Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.154 IF 5.154
  • IF 5-year value: 5.697 IF 5-year
  • CiteScore value: 5.56 CiteScore
  • SNIP value: 1.761 SNIP 1.761
  • IPP value: 5.30 IPP 5.30
  • SJR value: 3.164 SJR 3.164
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 59 Scimago H
    index 59
  • h5-index value: 49 h5-index 49
Discussion papers
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: model description paper 13 Feb 2020

Submitted as: model description paper | 13 Feb 2020

Review status
This preprint is currently under review for the journal GMD.

Optimality-Based Non-Redfield Plankton-Ecosystem Model (OPEMv1.0) in the UVic-ESCM 2.9. Part I: Implementation and ModelBehaviour

Markus Pahlow1, Chia-Te Chien1, Lionel A. Arteaga2, and Andreas Oschlies1 Markus Pahlow et al.
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
  • 2Princeton University, Princeton, NJ, USA

Abstract. Uncertainties in projections from Earth system models (ESMs) are associated to a large degree with the imperfect representation of the marine plankton ecosystem, in particular the physiology of primary and secondary producers. Here we describe the implementation of an optimality-based plankton-ecosystem model (OPEM) with variable C:N:P stoichiometry in the University of Victoria ESM (UVic) and the behaviour of two calibrated reference configurations, which differ in the assumed temperature dependence of diazotrophs.

Predicted tracer distributions of oxygen and dissolved inorganic nutrients are similar to those of an earlier fixed-stoichiometry model (Keller et al., 2012). Compared to the classic fixed-stoichiometry model, OPEM is closer to recent satellite-based estimates of net community production (NCP), despite overestimating net primary production (NPP), can better reproduce deep-ocean gradients in the NO3:PO43− ratio, and partially explains observed patterns of particulate C:N:P in the surface ocean. Allowing diazotrophs to grow (but not necessarily fix N2) at similar temperatures as other phytoplankton results in a better representation of surface Chl and NPP in the Arctic and Antarctic Oceans.

Deficiencies of our calibrated OPEM configurations may serve as a magnifying glass for shortcomings in global biogeochemical models and hence guide future model development. The overestimation of NPP at low latitudes indicates the need for improved representations of temperature effects on biotic processes, as well as phytoplankton community composition, which may be represented by locally-varying parameters based on suitable trade-offs. Discrepancies between observed and predicted vertical gradients in particulate C:N:P ratios suggest the need to include preferential P remineralisation, which could also benefit the representation of N2 fixation. While OPEM yields a much improved distribution of surface N* (NO3 16·PO43− + 2.9 mmol m−3), it still fails to reproduce observed N* in the Arctic, possibly related to a mis-representation of the phytoplankton community there and the lack of benthic denitrification in the model. Coexisting ordinary and diazotrophic phytoplankton can exert strong control on N* in our simulations, which questions the interpretation of N* as reflecting the balance of N2 fixation and denitrification.

Markus Pahlow et al.

Interactive discussion

Status: open (until 09 Apr 2020)
Status: open (until 09 Apr 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Markus Pahlow et al.

Model code and software

UVic-updates-opem: Optimality-based Plankton Ecosystem Model (OPEM v1.0) for the UVic-ESCM. M. Pahlow, C. Chien, L. A. Arteaga, and A. Oschlies

Markus Pahlow et al.


Total article views: 110 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
85 23 2 110 9 2 0
  • HTML: 85
  • PDF: 23
  • XML: 2
  • Total: 110
  • Supplement: 9
  • BibTeX: 2
  • EndNote: 0
Views and downloads (calculated since 13 Feb 2020)
Cumulative views and downloads (calculated since 13 Feb 2020)

Viewed (geographical distribution)

Total article views: 71 (including HTML, PDF, and XML) Thereof 69 with geography defined and 2 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 28 Feb 2020
Publications Copernicus
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon-transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2...