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Abstract An mmprovement of the traditional Runge-Kutta schemes, a species of dissipative schemes,
produces a class of new square conservative schemes with the same scheme formats and precisions, yielding
results as good as those from the symplectic schemes m the numerical tests, and vests this old antiquated

algorithm with new life.
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The Runge-Kutta method, a classic numerical method, has ever played an important
role in simulations and computations in many fields of science. The progress in science
and technology, however, makes it hard to meet the needs of scientific and engineering
computations. For example, in solutions to square conservation systems or Hamilton sys-
tems by this method, great distortions turn up, especially in those of long-time integrations
by this method, which is wverified in an instance in ref. [1]. Should the method be
eliminated completely? No. A careful analysis on it shows that the Runge-Kutta method
owns three distinct properties: first, there is no limit in heightening the precision of the
method; next, the absolute stability interval of it may be lengthened when the precision
rises; last, it i1s an explicit and single step method. These properties are worth keeping
and using. They have been successfully applied to construct a species of high-order consis-
tent dissipation operators'”, which greatly improve the stabilities and precisions of the explic-
it square conservative schemes”” ¥ and produce obvious benefits in practical applications' 9.
In this paper, the thought of square conservative schemes is poured into the Runge-Kutta
method, and a class of new explicit schemes, keeping the quadratic conservation properties
and being consistent with this method in precision, stabiblity and scheme format, are
constructed. Good results are obtained from the new schemes in numerical tests. The new
study make the old method reborn.

1 The construction of the schemes

Consider the nonlinear evolution equation:

aF _ ,
5 =LF. (N
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If the operator L is antisymmetrical:

(LF, F)=0, (2)
then eq. (1) 1s of square conservation:
d )
—|IF||"=0. 3
< Fl 3
The k-th order explicit Runge-Kutta schemes to solve eq. (1) can be expressed as
F'=F"+Atp(F", A1), 4)
where
[
o(F", At)=2.CR (5)
i=1
and

R,=LF",
{ i—1 (6)
Rl=L<F"+At Zb,]R}> (i=2. 3,-, K).
j=1

These are dissipative schemes!” and they are unable to keep the conservation properties.
Therefore, solutions to square conservation systems from them may be greatly distorted.
How can these schemes be improved? Here, a method to make them quadratically
conservative 18 introduced. For this aim, eq. (1) is corrected into:

F'=F"+7@F", Ar), @)

i.e. the integration interval of the original schemes At is changed into an adjustable inter-
val t,, while that in ¢ is invariable. 1, can be determined by using the square conservation
properties. Scheme (7) is hoped to satisfy under the antisymmetrical condition (2):

NF" 2= (F)? (8)

and it may be expressed as {(mark @"=@(F", At))

- _ A FY

K ®
However, if 7, is just determined by eq. (9), scheme (7) is compatible with eq. (1) only
when condition (2) is satisfied. The compatibility will be proved in the coming discus-
sion. When eq. (2) is not true, eq. (7) becomes incompatible with eq. (1). This is because
;. 2(LF", F")
" IFI*
determining t, and should be replaced by a better way. According to eq. (5),

#0 when At — 0. Therefore, eq. (9) is not a suitable method of

wsz=;cm”FW (10)

If we mark
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-1

F,"“:F"+At;b,_jR, (G=2, 3, k), (11)
then eq. (6) becomes
R=LF""" (R,=LF", i=2, 3,-, k). (12)
According to eq. (2),
(LF™', F'")=0 (13)
and
<R,. F"+At:Z:b, jRJ.):O, (14)
which deduces that
(R, F')=—At ;leb,, AR, R). (15)

By substituting eq. (15) into eq. (10), we have
k -1
(¢, F)=—Ar 2. C Lb, (R, R). (16)
i= Jj=
In this way, another form to determine t, is established by substituting eq. (16) into
eq. (9)
1,= B.At, (17)

where

B,= ic,. b (R, R). (18)

Finally, scheme (7) determined by egs. (17) and (18) 1is just the new explicit
Runge-Kutta method we want to construct.

2 Analysis on precisions and conservations

Theorem 1. Under the antisymmetrical condition (2), scheme (7) determined by eqs. (17)

and (18) is of square conservation and ownis k-th order precision.

Proof. Because egs. (17) and (18) are equivalent to eq. (9) under the antisymmetrical
condition, it is obvious that scheme (7) is of square conservation. For this reason, only the
precision of the scheme is discussed here. Suppose F" is the accurate solution F"=(F)",
then

(F)"'=(F)"+At(@)" + O(A** "y = F" + Atg" + O(AF ). (19)
The norm operation on eq. (19) and the square conservation property (3) produce
Atll"P+2(¢", F")=0(At"), (20)

and the property that egs. (17)—(18) are equivalent to eq. (9) under the antisymmetrical
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condition deduces the following equality

tllolP+ 2", F")=0. )
Eq. (9)" minus eq. (20) is
(.= ADl|¢") = O(AY), (21)
le.
7, = Al + O(At) 1’
or
At=1 +O(A1Y, B,= Z"t =1+ 0(A). (22)

Because LF=G(F, F, F,, F.)) in gencral, where G is a sufficiently smooth function, it is
testisfied that
O(F", AD)=@(F", 1,+O(At")=@(F", 1,) +O(At"). (23)

In this way,

BBy 2Ty, ) +0(Ar) = 0() + 0AY) =0(A). (24)

T,

Therefore, the scheme is of k-th order precision.

Theorem 2. [f the antisymmetrical condition (2) is not true, scheme (9) determined by
eqgs. (17) and (18) is still of k-th order precision.

Due to the complication in determining the coefficients of the Runge-Kutta method, it is
difficult to give a general proof of the theorem. Only some verifications in simple situa-
tions such as k=2 and k=3 are given here, for which it suffies only to testify the estima-
. . T,
tion expression f§,= _A;t =1+0(At'™).

Now, the verification in the case of k=2 is shown first. In this situation, the origi-
nal Rung-Kutta method is

o(F, At)=¢,=c,R,+c,R,, (25)
R,=LF,
{ (26)
R,=L(F+Atb,R).

where c¢,, ¢, and b, satisfy
cte,=1,
27
{ C2b21: L (7

For the equations of atmosphere and ocean, LF is generally a function depending on F and its
first-, second- and higher-order spatial partial differential coefficients are:




No. 2 A CLASS OF NEW EXPLICIT RUNGE-KUTTA SCHEMES 199

LF=G(F, F,, F, F, Fa,). (28)
In order that the discussion is simple and clear, it is representively set that
LF=G(F, F), (28)

where G=G({, n) 1s sufficiently smooth with {, 5. By using the Taylor expansion,
we have

R,
R3=L(F+Atb2,R])=G<F+Atme,, F,+Athy —-- ) G(F, F)
R,
+Atby | GR,+G, 5 |+0(Ar),

which can be simplified into

oF
R,= o +Ath, =5 a, +0(At2)
due to the following two equalities
0
aF —LF=G(F, F),
2F _ aF OF\ _ aIzl b}
¥ -Gg——at +G”—0t —G:R1+G»,—@x ) (29)

From egs. (25), (26) and (27), it is easily deduced that

0 o
<p=—f+ Lar alf +0(AP)
and
oF || »*F OF
=] YT or 2
lloll —' 5 +At< 7 o )+0(At). (30)
In eq. (18), mark
k i—1
B'=2c b (R, R), 31)
1= j=
then
, IF || OF  OF >
f'=2c¢,b,(R,, R)=(R,, Rl):“—a_ +Atb21<—a[7, ‘Bt—)-f‘O(At')
and
o oF
g _ o * Ot R
= 0 =14 (by — DAt +0(AtY),
ﬂ ”(pnz (2I ) aF 5

Ot
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when b, #1, f,=1+0(At), and scheme (7) is of second-order precision. 1If b, =1, the
scheme is still of second-order precision, although B,=1+0(Ar?), because a second-order
Runge-Kutta scheme is only of second-order precision. While k=3, there hardly exists the
possibility that 8, =1+O(Ar").
Next, the situation that k=3 is considered
o(F, At)=¢;=c R, +c,R,+ R,

where R, and R, are determined by eq. (26), R, satisfies

R,=L(F+ At(b, R, +b,,R,)) (32)
and c¢,, ¢, ¢y, by, b;, by, obey

1

>

{ ete, e, =1, by tey(by +by) =

2
1 (33)
e bl +ey(by +hy) = ? by by= 3

On the one hand, under the supposition of eq. (28)’, it is deduced that
o dR, OR, \ aR a:R
i G-RI+2G,R,—— +G, +| (G.)’R,+26G.G,—=— +(G)Z
6,3 S N a 6x

0G. oG, OR
+[G,,(i~R,+G —L }:P,+P2+P3,

0; " Ox  Ox
where
[ 0 0 2
P,=| G-Ri+2G,,R, aR + G, < (fc >]
i 0 "R,
P2=L(G)R+2GG R, +(G)* gy } (34)
[ 9G, G, 0R,
P3__G"_6x R,+G,,—a_7 |
Consequently,

i 2
R, > R+Arb,l[GR +G, R, }

R2=G<F+Atb2,Rl, FotAthy —5-t -

OR R, Y
+%At2b§,[G5:Rf+2G:,,R, - +Gy < o >:|+O(At)

_OF OF 1 \ap 3
= a—t +Atb216—[2 + 7At b21P|+0(A[ ),
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OR, 0
R= G<F+Atb1,R +Ath,R,, F, +Arb3, +Atb3, 7R )

OR, dR,
=G(F, F)+At (b31R|+b3:Rz)G:+ b3l@—x +b32(3_x G,,

+ AT’[G (byR, bR’ +G< L

CR, OR, ,
+2G,,(byR, +by,R,) b“'a—x +b32? +O(Ar)

R,
=R, +At(b, +by)| G.R+G

"y
, \ 7R, . PR, dG. 0G, OR,
+At b32b21{[G:Rl +2G:G”a—x +G’I W + GW—E‘ Rl +G”6—X ?;
2 dR, 8R ?
+ A—t(bm‘i—bQZ G-Ri+2G, R, —— +G,; +O(AP)
2 ; s 1 Ox ax
_ aF azF 2 1 2 3
o +At{b, +by) e +At*| by,by(P,+P,) + 5 (by, +by,)"P, |+ O(Ar)
and
_OF |1 cF 1, ., 0F s

from eq. (33), which shows that

- CF  OF\ ap| L|CF|f L OF OF ;
llollI*= +A<ﬁf’ 5t>+At[4H a3l & +O(AF).

ki

On the other hand,

8F *F OF AP, OF 3
(R, R)= +Ath, < 5 a—t>+Tbm<P1, Tt>+O(At),

OF &*F OF F OF
(R, R)= H +At(bu+b3)< o >+At bs, b, [( 6t>+<P" a—tﬂ

2 d
+ ATI (by, +b3~)2<P,. 5—‘: ) +O(AF)

and

5 2F 0
(R, R)= “ f“TAt(bq]+b“+bx)< F —F)
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, JF JF A’ . JoF
+Al"b33b3,|:<P2, W)‘L(P}v ar >:|+ > [(bwl+b32)~+b§|]<P1, ?F)

ﬁlF :

+ ALy (by +bo)|| e || +O(AL).

By using the above three expressions, we have

oF |
B'=2[c,b,(R,. R)+0by(Ry, R) +03b5(R;, R =2[c,b, +cy(by + b)) Ot
o é
+2[c:h, tefby, +hy) te bvbn]Ar< ﬁ ) 51: )

Ot

) 0F aF
caanisernon| (o, Yoo, 2]

oF I
oy

0
+ [Clbgl +cy(by + b}:)3 +¢3by, bgl] AT:<P1~ —F )

+2¢,b, by (b, + by,) At*

+O(Ar)

and finally, the estimation expression

’ aF
ol

1 Af{ PF OF oF 1 ,
+ —3—(b3,+b3:)Ar“|:<—at—3, a—t>—<P|, (%):l_}— ?(bﬂ‘i'b}JAth
OF OF OF 1 | ¢F OF F
” +A< o a—t)+?(b3,+b3gm [(6—t3 5—t>+H o

ot
3 2 1 2 JF 3
+| &by + by +by) +cybyby — 3 (by +byy) |ALF| P, o +O(Ar)

d
+Al ( ‘af, ‘2 >+[c By + ey + by + ¢, by bLIAL (P a—f)

2

oF

]

can be deduced from eq. (33), which show that no matter how to adjust the coefficients

{c} and {b, ], B'—ll¢l)* is constantly a second-order small quantity O(Ar’), not a third or
ﬁl

"Il

more order one. Therefore, g = =1+0(ArY), and the scheme is of third-order

precision.

By using the similar method, it can also be testified that scheme (7) determined by
egs. (17) and (18) is of forth-order precision when k=4. In the case where k is greater than
5, it is very hard to give a verification of scheme precision, and hereby the case is not
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discussed. A general proof is waiting to be provided from further studies. Theorem 2
shows that scheme (7) determined by eqs. (17) and (18) is a proper scheme for solving linear
or nonlinear systems, with or without square conservation properties.

3 Numerical tests

To examine the practicability of the newly established explicit Runge-Kutta method,

some numerical tests are carried out.

Consider the linear ordinary differential equations:

a __,
dt Y,

dy
dt

(a, b>0), (53)

=bx,

which can be easily proved to be a Hamilton system. The accurate solution to eq. (53) is
bx*+ay*=c (c is a constant), and keeps falling over an oval. This important geometric
feature can be kept by the numerical solutions from a 100000 000-step integrations on
eq. (53) by the new Runge-Kutta schemes, but it is distorted by the original Runge-Kutta
method because the solutions from the old method are gradually dissipated from an oval at the
initial time into a point after the 100000 000-step integrations (figs. 1, 2). The most
interesting thing is that the time interval of the new scheme t,, determined by egs. (17) and
(18), keeps constant from the initial time to the 100000 000-th step, which is
1.000 010 704 417 22 when Ar=1 (table 1). If a generalized energy is defined as E,=bx’+ay;,
all the E, with n from 1 to 100 000 000 from the new method are the same in 12 significant
digits. The errors are only of 107" order of magnitude in the 100 000 000-step integrations
(table 1), which are caused only by the round-off error of the computer, but not by the
scheme. However. E, from the old method keeps attenuating and finally tends to zero

0.330E+01 [ _ (
t . ////—\
/ \
0.165E+01 [ i / \
/
EN i ]
0.000E+00 | - E
i
!.-'"
~0.165E+01 | r /
L. (a) \_/ (b)
-0.330E+01 ! : ! ) L 1 : ;
—0.330E+01 0.000E +00 0.330E + 0l —{.330E+01 0.000E + 00 0.330E+ 01
—0.16SE+01  0.16SE+01 =0.165E+01  0.165E +01
x x
Fig. 1. Results from the 10’stcp integration (printing a result per 10° steps). (a} By the old Runge-Kutta

scheme; (b) by the new Runge-Kutta scheme.
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0.330E+01 [ -
0.165E +01 i
™ 0.000E+00 - 4 L
—0.165E+01 | L | .
@) | ®)

—0.330E+01 ! L * —
0 —0.330E+0{ O.000E+00 -0.330E +01 —0.330E+01 0.000E + 00

—0.165E+01 0.165E+01 —0.165E+01
x x

0.330E +01
0.165E +01

Fig. 2. Results from the 10%step integration (printing a result per [0° steps). (a) By the old Runge-Kutta

scheme, (b) by the new Runge-Kutta scheme.

Table 1 Evolutions of generalized energy and the time interval of eq. (53)

Time interval of the new

Energy of the old

Energy of the new

Step (n)
Runge-Kutta scheme Runge-Kutta scheme Runge-Kutta scheme
1 1.000 000 000 000 000 1.000 000 000 000 000 1.000 010 744 1772
10° 0.970 770 348 486 377 0.999 999 999 999 964 1.000 010 744 177 2
10° 0.743 301 529 331 007 0.999 999 999 999 806 1.000 010 744 177 2
2100 0.552 497 163 505 841 0.999 999 999 999 657 1.000 010 744 177 2
4% 10 0.305 253 115 681 681 0.999 999 999 999 162 1.000 010 744 1772
8 10° 0.093 179 464 933 436 0.999 999 999 999 156 1.000 010 744 1772
10 0.051 481 389 906 958 0.999 999 999 999 151 1.000 010 744 177 2
2x10° 0.002 650 333 506 751 0.999 999 999 999 153 1.000 010 744 177 2
4x 10 0.000 007 024 267 697 0.999 999 999 999 159 1.000 010 744 177 2
gx 10’ 0.000 000 000 047 898 0.999 999 999 999 161 1.000 010 744 177 2
10* 0.000 000 000 000 131 0.999 999 999 999 151 1.000 010 744 1772
{table 1). Therefore, for the Runge-Kutta method. there is an essential distinction between

Especially, results as good
Note that the inner

that before the improvement and that after the improvement.
as the symplectic schemes are obtained from the improved method!".
product used here is defined as

(F, F)=bxx,+ayy, (54)

where

F=[x, y]I" (=1, 2). (54)’

In addition, another test by the new Runge-Kutta method is carried out on the spheri-
cal barotropic shallow water equations, a group of nonlinar partial differential equations.
The results are the same as those from the implicit Euler central difference scheme, which
is both a symplectic scheme and a square conservation scheme. The new method has much

better time benefits than that of the Fuler scheme. The figures of wave evolution from the
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new scheme is the same as those in ref. [2].
conserved (table 2).
near to At: |t,—At| <0.011, and is almost invariable (table 2).
true that t,>Ar.

The total energy and the total mass keep
Especially, when Ar=392s, 7, determined by eqgs. (17) and (18) is very
Meanwhile, it is constantly

Table 2 Evolutions of the total energy, the total mass and the time interval of the Rossby-Haurwitz

waves from the new Runge-Kutta scheme

Step (n) Integration time t/s Total energy E, Total mass M, Time interval ,/s
jmte st /mie s’
00001 392.0107 15236 914 614 094.2 175 248 643.214 532 3920107
00 100 39 200.86 15236 914 614 094.2 175 248 643.214 532 392.0069
00 200 78 401.53 15236 914 614 094.2 175 248 643.214 532 392.004 8
00 400 156 802.0 15236914 614 094.2 175 248 643.214 532 3920028
00 800 313 602.0 15236914 614 094.2 175 248 643.214 532 392.002 0
01 600 627 202.0 15236914 614 094.2 175 248 643.214 532 392.001 9
03 200 1254 402.0 15236914 614 094.2 175 248 643.214 532 392.001 7
06 400 2 508 802.0 15236 914 614 094.2 175 248 643.214 532 392.001 4
12 800 5017 602.0 15236 914 614 094.2 175 248 643.214 532 392.001 2
22 041 8 640 074.0 15236914 614 094.2 175 248 643.214 532 392.001 1

The above two tests show that the new Runge-Kutta method is practicable and useful,
and should be greatly disseminated.
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