
Anonymous Referee #1

Received and published: 16 July 2018

This paper describes a new modification and application of the STILT model for total column measurements. This will allow X-STILT to be used to interpret satellite (and ground-based) total column abundances, and is a timely contribution, given the rapidly increasing number of satellite greenhouse gas total column measurements. The manuscript is thorough and technical, generally clear and well written, and suitable for this journal. I would recommend its publication after the following comments are addressed.

General Comments
Is X-STILT restricted to XCO₂, or could it be applied to any total column tracer (e.g., XCH₄, XCO, XN₂O, etc.)? Could it also be applied to ground-based total column measurements? My understanding from reading this paper is that X-STILT could be applied more generally, and that you were showing a rigorous example of its functionality with OCO-2 XCO₂. If this is true, its generality should be made more clear – perhaps with a more general title and introduction.

Specific Comments
P2L30-36. I don’t think the current suite of CO₂ satellites will completely fill in the gaps of the surface in situ networks, especially over specific locations such as cities. Certainly the future looks bright with OCO-3’s “city mode”, and the geostationary missions on the horizon, but I think you are overstating the impacts over cities as our satellite observing system currently stands.

Section 2.1.
I’m having trouble with your definition of the sensitivity of the satellite sensor: it seems incomplete. The column averaging kernel represents the change in the retrieved total column with respect to a perturbation in the abundance at a particular altitude. When the column averaging kernel is 0, the measurement is insensitive to changes at that altitude, and thus relies completely on the information in the a priori profile to construct the column. (Ref: OCO-2 ATBD, P58: https://co2.jpl.nasa.gov/static/docs/OCO-2%20ATBD_140530%20with%20ASD.pdf)

Weighting functions, which you mention on L33, at least to the retrieval community, refer to the Jacobian matrices, and while these are related to the averaging kernel matrices, they are not the same as the column averaging kernels (see PS4 on the ATBD document above). I’d ask that this section is clarified further.

On P5, you mention the interpolation of the measurement onto the model levels. Why
wouldn’t you do the reverse: interpolate the model onto the retrieval grid? Your method
requires that you make several assumptions that seem to complicate your analyses
(i.e., these “scaling factors” you mention). Is there a compelling reason not to interpo-
late the model instead of the measurements? Please explain these “scaling factors” in
more detail to walk the reader through Fig. 2.

Section 2.4
A recent paper by Nassar et al. (2017) would be relevant to cite in Section 2.4. They
use OCO-2 data to quantify power plant emissions, and they choose an overpass-
dependent background that would be interesting to compare with your method.

Ref: Nassar, R., T. G. Hill, C. A. McLinden, D. Wunch, D. B. A. Jones, and D. Crisp
(2017), Quantifying CO2 emissions from individual power plants from space, Geophys.

Section 2.6
My (admittedly simplistic) understanding of the transport error issue is that it is still im-
portant for models to get the vertical transport right when assimilating or inverting total
column measurements, because the vertical transport sets the altitude at which advec-
tion occurs, and thus the distribution of the gas around the planet. So while the total
column measurements themselves are insensitive to the altitude of the molecule within
the column, it is not necessarily the case that the models are better able to reproduce
the column. Indeed, the abstract of Lauvaux and Davis cited in this paragraph seems
to confirm that vertical transport errors are very important for calculating fluxes from
column-integrated measurements. Please address this issue further.

Furthermore, there is little discussion about the atmosphere above MAXAGL (~450
hPa). While this is unlikely to be important for CO2 emissions over regional or smaller
scales, it may be important for other tracers (e.g., CH4). Can you comment on how
important the tropopause altitude, for example, might impact this work? Over what
spatial and temporal scales would X-STILT properly represent the total column?

OCO-2 v7
You are using v7 of the OCO-2 data in this paper, but v8 is available and v9 will be
available soon. V8 has significant improvements in the treatment of aerosols and
throughput, which may be important for work over polluted urban regions. V9 will have
improved pointing, especially important over topography. Please comment on whether
your results will be robust against these changes to the OCO-2 data.

Technical Comments
In Section 2.1.1, I found myself wondering which version of OCO-2 data you were
using, given the discussion about quality flags and albedo cutoffs, which is version-
specific. I realize this is answered later in Section 2.2. I’d suggest either not mentioning
the specifics of the quality filtering in section 2.1.1, or mentioning the data version in
2.1.1.

P10L14-7: I’m having trouble understanding these sentences, and I believe this wind
correction may be an important step in X-STILT. Please explain in more detail.

P13L3-6: I believe you are saying that M2H is in general lower than M3. But can you
say definitively that M3 is correct, and thus M2H has the bias? Also, 0.56 ppm is not
small! This can be 25-50% of the enhancement.

There are several instances of omitted definite and indefinite articles, and a few typos
here and there, but I assume that once this paper has been accepted, the copy editor
will find and correct them more thoroughly than I have. However, I will list the ones I
cought here. Between ** are the edits I suggest.

P2L17: top-down constrain**ts
P3L6-7: shed light** on CO2 emission** monitoring network*s*.
P4L18: Riyadh*,* with *a* population
Saudi Arabia has the largest CO2 emissions among...

"apple's"-to-apple's"

weighted using *the* satellite's *column averaging kernels*...

at the same lat/lon as *the* satellite...

compare ** overall modeled

The longer the time an air parcel..., *the* higher its footprint value...

FFCO2 *are* derived from...

we binned ** the observed...

estimate *the* increase in observed...

1x1 km resolution on ** monthly scale's*... emission estimates by fuel type**

specific ODIAC emission categories on *a* monthly basis...

line sources and diffuse** sources...

which are more straightforward** and efficient** than solely *relying* on...

boundary of *the* city...

more suitable sites *to* retrieve...

get around ** the impact on...

we fit *an* exponential variogram...

which results in *an* overall smaller footprint... Yet, column footprint's*

The longer the time an air parcel..., *the* higher its footprint value...

regardless *of the* adopted meteorological fields.

Here we emphasize...

sensible → sensitive

according to *the* OCO-2 Lite file...

scatter*ed*

latitudinal** integration ←this happens in other locations as well

exceeding *a* certain averaged...

emissions of *a* target city

even large impact's* on *the* posterior... can be caused by using *a* back-

ground derived from simplistic statistic's*

hampered ** due to...

improves biospheric flux** estimation...

for *a* few levels...

These small changes *show* that our *latitude band integration*... a second

peak or miss** large XCO2 enhancements.

widths

The word “benefit” seems out of place here.

Based on three simpl*e* tests...