Finally, the fields is vertically remapped using the GRID TRAFO subroutine
REGRID_CONTROL and the resulting field is converted back to the usual 3D format.

• Often, the remapping of the soil properties from the parent does not lead to a good
initialisation of the soil properties. To improve the soil initialisation, the subroutine
force_vars_from_file allows to overwrite the soil properties from another simulation.
In this case the model domain / grid definition of the model and in the file must be iden-
tical.

• After finishing the INT2COSMO routines, the dimension check is reset to the COSMO
parallelisation in switch_par_utilities.

4. Last but not least, the intermediate fields calculated by the interpolation routines (i.e.,
CplData(ii)%ptr_i2c) need to be assigned to the target fields.

• The subroutine move_initial_arrays_to_COSMO moves the initial data, only. For the
assignment of the COSMO/MESSy fields the CplData structure is processed in one loop
(index ii) over the entries of CplData. The field is skipped,

– if L_INITIAL is .FALSE.,

– if it is only an exchange field (the child model channel name is ’#XXX’), or

– if it is the test_array.

Otherwise, dependent on the dimension of the CplData(ii)%cosmo, the data is moved to
the target field(s):

– If the dimension of CplData(ii)%cosmo is 1, only one field needs to be assigned. Within
a loop over the fourth dimension (loop index iX) the first three ranks are copied:

size3 = SIZE(CplData(ii)%cosmo(1)%ptr,3)

CplData(ii)%cosmo(1)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,iX) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,iX)

Note: the data can only be copied on the “core-regions” (see Sect. 5.1.4) as only these
overlap on each PE of the COSMO and of the INT2COSMO grid. This is achieved by
using the indices istartpar, iendpar, jstartpar and jendpar for the COSMO grid
and the indices istartcos, iendcos, jstartcos and jendcos for the INT2COSMO
grid. Details about the matching of the decomposition of the two grids are provided in
Sect. 5.1.4. As only the “core-regions” of the local domain can be initialised for each

46 Kerkweg et al.: MMD user manual

field, the COSMO subroutine exchg_boundaries must be called to ensure that the
entire local domains are initialised.

– If the dimension of CplData(ii)%cosmo is larger than 1, the variable depends on time
and three cases are distinguished:

∗ For a 2-time level integration scheme only the “new” time level needs to be ini-
tialised:

size3 = SIZE(CplData(ii)%cosmo(1)%ptr,3)

CplData(ii)%cosmo(nnew)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,iX) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,iX)

with nnew being the index of the “new” time level in COSMO.

∗ For a 3-time level scheme two time levels are initialised:

size3 = SIZE(CplData(ii)%cosmo(1)%ptr,3)

CplData(ii)%cosmo(nnew)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,iX) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,iX)

CplData(ii)%cosmo(nnow)%ptr(istartpar_c4:iendpar_c4 &

,jstartpar_c4:jendpar_c4,1:size3,iX) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,iX)

∗ A special case are the tracers, as they are not accessible via index shift: The
POINTERs of the POINTER ARRAY CplData(ii)%cosmo are associated in a way
that the first POINTER points to the nnew time level and the nnow time level is
accessed by the second POINTER (see Sect. ??). Thus for a 2-time level integration
scheme only the first, otherwise both fields are initialised.

As in the diagnostic case, the copy statements are placed in a loop over the fourth
dimension (iX) of CplData(ii)%cosmo(nt)%ptr and exchg_boundaries needs to be
called to complete the initialisation.

• The subroutine move_boundary_arrays_to_COSMO copies the boundary and the input fields
to their respective target fields.

One important difference between the boundary data association of the off-line COSMO
setup and the on-line coupled setup must be emphasised here: In the off-line COSMO
model, boundary data are provided for two time steps (e.g., in 6 hour intervals) and the
actual boundary values in-between these time steps are interpolated linearly between these
two time steps. If this were to be imitated in the on-line coupling, the parent model had
to be one coupling time interval ahead of the child model. This could be implemented for
1-way coupling, but is not applicable for on-line 2-way nesting. In this case, the parent
model cannot be ahead of the child model. Therefore it was decided to fill the two time
levels of the boundary data with the same actual value. As the on-line setup enables a much
higher coupling frequency, i.e., every parent time step, the deviation due to the different
handling of boundary data is expected to be small.

Kerkweg et al.: MMD user manual 47

For the transfer of the boundary and the input fields a loop over the entries of CplData is es-
tablished. Again, the test_array and the exchange fields only required for the interpolation
are skipped. If boundary data is requested for a field (CplData(ii)%L_BOUND = .TRUE.)
the respective intermediate field CplData(ii)%ptr_i2c is copied to the first time level of
the boundary data POINTER ARRAY:

size3 = SIZE(CplData(ii)%cosmo_bd(1)%ptr,3)

size4 = SIZE(CplData(ii)%cosmo_bd(1)%ptr,4)

CplData(ii)%cosmo_bd(1)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,1:size4) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,1:size4)

Subsequently, this field is distributed to the full local domains by calling exchg_boundaries.
Finally, the distributed field is copied to the second boundary layer time slice.

Similarly, if CplData(ii)%L_INPUT = .TRUE for a coupling field, the intermediate field is
copied to the CplData(ii)%cosmo POINTER ARRAY:

size3 = SIZE(CplData(ii)%cosmo(1)%ptr,3)

size4 = SIZE(CplData(ii)%cosmo(1)%ptr,4)

CplData(ii)%cosmo(1)%ptr(istartpar:iendpar &

,jstartpar:jendpar,1:size3,1:size4) = &

CplData(ii)%ptr_i2c(istartcos:iendcos &

,jstartcos:jendcos,1:size3,1:size4)

The transfer is finalised by the boundary exchange via exchg_boundaries.

Before copying the intermediate fields to the target fields, one additional measure has to be taken,
since some 2D INT2COSMO inherent fields are flagged: The COSMO model tests for undefined
values by comparing with a constant value undefncdf (defined as “undefined”). Usually in the
COSMO off-line setup the initial and boundary data are read from files, in which undefined data
points are marked by this special value. Therefore some fields are flagged during the on-line
coupling for the sake of consistency:

• If the land/sea mask flag var_lm(i)%lsm of a variable is set to ’l’, the variable will be
flagged with undefncdf at points over sea.

• The grid points of ’T_SNOW’ will be set to undefncdf where w_snow_lm < 0..

• ’Z0’ is multiplied with the gravitational acceleration (g) to get the variable ’gZ0’ as used
by COSMO.

The procedure explained in detail above is summarized in Fig. 11. Furthermore, it illustrates the usage
of the MMD2WAY CHILD internal POINTERs: ptr_in is the in-field, which is input to INT2COSMO.
During the horizontal interpolation the vertical and number dimensions remain untouched. The result
of the interpolation is written to the intermediate field ptr_i2c. If the in-field is 3D in space (number
of incoming vertical levels is ke_in) vertical interpolation is possible. After the vertical interpolation
ptr_i2c contains valid data on the vertical levels 1:ke with ke being the number of vertical levels in
the child. After the interpolation, the intermediate field (ptr_i2c) is copied to the target field(s), i.e.,
those variables used subsequently in the basemodel or other MESSy submodels. For initial and input
fields the data is copied to the variable associated with the cosmo(.)%ptr, for boundary fields the
intermediate field is copied to the boundary variable associated with the POINTERs cosmo_bd(.)%ptr.

48 Kerkweg et al.: MMD user manual

ptr_in(:,:,1:ke_in,1:N)

Horizontal
 Interpolation

ptr_i2c(:,:,1:ke_in,1:N)

Vertical
 Interpolation

move initial
move input

cosmo(.)%ptr(:,:,1:ke,1:N)

move boundary

cosmo_bd(.)%ptr(:,:,1:ke,1:N)

COSMO/MESSy

ptr_in(:,:,1:kex,1:N)

cosmo(.)%ptr(:,:,1:kex,1:N) cosmo_bd(.)%ptr(:,:,1:kex,1:N)

ptr_i2c(:,:,1:ke,1:N)

ptr_i2c(:,:,1:kex,1:N)

Figure 11: Pointer usage in MMD2WAY CHILD. N is an arbitrary (number) dimension, ke in is the
number of vertical levels of the in-field, ke is the number of vertical levels in the COSMO model and
kex is an arbitrary number of vertical levels. First, the in-field is interpolated horizontally, second,
-if requested and possible- the vertical interpolation (black) is performed and third, the intermediate
field is copied to the COSMO/MESSy target and boundary variables.

Kerkweg et al.: MMD user manual 49

INT2COSMO

COSMO

external

Figure 12: Illustration of the three model domains for the external parameters (turquoise),
INT2COSMO (red) and the COSMO model (black). The dashed lines illustrate the entire model
domains, whereas the solid lines show the “inner” domains (see text).

5.1.3 Finalisation Phase

After the integration phase at the end of a simulation, the memory allocated in the course of the
simulation is deallocated. The MMD2WAY CHILD subroutine mmd2way_child_free_memory re-
leases the memory allocated by INT2COSMO by calling the INT2COSMO subroutine org_cleanup.
For the MMD test_array and the other memory allocated by MMD the MMD library routines
MMD_testC_FreeMem and MMD_C_FreeMem release the memory, respectively.

5.1.4 Grid definitions and parallel decomposition of INT2COSMO

In this section the definition of the different grids and domains used in INT2COSMO and the parallel
domain decomposition of INT2COSMO, which differs from the INT2LM decomposition, are illus-
trated.

5.1.4.1 Domains
INT2COSMO works with data defined on four different domains:

1. The domain of the fields provided by the parent model, i.e., the in-grid or the in-field domain;

2. the target domain, i.e., the COSMO model domain;

3. the INT2COSMO domain, i.e., the “working” domain of INT2COSMO;

4. the domain on which the external parameters such as root depth, the orography, the leaf area
index or the land-sea mask, are defined.

Table 3 lists which structure components of the MMD2WAY CHILD variable CplData are defined on
which domain.

50 Kerkweg et al.: MMD user manual

2 5 8

1

30

4 7

6

ie_tot1 isubpos(3,3)
isubpos(4,3)
isubpos(5,3)

isubpos(0,3)
isubpos(1,3)
isubpos(2,3)

isubpos(0,1)
isubpos(1,1)
isubpos(2,1)

isubpos(6,3)
isubpos(7,3)
isubpos(8,3)

isubpos(3,1)
isubpos(4,1)
isubpos(5,1)

isubpos(6,1)
isubpos(7,1)
isubpos(8,1)

je_tot

isubpos(2,4)
isubpos(5,4)
isubpos(8,4)

isubpos(2,2)
isubpos(5,2)
isubpos(8,2)

isubpos(1,4)
isubpos(4,4)
isubpos(7,4)

isubpos(1,2)
isubpos(4,2)
isubpos(7,2)

isubpos(0,4)
isubpos(3,4)
isubpos(6,4)

isubpos(0,2)
isubpos(3,2)
isubpos(6,2)

1

Figure 13: Example for a parallel decomposed COSMO model domain, distributed on 3x3 PEs: The
numbers on yellow background are the respective PE numbers. The black dashed line is the border of
the entire model domain, the solid lines depict the core-regions of the local domains. The blue dotted
line indicates the full local domain of PE 4, i.e., including the halo or ghost boundaries. Additionally
annotated are the global indices for of the core-regions.

Table 3: List of CplData structure components and their respective model domain.
structure component domain

CplData(ii)%ptr in in-field domain

CplData(ii)%ptr i2c INT2COSMO domain

CplData(ii)%cosmo(:)%ptr COSMO domain

CplData(ii)%cosmo bd(:)%ptr COSMO domain

The in-field domain is defined by the parent (see Sect. 5.2.1.3) and therefore independent of the target
COSMO model domain.

The other three domains, must have the same grid spacing and need to be rotated in the same way.
In other words, the only difference between these model domains is their size. The size of the domains
is obvious:

Kerkweg et al.: MMD user manual 51

2 5 8

1

30

4 7

6

je

1

jend jendpar

jstart jstartpar

istart
istartpar

iend
iendpar

ie1

3

4 7

6

istart
istartpar

iend ie
iendpar

1

je

1
 jstartpar

jend
jendpar

jstart

Figure 14: The figure is zooming in on PE 4 (left) and PE 6 (right) of Fig. 13, illustrating the definition
of the local indices istart, iend, jstart, jend, istartpar, iendpar, jstartpar and jendpar.

external parameter domain > INT2COSMO domain > COSMO domain

This hierarchy is caused by the processing order:

• INT2COSMO processes external parameters. Consequently, the external parameter fields need
to be larger than the INT2COSMO fields.

• INT2COSMO interpolates data to the COSMO domain, thus the INT2COSMO domain has to
be larger than the COSMO domain.

The model domains are illustrated in Fig. 12.

5.1.4.2 The parallel decomposition of the COSMO model grid and the INT2LM grid
INT2LM and the COSMO model use the same decomposition procedure. The domain is split into

rectangular parts according to the numbers of PEs in x and y directions (nprocx and nprocy as
namelist entries). Figure 13 shows a decomposition for 9 PEs (3x3). The parts enclosed by the solid
lines illustrate the so-called “core-regions” of the local (i.e., PE-bound) model domains. The sum of
the core-regions covers the entire model domain, except for a frame at the lateral boundaries, which
relevance becomes clear below (i.e., entire domain = “inner” domain + lateral frame).

These core-regions are unambiguously defined by their indices in the entire model domain. The
indices are stored in the INTEGER ARRAY variable isubpos(0:nPE-1,4), with nPE number of PEs.
This variable lists the indices of the lower left and the upper right corner of the core-regions of each
PE in the entire model domain:

• isubpos(:,1): first (’i’) index of the lower left corner;

• isubpos(:,2): second (’j’) index of the lower left corner;

• isubpos(:,3): first (’i’) index of the upper right corner;

52 Kerkweg et al.: MMD user manual

• isubpos(:,4): second (’j’) index of the upper right corner.

Figure 13 illustrates the definition of the individual isubpos for the example.

To allow the computationally efficient implementation of processes, which require the data of the
neighbour grid points, a “halo” or “ghost boundaries” are defined surrounding the core-region of each
PE. Thus, the local decomposed domain on each PE consists of the ghost boundaries and the core-
region24. The blue dotted line in Fig. 14 illustrates the local model domains of PE 4 (left) and PE 6
(right), including the ghost boundaries and the core-region. Physical processes are calculated on the
core-region, whereas the ghost boundaries are used, if the neighbouring value is required during the
calculation of a process, e.g., for advection. Before calculating such a process, it must be ensured,
that the ghost boundaries contain the correct values for the required fields. This is achieved by the
subroutine exchg_boundaries, which transfers the data from the PE, on which a grid point belongs
to the core-region, to the ghost boundary of the neighbouring PEs.

Figure 14 illustrates the definitions of the local grid and the respective indices for example PEs 4 and
6:

• The lower left corner of the local domain is always the grid point (1,1) and the upper right
corner is (ie,je) with ie and je being the number of grid points in x or y direction, respectively.

• The lower left corner of the core-region is (istart,jstart) and the upper right corner is
(iend,jend).

If the PE is not completely surrounded by other PEs, the PE also hosts a part of the lateral frame of
the entire model domain. In this case, the physical processes need also to be calculated on the lateral
frame. The lateral frame is not a part of a core-region, but it is identical to the ghost boundaries of
the respective PE. Thus, the physical processes are also calculated on the ghost boundaries which is
visualised by the right hand side of Fig. 14. PE 6 is located at the lower right corner of the entire model
domain. Thus, to calculate the processes on the entire model domain, on the eastern and southern bor-
der the physical processes are also calculated on the ghost boundaries. While istart, jstart, iend

and jend always refer to the core-region, the indices istartpar, jstartpar, iendpar and jendpar

refer to the grid points on which the physical processes are really calculated. On a PE completely
surrounded by other PEs, these index quadruples are equal, as illustrated by the left hand side of Fig.
14. The right hand side of Fig. 14 shows the indices as defined for a PE at the lateral boundary. The
solid black rectangle illustrates the core-region, the blue dotted line the entire local model domain.
The light blue area indicates the domain part, on which the physical processes are calculated for PE
6.

The width of the ghost boundaries, i.e., the number of grid points (variable nboundlines) added
at each side to the core-region, depends on the processes taken into account in the simulation. For
the COSMO model using the leap-frog time integration scheme nboundlines=2 is sufficient. If the
Runge-Kutta time integration scheme is used, nboundlines is 3 or 4 depending on the order of the
Runge-Kutta scheme. In contrast to this, nboundlines for the INT2COSMO domain is determined
by the order of the interpolation routines. For the currently implemented interpolation algorithms
nboundlines is always 1.

24Note: The width of the ghost boundaries and of the lateral frame are identical. It is defined by the namelist variable
nboundlines.

Kerkweg et al.: MMD user manual 53

3

4 7

6

istart
istartpar

iend ie
iendpar

1

je

1
 jstartpar

jend
jendpar

jstart

istart
istartpar iend

ie2lm
iendpar

1

je2lm

1, jstartpar

jend jendpar

jstart

istartcos iendcos

jstartcos

jendcos

Figure 15: This is an extension of the right hand side of Fig. 14. Additionally the overlapping
INT2COSMO regions for PE 6 are indicated by red rectangles. The lighter red shows the ghost
latitudes, whereas the darker red indicates the INT2COSMO core-region. The red indices are the
indices for the local INT2COSMO domain. Additionally, the position of the four indices istartcos,
iendcos, jstartcos and jendcos are marked (green colour).

5.1.4.3 The parallel decomposition of the INT2COSMO grid
For the sake of computational efficiency, the local INT2COSMO and the local COSMO model

domains should be congruent. If this is not the case, it is required to gather the fields calculated by
INT2COSMO on one PE and to scatter them to the local COSMO model domains, afterwards.

Unfortunately, the decomposition algorithm used for COSMO and INT2LM does not lead to a con-
gruent decomposition of both domains, because in the decomposition algorithm

1. an nboundlines-wide frame is subtracted from the entire domain,

2. the remaining domain (called “inner” domain) is almost equally distributed on the PEs, which
leads to the definition of the core-regions, and

3. the nboundlines-wide ghost-boundaries are added to the core-regions to define the entire local
model domains.

The INT2COSMO domain is larger than the COSMO model domain, and the number of ghost bound-
aries is larger for the COSMO model than for INT2COSMO, therefore “inner” domains have always
different sizes. This is why the decomposition algorithm cannot result in congruent domains for
COSMO and INT2COSMO.

54 Kerkweg et al.: MMD user manual

Nevertheless, it is possible, that the COSMO core-regions are always covered by the INT2COSMO
core-regions. The coverage of the COSMO core-regions is sufficient to avoid the gather and scat-
ter procedure for the complete fields. Nevertheless, it requires additional data exchange, for the
ghost boundaries. This is performed by the COSMO subroutine exchg_boundaries. The coverage
of the COSMO core-regions by the INT2COSMO core-regions can be achieved by skilfully defining
the INT2COSMO core-regions based on the COSMO core-region definition. The procedure is out-
lined below: The INT2COSMO domain is larger than the COSMO model domain, i.e., the entire
COSMO model domain is equal to the “inner” INT2COSMO domain, i.e., the entire domain minus an
nboundlines wide frame (compare Fig. 12). Therefore, the INT2COSMO core-regions can be made
equal to the COSMO core-regions for all PEs, except for those at the lateral boundaries. Here the
INT2COSMO core-regions are larger than the COSMO core-regions. To be more precise, (following
the calculation outlined below) the INT2COSMO core-regions at the lateral boundaries are equal to
the parts of the local COSMO model domain described by the indices istartpar, jstartpar, iendpar
and jendpar.

Coverage can only be achieved, if the core-regions of the decomposed COSMO model are taken as
base for the calculation of the decomposed INT2COSMO grid. Thus, the isubpos definition of the
COSMO model domain (further on denoted as isubpos_cosmo) is taken and the INT2COSMO variable
isubpos is calculated from this variable. For the PEs not located at the lateral boundaries of the
model domain isubpos of the INT2COSMO domain is equal to isubpos_cosmo+nboundlines, with
nboundlines=1 for INT2COSMO. nboundlines must be added, as the global indices are shifted by
nboundlines in the INT2COSMO grid.

In addition to this shift by nboundlines, at the lateral boundaries it has to be taken into ac-
count, that the “inner” INT2COSMO domain equals the entire COSMO model domain. Thus, as
the isubpos_cosmo are the indices of the “inner” COSMO domain, these need to be shifted by
nboundlines_cosmo in order to equal the indices of the entire model domain. Thus isubpos for PEs
at the lateral boundaries of the INT2COSMO domain is calculated by:

isubpos(., 1) = isubposCOSMO − nboundlinesCOSMO + 1

at a western lateral boundary,

isubpos(., 2) = isubposCOSMO − nboundlinesCOSMO + 1

for a southern lateral boundary,

isubpos(., 3) = isubposCOSMO + nboundlinesCOSMO + 1

at a eastern lateral boundary and

isubpos(., 4) = isubposCOSMO + nboundlinesCOSMO + 1

at a northern lateral boundary.

Because of this procedure, the core-regions of the INT2COSMO domain and those of the COSMO
model domain are not equal at the lateral boundaries. In order to copy the data from the fields defined
on the INT2COSMO domains correctly to the fields defined on the COSMO model domains, additional
indices are required to indicate the co-location of the COSMO local domains on which the physical
processes are calculated (i.e., those indicated by istartpar, jstartpar, iendpar and jendpar) and
the INT2COSMO core-regions. The indices istartcos, iendcos, jstartcos and jendcos are defined
in a similar manner as istartpar, jstartpar, iendpar and jendpar by:

Kerkweg et al.: MMD user manual 55

istartcos = 1 + nboundlines

iendcos = ie2lm− nboundlines

jstartcos = 1 + nboundlines

jendcos = je2lm− nboundlines

with ie2lm and je2lm being the dimension of the local INT2COSMO domains (similar to ie and je

for the decomposed COSMO domain). This is illustrated by Fig. 15.

5.2 The parent instance

For the 1-way coupling, the parent instance fulfills three tasks, which are essential for the on-line
coupling:

• It dictates the date/time and restart settings of the child model.

• It calculates the index_list, i.e., the association of the child and the parent instance grid points
on the individual PEs.

• It provides the exchange fields.

Comparably to MMD2WAY CHILD, in MMD2WAY PARENT the data for the data exchange is
organised in a Fortran95 structure:

! CplData STRUCTURE

TYPE T_COUPLE_C_DATA

! CHANNEL AND CHANNEL OBJECT NAMES IN PARENT MODEL

TYPE(t_chaobj_cpl) :: name

! POINTER TO PARENT FIELD

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr => NULL()

! REPRESENTATION OF PARENT FIELD

INTEGER :: rank

INTEGER, DIMENSION(4) :: ldimlen=0

! STRING ORDER OF AXES

CHARACTER(LEN=4) :: AXIS

END TYPE T_COUPLE_C_DATA

As for the 1-way coupling the parent instance only provides data, the Fortran95 structure contains
considerably less components than the corresponding structure of MMD2WAY CHILD. Whereas a
child can have one parent, a parent can have more than one child. Therefore, the variable of TYPE

T_COUPLE_C_DATA (CplData) is itself component of a structure (TYPE T_CHILD_DATA).

TYPE T_CHILD_DATA

! NUMBER OF EXCHANGED FIELDS

INTEGER :: NEXCH

TYPE (T_COUPLE_C_DATA), DIMENSION(:), POINTER :: CplData => NULL()

56 Kerkweg et al.: MMD user manual

! POINTER for DATA EXCHANGE TIMING

REAL(DP), POINTER :: Waittime => NULL()

! LOGICAL for COUPLING TIME STEP (evaluated in init_loop, required in

! init_loop and global start)

LOGICAL :: lcpl = .FALSE.

END TYPE T_CHILD_DATA

TYPE (T_CHILD_DATA), DIMENSION(:), ALLOCATABLE :: CL

The Fortran95 variable CL is allocated to the number of child instances of the respective parent
instances in the initialisation phase.

5.2.1 Initialisation Phase

In the initialisation phase three MESSy entry points are used by
MMD2WAY PARENT: mmd2way_parent_initialize, mmd2way_parent_init_memory and
mmd2way_parent_init_coupling.

5.2.1.1 mmd2way parent initialise
The parent inquires the number of child instances it has to provide data for. The MMD library

variable MMD_Parent_for_Child is a list of the parent specific child instance IDs in the MMD setup.
In each parent it is allocated to the specific number of child instances the respective parent instance has
to deal with. Thus the SIZE of this array equals the number of children of the parent. Subsequently, the
MMD library initialisation routines MMD_P_Allocate_Child and MMD_P_Init are called to initialise
the MMD environment of this specific parent instance. MMD_P_Allocate_Child accepts a parameter
l2way: it is .FALSE. for 1-way coupling and .TRUE. for 2-way coupling.

In MMD2WAY PARENT itself, the variable CL is dimensioned to the number of children. As each child
may require a different coupling frequency, the TIMER event variables CPL_EVENT and CPL_IOEVENT

must also be available for each child instance individually.

5.2.1.2 mmd2way parent init memory
First, independently for each child the time synchronisation of the respective child-parent pair is

triggered by calling Setup_Child_Timer:

1. The parent receives the coupling interval in seconds from the child and defines the respective
TIMER EVENT (CPL_EVENT(ic)).

2. Next, the parent sends its date information and its time step length to the child.
The following dates must be exchanged to ensure that the models are synchronised:
current_date, start_date, resume_date and stop_date. The dates are of TYPE time_days:

TYPE, PUBLIC :: time_days

!

! relative calendar date and time format

!

! time_days [structure]

! day [integer] (day in calendar, -2147483648 2147483647

Kerkweg et al.: MMD user manual 57

! approx. +/-5.8 Mio. years)

! second [integer] (seconds of day, 0,...,86399)

!

!PRIVATE

LOGICAL :: init = .FALSE.

INTEGER :: day = 0

INTEGER :: second = 0

END TYPE time_days

Thus, each date is defined by an INTEGER indicating the day and an INTEGER for the seconds
of the day. For all four dates these two INTEGERs are packed into an INTEGER array and sent
to the child. As a ninth INTEGER the time step length of the parent is sent. The latter is used
by the child to define the BREAK_EVENT.

5.2.1.3 mmd2way parent init coupling
The preparations for the 1-way coupling are all performed in the subroutine

mmd2way_parent_init_coupling. The subroutines described below are processed for each
child model individually (indicated below by the index ic).

• First, the MMD library subroutine MMD_P_Get_DataArray_Name is called, which receives the list
of exchange fields. After calling this subroutine, these information is available within the MMD
library, but not yet made available to MMD2WAY PARENT itself. This transfer is done within
the subroutine Define_data_arrays (see last item below).

• Before the exchange fields themselves are acquired, the domain section required by the child
model for the interpolation of the data, i.e., the domain of the in-fields of the child model are
determined in the subroutine Setup_Child_Area.

– In a first step the parent model acquires the child model grid information:

∗ First, the parent gets the dimensions of the child model COSMO domain (ie_tot and
je_tot) and the number of exchange fields.

∗ Second, according to the dimensions, fields are allocated for the geographical longitudes
and latitudes of the COSMO/MESSy grid points,

∗ which are, third, sent subsequently from the child to the parent.

– Based on the child grid, the domain of the data sent to the child is determined:

∗ If a COSMO/MESSy model is the parent, the complete COSMO/MESSy par-
ent domain is used as in-field for the child model. In this case simply the
information about the parent model COSMO grid are copied to the respective
transfer variables: i.e., startlat_tot, startlon_tot, endlat_tot, endlon_tot,
pollat, pollon, dlat , dlon, ie_coarse, je_coarse, ke_coarse , ke_soil_coarse,
itype_w_so_rel, itype_t_cl, vcoord%vcflat, svc1, svc2, vcoord%ivctype and
the derived type refatm, with its components defining the reference atmosphere
refatm%p0sl, refatm%t0sl, refatm%st0lp, refatm%delta_t and refatm%hscal, and
the depth of the soil layers (czmls).

∗ If ECHAM5/MESSy is the parent instance, a subset of the global grid is provided as
input to INT2COSMO. The size of the domain is determined by the minimum and max-
imum longitudes and latitudes of the child model domain, including a check whether

58 Kerkweg et al.: MMD user manual

the date line is part of the model domain. As INT2COSMO requires a somewhat larger
model domain as the COSMO grid to perform the interpolation, four grid boxes are
added at each side of the model domain25. From this model domain, the location of
the corners of the grid in the parallel decomposition of the global model are calculated
by the subroutine locate_in_decomp.

· The geographical coordinates of the South-West corner determine the start latitude
(startlat_tot) and longitude (startlon_tot) and

· those of the North-Eastern corner the end latitude (endlat_tot) and longitude
(endlon_tot).

· The coordinates of the rotated pole, pollat and pollon, are always 90._dp and
180._dp for a non-rotated grid like the ECHAM5 grid.

· The grid spacings in degrees for the longitudes of the global grid (dlon) is easily
calculated by dividing 360._dp by the SIZE of the variables containing the Gaussian
longitudes of the global grid.

· The latitudes of a Gaussian grid are not equidistant, however, the grid spacings
in degrees is a mandatory input to INT2LM also for the latitudes. Thus, the
method implemented in INT2LM when reading and checking the netCDF-file global
definitions (subroutine read_nc_gdefs)

dlat = (MAXVAL(philat) - MINVAL(philat))/(ngl-1)

is used. To minimise the error, dlat is recalculated after the determination of
the section of the grid that is sent to the child using the maximum and minimum
latitude of the sent section. Note: as the latitudes in a Gaussian grid are not
equidistant this only works satisfactorily if the regional model region is not too
close to the poles (with “to close” depending on the ECHAM5 resolution).

· The horizontal dimensions of the exchanged domain ie_tot and je_tot are calcu-
lated according to the difference of the corner indices.

· ke_tot is simply nlev, i.e., the number of ECHAM5 vertical levels.

· ke_soil is 4 as ECHAM5 includes a soil with 5 layers and 4 is the number of
interfaces between the soil layers.

· The INT2COSMO variable itype_w_so_rel, indicating which type of soil moisture
is input to INT2COSMO, must be set to 2 (for both parent models).

· The variable defining the type of the climatological temperature itype_t_cl is set
to 1, if ECHAM5/MESSy is the parent, and to 0, if COSMO/MESSy is parent.

· Additionally, information about the vertical levels of the model domain, i.e.,
the interface hybrid parameters (vct) for ECHAM5/MESSy and vcoord for the
COSMO/MESSy model are sent to the child.

∗ Last but not least, two fields containing the longitudes and latitudes for each server
domain grid point are sent to the child.

• The purpose of the subroutine Setup_data_exchange_with_Child is to calculate the
index_list, i.e., the list which unambiguously associates the grid points with the same ge-
ographical coordinates located in the local domains of the child in-field and in the parent local
domain to each other. Each grid point is defined by the process number (PE) the grid point
is located on, and an index pair (i, j) containing the indices of the grid point in the parallel

25The size of 4 is arbitrarily chosen, because it worked for the standard ECHAM5/MESSy resolutions so far employed.
The really required size depends, e.g., on the rotation of the child grid

Kerkweg et al.: MMD user manual 59

decomposed grids. Along with determining this list the test_array for the MMD consistency
check is filled. Thus, at the beginning of this subroutine the test_array is allocated by calling
the MMD library routine MMD_testP_Setup.

For the calculation of the index_list the parent needs the geographic coordinates of the grid
points of the local (decomposed) fields from the child. To exchange these, the parent model first
receives three INTEGERs: the maximum dimensions for the decomposed horizontal child grid
(ie_max and je_max) and the number of child PEs. According to these dimensions, the parent
allocates two three dimensional fields to pick up the decomposed longitude and latitude fields
sent by the child.

For each of the grid points in the horizontal domain a list member containing six entries is
created. One of these sextuples consists of the child PE (PEc), the parent PE (PEp) and the index
pairs (ic,jc) and (ip,jp) of the local decomposed child and parent model domains, respectively,
associating the two points with the same geographical coordinates in child and parent grid
to each other. The index information about the child grid is inherent in the longitude and
latitude arrays. These fields have been gathered in a way, that the index of the third dimension
corresponds to PEc and the indices of the first two dimensions correspond to the indices in
the horizontal local grid. The longitude and latitude given by the fields sent by the child are
processed by the subroutine locate_in_decomp, which locates the respective pair of geographical
coordinates on the local decomposed grid of the parent. Output of this subroutine are the PE
on which the grid point is located (PEp) and the indices in the local fields (ip,jp). Thus, a
sextuple containing all required information about the related grid points of the child and parent
domain is complete. Such a sextuple is determined for each of the child instance in-field grid
points yielding in a field (ip,jp,ic,jc,PEc,PEp)n, with n number of grid points. Additionally, each
sextuple is fed into the MMD test_array by using the MMD library function MMD_testP_Fill.
After all grid points have been processed the filling of the MMD test_array is finalised by
calling the MMD library function MMD_testP_FinishFill. The entire index_list containing
all sextuples is forwarded to the MMD library and analysed within the MMD library routine
MMD_P_Set_Indexlist establishing the connections between the individual parent and child
PEs. A more detailed explanation of this list is given in the MMD library manual, which is part
of the same electronic supplement as this manual.

• Last but not least, the POINTERs to the exchange fields must be associated during the initiali-
sation phase. This is achieved in the subroutine Define_data_arrays:

– The structure CL(ic)%CplData, with ic being the index for one child instance, is allocated
to the number of required exchange fields.

– The channel and channel object name of each field and the child model representation
as listed in the MMD2WAY CHILD namelist are retrieved by calling the MMD library
function MMD_P_GetNextArray.

∗ If the channel name is ’test’ the MMD test_array is requested and the POINTER is
associated by calling the MMD library routine MMD_testP_GetTestPtr.

∗ In all other cases the POINTER is associated by calling the CHANNEL subroutine
get_channel_object. If the object does not exist the simulation is terminated as the
required coupling is not possible.

– When the object exists, the representation ID is inquired by calling the CHANNEL sub-
routine get_channel_object_info.

– The representation ID must be known to subsequently retrieve the required dimension
informations:

60 Kerkweg et al.: MMD user manual

∗ the axis string,

∗ the local dimension lengths,

∗ the global dimension lengths, and

∗ the representation name.

The latter two are required, if the representation name given in the MMD2WAY CHILD
namelist is ’#UNKNOWN’. In this case the child needs the additional information plus a
possible attribute which might contain heights (in case of multi-layer emission fields) to
create the correct representation. This additional attribute is accessed by the CHANNEL
subroutine get_attribute. All these information are forwarded to the child by the MMD
library function MMD_P_Send_Repr.

At the end of the subroutine, the POINTER, the axis string and the local dimensions are
passed on to the MMD library by the subroutine MMD_P_Set_DataArray and processed
inside the library, i.e., the dimensions and the order information are saved for later use.

– After all data fields are processed a last call during the initialisation phase to the MMD
library (subroutine MMD_P_SetInd_and_AllocMem) invokes the final evaluation of the di-
mension information in order to determine the correct buffer size. Subsequently, the actual
allocation of the buffer required by MPI takes place calling MPI_ALLOC_MEM in the MMD
library.

5.2.2 Integration Phase

During the integration phase, in the subroutine mmd2way_parent_global_start, the parent provides
the exchange fields to its child instances. Additionally, in the subroutine mmd2way_parent_global_end
it informs the child models, whether the simulation is going to be interrupted.

5.2.2.1 mmd2way parent global start
First, the coupling event is tested for each child. If the coupling with the respective child is

scheduled for the current time step, the MPI Buffer is filled by calling the MMD library subrou-
tine MMD_P_FillBuffer. Within this MMD library routine the data is copied to the memory buffer
accessible for the child model. To ensure the correct order of accesses to the buffer from the parent
and the child, the buffer is locked for that model of a child-parent pair, which latest wrote to/read the
buffer. If the workload of the models is not ideally balanced it happens that one of the models has to
wait until it can access the buffer again. MMD_P_FillBuffer returns the waiting time in seconds for
the parent model.

5.2.2.2 mmd2way parent global end
At the end of the time loop, the parent sends the information about the status of the interrupt-

switches lbreak, l_rerun and lstop. If the LOGICALs are .TRUE., the respective entry of the INTEGER

ARRAY timeflags is set to 1. Otherwise it is set to zero.

5.2.3 Finalisation Phase

At the end of the simulation the allocated memory is released. The subroutine
mmd2way_parent_free_memory calls, independently for each child, the MMD library subroutines
MMD_testP_FreeMem and MMD_P_FreeMem to release the memory allocated within the library. Addition-
ally, the MMD2WAY PARENT internal variables CL(ic)%CplData, CL, CPL_IOEVENT and CPL_EVENT

are deallocated.

Kerkweg et al.: MMD user manual 61

6 Coupling of the parent instance to child (2-way, parent-to-child
coupling)

The backward coupling from the child to the parent is organized in a similar way as the 1-way coupling,
i.e., which input is required from which child for a specific child is determined in the parent namelists
(Sect. 3.4).

POINTERs to the respective memory are acquired in the child instance and are interpolated to the
parent instance similar “out-grid” in the child. Subsequently, the interpolated fields are sent to the
parent and applied to the field according to a method determined by the namelist setting independently
for each coupled field.

In the following, the backward coupling specific routines are described, first for the parent and second
for the child instance.

6.1 The parent instance

Four different data types are defined in MMD2WAY PARENT in order to organise the coupling of
the parent to the child.

Two of them are required for the reading and processing of the namelist input of the &CPL_PAR_CHILD

namelist:

TYPE T_EXCH_P_IO

! CHANNEL AND CHANNEL OBJECT NAMES IN PARENT

TYPE(t_chaobj_cpl) :: Parentname

TYPE(t_chaobj_cpl) :: Parenttend

TYPE(t_chaobj_cpl) :: Childname

! Representation String

CHARACTER(LEN=STRLEN_MEDIUM) :: REPR = ’’ ! REPRESENTATION STRING

! FLAG FOR INTERPOLATION METHOD

INTEGER :: interp = 0 ! INTERPOLATION METHOD

! FLAG FOR APPLICATION METHOD overwrite (input field) in GridPoint (appl=0)

! FLAG FOR APPLICATION METHOD weighted in GridPoint (1)

INTEGER :: appl = 0 ! application method

! weighing factor for "nudging" 1 = hard nudging

REAL(dp) :: fac = 1._dp

END TYPE T_EXCH_P_IO

! MAXIMAL NUMBER OF EXCHANGE FIELDS

INTEGER, PARAMETER :: NMAX_P_EXCH = 100

TYPE(T_EXCH_P_IO), DIMENSION(NMAX_P_EXCH) :: PFIELD

TYPE(T_EXCH_P_IO), DIMENSION(NMAX_P_EXCH) :: DEFAULT_PFIELD

TYPE T_P_EXCHG_DATA_IO

! use generalised humidity couplings

LOGICAL :: lgrhum = .FALSE.

INTEGER :: i_rmy_px = 0

REAL(dp) :: pcontrol_fi = 30000.

62 Kerkweg et al.: MMD user manual

INTEGER :: itype_fw = 2

INTEGER :: icosexp = 14

REAL(dp) :: damprel = 0.2_dp

INTEGER :: itype_VI = 1

INTEGER :: RCF = 10000

INTEGER :: RCF_in = 10000

LOGICAL :: ldiagonly = .FALSE.

TYPE(T_EXCH_P_IO), DIMENSION(NMAX_P_EXCH) :: FIELD

! allow for free boundary layer

LOGICAL :: lfreeslip = .FALSE.

LOGICAL :: lcpl_gs = .FALSE.

END TYPE T_P_EXCHG_DATA_IO

TYPE(T_P_EXCHG_DATA_IO), DIMENSION(:), ALLOCATABLE :: PIO

Here, PIO of TYPE t_p_exchg_data_io contains all possible contents of a CPL_PAR_CHILD namelist,
while PFIELD of TYPE t_exch_p_io is required to read the array of exchange fields (see Sect. 3.4).
The 1D array variable PAR is of the derived type T_COUPLE_P and contains all information required for
the coupling of all child instances of a specific parent. It is allocated to the number of coupled child
instances early during the initialiation. This structure contains the 1D array variable CplData, which
is of type T_COUPLE_P_DATA, providing all data required for the coupling of the individual field. This
is allocated to the actual number of exchange fields for the respective child at the end of the namelist
interpretation (see Sect. 6.1.3).

! PARENT CplData STRUCT

TYPE T_COUPLE_P_DATA

! CHANNEL AND CHANNEL OBJECT NAMES IN PARENT

TYPE(t_chaobj_cpl) :: Parentname

TYPE(t_chaobj_cpl) :: Parenttend

TYPE(t_chaobj_cpl) :: Childname

! POINTER TO FIELD in Parent model which will be changed

! (i.e. for prognostic variables the tendency !)

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: target => NULL()

! POINTER TO FIELD in Parent model required for tendency calulation

! (i.e. the m1 field for prog. vars, otherwise nothing !)

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: targetm1 => NULL()

! POINTER TO FIELD yielding the interpolated Child fields

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr => NULL()

! TRACER INDEX

INTEGER :: idt = -99

! REPRESENTATION OF PARENT FIELD

INTEGER :: rank

! coupling to tendency

LOGICAL :: lte = .FALSE.

INTEGER, DIMENSION(4) :: ldimlen=0

INTEGER, DIMENSION(4) :: gdimlen=0

! STRING ORDER OF AXES

Kerkweg et al.: MMD user manual 63

CHARACTER(LEN=4) :: AXIS

! FLAG FOR INTERPOLATION METHOD

! 1 conservative

! 2 bilinear ... (to be implemented)

INTEGER :: interp = 0

! FLAG FOR APPLICATION METHOD

! 0: as 1: only possible for input fields (i.e., channel objects made by

! ’mmd2way_parent’ itself, not for tendency calculation, not for

! tracer (for the parent, the source can of course be a

! tracer!)

! for appl = 0 the input field is simply transformed to the

! full 2D/ 3D parent grid (where frac >0.9999) without

! application of any weight function

! flagged (i.e., they are /= 0 only where the weigth function is 1

! 1: field exists only in GridPoint (1) => change tendency

! will be worked on in global start

INTEGER :: appl = 0

! weighing factor for "nudging" 1 = hard nudging

REAL(dp) :: fac = 1._dp

! Representation String

CHARACTER(LEN=STRLEN_MEDIUM) :: REPR

! is time dependent ? (relevant Only for COSMO parent)

LOGICAL :: ltimedep

! mmd parent has to define its own memory

LOGICAL :: l_SentUnit = .FALSE.

END TYPE T_COUPLE_P_DATA

TYPE T_COUPLE_P

! NUMBER OF EXCHANGE FIELDS

INTEGER :: NEXCH

TYPE (T_COUPLE_P_DATA), DIMENSION(:), POINTER :: CplData => NULL()

! POINTER for DATA EXCHANGE TIMING

REAL(DP), POINTER :: Waittime => NULL()

! Lon /Lat of incoming data

REAL(kind=dp), DIMENSION(:,:,:), POINTER :: all_plon => NULL()

REAL(kind=dp), DIMENSION(:,:,:), POINTER :: all_plat => NULL()

! weight fractions summed over all child PEs

REAL(dp), DIMENSION(:,:), POINTER :: frac => NULL()

REAL(dp), DIMENSION(:,:), POINTER :: mask => NULL()

INTEGER :: kmin

REAL(dp), DIMENSION(:), POINTER :: kminfac => NULL()

! weighting function

REAL(dp), DIMENSION(:,:), POINTER :: wf => NULL()

! ENTRIES FOR GENERALIZED HUMIDITY COUPLING:

! use generalised coupling

64 Kerkweg et al.: MMD user manual

LOGICAL :: lgrhum = .FALSE.

! data index for vapor

INTEGER :: idx_qv = -99

! data index for cloud water

INTEGER :: idx_qc = -99

! data index for cloud ice

INTEGER :: idx_qi = -99

! data index for meridional wind

INTEGER :: idx_u = -99

! data index for zonal wind

INTEGER :: idx_v = -99

! data index for deriv. of meridional wind

INTEGER :: idx_t = -99

! data index for surface pressure

INTEGER :: idx_ps = -99

! NAMELIST SWITCHES

! treatment of boundary zone for back transition

INTEGER :: i_rmy_px = 0

REAL(dp) :: pcontrol_fi = 30000.

INTEGER :: itype_fw = 2

INTEGER :: icosexp = 14

REAL(dp) :: damprel = 0.2_dp

INTEGER :: RCF = 10000

INTEGER :: RCF_in = 10000

LOGICAL :: ldiagonly = .FALSE.

! itype_VI switches the vertical interpolation of C2E

! == 1 => NCREGRID

! == 2 => INT2LM inverse (MesoTel version)

INTEGER :: itype_VI = 1

!

! allow for not forced boundary layer

LOGICAL :: lfreeslip = .FALSE.

LOGICAL :: lcpl_gs = .FALSE.

REAL(DP), POINTER, DIMENSION(:,:) :: aps => NULL()

END type T_COUPLE_P

TYPE(T_COUPLE_P), DIMENSION(:), ALLOCATABLE :: PAR

! ---

The meaning of the components of the derived type variables has already been explained in Sect. 3.4
or will be explained in the following.

Kerkweg et al.: MMD user manual 65

6.1.1 mmd2way parent initialise

In addition to the inquiry of the number of child instances and the initialisation of the MMD library,
which both are required for the 1-way coupling, the variable PAR is allocated to the number of child
instances and the parent namelists in the namelist file mmd2way.nml are read. As explained in Sect. 3
the mmd2way.nml namelist file can contain an arbitrary number of &CPL_PAR_CHILD namelists. These
namelists are attributed to one specific child instance by the entry INSTANCE. If the number given
by INSTANCE is the index of one of the child instances of the parent, this specific namelist is used.
However, the first &CPL_PAR_CHILD namelist in the namelist file mmd2way.nml determines the default
setting, which will be used for all instances, for which no individual namelist is provided.

At the end of the subroutine mmd2way_parent_initialize the derived type array PIO, containing
all information available from the namelist is filled completely.

6.1.2 mmd2way parent init memory

In a loop over all child instances of the specific parent, memory is allocated for fields required for the
backward transfer from the child instance:

• The channel object ’weightfrac’ is a horizontal field containing for each grid cell the fraction
overlapping with the area sent by the child model.

• The channel object ’weightfunc’ is a horizontal field and provides the weight with which each
grid cell will be weighted, when applied to an existing field of the parent. This weight function
depends on the chosen type (namelist parameter itype_fw) and is calculated by the child (see
page 72).

• The channel object kminfac, which is a vertical column and contains the vertical weighting
coefficients for the vertical application of the field.

For each child model, the index of the child model is appended to the channel object name, as the
names of the channel objects for one parent need to be unique.

6.1.3 mmd2way parent init coupling

The subroutine mmd2way_parent_init_coupling performs the main parts for the child-parent cou-
pling.

• interpret parent namelist:
The interpretation of the parent namelist entries works in the same way as the interpretation of
the namelist of the child for child-to-parent coupling. The namelist can contain wildcards. In
this case, the respective child channel must contain the same objects as the parent model channel.
The namelist parameters are described in detail in Sect. 3.4. After the analysis of the namelist,
the component CplData of the derived type variable PAR is allocated to the number of respective
exchange fields and filled with the contents of the intermediate input / output variable PIO. As
this investigation is performed only in the I/O PE, finally the content of PAR is broadcasted to
all parent instance PEs.

• In a loop over the child models the namelist content is sent to the respective child model.
However, while the control parameters are simply broadcasted, the fields are transfered via the
MMD library:

66 Kerkweg et al.: MMD user manual

– MMD P Set ParDataArray Name: The MMD library is filled with required informa-
tion about the exchange fields. These are: the parent channel and channel object name, the
child model channel and channel object name, the representation, the interpolation method
and a LOGICAL determining whether the unit of the coupled field should be sent from the
child to the parent.

– The namelist input determining the size and the weights of the area coupled back to
the parent, plus some additional information are sent to the respective child model using
MMD_Inter_Bcast. The respective namelist switches are: lgrhum, i_rmy_px, pcontrol_fi,
itype_fw, icosexp, damprel, RCF, RCF_IN, itype_VI and ldiagonly.

• In a second loop over the child instances (loop index ic),

1. the parameter rdheight, indicating the height in which the damping at the model top
starts, is received from the respective child model via the MMD library subroutine
MMD_Recv_from Child. As the damping zone is not coupled back to the parent model,
the parent model subsequently calculates the vertical index of the layer of its own model
domain, in which rdheight is located and above which the coupling coefficients are zero.
This index (PAR(ic)%kmin) is sent to the child model and used later on in both models to
define channel objects of reduced height for the exchange fields.

2. the subroutines MMD_P_Get_DataArray_Name and Setup_Child_Area are called. They are
both required for the 1-way coupling.

3. the subroutine Setup_ParData_Exchange is called. In this subroutine the index_list for
the parent-to-child coupling is calculated. The procedure is the same as for the child-to-
parent coupling as described in Sect. 5.2.1 (more specific page 58). The index_list is sent
to the child via MMD_Send_to_Child. The exchange information required by the parent
are finally acquired by calling the MMD library subroutine MMD_P_Get_ParIndexList. In
addition to the direct grid association information, two additional fields are received:

– the fractional overlap of the child model grid with the respective parent grid box
(PAR(ic)%frac), and

– the weight function (PAR(ic)%wf) containing the weights that should be assigned to
the respective parent grid box calculated by the child.

At the end of the subroutine, a mask for the fields that are influenced by more than 99,999%
is calculated allowing for simpler postprocessing of data only defined in the coupling region.

4. At the end of this loop over the child instances the subroutines
Setup_Data_Exchange_with_Child and Define_data_arrays are called. Both have
been explained in the context of the 1-way coupling.

• In a third loop over the childrn (loop index ic), the memory is set up for the exchange of the
exchange fields. Additionally, the vertical nudging coefficient is calculated.

1. The newly calculated index PAR(ic)%kmin is used to define two new representations for
the coupling fields with reduced height, i.e., the 3D representations ’GP_3D_RDCX’ and
’GP_3D_RDCXp1’ for mid point and interface fields are defined.

2. The nudging factor for the vertical Par(ic)%kminfac is calculated. In all vertical levels
below Par(ic)%kmin it is preset with 1._dp. From Par(ic)%kmin on to the model top it
is preset with 0._dp. At the moment a quarter cosine function is prescribed, which is zero
at level Par(ic)%kmin and reaches 1._dp 10 levels below.

Kerkweg et al.: MMD user manual 67

For experimental purposes a similar function can be used at the surface by setting the
namelist switch lfreeslip = .TRUE.. But this cosine function spreads over 3 levels only.

3. Finally, the memory required for the exchange fields is allocated in a loop over the coupling
fields, established by calling the MMD library function MMD_P_GetNextParArray. Different
cases are accounted for:

– A prognostic variable should be changed by the coupling by influencing its tendency:

∗ For later use the LOGICAL switch Par(ic)%CplData(ii)%lte is set .TRUE. indi-
cating that the tendency will be changed.

∗ The POINTER to the tendency field (Par(ic)%CPLData(ii)%target) is associated
to the respective parent model field by calling the subroutine get_channel_object.

∗ The POINTER to the prognostic field at the end of the last time step
(Par(ic)%CPLData(ii)%targetm1) is associated to the respective parent model
field by calling the subroutine get_channel_object.

∗ In a next step, the information, if the prognostic field includes a dimension for
time levels (as is the case for many COSMO model variables), is generated. If such
a dimension exists the LOGICAL switch Par(ic)%CPLData(ii)%ltimedep is set to
.TRUE..

– A prognostic variable should be changed by changing the prognostic field itself:

∗ The POINTER to the prognostic field (Par(ic)%CPLData(ii)%target) is associated
to the respective parent model field by calling the subroutine get_channel_object.

∗ The POINTER (Par(ic)%CPLData(ii)%targetm1) is NULLYfied in this case. Note:
the POINTER Par(ic)%CPLData(ii)%target always points to the object which
should be changed.

∗ In a next step, the information if the prognostic field includes a dimension for time
levels (as is the case for many COSMO model variables) is generated. If such a
dimension exists the LOGICAL switch Par(ic)%CPLData(ii)%ltimedep is set to
.TRUE..

– The field is only diagnostic input to the parent and the parent has to allocate the
memory for this field itself:

∗ In this case a new channel object is created by calling the subroutine
new_channel_object. Additionally, if the knowledge of the unit was requested
(Par(ic)%CPLData(ii)%l_SentUnit ==.TRUE.), the unit is acquired from the
child model by calling MMD_Inter_Bcast. Subsequently, the received unit is de-
fined as a channel object attribute.

Independent of the target field, memory for the exchange field needs to be allocated. De-
pendent on the representation of the target field, the representation of the exchange field
is determined. Subsequently, the POINTER (Par(ic)%CPLData(ii)%ptr) is allocated by
calling the subroutine new_channel_object.

Afterwards, additional information, as the rank, the axis string and the global and local field
length are acquired by calling get_representation_info. The newly allocated field, and the
information about the local dimensions and the axis string are provided to the MMD library
upon calling the MMD library subroutine MMD_P_Set_ParDataArray.

68 Kerkweg et al.: MMD user manual

To enable a special treatment of certain prognostic variables (especially for diagnostics during
the development phase) the indices of these variables are saved.

At the very end of the subroutine mmd2way_parent_init_coupling the MMD library routine
MMD_P_SetInd_and_AllocMem is called. This is required for 1-way and 2-way coupling. Internally,
in the case of 2-way coupling the memory of the exchange buffer is allocated to the maximum size
required for the data exchange.

6.1.4 mmd2way parent global start

If the coupling to the child is due, the buffer is filled here. The only difference to the 1-way coupling
is, that the Waittime is not investigated here in case of 2-way coupling.

6.1.5 mmd2way parent global end

The subroutine mmd2way_parent_global_end is called three times, therefore the subroutine is called
with a parameter flag. The call with flag=2 invokes the exchange of the TIMER status. This has
already been discussed in 4.2.1.

In the calls with flag=1 or flag=3 the actual change of the parent fields takes place. In a loop over
the child instances,

1. it is checked, whether this time step is a coupling time step. If so, for flag=1 first the buffer
exchange takes place by calling the MMD library routine MMD_P_GetBuffer. In the case of
actual 2-way coupling the Waittime is provided by MMD_P_GetBuffer. The times are necessarily
inquired, after the child model had the access to the exchange buffer. Thus different locations
for the Waittime inquisition are required.

2. for flag = 1 or 3 the subroutine mmd2way_parent_couple_gp is called. Depending on the flag
the tendencies (flag=1) or the full fields (flag=3) are changed.

If ECHAM5 is the parent instance the calls proceed just one after the other (in the order 1,3,2), while
for a COSMO parent, the subroutine is called from three distinct points in the time loop: flag=1 is
called before the subroutine call to organize_dynamics(’compute’, ...), as in this subroutine the
integration of the tendencies proceeds, the tendencies need to be changed beforehand. flag=3 and
flag=2 are called directly before the COSMO model subroutine call organize_data(’result’, ...).
Note, that the order of the calls is flag=3, flag=2 as the exchange of the timer information is
performed last.

Within the subroutine mmd2way_parent_couple_gp in a loop over all exchange fields, first it is
tested whether the current field should be changed in this call, i.e., tendencies are only changed
if flag=1 and Par(ic)%CPLData(ii)%lte = .TRUE., fields are only directly changed, if flag=3 and
Par(ic)%CPLData(ii)%lte =.FALSE.. Otherwise the loop is cycled.

For each field loops over the two horizontal (index jp, jrow) and the vertical dimensions (jk) are
performed. For 3D fields, the vertical loop reaches from Par(ic)%kmin down to the surface.

For each horizontal grid box it is checked, if the grid box is fully covered by the child domain
(Par(ic)%frac(jp,jrow) > 0.99999_dp). If so, a weight factor fc is calculated as product of

Kerkweg et al.: MMD user manual 69

the weight function fw (PAR(ic)%wf) at that point, the fields individual nudging factor ffield
(Par(ic)%CPLData(ii)%fac) and the vertical nudging factor fkmin (Par(ic)%kminfac(jk)):

fc = fw(jp, jrow) ∗ ffield ∗ fkmin(jk) (1)

The actual change of the target field Ft, due to an intermediate field Fcoup is subsequently calculated
by:

Ft = (1− fc)× Ft + fc× Fcoup (2)

Depending on the coupling method Fcoup is calculated differently:

• change of direct field: For the direct change of the field, Fcoup is simply the field received
from the child model, i.e., the exchange field (Par(ic)%CPLData(ii)%ptr, Fexch).

Fcoup = Fexch (3)

• change of tendency: If the tendency of a prognostic field is changed, Fcoup is the ten-
dency, invoked by the difference of the field at the end of the previous time step Ftm1

(Par(ic)%CPLData(ii)%targetm1) and the exchange field

Fcoup = (Fexch − Ftm1)/dt (4)

As in this case, the target field is a tendency field the difference needs to be divided by the time
step length (dt).

The above mentioned procedure is the usual one, if the application method “1” is chosen for the field.

A special case has been implemented for the coupling of input fields. With application method “0” the
weighting of the field is switched off. Thus, the full field as received from the child model is written
to the parent channel object, on those grid boxes which are completely covered by child model grid
boxes.

In the end, for the COSMO model the target field needs to be distributed to the halo regions in each
local domain. Thus the subroutine exchg_boundaries is called for each field.

6.1.6 mmd2way parent free memory

Some additional variables are deallocated in mmd2way_parent_free_memory, which have been allo-
cated for the 2-way coupling.

6.2 The child instance

For the parent coupling the MMD child instance sub-submodel MMD2WAY CHILD contains one
additional data structure including all information required for the backward coupling to the parent.

TYPE T_P_COUPLE_DATA

! CHANNEL AND CHANNEL OBJECT NAMES IN Child

TYPE(t_chaobj_cpl) :: name

! POINTER TO CHILD FIELD

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_ori => NULL()

70 Kerkweg et al.: MMD user manual

! POINTER TO INTERPOLATED FIELD

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_int => NULL()

! POINTER TO horizontally INTERPOLATED FIELD

REAL(DP), POINTER, DIMENSION(:,:,:,:) :: ptr_hint => NULL()

! Interpolation Method

INTEGER :: interpM

LOGICAL :: l_SentUnit

INTEGER :: idt = -1

! Representation String

CHARACTER(LEN=STRLEN_MEDIUM) :: repr

! ORDER OF AXES IN REPRESENTATION (’X’,’Y’,’Z’,’N’)

CHARACTER(LEN=4) :: AXIS= ’’

! rank of data

INTEGER :: rank = 0

! DIMENSION LENGTH

INTEGER, DIMENSION(4) :: ldimlen=0

! time dependent prognostic variable?

! 0 = not time dependent, 2=time dependent+ horizontal field (2 space dims)

! 3 = time dependent, 3 space dimensions

INTEGER :: itimedep = 0

! SCRIP DATA

TYPE(t_scrip_data), POINTER :: PSD => NULL()

! SCRIP DATA ID

INTEGER :: SD_ID

END type T_P_COUPLE_DATA

TYPE(T_P_COUPLE_DATA), DIMENSION(:), ALLOCATABLE :: ParData

The individual structure components are:

• the name of the channel and channel object in the child instance,

• the POINTER ptr_ori to the original variable in the child, which is coupled back to the parent,

• the POINTER ptr_int, which contains the field remapped to the the out-grid (≈ parent grid),

• the POINTER ptr_hint, which contains the field after horizontal remapping to the out-grid, but
still without vertical remapping,

• the horizontal remapping method interpM, for which currently only interpM == 1 is imple-
mented, i.e., conservative remapping via SCRIP,

• the LOGICAL l_SentUnit. If .TRUE. the unit of the coupled field is required by the parent model
and is sent during the initialisation process.

• the tracer index idt. If idt /= -1, the coupled field is a tracer. This is important information,
as the access of the tracer fields is slightly different as for other prognostic fields.

• the representation repr of the coupled field. The representation is required by child and parent
during the initialisation phase for the dimensioning of the interpolated fields.

• the AXIS string indicates the order of the dimensions and is required by the MMD library for
the correct sorting of the exchange fields.

Kerkweg et al.: MMD user manual 71

• the rank of the coupled field is important as fields of different ranks are treated differently, e.g.,
rank 2 variables do not need to be interpolated vertically.

• the length of the local dimensions of the variable ldimlen is required by the MMD library for
the internal dimensioning of the exchange fields.

• the INTEGER itimedep indicates whether the field includes a time dimension. In this case, it
has to be taken care that the correct time slice is coupled.

• the derived type variable PSD is of TYPE t_scrip_data and contains all information required
for the remapping via SCRIP (see GRID User manual for more information).

• the INTEGER SD_ID provides the ID of the scrip data block.

In addition to the array of derived type variables ParData, some additional variables are required for
the coupling. These are

• the number of coupled fields PD_NUM, as requested by the parent.

• the number of additional fields PD_ADD, which are required for the interpolation procedure, e.g.
the surface pressure.

• a lot of indices indicating the position of a distinct variable in the array ParData. Some fields
need extra treatment before or during the remapping, i.e., the horizontal wind components u

and v need to be interpolated to the grid box mids if ECHAM5 is the parent.

• additionally, some in-fields from the child-to-parent coupling are required for the back transition
to the parent.

• an intermediate geopotential field p_fis is required.

• the dimensions and representation for the out-grid need to be defined and their IDs need to be
stored.

• the indices indicating the upper top layer of the coupled domain in the parent (par_kmin) and
in the child (chi_kmin), and the vertical extension of the horizontally remapped (ke_hint) and
the fully interpolated field (ke_int) are declared.

• additionally, the longitudes and latitudes of the rotated out-grid (rlons and rlats) have to be
known.

• the full 3D grid and the horizontal grid of the child and the out-grid (cgrid, chgrid, pgrid and
phgrid) are required for the GRID remapping tools.

• the indices of the reduced grid (iis, iie, jjs, jje), i.e., those grid boxes of the child grid,
which contribute to the field which is coupled back.

• loverlap indicates, if at all parts of the grid located on the respective local task are fed back
to the parent.

• conserv_idx is set to the first variable requiring conservative remapping. This was included,
as other remapping methods will be implemented in the future, and as the weight function
remapping requires the remapping weights. By setting this index it is omitted to calculate these
weights twice.

72 Kerkweg et al.: MMD user manual

• rmy_loc is a locally defined field, based on the COSMO model variable rmy indicating the
damping zone. rmy_loc indicates the region of the damping zone, plus the number of additionally
excluded grid boxes (see page 76).

• a simple mask, which is 1._dp where the fraction of the child model grid box contributes to the
exchange field by a weight larger than 0.9999_dp.

• The variable fractions contains the fraction to which each of the out-grid grid boxes is over-
lapped by the child’s grid. fracs is an intermediate version of fractions required for the
processing.

• hsurf_full is an intermediate field required for the vertical backtransition of the fields. The
horizontal interpolated field hsurf_full must be based on the full (including halo region) local
hsurf field (in contrast to the coupled fields themselves, which are horizontally interpolated on
the reduced grid).

• all parent namelist parameters determining the weighting and remapping procedure have to be
known to the child:

– i_rmy_px determines the “additional frame”, i.e., the number of grid boxes, which are
excluded from the backward coupling in addition to the relaxation zone.

– pcontrol_fi is the control geopotential. It should be the same as for the 1-way coupling.
Usually it is 30000 Pa.

– itype_fw determines the type of the horizontal weight function fw as calculated on the
child grid according to the parent namelist. fw_int is the result of the remapping of fw
to the out-grid. cofw_int is an intermediate field required for the processing. This weight
function fw is required to avoid artificial jumps at the borders of the area, where the fields
are relaxed to the child variables. Currently, the user can choose between three different
implementations by namelist:

0: fw is set to 1 everywhere in the child domain. This option is for testing only, as it may
lead to artificial jumps in the data.

1: fw is implemented as the sum of two cosine functions:

fw(i, j) = 1.− (cos(x)e + cos(y)e) with x = π × i

imax
; y = π × j

jmax
(5)

imax and jmax are the number of grid points in the two horizontal directions, respec-
tively. The exponent e is set by the namelist parameter icosexp. Its default value is
14.

2: fw decreases in the form of a cosine from 1 in the domain inner part to 0 at the
borders of the coupled domain. The width of the damping zone is determined by a
namelist parameter damprel. Its valid range is [0,0.5]. This number determines
the relative width of the damping zone. If, for example, damprel = 0.2 for a model
domain consisting of 100 grid boxes in x-direction (index i) and of 50 grid boxes in
y-direction (index j), the damping zone in x-direction is 20 grid boxes wide, and in y
direction 10 grid boxes wide, respectively.

All these weight functions are defined on the child grid. They are transformed in the
same way as the data will be transformed and sent to the parent for application during
the integration phase. Figure 16 displays the different weight functions for a domain over

Kerkweg et al.: MMD user manual 73

Figure 16: Weight functions (fw, see page 72) for the different weight types, i.e., itype fw = 0 (left),
= 1 (middle) and = 2 (right). Upper row: weight functions as calculated on the child grid. Lower
row: weight functions after transformation to the parent grid.

Europe. The upper row shows the weight functions as defined on the child grid. Note,
that the coupled domain is smaller than the child domain (with the exception of fw = 0).
This is because the damping zone of the regional model itself should not be coupled back
to the parent, as this is directly influenced by the parent and thus spurious damping or
amplifications for 2-way coupled variables can occur. The lower row of Fig. 16 shows the
same weight functions after the transformation to the parent grid.

– itype_VI gives the vertical remapping type. At the moment only itype_VI=1 is imple-
mented, i.e., vertical remapping via NREGRID.

– RCF and RCF_IN are used to avoid rounding errors in the calculation of the grid longitudes
and latitudes. In the COSMO model the longitude of a grid point with i (lon(i)) in the
local domain is calculated by

itot = isubpos(my_cart_id,1) - nboundlines - 1

lon(i) = startlon_tot + (itot + i) * dlon

This can lead to rounding errors. Therefore this calculation is shifted to integer arithmetic
to minimize these errors:

itot = isubpos(my_cart_id,1) - nboundlines - 1

istartlon = NINT(startlon_tot * RCF)

idlon = NINT(dlon * RCF)

itmp = istartlon + (itot+i) * idlon

lon(i) = REAL(itmp,dp) / RCF

Thus, RCF and RCF_IN should give as many decimals as dlon and dlon_in have significant
decimals. For example, a grid with dlon = 0.36 should get an RCF of 100.

74 Kerkweg et al.: MMD user manual

– ldiagonly is a switch, that can be used, if only fields for diagnostics are coupled. In this
case the surface pressure of the parent is used for the backtransition and the iteration of the
calculation of the vertical profiles of humidity/ water variables and temperature to calculate
the surface pressure is skipped.

• boxarea_out provides the area of each grid box of the out-grid.

• l_shortcut is a switch implemented for testing purposes. If .TRUE. the fields as received from
the parent are coupled directly back to the parent.

• The 2D POINTER array iterps and the arrays npsiter1, npsiter01, npsiter001, npsiter0001,
and npsitermax have been used during the development of the backward coupling. The
npsiterXX arrays provide the iteration number after which the surface pressure fields deviated
less than 1. Pa, 0.1 Pa, 0.01 Pa or 0.001 Pa from the surface pressure fields of the previous
iteration step, respectively. iterps contains the surface pressure after each iteration step, where
nitermax gives the number of possible iterations.

6.2.1 mmd2way child setup

The only parent-to-child coupling specific part in mmd2way_child_setup is that at the end of the sub-
routine the parameter nitermax is set. It depends on the parent. nitermax gives the maximal number
of iterations between the calculation of the surface pressure and the vertical profiles of temperature,
water vapour, cloud water and cloud ice, which is required during the vertical remapping.

6.2.2 mmd2way child init memory

In mmd2way_child_init_memory not only the preparations for both, the 1-way and the 2-way coupling,
are performed. In addition:

1. Two channel objects are created: the first one contains the horizontal weight function (fw) as
calculated on the child grid. The other contains the respective mask, which is 1 where fw is
larger than 0.9999._dp.

2. The MMD library subroutine MMDC_C_Get_ParDataArray_Name is called. This subroutine or-
ganizes the transfer of the information about the coupled fields required by the child for the
parent-to-child coupling. Its only parameter is the number of coupled fields requested by the
parent (PD_NUM).

3. The content of the child specific parent &CPL_PAR_CHILD namelist is broadcasted using the MMD
library subroutine MMD_Inter_Bcast. Subsequently, the parameters are saved in the respective
local variables, i.e., lgrhum, i_rmy_px, pcontol_fi, itype_fw, icosexp, idamprel, itype_VI,
lcpl_global_start, RCF, RCF_IN and ldiagonly.

4. The height of the damping layer (rdheight) is defined in height coordinates. For the coupling
this height is required to be in pressure coordinates (p_rdheight), which is calculated here.
Additionally, the index chi_kmin of the highest layer below the damping layer is determined.
p_rdheight is sent to the parent using the MMD library routine MMD_Sent_to_Parent. Subse-
quently, the parent sends back the corresponding vertical index of this height (par_kmin) in the
parent grid. This is required for the memory allocation of the exchange fields.

Kerkweg et al.: MMD user manual 75

5. The subroutine exchange_grids serves four purposes: (1) it determines the part of the child
domain, which is fed back to the parent; (2) the weight function is calculated, (3) the coupling
area for the 1-way coupling is set up (as described on page 31) and (4) the LOGICAL switch
L_gridrotParenteqChild is set.

(1) The local COSMO model field rmy containing the relaxation coefficients at the borders of
the child model domain is gathered and used for the definition of a global mask. rmy is
zero outside the relaxation zone, whereas it is larger zero in the relaxation zone. Thus, the
indices marking where in the global field the relaxation coefficients become zero (is_p3,
js_p3, ie_p3 and je_p3) are determined. These indices are similar to the usual COSMO
model notation, as (istart, jstart) marks the lower left corner of the local COSMO
domain, (is_p3, js_p3) mark the lower left corner of the coupling domain and (ie_p3,
je_p3) describe the upper right corner of the domain coupled back to the parent model.
If in addition to the relaxation zone further points should be excluded from the coupling
region, the index quadruple is adjusted by adding / substracting the respective number of
additional points (namelist parameter i_rmy_px). In the global field rmy_glob the grid
boxes excluded from the coupling are filled with dummy values larger than zero, indicating
that they do not contribute to the data coupled back to the parent. In the end the global
field rmy_glob is distributed again to the local tasks yielding the local decomposed field
rmy_loc. This is used in DEFINE_REDUCED_BM_GRID to determine the local start and end
indices for the data entering the remapping routines.

(2) The available weight functions have been discussed earlier (see page 72). First, the weight
function is calculated for a global field fw_glob. Afterwards the global weight function field
is distributed to yield the local decomposed weight function field fw.

(3) The LOGICAL switch L_gridrotParenteqChild indicates, if the grids of the parent and the
child are identically rotated. If ECHAM is the parent, this switch is always .FALSE., as
ECHAM uses a Gaussen grid and therefore the parent and child grids do not match anyway.
For the COSMO model as parent model, it is tested whether pollon, polgam and pollat

are the same for both models. In this case L_gridrotParenteqChild will be set .TRUE..
Alternatively, L_gridrotParenteqChild will be set .TRUE. if pollat_in == pollat and
one of pollon_in and polgam_in is 0._dp and the other 180._dp, while pollon and polgam

are defined the other way round. In this case the grid rotation is also the same.

6. In the subroutine parent_assign_ParData the definition of the coupled fields takes place.
Therefore, first ParData is allocated to the number of exchanged fields (PD_NUM) plus a max-
imum number of additional fields, which might be required for the remapping procedure.
At this point only the number of namelist requested fields is known, not the fields them-
selves, therefore the exact number of additional fields is not known and therefore the max-
imum number has to be used. In an endless loop (loop index ii) calling the MMD li-
brary function MMD_C_GetNextParArray, the name of the channel (ParData(ii)%name%CHA)
and the channel object (ParData(ii)%name%OBJ) of the coupled child field, its representation
(ParData(ii)%repr), the interpolation method (ParData(ii)%interpM) and the information,
if the unit of the field should be sent (ParData(ii)%l_SentUnit) are saved. For the special case
that an array is to be coupled, which is defined by MMD2WAY CHILD itself, a special action is
required during the child-to-parent coupling. Therefore the index of this field in the ParData ar-
ray has to be saved in the derived type variable (CplData). Thus, in this case CplData(ii)%scn

is set to the current loop index ii.

76 Kerkweg et al.: MMD user manual

7. In the subroutine match_parent_grid the weights for the remapping during the backward cou-
pling are calculated. First, the longitudes (rlons) and latitudes (rlats) of the grid mid points
of the rotated out-grid are calculated, and afterwards the subroutine CALC_backward_WEIGHTS

is called. Before the weights can be calculated in subroutine CALC_backward_WEIGHTS, the grids
for the remapping need to be defined.

• definition of reduced child grid
As discussed before, not the full child grid is used for the backward coupling. Thus first, the
start grid of the remapping, the so-called “reduced basemodel grid”, needs to be defined as
geo-hybrid grid. This is done in the subroutine define_reduced_BM_grid. The reduction
of the grid is twofold:

(a) In the horizontal the points of the relaxation zone plus the “additional frame” as given
by the namelist parameter i_rmy_px are excluded. In case of a very broad additional
frame, it can happen, that the local domains located at the border of the full COSMO
domain do not contribute any grid boxes to the backward coupling. In this case the
LOGICAL l_overlap is set to .FALSE. for an easier handling of “empty” or “non-active”
local domains.

(b) The vertical dimension can be reduced by the damping zone at the model top. Its
length is thus given by nlev+1-chi_kmin+1.

For the special case that the child and the parent are both COSMO instances and their grids
are rotated identically (indicated by the LOGICAL L_gridrotParenteqChild) the subrou-
tine define_rotred_BM_grid is called instead of the subroutine define_reduced_BM_grid.
This subroutine takes advantage of the identical rotation, which helps to avoid additional
numerical inaccuracies by additional grid rotations.

For the data processing this 3D grid and a horizontal grid are required. Thus in addition
to the reduced child grid (cgrid), the reduced horizontal child grid (chgrid) is defined by
using the GRID subroutines COPY_GEOHYBGRID and SWITCH_GEOHYBGRID.

• definition of the out-grid
The definition of the 3D and the horizonal out-grids (pgrid and phgrid) follows the same
lines as the definition of the reduced child grid. Here, the in-grid information as re-
quired for the 1-way coupling is used. The length of the vertical dimension is given by
ke_int = ke_in - par_kmin + 1.

• calculation of backward weights
For the horizontal remapping, SCRIP, as provided in the generic submodel GRID, is used.
Thus, the reduced child and parent grids, are used to define the grid information required
by the SCRIP software. This needs to be done for each field individually, as in principle
different remapping algorithms can be chosen for each field individually. The GRID sub-
routine CALC_SCRIPDATA extracts the information required by SCRIP from the geo-hybrid
grids cgrid and pgrid. These data are saved in the variable ParData(ii)%PSD. Subse-
quently, these are used to calculate the weights for the horizontal remapping (subroutine
call to CALC_SCRIP_WEIGHTS). For later use, the index fw_SD_ID is set to the index of the
first coupled field requiring conservative remapping.

• remapping of the weight function
As all information required for a horizontal remapping is now available, in a last step, the
horizontal weight function fw is remapped to the out-grid yielding the remapped horizontal
weight function fw_int. If the index fw_SD_ID is set, the remapping weights have already

Kerkweg et al.: MMD user manual 77

been calculated and can be used for the weight function remapping, otherwise, they are cal-
culated here. By calling the subroutine RGTOOL_CONVERT_DAT2VAR fw is converted to the 1D
format required by GRID. Afterwards, the remapping proceeds by calling SCRIP_CONTROL.
Finally, the remapped data are converted from the GRID 1D format to yield fw_int.

8. Setup ParData exchange
The subroutine Setup_ParData_exchange serves two purposes:

(a) It provides the data to calculate the IndexList for the data backtransition and re-
ceives the IndexList from the parent. This works in the same way as described for
Setup_data_exchange_with_parent for the data exchange between parent and child.

(b) The information which fraction of the out-grid is overlapped by the local reduced
child grid is retrieved. Principally, the SCRIP data contains the information
(ParData(conserv_idx)%PSD%wghts%dstfrac). As the SCRIP data is in the GRID 1d
format, it needs to be de-alined to yield the required 2d data field fractions. In the sub-
routine determine_fractions the destination fraction of a conservativly remapped field is
de-alined to yield a 2D array defined on the out-grid.

9. parent make representations
In this subroutine the representation for the channel objects defined on the out-grid are build.
First, six dimenions are defined:

• the first horizontal dimension ’MMDOUT_ie’ (dimension ID: DIMID_POUT_IE),

• the second horizontal dimension ’MMDOUT_je’ (dimension ID: DIMID_POUT_JE),

• the vertical dimension of the remapped field ’MMDOUT_kmin’ of length ke_int (dimension
ID: DIMID_POUT_KMIN),

• the vertical dimension for the interfaces of the remapped field ’MMDOUT_kminp1’ of length
ke_int+1 (dimension ID: DIMID_POUT_KMINp1),

• the vertical dimension of the horizontally remapped field ’MMDOUT_hint’ of length
ke_hint = ke - chi_kmin + 1 (dimension ID: DIMID_POUT_HINT),

• the vertical dimension for the interfaces of the remapped field ’MMDOUT_hintp1’ of length
ke_hint+1 (dimension ID: DIMID_POUT_hintp1).

Subsequently, by using these dimensions, the following representations with the decomposition
type DC_MMD_OUT are defined:

• REPR_POUT_2D (dimension ID: REPR_POUT_2D): the horizontal out-grid, defined by the di-
mensions ’MMDOUT_ie’ and ’MMDOUT_je’.

• REPR_POUT_3D_MID (dimension ID: REPR_POUT_3D_MID): the out-grid defined on the grid
mid-points, i.e., by the dimensions ’MMDOUT_ie’, ’MMDOUT_je’ and ’MMDOUT_kmin’.

• REPR_POUT_3D_INT (dimension ID: REPR_POUT_3D_INT): the out-grid horizontally defined
on the grid mid-points, vertically on the interfaces, i.e., by the dimensions ’MMDOUT_ie’,
’MMDOUT_je’ and ’MMDOUT_kminp1’.

• REPR_PHOUT_3D_MID (dimension ID: REPR_PHOUT_3D_MID): the horizontally remapped grid
defined on the grid mid-points, i.e., by the dimensions ’MMDOUT_ie’, ’MMDOUT_je’ and
’MMDOUT_hint’.

78 Kerkweg et al.: MMD user manual

• REPR_PHOUT_3D_INT (dimension ID: REPR_PHOUT_3D_INT): the horizontally remapped grid,
horizontally defined on the grid mid-points, vertically defined on the interfaces, i.e., by the
dimensions ’MMDOUT_ie’, ’MMDOUT_je’ and ’MMDOUT_hintp1’.

For the same five combinations of dimensions additional five representations are de-
fined using the decomposition type DC_MMD_OUTACC. Thus, the five respresentations
REPR_POUTACC_2D, REPR_POUTACC_3D_MID, REPR_POUTACC_3D_INT, REPR_PHOUTACC_3D_MID and
REPR_PHOUTACC_3D_INT are defined. “ACC” indicates that these objects need to be “accumu-
lated” when written to a file. Normally, the fields on the COSMO grid consist of the so-called
“inner domain” and a halo-region. The inner domains are disjunct on all PEs. Thus, for the
output the content of the inner domains of each task is dumped to the output file. This is
different for the fields remapped to the out-grid. Here, each task contains the fraction, which
was covered by the reduced child grid. Thus on output, to yield the full field, all fractional
contributions of the single tasks need to be summed up. This is invoked by the decomposition
type DC_MMD_OUTACC.

10. parent set ParData
In the subroutine parent_set_ParData, the channel objects for the back transition are defined.
These are:

• the interpolated weight function fw_int,

• the fractions of the out-grid covered by the local task,

• the arrays for the diagnostics of the surface pressure iteration, and

• the area of the out-grid grid boxes boxarea_out.

In a loop over all coupled fields

(a) the indices of variables, which require special treatment during the remapping are saved.

(b) depending on the representation of the field, the new channel objects for the backtransi-
tion, i.e., ParData(ii)%ptr_hint and ParData(ii)%ptr_int are defined, using the above
mentioned representations.

(c) the rank, AXIS string and the length of the local dimensions ldimlen are inquired by calling
get_representation_info.

(d) by calling the MMD library subroutine MMD_C_Set_ParDataArray, the memory and the
dimension information are provided to the MMD library.

For later use, during this loop an index of a field remapped with interpolation method 1
(idx_int1) and of a field which coupled field is of representation GP_3D_MID (index idx_p_3d)
is saved.

Finally, additional fields are added to the list of fields that need to be remapped. Basically, these
are all variables which are required for the adjustment of the vertical profiles, i.e.,

• for ECHAM as parent instance: the surface pressure ’PS’, the surface geopotential ’FIS’,
the control level geopotential ’FIC’, the 3D pressure field ’PRES’, the 3D temperature field
’T’, water vapour ’QV’ and cloud water ’QC’

• for COSMO as parent instance: the 3D temperature field ’T’, the surface pressure ’PS’,
the surface temperature ’T_S’, the height of the surface ’HSURF’ and the 3D deviation of
the pressure field ’PP’.

Kerkweg et al.: MMD user manual 79

These fields are added by calling the subroutine add_parent_list_element.

11. Finally, in the subroutine init_parent_coupling, the POINTERs to the child fields of the cou-
pled fields are acquired. In the simplest case, this is achieved by calling get_channel_object.
Additionally, if the unit of the coupled field is required by the parent model, the unit is sent here.

In some very specific cases the memory needs to be allocated in MMD2WAY CHILD itself,
which is done by first finding the correct representation ID by calling the CHANNEL subroutine
get_representation_info using the representation as sent by the parent ParData(ii)%repr.
Secondly, the memory is allocated by calling new_channel_object using the representation ID.

Finally, for both cases the information, if the coupled child field depends on time
(ParData(ii)%itimedep), is set by inquiring, whether the representation of the child field con-
tains the timelevel dimension ID DIMID_TLV.

6.2.3 mmd2way child init loop

In mmd2way_child_init_loop no backward coupling specific tasks need to be performed.

6.2.4 mmd2way child global end

Apart from the exchange of the TIMER information, which is already required for the 1-way coupling,
in mmd2way_child_global_end the remapping of the fields to the out-grid and the data exchange
from the child to the parent takes place. The latter consists simply of the call of the MMD li-
brary routine MMD_C_FillBuffer. However, the subroutine interpol_parent_data contains the full
machinery for the remapping of the child fields to the out-grid. Chronologically, in the subroutine
interpol_parent_data in a loop over the coupling fields

1. the vertical extend of each field is determined by setting the two indices kkmin and kkmax. For
a 2D field both indices are 1, for a 3D field is kkmin = chi_kmin, i.e., the first level below the
damping layer, and kkmax = SIZE(ParData(ii)%ptr_ori,3), i.e., the vertical dimension of the
coupled field.

2. the POINTER to the COSMO field, that should be coupled is associated. For the variables, which
require specifically precalculated fields and not the original COSMO data the POINTER PTR is set
to this specific field, otherwise PTR is set generically to the coupled field assigning automatically
the region, that should be coupled, i.e., reduced to the reduced horizontal domain (iis:iie,
jjs:jje), the reduced height (kkmin:kkmax) and the correct timelevel (tlev:tlev).

3. the data is transformed to the GRID internal 1D format using the GRID subroutine
RGTOOL_CONVERT_DAT2VAR, if the POINTER is associated,. Afterwards, the horizontal remap-
ping proceeds within the subroutine SCRIP_CONTROL. This subroutine hands back the remapped
field in the 1D GRID format. This variable is transferred back by calling the GRID subroutine
RGTOOL_CONVERT, which result (dat) is the horizontally remapped field ParData(ii)%ptr_hint.
Additionally to the data transformation, the intermediate 3D grid intgrid, i.e., the grid on
which ParData(ii)%ptr_hint is defined (i.e., horizontally equal to the out-grid and vertically
still the reduced COSMO model grid), also output by the subroutine SCRIP_CONTROL is saved
in the variable phgrid_3d, as this is required for the vertical regridding.

80 Kerkweg et al.: MMD user manual

Last but not least, the vertical remapping takes place. The sequence of surface pressure adaptation
and vertical remapping is adopted from the respective procedures in INT2LM. Different algorithms
are called depending on the parent instance:

• ECHAM is parent instance: vert interpol lm2echam

– First, a LOGICAL mask (lcalc) is defined, which is .TRUE. if the horizontal weight function
is larger than zero. This mask is used later on, to limit the calculations to those grid boxes,
where meaningful values exist.

– Second, the iteration of the surface pressure takes place. This step is skipped, if
ldiagonly=.TRUE.. In the latter case the original surface pressure of the parent model
is used. At the beginning of the iteration a first guess surface pressure is calculated using
the subroutine CALC_ALPS_1 which works in a similar way as calc_alps_1 in INT2LM.
Then, in an iteration loop, the vertical profiles for temperature, water vapour, cloud water
and cloud ice, are calculated based on the current surface pressure guess. Based on this
profiles a new surface pressure is calculated by the subroutine calc_alps_2, with which,
in the next cycle, new vertical profiles are calculated. For diagnostic purposes each step of
the iterated surface pressure is saved in a channel object and the differences between the
surface pressures of the individual iteration steps are analysed.

– After the iteration, the vertical profiles of all exchange fields are calculated using the “final”
surface pressure.

The vertical profiles are calculated using the subroutine vert_c2p_ncinterpol. Within this sub-
routine NREGRID as provided by the GRID submodel is used to perform the vertical remapping.
First, the definitions of the geo-hybrid grids of the in-coming grid is adapted to the needs of
only vertical regridding. Second, the surface pressure in the grid definition is set by calling the
GRID subroutine SET_SURFACE_PRESSURE. Afterwards, the data is converted to the 1D GRID
format by the GRID subroutine RGTOOL_CONVERT_DAT2VAR. The vertical remapping proceeds
within the subroutine REGRID_CONTROL. Finally, the INTENT(out) variable containing the fully
remapped field is filled, after the backtransition into the full three dimensional data field using
the GRID subroutine RGTOOL_CONVERT.

• COSMO is parent instance: vert interpol lm2lm
This subroutine is a copy of the INT2LM subroutine org_vert_inter_lm, which was adapted
to the backward coupling of the data.

– First, the reference atmosphere for the intermediate (only horizontally remapped) data is
calculated (here the hsurf_full field is required to avoid decomposition dependent results).

– Secondly, after computation of some helper variables, the pressure deviation field is verti-
cally remapped using the subroutine vert_interp. This subroutine is again a copy of the
INT2LM routine and performs a spline interpolation of the vertical profiles.

– Third, the vertical velocity is remapped vertically.

– Next, within a loop, all other variables are remapped vertically to the parent grid.

– In the end, the pressure deviation field is corrected, taking the new vertical profiles into
account.

Kerkweg et al.: MMD user manual 81

6.2.5 mmd2way child write output

As explained for the subroutine parent_make_representation (page 77) the channel objects of
decomposition type DC_MMD_OUTACC are summed up when the respective channel objects are gathered.
Thus the fields need to be multiplied by the fraction of the out-grid, which is covered by the child grid
on the respective task before the call to the MESSy output routines. After output was performed,
they must be divided by the fraction to yield back the original fields. This is done in the subroutine
mmd2way_child_write_output.

6.2.6 mmd2way child read restart

This subroutine calls mmd2way_child_write_output for the conversion of the fields into fractions.

6.2.7 mmd2way child write restart

This subroutine calls mmd2way_child_write_output for the summation of the fields.

6.2.8 mmd2way child free memory

In mmd2way_child_free_memory the memory required for the backward coupling is deallocated, i.e.,
p_fis, hsurf_full and ParData, in addition to the deallocations required for the 1-way coupling.

7 Changes in INT2LM code required for the MESSy submodel
INT2COSMO

Most changes to the INT2LM code have been embedded in the preprocessor directive I2CINC
(INT2COSMO IN COSMO). However, in order to improve the 2-way coupling additional extensions
have been added using the preprocessor directive MESSYTWOWAY. In this section the changes and the
reasons for them are listed for each code file. The files are listed in alphabetical order. The changes
refer to INT2LM version 2.00.

7.1 data fields lm.f90 /data fields in.f90

As all INT2COSMO fields are allocated as MESSy channel objects, they have to be declared as
POINTERs, instead of ALLOCATABLE ARRAYs. The definitions are replaced throughout the module for
all REAL arrays.

In data_fields_lm.f90 some extra fields are defined:

• zfi_fl, zhi_fl, zps1_lm, zkzgr: in the off-line INT2LM these fields are locally defined in-
termediate variables, which are used during the remapping. In INT2COSMO these fields
are also required for the remapping of the additional fields. Therefore, they are declared in
data_fields_lm.f90 and allocated as channel objects in messy_I2CINC_channel_alloc_lm.

• oromem_lm: this field is required in the subroutine external_data.f90. Here, the orography or
better the surface height at the first call of INT2LM must be saved and used in the next calls,
otherwise the results of INT2COSMO could depend on the restart frequency depending on the
parent.

82 Kerkweg et al.: MMD user manual

• geolon_lm, geolat_lm, geoloni_lm, geolati_lm: longitude and latitude fields in geographi-
cal coordinates for the INT2COSMO fields. They are required for the definition of the geo-hybrid
INT2COSMO grids, if conservative remapping is chosen.

• lon_lm, lat_lm, loni_lm, lati_lm contain the (interface) longitude and latitude fields in
rotated coordinates for the INT2COSMO fields. They are required for the definition of the
geo-hybrid INT2COSMO grids, if conservative remapping is chosen.

• psiter01_lm, psiter02_lm, psiter03_lm, psiter04_lm and psiter05_lm. These fields are
defined for diagnostic output during the development of the 2-way coupling. Thus they only
exist, if the preprocessor directive MESSYTWOWAY is active.

• fic2_gl, fic3_gl: these fields are only defined, if MESSYTWOWAY is active. They are used
for some diagnostic purposes during the development of the 2-way coupling.

In data_fields_in.f90 additionally the fields lon_in and lat_in are declared, which are required
for the definition of the geo-hybrid INT2COSMO grids, if conservative remapping is chosen.

7.2 data grid in.f90

In data_grid_in.f90 the indices for the local decomposed in-grid
istartpar_in, iendpar_in, jstartpar_in, jendpar_in takes place. These indices are re-
quired for the gathering of the fields defined on the in-grid if they should be written to the output.
Additionally, the two geo-hybgrids pingrid and pinhgrid are declared here. They are required for
the conservative remapping.

7.3 data grid lm.f90

Instead of declaring and defining the grid in INT2COSMO independently, the number (ke_soil_lm)
and depths (czmls_lm and czhls_lm) of the soil layers and the grid dimensions and orientation (dlon,
dlat, startlon_tot, startlat_tot, polgam, pollon, pollat, ielm_tot, jelm_tot and kelm_tot)
are USEd directly from the COSMO model and renamed to their INT2COSMO names:

USE data_modelconfig, ONLY: czmls_lm => czmls, czhls_lm => czhls &

, ke_soil_lm => ke_soil, ielm_tot => ie_tot &

, jelm_tot => je_tot, kelm_tot => ke_tot &

, dlon, dlat, pollat, pollon, polgam &

, startlat_tot, startlon_tot

Furthermore, four additional index variables are declared, which are required for the grid mapping
of the COSMO and the INT2COSMO grid (istartcos, iendcos, jstartcos and jendcos). The
meaning of these variables is explained in Sect. 5.1.4.

Additionally, for MESSy the knowledge of the hybrid grid coefficients is required during the model
initialisation. Therefore the fields ak_lm and bk_lm are declared.

Furthermore, for the conservative remapping and the backward coupling the respective geo-hybrid
grids are defined here:

Kerkweg et al.: MMD user manual 83

• i2cgrid: the INT2COSMO grid without halos and full vertical height

• i2chgrid: the purely horizontal INT2COSMO grid without halos

• i2cUgrid: staggered U INT2COSMO grid without halos and full vertical height

• i2cUhgrid: the purely horizontal staggered U INT2COSMO grid without halos

• i2cVgrid: staggered V INT2COSMO grid without halos and full vertical height

• i2cVhgrid: the purely horizontal staggered V INT2COSMO grid without halos.

Finally, the respective SCRIP data variables (I2C_SD, I2C_U_SD, and I2C_V_SD) and the indices of
the SCRIP data sets (I2C_SD_ID, I2C_U_SD_ID, and I2C_V_SD_ID) are declared here.

7.4 data int2lm control.f90

As INT2COSMO and the COSMO model need to be set up in the same way, some run control variables
are directly used from the COSMO model. Thus those declarations in data_int2lm_control.f90 of
the INT2COSMO namelist parameters, which are also declared for COSMO, are omitted.

USE data_runcontrol, ONLY: nstop, nstart, llake, lradtopo, lprog_qi &

, itype_calendar, idbg_level, lforest, lsso &

, lmulti_layer_lm => lmulti_layer &

, lemiss, lseaice, lstomata &

, lperi_x, lperi_y, l2dim, itype_aerosol &

, itype_albedo

USE data_io, ONLY: lbdclim

7.5 data int2lm io.f90

To make INT2COSMO as inherently consistent with the COSMO setup as possible, the variable
ydate_ini containing the start date of the simulation is USEd from the COSMO model module
data_io instead of being declared within this file.

7.6 data int2lm parallel.f90

As INT2COSMO is run in the same parallel environment as the COSMO model, most of the variables
are USEd from the COSMO module data_parallel, instead of being defined within INT2COSMO:

USE data_parallel, ONLY: ldatatypes,lasync_io,nprocx,nprocy,nprocio,nproc, &

num_compute, num_io,ncomm_type,my_world_id,my_cart_id, &

my_cart_pos,my_cart_neigh,igroup_world,icomm_world, &

icomm_compute,igroup_cart,icomm_cart,icomm_row, &

iexch_req,imp_reals,imp_grib,imp_integers,imp_byte, &

imp_character,imp_integ_ga,imp_logical,lcompute_pe,lreorder

84 Kerkweg et al.: MMD user manual

7.7 data parameters.f90

To be consistent, the KIND parameters are overwritten by those determined within the MESSy sub-
model messy_main_constants_mem.f90. ireals and idouble are set to dp, iintegers is set equal
to i4 and isingle to sp.

7.8 external data.f90

• The MESSy submodel MMD2WAY CHILD calls the subroutine external_data with an addi-
tional parameter: lread. This LOGICAL indicates whether the external data should be read
or not. When lread is .FALSE., the initialisation of the LOGICALs (indicating the existence of
specific variables in the external data file) with .FALSE. and the subroutine read_lm_ext are
not processed. Additionally, rootdp_mx must only be set, if data was read, i.e., lread=.TRUE..

• All parameters and variables determining the coarse grid are directly exchanged with the server
via MMD. Thus the subroutine read_coarse_grid_ext is not called in INT2COSMO. The
LOGICALs lfis_in and lfrla_in are set to .TRUE., according to the fields exchanged during
the on-line coupling.

• The variables fr_land_in, z0_in, plcov_in, plcmx_in, plcmn_in, rlaimx_in, rlaimn_in and
root_in are not deallocated from INT2COSMO. In INT2COSMO these variables are channel
objects and as such automatically deallocated by the CHANNEL submodel.

• The allocation of local_iso_points and its calculations are only performed at the first call of
INT2COSMO.

• The possibility to remap all variables with the conservative remapping provided by GRID was
added. Two (hard-coded) additional LOGICALs determine, whether the external data should be
remapped using SCRIP.

– l_interp_crl is used to change from linear interpolation (interpolation flag ’L’) to conser-
vative remapping. This concerns the fields ’FR LAND’, ’FIS IN’ and ’HSURF IN’.

– l_interp_crm is used to change from match point interpolation (interpolation flag
’M’) to conservative remapping. This concerns the fields ’Z0’, ’ROOT’, ’PLOCV MX’,
’PLOCV MN’, ’LAI MX’ and ’LAI MN’.

Both switches are experimental. Therefore they are .FALSE. by default.

• As already mentioned for the file data_fields_in.f90, it is important, that the calculation
of the fields hsurf_lm and fis_lm takes place with the same surface orography in all time
steps. Otherwise the results are restart frequency dependent. Therefore, the variable oromem_lm
contains a copy of hsurf_lm at the last time step, where external data was actually read.

7.9 interp utilities.f90

This code file contains all subroutines used for the horizontal remapping. Thus, for the on-line cou-
pling a subroutine interp_c was added, which links to the MESSy submodel GRID providing the
conservative remapping.

Kerkweg et al.: MMD user manual 85

7.10 setup int2lm.f90

• The memory allocation for the fields of INT2COSMO is modified (compared to INT2LM)
from allocating the fields to defining channel objects for them. For the definition
of channel objects the representations of these objects must be specified. Within
the subroutines messy_I2CINC_channel_make_MMDC4, messy_I2CINC_channel_alloc_lm and
messy_I2CINC_channel_alloc_cg, which are called from setup_int2lm, the dimensions and
representations required for the channel objects are created and the channel objects are defined.

• As INT2COSMO uses the parallelisation of the COSMO model, the subroutines
init_environment, init_procgrid, mpe_io_init and mpe_io_reconfig are skipped. On
the other hand, the arrays isubpos_in and isubpos_in_red are allocated and initialised here.
They are required for the on-line coupling to address the input fields correctly.

• INT2LM offers the possibility to measure the timing of different phases of the remapping process.
Most of the required calls occur in subroutines and in the main program, which are skipped in
INT2COSMO. Therefore, the initialisation of the timing located in setup_int2lm is skipped for
INT2COSMO too.

• The subroutine clm_setup provides utilities for the setup of climate simulations. However, as
this relies on input files not available for the on-line coupling this subroutine is skipped.

• The debug output file is renamed to ’YUDEBUG_i2cinc’, because the COSMO model also writes
a file named ’YUDEBUG’.

• At the end of the subroutine, the length of the sent buffer (isendbuflen) is determined. The cal-
culation relies on the knowledge of the decomposition of the INT2COSMO grid. In INT2LM the
local domains are equally dimensioned, depending on the total number of grid boxes (ielm_tot
or jelm_tot) plus the boundary lines (nboundlines) and the number of processes (nprocx or
nprocy). This is no longer correct in INT2COSMO. Here, the local domain size also depends
on the COSMO number of boundary lines (nboundlines_cosmo). This is taken into account in
the calculation of isendbuflen.

7.11 src 2d fields.f90

t_so_lm is defined in the vertical from 0:ke_soil+1. As channel objects can only be allocated starting
by 1, due to the used POINTER arithmetic, t_so_lm is allocated in the vertical by 1:ke_soil+2. This
has to be taken into account for the calculation of t_so_lm. For instance,

#ifndef I2CINC

t_so_lm(i,j,0) = t_s_lm(i,j)

ELSE

t_so_lm(i,j,0) = undef

#else

t_so_lm(i,j,1) = t_s_lm(i,j)

ELSE

t_so_lm(i,j,1) = undef

#endif

All places, where t_so_lm is calculated or used, are changed accordingly.

Additionally, the option of conservative remapping has been added for ’w_so_rel’.

86 Kerkweg et al.: MMD user manual

7.12 src cleanup.f90

In INT2COSMO the subroutine free_memory is almost completely skipped, as all fields deallocated
in INT2LM in this subroutine are declared as channel objects and thus deallocated automatically
within the CHANNEL submodel. Only the three LOGICAL (land-sea) masks lolp_lm, lolp_in and
lmask_lm are allocated manually in messy_I2CINC_channel_alloc_* as they can not be defined
directly as channel objects and thus are still deallocated within free_memory.

7.13 src coarse interpol.f90

• In case of INT2COSMO the on-line exchanged data is always handled similar to ’ncdf’ data.
Thus, for the undefined values always the undef flag undefncdf is used. In INT2LM the value of
the variable undef is determined by the type of the external data fields, i.e., undef = undefgrib

for grib-files and undef = undefncdf for netCDF-files. In INT2COSMO it is possible, that the
external file is in grib format, but the on-line data is processed like netCDF data. To ensure the
correct setting of undef, it is set to undefncdf before the remapping starts in INT2COSMO.

• To be able to treat the soil temperature in-field t_so_in as channel object, its vertical dimen-
sion is allocated by 1:ke_soil+2 instead of 0:ke_soil+1. The change of the indexing has to
be taken into account in src_coarse_interpol.f90, when calculating zdt_so and when the
remapping for the surface levels is called: i.e., CALL interp_l(t_so_in(:,:,1),...) in-
stead of CALL interp_l(t_so_in(:,:,0),...).

• The option to choose conservative remapping has been added for all fields.

7.14 src decomposition.f90

• As the parallel decomposition of INT2COSMO is matched with the parallel decomposition of
the COSMO model, the decomposition routine for the child model (decompose_lm) has been
partly rewritten as explained in Sect. 5.1.4.

• The call to the subroutine read_nc_axis is skipped, as all information about the parent are
exchanged on-line.

• The fields determining the in-grid, i.e., isubpos_in, isubpos_in_red and the indices
istartpar_in, iendpar_in, jstartpar_in and jendpar_in, are calculated in addition.

7.15 src lm fields.f90

Changes for the on-line coupling (preprocessor directive I2CINC):

• zfi_fl is an intermediate variable calculated within the subroutine org_lm_fields. As it is
required for the remapping of the additional fields as well, it is declared in data_fields_lm and
allocated as channel object.

• In order to interpolate the additional fields, the subroutines vert_int_lm and vert_z_lm have
been expanded to vertically interpolate all possible input variables and not only those specified
in the code by name.

Kerkweg et al.: MMD user manual 87

Changes for the backward coupling (preprocessor directive MESSYTWOWAY):
In the initialisation phase, qv_lm and qc_lm are calculated from the generalised humidity. Addition-
ally, the possibility to avoid the generalised humidity and directly interpolate the individial moisture
variables has been added.

7.16 src lm output.f90

First, due to the unification of the COSMO and INT2COSMO software packages, the routines
write_grib and write_gribapi require slightly different parameters in the off-line and the on-line
coupling. Additionally, due to the different handling of the variables defined from 0:ke_soil_lm+1

one if-statement had to be changed.

7.17 src namelists.f90

Most of the changes in this file are due to the fact, that in INT2COSMO many INT2LM namelist
switches are determined by the COSMO model or the parent model. Thus, they must not be read
in anymore. The following tables list (for each namelist) those variables excluded from the namelist.
The header of the column indicates the place (basemodel or MMD2WAY CHILD) where the variables
are set instead.

&contrl

Set by COSMO Set by COSMO Set by COSMO Set by MMD2WAY CHILD not valid for

(continued) (continued) on-line coupling

ydate ini lprog qi itype aerosol linitial

ydate bd itype calendar lemiss lboundaries lante 0006

hstart lforest lstomata lgme2lm lpost 0006

hstop lsso nhori lec2lm yinput model

hincbound lradtopo lseaice llm2lm

nincbound llake itype albedo lhm2lm

nincwait ldbclim lcm2lm

nmaxwait lasync io licon2lm

ytrans in lreorder itype w so rel

ytrans out lmulti layer lm itype t cl

nprocx ldatatypes l bicub spl

nprocy ncomm type

nprocio idbg level

Two more &contrl namelist parameters are not read anymore:

• nboundlines is not read from the namelist, as it is always 1 for INT2COSMO.

• lmulti_layer_in is set in accordance to lmulti_layer_lm for INT2COSMO.

88 Kerkweg et al.: MMD user manual

&grid in

Set by parent Set by parent Set by MMD2WAY CHILD

(continued)

ie in tot czml soil in lushift in

je in tot lvshift in

ke in tot

nlevskip

pollat in startlat in tot

pollon in startlon in tot

polgam in endlat in tot

dlat in endlon in tot

dlon in ke soil in

&lmgrid

Set by COSMO Set by COSMO

(continued)

ielm tot dlon

jelm tot dlat

kelm tot startlat tot

ke soil lm startlon tot

pollat czml soil lm

pollon czvw so lm

polgam

&data

not valid/needed for

on-line coupling

yinext cat

yinext lfn

ybitmap cat

ybitmap lfn

yin cat

ylm cat

nprocess ini

nprocess bd

yinext form read

yin form read

The namelists &prictr and &epsctl have not been changed. Checks required for the namelist switches
are omitted, if the variables were removed from the namelist.
Additionally, the default setting for the vertical coordinates and the reference atmosphere (subroutine
calls set_vcoord_defaults and set_refatm_defaults) are omitted, as these are called from the
COSMO model.

Kerkweg et al.: MMD user manual 89

7.18 src read coarse grid.f90

Of this module only the subroutine org_read_coarse_grid was modified for the implementation of
INT2LM as MESSy sub-submodel INT2COSMO:

• If called from MMD2WAY CHILD, the subroutine org_read_coarse_grid is called without any
arguments, as these are only required to read the data files, which is omitted in INT2COSMO.

• The file-type determination and read procedure dependent code blocks are skipped.

• The variable fic_in (control geopotential) is used for the remapping. As it is based on driving
model fields, it needs to be recalculated every time step at which remapping of boundary data oc-
curs, in order to get reproducible results. Thus, fic_in is calculated every time in INT2COSMO
by omitting the if-statement for var_in(mzfi_loc_in)%lreadin. Additionally, this calculation
has been modified for MESSYTWOWAY. Here qc_in and qi_in are taken into account for the
calculation of the virtual temperature ztv.

• In INT2COSMO the in-field for T_SO is in the vertical dimension defined from 1 to ke_soil+2

(instead of 0:ke_soil+1 in INT2LM). Thus, the surface temperature is copied to the index 1 in
INT2COSMO.

var_in(n)%p3(1:ie_in,1:je_in,1) = &

var_in(mzts_loc_in)%p2(1:ie_in,1:je_in)

7.19 src read ext.f90

• Due to the unification of the COSMO and INT2COSMO software packages, the routines
read_grib, read_gribapi, check_input_grid and mpe_io_read require slightly different pa-
rameters in the off-line and the on-line coupling.

• Due to the on-line coupling, the calculation of the surface geopotential field must be handled
slightly differently.

7.20 src read hhl.f90

Due to the unification of the COSMO and INT2COSMO software packages, the routine read_gribapi
requires slightly different parameters in the off-line and the on-line coupling.

7.21 src vert inter lm.f90

The variable zhi_fl, which is only temporarily calculated within the subroutine org_vert_inter_lm

in INT2LM, is also required for the remapping of the additional fields. Therefore, it is converted
to a channel object in INT2COSMO instead of being defined locally in INT2LM. Additionally, the
boundary layer height is stored in the channel object zkzgr.

Furthermore, the clipping of tracer mass mixing ratio or other additional fields smaller than 10−12 is
omitted for I2CINC.

90 Kerkweg et al.: MMD user manual

7.22 src vert interpol.f90

• In order to interpolate the additional fields, the intermediate variables zps1_lm and the boundary
layer top kzgr are converted to channel objects to be available in MMD2WAY CHILD. As kzgr
is an INTEGER and channel objects need to be of type REAL kzgr is stored in a REAL variable
called zkzgr.

• For test purposes, the possibility to vertically remap the individual hydrometeors instead of the
generalised humidity, is added (lgrhum =.FALSE.).

• To avoid rounding errors, in the subroutine uv_correction the latitude is calculated using the
indices of the total fields instead of the local indices.

Additionally, for the tests with the 2-way coupling, the iteration over the calculation of the vertical
profiles of temperature and moisture variables and surface pressure calculation has been added.

8 Changes in the COSMO code required for the on-line coupling

The COSMO model code has been changed for two reasons:

1.) The reading of the initial and boundary data files is obsolete and thus skipped, if the data
is calculated on-line by the MESSy submodel MMD2WAY CHILD. The preprocessor directive
I2CINC (INT2COSMO IN COSMO) accomplishes this.

2.) The internal MPI environment settings need to be adjusted to the MPI environment, as required
for the on-line coupling and managed by the MMD library. These changes are introduced using
the preprocessor directive MESSYMMD.

In this section the COSMO model source files changed by these two preprocessor directives are listed
and the changes are explained in detail.

8.1 Application of the preprocessor directive I2CINC

In organize_data.f90 the size of a buffer had to be adapted to the larger size required for
INT2COSMO. The only other modified file is src_input.f90. It manages the reading of the ini-
tial and boundary data. When the COSMO model is a child, the preprocessor directive I2CINC
prevents the opening and reading of the initial and/or boundary files:

#ifdef I2CINC

! SKIP READ-IN-PROCEDURE IN CASE OF I2CINC FOR ’initial’ and ’boundary’

IF ((ydata /= ’initial’ .AND. ydata/=’boundary’) &

.OR. (.NOT. L_IS_CHILD)) THEN

#endif

The variable undef is usually set in one of these skipped sections, for a defined preprocessor directive
I2CINC undef is set at the end of the section:

Kerkweg et al.: MMD user manual 91

#ifdef I2CINC

IF (yformat /= ’ncdf’) THEN

undef = REAL(undefgrib, ireals)

ELSE

undef = REAL(undefncdf, ireals)

ENDIF

#endif

In addition, specific variables are deallocated in COSMO without testing, if they were allocated. In
case of I2CINC, the state of the variables iblock, ibmap, ds_grib, ds_real, dsup and idims_id_in

is tested first, before they are deallocated.

8.2 Application of the preprocessor directive MESSYMMD

8.2.1 environment.f90

In its usual configuration the COSMO model is run in its own MPI environment. In this case
the model wide communicator icomm_world is equal to MPI_COMM_WORLD. When COSMO is run-
ning within an MMD environment, it only runs on a subset of the tasks of the MPI environment.
Therefore, the model wide group communicator needs to be provided by MMD. This is done within
the subroutine MMD_get_model_communicator. The subsequent use of the worldwide communicator
MPI_COMM_WORLD would lead to errors. Thus MPI_COMM_WORLD was substituted by the model wide
communicator icomm_world. To perform this substitution, the subroutine init_procgrid (part of
the module file src_setup.f90) is called with the additional parameter icomm_world.

The memory allocated by the MMD library needs to be released at the end of a simulation. Thus,
the MMD library subroutine MMD_FreeMem_communicator is called from the COSMO subroutine
final_environment.

8.2.2 src setup.f90

According to the changes in environment.f90 the subroutine init_procgrid has an additional pa-
rameter (icomm_world), which is used instead of MPI_COMM_WORLD within the subroutine.

9 Changes in the ECHAM5 code required for the on-line coupling

When ECHAM5/MESSy is the partiarch in the MMD setup, the MPI environment needs to be changed
accordingly. The preprocessor directive for these changes is the same as in COSMO, i.e., MESSYMMD.

9.1 mo mpi.f90

• If ECHAM5/MESSy is the only executable running in an MPI environment, the communica-
tor required to communicate with all PEs of this model is easily determined by duplicating
MPI_COMM_WORLD by calling the subroutine MPI_COMM_DUP into the model wide communicator
p_all_comm. When ECHAM5/MESSy is running within an MMD environment, the model wide
communicator p_all_comm is not equal to MPI_COMM_WORLD. Thus, the correct communicator is
determined by the MMD library subroutine MMD_get_model_communicator.

92 Kerkweg et al.: MMD user manual

• Before the simulation is terminated, the memory allocated by the MMD library needs to be
released. This is achieved by calling MMD_FreeMem_Communicator from the ECHAM5 subroutine
p_stop.

9.2 scan1.f90

One additional change had to be made, for ECHAM5/MESSy as parent. The temperature is not
initialised before the start of the time loop. But, when ECHAM5/MESSy is parent, the first action
taken in the time loop is to send the data for initialisation to the child model. Thus the temper-
ature needs to be initialised before the first call to messy_global_start in case of the very first
model start (lstart = .TRUE.). This is achieved by calling the ECHAM5 subroutine initemp before
messy_global_start when MESSYMMD is defined.

In the files mo_spitfire.f90, mo_semi_lagrangian.f90 and mo_tpcore.f90 the preprocessor direc-
tive XNOZEROINITEND is activated, which provokes that already calculated tendencies are taken into
account, avoiding, that the advection starts only from the ’m1’-value.

Glossary

In addition to the explanation of the individual terms, Fig. 17 illustrates the meaning of the different
coupling fields.

• additional field: An additional field is a field requested in the MMD2WAY CHILD namelist in
addition to the fields already taken into account by INT2COSMO. Furthermore, for the backward
coupling, additional fields are fields which are required in addition to the coupled fields for the
adaption of the vertically remapped profiles.

• attributes: Attributes represent time independent, scalar characteristics, e.g., the measuring unit.

• axis string: The axis string is defined for each representation. It indicates the order of the ’X’,
’Y’, ’Z’ and ’N’ direction, e.g., a 3D variable in COSMO/MESSy has the axis string ’XYZ-’,
whereas the same variable in ECHAM5/MESSy has the axis string ’XZY-’.

• boundary field: It is used to prescribe the variables at the model domain boundaries.

• break event: The break event is an event that is triggered each parent time step in order to receive
the information from the parent, whether the parent is going to be interrupted after the current
time step.

• channel: The generic submodel CHANNEL manages the memory and meta-data and provides
a data transfer and export interface (Jöckel et al., 2010). A channel represents sets of “related”
channel objects with additional meta information. The “relation” can be, for instance, the simple
fact that the channel objects are defined by the same submodel.

• channel object: It represents a data field including its meta information and its underlying ge-
ometric structure (representation), e.g., the 3D vorticity in spectral representation, the ozone
mixing ratio in Eulerian representation, the pressure altitude of trajectories in Lagrangian rep-
resentation.

Kerkweg et al.: MMD user manual 93

• coupling event: This is an event scheduling the data exchange from the parent to the child
instance. Its time interval has to be a multiple of the child and the parent time step lengths.

• coupled field: this term is only used for the backward coupling. This is the original child field,
which is requested in the parent namelist.

• coupling field: A coupling field is either an exchange field or a field required during the remapping
procedure: either by INT2COSMO, i.e., the fields deduced from the external parameters, e.g.
lai, rootdp, etc., or by the remapping algorithm for the backward coupling.

• dimensions: They represent the basic geometry of one dimension, e.g., the number of latitude
points, the number of trajectories, etc.

• driving model: The parent model as it provides the in-fields to INT2LM / INT2COSMO.

• event: This is a data type provided by the generic submodel TIMER, which is used to schedule
processes at specific (regular) time intervals, e.g., to trigger regular output or input during a
simulation. The event control is part of the MESSy generic submodel TIMER. The electronic
supplement of Jöckel et al. (2010) comprises a manual for TIMER and details about the event
definition.

• exchange field: An exchange field is a field requested within the
CPL_CHILD_COSMO/CPL_CHILD_ECHAM or in a CPL_PAR_CHILD namelist, which needs to
be provided by the sending model. For the 1-way coupling, an exchange field can either be
a field which is remapped and copied to a child model variable, or a field required for the
remapping itself. For the backward coupling, the exchange field is the field remapped by the
child model, which is sent to the parent.

• in-field: The in-fields are those fields provided by the parent or driving model, which are defined
on the in-grid which is (a part of) the parent grid, but defined by the child. In other words,
in-fields are the exchanged fields before the remapping.

• in-grid: The in-grid is defined by the child instance. It is the grid on which the in-fields are
defined, i.e., a subpart or the full parent grid.

• initial fields: One destination type of data fields provided by MMD2WAY CHILD to the child.
Initial fields are only used to initialise fields at the very beginning of the simulation.

• input fields: One destination type of data fields provided by MMD2WAY CHILD to the child
instance. Input fields are additional fields. The newly remapped field replaces the field in the
child instance, e.g., an emission field, that is down-scaled from the parent.

• INT2COSMO inherent field: This is a field, which is considered and remapped within
INT2COSMO or INT2LM (it is part of the variable table in INT2LM).

• intermediate field: The intermediate field is the “work space” for the remapping. It contains the
fields after horizontal and/or vertical remapping.

• mandatory field: This is an in-field absolutely required either by the COSMO model setup or
for the remapping itself.

94 Kerkweg et al.: MMD user manual

• master parent: The master parent or patriarch is the coarsest model in a model cascade, i.e., that
model that has no parent model itself. In the MMD library namelist this model is indicated by a
“-1” as associated parent model. In most cases this is a global model. The patriarch determines
the time setting of the entire model cascade.

• out-grid: The out-grid is a subpart of the parent model grid, defined by the child submodel
MMD2WAY CHILD. This is the target grid for the remapping of the child model fields to the
parent grid before the remapped data is sent back to the parent.

• patriarch: The patriarch or master parent is the coarsest model in a model cascade, i.e., that
model that has no parent model itself. In the MMD library namelist this model is indicated by a
“-1” as associated parent model. In most cases this is a global model. The patriarch determines
the time setting of the entire model cascade.

• pointer array: is an array of POINTERs of a specific dimension. For instance, a 2D-POINTER

array example_ptr is defined by:

TYPE (PTR_2D_ARRAY), DIMENSION(:), POINTER :: example_ptr => NULL()

with

TYPE PTR_2D_ARRAY

REAL(DP),DIMENSION(:,:),POINTER :: PTR

END TYPE PTR_2D_ARRAY

• representation: It describes multidimensional geometric structures (based on dimensions), e.g.,
Eulerian (or grid point), spectral, Lagrangian.

• representation ID: in the CHANNEL submodel the representations are stored as a list. Thus
each representation is unambiguously identifiable by an identification number (ID).

• restart: restart is used as synonym for check-pointing here. It is performed to allow branching off
additional simulations, or as fallback option in case anything went wrong during the simulation,
or if the computing time allowed by a scheduler of a super-computer is to short to fit in the
complete simulation. Check-pointing means, that the simulation is interrupted in between and
restarted as a new job. To achieve binary identical results for simulations with and without
interruption, restart files are written, of which the contents fully determine the state of a model
simulation. These files are read in the initialisation phase during a model restart.

• target field: For the 1-way coupling this term specifies those fields on which the results of
INT2COSMO are written, i.e., those fields used in the COSMO/MESSy simulation. For the
parent-to-child coupling these are the parent fields, which are modified by the remapped and
exchanged data.

Kerkweg et al.: MMD user manual 95

in
-f

ie
ld

in
te

rm
ed

ia
te

fie

ld

pa
re

nt

in
iti

al
 f

ie
ld

bo
un

da
ry

 f
ie

ld
in

pu
t

fie
ld

ta
rg

et
 f

ie
ld

ex
te

rn
al

 d
at

a

m
an

da
to

ry
 f

ie
ld

IN
T

2C
O

S
M

O
 in

he
re

nt
 f

ie
ld

ad
di

tio
na

l f
ie

ld
ex

ch
an

ge
 f

ie
ld

read fom file

copy

remap

exchange via MMD

INT2COSMO COSMO

ou
t-

fie
ld

in
te

rm
ed

ia
te

fie

ld

pa
re

nt

co
up

le
d

fie
ld

ex
ch

an
ge

 f
ie

ld

re
m

ap
 h

o
riz

on
ta

lly

exchange via MMD

MMD2WAY COSMO

re
m

ap
 v

er
tic

al
ly

C
h

ild
-t

o
-p

a
re

n
t

c
o

u
p

lin
g

P
ar

e
n

t-
to

-c
h

ild
 c

o
u

p
lin

g

Figure 17: In the manual a lot of different specifications (all listed in the glossary) are used. Coupling
fields are all fields somehow onvolved in the coupling procedure. The picture illustrates the different
stages and the meaning of the specific fields.

96 Kerkweg et al.: MMD user manual

References

Baumgaertner, A. J. G., Jöckel, P., Kerkweg, A., Sander, R., and Tost, H.: Implementation of the
Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of
the MESSy framework, Geoscientific Model Development, 9, 125–135, doi:10.5194/gmd-9-125-2016,
2016.

Jöckel, P., Kerkweg, A., Buchholz-Dietsch, J., Tost, H., Sander, R., and Pozzer, A.: Technical Note:
Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel
TRACER, Atmos. Chem. Phys., 8, 1677–1687, doi:10.5194/acp-8-1677-2008, 2008.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S.,
and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci.
Model Dev., 3, 717–752, doi:10.5194/gmd-3-717-2010, 2010.

Kerkweg, A., Sander, R., Tost, H., and Jöckel, P.: Technical Note: Implementation of prescribed
(OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the
Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 3603–3609, 2006.

Pozzer, A., Jöckel, P., Kern, B., and Haak, H.: The Atmosphere-Ocean General Circulation Model
EMAC-MPIOM, Geoscientific Model Development, 4, 771–784, doi:10.5194/gmd-4-771-2011, 2011.

Sander, R., Baumgaertner, A., Gromov, S., Harder, H., J’öckel, P., Kerkweg, A., Kubistin, D., Regelin,
E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., and Xie, Z.-Q.: The atmospheric chemistry box
model CAABA/MECCA-3.0, Geosci. Model Dev., 4, 373-380, doi:10.5194/gmd-4-373-2011, 2011.

