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Abstract.

The Implementation of an Immersed Boundary Method in the Meso-NH v5.2 model: Applications to an idealized urban-like

environment paper is enriched with a viscous buoyancy-driven flow case (Straka et al., 1993). This additional case presents the

comparison of the results obtained by a Boundary-Fitted Method (BFM) and Immersed-Boundary Method (IBM) used in the

Meso-NH (MNH) code (Lafore et al., 1998; Lac et al., 2018). This popular case is a thermodynamic one inducing an IB forcing5

of the energy equation (Eq. 1) presented in the main paper. Note that the comparison of the BFM results with the literature was

successfully done in Lunet et al. (2017).

1 Introduction

The thermodynamic case proposed by Straka et al. (1993) is a cold air bubble falling in an idealized atmospheric condition

and followed in time by the development of a gravity current above an ideal surface. After recalling the conditions and the10

hypothesis imposed by the benchmark, the MNH-IBM results are compared to those obtained by MNH-BFM.

This physical case with MNH-BFM was intensively investigated in Lunet et al. (2017) to compare a fifth-order WENO

advection scheme to a fourth centered scheme (CEN4), the two showing a good agreement with the literature. In this study,

only CEN4 is employed.
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The ambient conditions correspond to a neutrally (θ = 300K) stratified dry atmosphere with air initially at rest (see Straka

et al, 1993 for details on the reference conditions). Kinematic viscosity is imposed to νf = 0.1m2.s−1. The case satisfies the

incompressible or quasi-incompressible hypothesis (low Mach number). The two-dimensional domain is defined by x ∈ [0 :

51,2.103]m in the horizontal direction and z ∈ [0 : 6,4.103]m in the vertical direction. The type of lateral boundary conditions

is cyclic. Free slip conditions without permeability are applied at the bottom and top surfaces. No relaxation (to avoid reflective20

waves) is injected in the upper part of the atmosphere. The flow is symmetric with respect to the z axis at x= 25,6.103m (hence
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Figure 1. The Straka density current developed at t= 900s: sixteen isocontours of the potential temperature θ ∈ [284 : 299]K (a), the

kinetic energy where ek ∈ [0 : 660] m2s−2 (b), the enstrophy where es ∈ [0 : 0.0064] s−2 (c). The blue (resp. red) line corresponds to the

MNH-BFM (resp. MNH-IBM) solutions (∆x= 50m).

only the results in the region x > 25,6.103m are shown). Absolute temperature is initially placed in a region with an elliptic

shape and maximum amplitude localized in its center: Location are (xc;zc) = (25,6;3).103 m; size is (xr;zr) = (4;2).103 m;

region is R=
√
(x−xc

xr
)2 +( z−zc

zr
)2 ; amplitude is ∆T =−15cos(πR+1)/2 K if R< 1, ∆T = 0 K elsewhere.

After nine minutes the shear at the front (between the disturbed and undisturbed region) is sufficiently high to initiate a vortex5

shedding (Kelvin-Helmholtz instability type). After fifteen minutes three vortices are clearly visible. Here we only focus on

the flow properties at this particular time. The variables obtained at t= 900 s are presented in the Table 1.

To obtain a MNH-BFM reference solution a 2048× 256 mesh (∆xref = 25m) is built. The time step is fixed to ∆t= 0.1s:

the CFL number respects Umax∆t
∆x < 0.2. The results of the MNH-BFM reference solution are in good agreement with those of

2



Front location xfront = x− 25600

Extreme values of the temperature ∆θmin = θmin − 300

Extreme values of the velocity field umin,max (horizontal direction), vmin,max (vertical direction)

Kinetic energy ek = 1
2
||u||2

Enstrophy es = (∇×u)2 = ||ω||2

∆θmin umin umax vmin vmax xfront

∑
||u||2

∑
||ω||2 ωmax

K m.s−1 m.s−1 m.s−1 m.s−1 km m2.s−2
10−5s−2

10−2s−1

∆x= 25m

Rosa et al. (2011) -9.96 -15.29 35.06 -15.94 13.07 15.16

Straka et al. (1993) -9.77 -15.19 36.46 -15.95 12.93 15.53 11.18 8.37

MNH-BFM -9.66 -15.26 36.14 -15.91 12.93 15.39 10.50 8.15 7.45

∆x= 50m

MNH-BFM -9.66 -15.24 36.11 -15.88 12.89 15.40 10.50 8.09 7.43

MNH-IBM -9.74 -15.13 36.08 -15.94 13.09 15.41 10.18 7.87 7.41

Table 1. The Straka current: definition of the studied local and integrated variables (top) and comparison (depending on the spatial re-

soutions) of MNH-IBM, MNH-BFM results and thus of Rosa et al. (2011) and Straka et al. (1993) (bottom).

Straka et al. (1993) and Rosa et al. (2011) using the same spatial resolution regarding the travelled distance by the current, the

thermal/kinetic energies and the vorticity production are well-recovered (Table 1).

Using a 1024× 128 mesh (∆xref = 50m) and ∆t= 0.1s (Umax∆t
∆x < 0.1), the physical problem is simulated with MNH-

BFM and MNH-IBM. Note that two additional points are necessary in the vertical direction (below the ground, dashed line in

the Figure 1) to compute the ghost points in the IBM version. The convergence in space of the solution is shown Table 1 by the5

weak differences between MNH-BFM(∆xref = 25m) and MNH-BFM(∆xref = 50m). The good agreement BFM/IBM on

the density current location and its characteristics at t= 900s is also illustrated in Figure 1 plotting the θ potential temperature

(top), the kinetic energy (middle) and the enstrophy (bottom) contours (BFM in blue line; IBM in red line).

Even if the fluid-solid interface is flat in this case, MNH-IBM preserves the change of the potential energy due to the

gravitational acceleration in the momemtum equation, which reflects the impermeability conditions of the ground due to the10

Cut-Cell Technique employed in the pressure solver. The slip condition on the tangent velocity and the potential temperature

at the ground are also well-insured by the Ghost-Cell Technique.

3



References

Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., and others (2018). Overview of the Meso-NH model

version 5.4 and its applications. Geosci. Model Dev., 11, 1929-1969.

Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fisher, C., Hèreil, P., Mascart, P., Masson, V., Pinty, J. P., Re-

delsperger, J.-L., Richard, E., and Vilà-Gueau de Arellano, J. (1998). The Meso-NH Atmospheric Simulation System. Part I: adiabatic5

formulation and control simulations. Scientific objectives and experimental design. Annales Geophysicae, 16, 90-109.

Lunet, T., Lac, C., Auguste, F., Visentin, F., Masson, V., and Escobar, J. (2017). Combination of WENO and explicit Runge-Kutta methods

for wind transport in Meso-NH model. Mon. Wea. Rev., 145(9), 3817-3838.
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