Supplemental Material

The GGCMI Phase II experiment: global gridded crop model simulations under uniform changes in CO₂, temperature, water, and nitrogen levels (protocol version 1.0)

James Franke¹,², Christoph Müller³, Joshua Elliott²,⁴, Alexander Ruane⁵, Jonas Jägermeyr³,²,⁴,⁵, Juraj Balkovic⁶,⁷, Philippe Ciais⁸,⁹, Marie Dury¹⁰, Pete Falloon¹¹, Christian Folberth⁸, Louis François¹⁰, Tobias Hank¹², Munir Hoffmann¹³,²², Cesar Izaurralde¹⁴,¹⁵, Ingrid Jacquemin¹⁰, Curtis Jones¹⁴, Nikolay Khabarov⁶, Marian Koch¹³, Michelle Li²,¹⁶, Wenfeng Liu¹⁷,¹⁸, Stefan Olin¹⁸, Meridel Phillips⁵,¹⁹, Thomas Pugh²⁰,²¹, Ashwan Reddy¹⁴, Xuhui Wang⁸,⁹, Karina Williams¹¹, Florian Zabel¹², and Elisabeth Moyer¹,²

1. Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
2. Center for Robust Decision-making on Climate and Energy Policy, University of Chicago, Chicago, IL, USA
3. Potsdam Institute for Climate Impact Research, Leibniz Association (Member), Potsdam, Germany
4. Department of Computer Science, University of Chicago, Chicago, IL, USA
5. NASA Goddard Institute for Space Studies, New York, NY, United States
6. Ecosystem Services and Mgm. Prg., International Institute for Applied Systems Analysis, Laxenburg, Austria
7. Department of Soil Science, Comenius University in Bratislava, Bratislava, Slovak Republic
8. Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
9. Sino-French Institute of Earth System Sciences, Peking University, Beijing, China
10. Unité de Modélisation du Climat et des Cycles Biogéochimiques, University of Liège, Belgium
11. Met Office Hadley Centre, Exeter, United Kingdom
12. Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany
14. Department of Geographical Sciences, University of Maryland, College Park, MD, USA
15. Texas Agrilife Research and Extension, Texas A&M University, Temple, TX, USA
16. Department of Statistics, University of Chicago, Chicago, IL, USA
17. EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
18. Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
19. Earth Institute Center for Climate Systems Research, Columbia University, New York, NY, USA
20. Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
21. School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
22. Leibniz Centre for Agricultural Landscape Research (ZALF), D-15374 Müncheberg, Germany
Figure S1: Presently cultivated area for irrigated crops in the real world. The blue contour area indicates grid-cells with more than 20,000 hectares of crop cultivated. The gray contour shows area with more than 10 hectares cultivated. Data from the MIRCA2000 data set for maize, rice, and soy. Winter and spring wheat areas are adapted from MIRCA2000 data and sorted by growing season.

Figure S2: Presently cultivated area for rain fed crops in the real world. Conventions as in Figure S1. This figure repeats manuscript Figure 1 for ease of comparison.
Figure S3: Comparison across the three reanalysis products used in GGCMI Phase II. Values are aggregated across cultivation area based on the MIRCA2000 dataset.
Figure S4: Same as Figure S3 but for temperature.
Figure S5: Same as main Figure 5a for all crops.
Figure S6: Same as main Figure 5b for all crops.
Figure S7: Same as main Figure 6a for all crops.
Figure S8: Same as main Figure 6b for all crops.
Figure S9: Same as main Figure 5a for all crops. Irrigated crops compared to rainfed. Note that yield change for irrigated crops is from the irrigated baseline, which is typically higher than rainfed.
Figure S10: Same as main Figure 5a for all crops. Only over cultivated area.
Figure S11: Same as main Figure 5b for all crops. Only over cultivated area.
Figure S12: Same as main Figure 6a for all crops. Only over cultivated area.
Figure S13: Same as main Figure 6b for all crops. Only over cultivated area.