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Abstract. The Land Variational Ensemble Data Assimilation fRamework (LaVEnDAR) implements the method of Four-

Dimensional Ensemble Variational data assimilation for land surface models. Four-Dimensional Ensemble Variational data as-

similation negates the often costly calculation of a model adjoint required by traditional variational techniques (such as 4DVar)

for optimising parameters/state variables over a time window of observations. In this paper we implement LaVEnDAR
::::::
present

::
the

::::
first

::::::::::
application

::
of

:::::::::::
LaVEnDAR,

::::::::::::
implementing

:::
the

:::::::::
framework

:
with the JULES land surface model. We show the system5

can recover seven parameters controlling crop behaviour in a set of twin experiments. We run the same experiments at the

Mead continuous maize FLUXNET site in Nebraska, USA to show the technique working with real data. We find that the

system accurately captures observations of leaf area index, canopy height and gross primary productivity after assimilation

and improves posterior estimates of the amount of harvestable material from the maize crop by 74%. LaVEnDAR requires no

modification to the model that it is being used with and is hence able to keep up to date with model releases more easily than10

other DA methods.

Copyright statement. TEXT

1 Introduction

Land surface models are important tools for representing the interaction between the Earth’s surface and the atmosphere for

weather and climate applications. They play a key role in the translation of our knowledge of climate change into impacts on15

human life. Most land surface models exhibit deterministic behaviour
:::
will

:::::::
converge

:::
to

:
a
::::::
steady

::::
state; their state vector tends

toward an equilibrium defined by forcing variables (i.e. the meteorology experienced by the model) and the model parameters.

This is quite unlike fluid dynamics models used for the atmosphere and oceans, which exhibit inherently chaotic behaviour; a

small change in their initial state can lead to large deviations in the state vector evolution with time. Consequently, for many

::::
some

:
land surface applications , the ability to determine parameters, rather than state , is critical. This manuscript , therefore,20
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::::::::
parameter

:::::::::
estimation

:::
can

::::
have

::::::
greater

::::::
utility

:::
than

:::::
state

::::::::
estimation

::::::::::::::::
(Luo et al., 2015) .

::::
This

:::::::::
manuscript

:
deals primarily with the

problem
::
of parameter estimation in land surface models, although the technique we introduce could easily be used to for state

estimation problems too.

Data Assimilation (DA) combines models and data such that resulting estimates are an optimal combination of both, taking

into account all available information about respective uncertainties. DA techniques are typically derived from a Bayesian5

standpoint and have been largely developed to service the needs of atmospheric and ocean modelling, especially where there

is a need to provide near real–time forecasts. Typically the focus of such activities is on estimating the optimal model state as

the fundamental laws underlying fluid dynamics are well understood and many of the model parameters are known physical

constants. However,
:
this is not true for land surface models where parameters are much less well understood. Indeed these

parameters can
::
be

:::::::
allowed

::
to change over time within a developing ecosystem or when an ecosystem is subject to a disturbance10

event
:
to

:::::::
account

:::
for

:::::
model

::::::::
structural

:::::::::::
inadequacies.

DA applications for land surface models are becoming increasingly common using a wide variety of techniques and estimat-

ing both state and parameters. Many studies have employed Markov chain Monte Carlo (MCMC) methods (e.g. Metropolis

et al. (1953)) to retrieve posterior estimates of parameter and state variables (Post et al., 2018; Bloom et al., 2016; Bloom and

Williams, 2015; Zobitz et al., 2014; Keenan et al., 2012; Braswell et al., 2005). These methods use a cost function to iteratively15

sample the posterior parameter distribution and can deal with non-Gaussiantity
:::::::::::
non-Gaussian

:::::
error. However MCMC methods

come at a large computational cost, requiring in the order of 106 model runs even for simpler models (Zobitz et al., 2011; Ziehn

et al., 2012), which may be infeasible for applications at larger scales or for more complex land surface models than used in

these studies. Sequential ensemble methods have also been used (such as the Ensemble Kalman Filter (EnKF) (Evensen, 2003))

in numerous studies (Kolassa et al., 2017; De Lannoy and Reichle, 2016; Quaife et al., 2008; Williams et al., 2005). These20

methods are relatively cheap (dependent on ensemble size) and easy to implement but for the problem of parameter estimation

their sequential nature leads to retrieval of time varying parameter sets not physically consistent with the behaviour of the land

surface.
::::
There

::
is
::::
also

:
a
:::::::
growing

:::::::
interest

::
in

:::::
model

:::::::::
emulation,

::::::::::::::::::::::::::::::::::::
(Gómez-Dans et al., 2016; Fer et al., 2018) ,

:::::
these

:::::::::
techniques

:::
are

::::::::
extremely

:::::::
efficient

:::
but

::::::
require

:::::
some

::::::
initial

::::::::::
construction

::
of

:::
the

::::::::
emulator.

:
In this manuscript we adopt the position that a true

parameter should be static in time in the same manner that a physical constant is. Where sequential DA techniques yield time25

varying parameters this points to some missing processes in the model and can be used as a mechanism to diagnose model

structure (Lang et al., 2016) . Another option is to use variational methods, common in numerical weather prediction. These

have been shown to be an effective relatively cheap method of DA in land surface problems (Pinnington et al., 2017; Yang

et al., 2016; Raoult et al., 2016; Bacour et al., 2015; Sawada and Koike, 2014; Rayner et al., 2005). However, when using

gradient-based decent algorithms to minimise the variational cost function these methods require the derivative of the model30

code which can be costly to compute and maintain. The variational cost function can be minimised using non-gradient based

optimisation routines (Pinnington et al., 2018) but comes at the cost of many more model runs to find convergence and loss of

accuracy. Recently however there has been an increase in the development of new hybrid methods combining both ensemble

and variational techniques (Bannister, 2016; Bocquet and Sakov, 2014; Desroziers et al., 2014; Liu et al., 2008). These methods
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present a way to retrieve time-invariant parameters over some time window without the need for the derivative of the model

code or a debilitating number of model runs.

In this paper we present the
::::
first

:::::::::
application

::
of

:::
the Land Variational Ensemble Data Assimilation fRamework (LaVEnDAR)

for implementing the hybrid technique of Four-Dimensional Ensemble Variational Data Assimilation (4DEnVar) with land

surface models. We show LaVEnDAR applied to the Joint UK Land Environment Simulator (JULES) land surface model5

(Clark et al., 2011; Best et al., 2011) with focus on the Mead continuous maize FLUXNET site Nebraska, USA (Suyker,

2016). At this site regular observations of canopy height, Leaf Area Index (LAI) and FLUXNET Gross Primary Productivity

(GPP) are available.

Data assimilation has previously been implemented with the JULES land surface model with Ghent et al. (2010) using

an ensemble Kalman filter to assimilate satellite observations of land surface temperature, Raoult et al. (2016) conducting10

experiments with Four–Dimensional Variational data assimilation focusing on the carbon cycle and Pinnington et al. (2018)

assimilating satellite observations of soil moisture over Ghana. Of these studies Raoult et al. (2016) and Pinnington et al.

(2018) are directly related to the technique presented here in that they used variational DA techniques to estimate parameters in

JULES. Raoult et al. (2016) use an adjoint of JULES (ADJULES) in their study to estimate carbon cycle relevant parameters

for different plant functional types. However the adjoint is only currently available for JULES version 2.2, and considerable15

effort would be required to update it to the most recent model version (5.3 as of 01/01/2019). Pinnington et al. (2018) used a

more recent version of JULES (4.9) but avoided the need for an adjoint by using a Nelder–Mead Simplex algorithm to perform

the cost function minimisation. This inevitably requires a greater number of model integration steps than using a derivative

based technique and is unlikely to work effectively for large dimensional problems.

Our results show that 4DEnVar is a promising technique for land surface applications that is easy to implement for any20

land surface model and provides a reasonable trade off between the computational efficiency of a full 4DVar system and the

complexity and effort of maintaining a model adjoint. Perhaps most significantly no modification to the model code itself is

required. In section 2 we present the JULES model, describe the 4DEnVar technique in detail and outline the experiments

conducted in the paper. Results are shown in section 3, with Discussions and Conclusions in section 4 and 5 respectively.

2 Method25

2.1 JULES land surface model

The Joint UK Land Environment Simulator (JULES) is a community developed process based land surface model and forms

the land surface component in the next generation UK Earth System Model (UKESM). A description of the energy and water

fluxes is given in Clark et al. (2011), with carbon fluxes and vegetation dynamics described in Best et al. (2011). Current ver-

sions of JULES now include a parameterisation for crops with 4 default crop types (wheat, soy bean, maize and rice), a .
:::::
Crop30

::::::::::
development

::
is

::::::::
governed

:::
by

:
a
::::
crop

:::::::::::
development

:::::
index

:::::
which

::::::::
increases

::
as

::
a

:::::::
function

::
of

:::::::::::
crop-specific

::::::
thermal

::::
time

::::::::::
parameters

::::
with

:::
the

::::
crop

::::::
being

::::::::
harvested

:::::
when

:::
the

::::::::::::
development

:::::
index

::::::
crosses

:::::::
certain

:::::::::
thresholds.

::::
The

:::::
crop

:::::
grows

:::
by

::::::::::::
accumulating

::::
daily

::::
NPP

::::
and

::::::::::
partitioning

:::
this

::::::::
between

:
a
:::

set
:::
of

::::::
carbon

:::::
pools

::::::::::
(havestable

:::::::
material,

::::
leaf,

:::::
root,

:::::
stem,

:::::::
reserve),

:::::::::
equations

:::
for
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::::::::::
JULES-crop

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::::::::::
Williams et al. (2017) appendix

:::
A1.

::
a
::::::
further description and evaluation for JULES-crop can be

found in Osborne et al. (2015) and Williams et al. (2017). Williams et al. (2017) conducted a calibration and evaluation for

JULES-crop at the Mead continuous maize site. The setup of JULES described in detail by Williams et al. (2017) forms the

basis for the JULES runs within this paper with JULES version 4.9 being used. We drive JULES with observed meteorological

forcing data of humidity, precipitation, pressure, solar radiation, temperature and wind.5

2.2 Mead Field Observations

We have used observations from the Mead FLUXNET US-Ne1 site (Suyker, 2016) for meteorological driving and eddy co-

variance carbon flux data. A description of the eddy covariance flux data and derivation of Gross Primary Productivity (GPP)

is given in Verma et al. (2005). In this study we only select GPP observations corresponding to unfilled observations of Net

Ecosystem Exchange (NEE) with the highest quality flag and remove zero values from outside of the growing season.
:
It

::
is10

::::::::
important

::
to

::::
note

:::
that

:::::
GPP

:
is
:::
not

:::
an

::::::::::
observation

:::
per

::
se

::
and

::
is
:::::::
derived

::
by

::::::::::
partitioning

:::
the

:::
net

::::::
carbon

::::
flux

::::
using

::
a
:::::
model

::::::
which

:
is
:::::
likely

:::
to

::
be

::::::::::
inconsistent

::::
with

:::
the

:::::::
process

::::::
model

:::
we

:::
are

::::::::::
assimilating

:::
the

::::
data

::::
into.

:
This site has grown maize continuously

since 2001 (previously the site had a 10 year history of maize-soybean rotation) on a soil of deep silty clay loam and has been

the subject of many previous studies (Yang et al., 2017; Nguy-Robertson et al., 2015; Suyker and Verma, 2012; Guindin-Garcia

et al., 2012; Viña et al., 2011). The site is irrigated using a center pivot system. The JULES model can be run with irrigation15

turned off or on, we have run the model with irrigation turned on. In addition to the FLUXNET observations there are also

regular leaf area index, canopy height, harvestable material, leaf carbon and stem carbon observations. Leaf area index, har-

vestable material, leaf carbon and stem carbon observations are made using a method of destructive sampling and an area meter

(Model LI-3100, LI-COR, Inc., Lincoln, NE) (Viña et al., 2011).

2.3 Data Assimilation20

2.3.1 Four-Dimensional Variational Data Assimilation

This section follows the derivation given in Pinnington et al. (2016). In 4DVar we consider the dynamical nonlinear discretised

system

zit = fi−1→it−1→t
::::

(zi−1t−1
::
,pi−1t−1

::
), (1)

with zi ∈ Rn
::::::
zt ∈ Rn

:
the state vector at time ti, pi−1 ∈ Rq

:
t,
:::::::::
pt−1 ∈ Rq

:
the vector of q model parameters at time ti−1 and25

fi−1→i ::::
t− 1

::::
and

::::::
ft−1→t:

the nonlinear model updating the state at time ti−1 to time ti for i= 1,2, . . . ,N
::::
t− 1

::
to

::::
time

::
t
:::
for

::::::::::::
t= 1,2, . . . ,N . If we consider a set of fixed parameters then the value of the state at the forecast time zi ::

zt:is uniquely

determined by the initial state zi−1::::
zt−1. As the model parameters are time-invariant their evolution is given by,

pit = pi−1t−1
::
, (2)
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for i= 1,2, . . . ,N
::::::::::::
t= 1,2, . . . ,N . We join the parameter vector p with the model state vector z, giving us the augmented state

vector

x =

p

z

 ∈ Rq+n. (3)

The augmented system model is given by

xit = mi−1→it−1→t
::::

(xi−1t−1
::

), (4)5

where

mi−1→it−1→t
::::

(xi−1t−1
::

) =

 pt−1

ft−1→t(zt−1,pt−1)

=

pt

zt

 ∈ Rq+n. (5)

The vector yi ∈ Rri
::::::
Process

::::
error

:::::
could

:::
be

:::::::
included

::
in

:::::::
equation

:
(5)

::
by

:::::::::
specifying

::
an

::::::::
additional

:::::
term,

:::
but

::
in

::::
this

:::::::::
application

::
is

::::::::
neglected.

::::
The

:::::
vector

::::::::
yt ∈ Rrt represents available observations at time ti:t. These observations are related to the augmented

state vector by the equation10

yit = hit(xit)+ εit, (6)

where hi : Rq+n→ Rri
:::::::::::::
ht : Rq+n→ Rrt

:
maps the augmented state vector to the observations and εi ∈ Rri

:::::::
εt ∈ Rrt

:
denotes

the observation errors. Often the errors εi::
εt are treated as unbiased, Gaussian and uncorrelated in time with known covariance

matrices Ri:::
Rt.

In 4DVar we require a prior estimate to the state and/or parameters of the system at time t0 :
0
:
denoted by xb. This prior15

estimate is usually taken to have unbiased, Gaussian errors with a known covariance matrix B. Including a prior term in 4DVar

regularises the problem and ensures a locally unique solution (Tremolet, 2006). The aim of 4DVar is to find the initial state

and/or parameters that minimise the distance to the prior estimate, weighted by B, while also minimising the distance of the

model trajectory to the observations, weighted by Ri::
Rt, through the set time window t0, . . . , tN:::::::

0, . . . ,N . We do this by finding

the posterior augmented state that minimises the cost function20

J(x0) =
1

2
(x0− xb)T B−1(x0− xb)+

1

2

∑
i=0t=0

::

N (hit(xit)− yit)T Rit
−1(hit(xit)− yit), (7)

J(x0) =
1

2
(x0− xb)T B−1(x0− xb)+

1

2

∑
i=0t=0

::

N (hit(m0→i0→t
:::

(x0))− yit)
T Rit

−1(hit(m0→i0→t
:::

(x0))− yit). (8)

The state that minimises the cost function is often called the analysis or posterior estimate. The posterior estimate is found

by inputting the cost function, prior estimate and the gradient of the cost function into a gradient based decent algorithm. The25

gradient of the cost function is given by,

∇J(x0) = B−1(x0− xb)+
∑

i=0t=0
::

NMi,0t,0
:

T Hit
T Rit

−1(hit(xit)− yit) (9)
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∇J(x0) = B−1(x0− xb)+
∑

i=0t=0
::

NMi,0t,0
:

T Hit
T Rit

−1(hit(m0→i0→t
:::

(x0))− yit) (10)

where Mi,0 =Mi−1Mi−2 · · ·M0 ::::::::::::::::::::::
Mt,0 =Mt−1Mt−2 · · ·M0 is the tangent linear model with Mi =

∂mi−1→i(xi)
∂xi and Hi =

∂hi(xi)
∂xi

:::::::::::::::
Mt =

∂mt−1→t(xt)
∂xt ,

:::::
MT

t,0 :
is
:::
the

::::::
model

::::::
adjoint

::::::::::
propagating

:::
the

::::
state

::::::::
backward

::
in

::::
time

::::
(this

::
is

:::::::
required

:::
for

:::::::
efficient

:::::::::::
minimisation

::
of

:::
the

::::
cost

:::::::
function

:::::
using

:::::::
gradient

:::::::
descent

:::::::::
techniques)

::::
and

:::::::::::
Ht =

∂ht(xt)
∂xt is the linearized observation operator. Both the lin-5

earized observation operator and the tangent linear model can be difficult to compute, as discussed in section 1. In section 2.3.2

we show how 4DEnVar allows us to avoid the computation of these quantities in the gradient of the cost function. We can avoid

the summation notation in the cost function and its gradient by using vector notation and rewriting as,

J(x0) =
1

2
(x0− xb)T B−1(x0− xb)+

1

2
(ĥ(x0)− ŷ)T R̂−1(ĥ(x0)− ŷ) (11)

and10

∇J(x0) = B−1(x0− xb)+ ĤT R̂−1(ĥ(x0)− ŷ), (12)

where,

ŷ =


y0
y1
...

yN

 , ĥ(x0) =


h0(x0)

h1(m0→1(x0))
...

hN (m0→N (x0))

 , R̂=


R0,0 R0,1 . . . R0,N

R1,0 R1,1 . . . R1,N

...
...

. . .
...

RN,0 RN,1 . . . RN,N

 and Ĥ=


H0

H1M0

...

HNMN,0

 . (13)

The matrix R̂ is a symmetric block diagonal matrix with the off-diagonal blocks representing observation error correlations in

time as discussed in Pinnington et al. (2016).15

:::
For

::::::
certain

::::::::::
applications

:::
the

:::::
prior

::::
error

:::::::::
covariance

::::::
matrix

::
B
::::
can

:::::::
become

:::::
large,

::::::::::::
ill-conditioned

::::
and

::::::
difficult

:::
to

:::::
invert.

:::
As

::
a

::::
result

::::::::::
minimising

:::
the

::::
cost

:::::::
function

::
in

::::::::
equation (11)

:::
and

::::::
finding

:::
the

:::::::::
optimised

:::::
model

::::::::::::::
state/parameters

:::
can

:::
be

::::
slow.

:
To ensure

the 4DVar cost function converges as efficiently as possible and to avoid the explicit computation of the matrix B the problem

is often preconditioned using a control variable transform (Bannister, 2016). We define the preconditioning matrix U by,

B = UUT (14)20

and

x0 = xb +Uw, (15)

so that,

w = U−1(x0− xb). (16)
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Substituting equation (15) and (16) into the cost function (equation (11)) we find

J(w) =
1

2
wT w+

1

2
(ĥ(xb +Uw)− ŷ)T R̂−1(ĥ(xb +Uw)− ŷ). (17)

Under the tangent linear approximation that

hi(m0→i(x
b +Uw))≈ hi(m0→i(x

b))+HiMi,0Uw, (18)

we can approximate equation (17) as5

J(w) =
1

2
wT w+

1

2
(ĤUw+ ĥ(xb)− ŷ)T R̂−1(ĤUw+ ĥ(xb)− ŷ), (19)

with the gradient of the cost function given as

∇J(w) = w−UT ĤT R̂−1(ĤUw+ ĥ(xb)− ŷ). (20)

As the square root of a matrix is not unique there will be multiple choices for the preconditioning matrix U.

2.3.2 Four-Dimensional Ensemble Variational Data Assimilation10

In this section we outline a 4DEnVar scheme using the notation defined in section 2.3.1 and following the approach of Liu

et al. (2008). Given an ensemble of Ne joint state-parameter vectors, we can define the perturbation matrix

X′b =
1√

Ne− 1
(xb,1− xb,xb,2− xb, . . . ,xb,Ne − xb), (21)

here the Ne ensemble members can come from a previous forecast (in which case xb is the mean of the Ne ensemble mem-

bers) or from a known distribution N (xb,B) such that xb = xb. Using X′b we can approximate the background or prior error15

covariance matrix by

B≈ X′bX′Tb . (22)

We can then transform to ensemble space using the matrix X′b as our preconditioning matrix by defining

x0 = xb +X′bw, (23)

where w is a vector of length Ne. Defining x0 in this way reduces the problem in cases where the state/parameter vector is20

much larger than the ensemble size (Ne) and also regularizes the problem in cases where the state/parameter vector contains

elements of contrasting orders of magnitude. From section 2.3.1 the cost function (19) becomes

J(w) =
1

2
wT w+

1

2
(ĤX′bw+ ĥ(xb)− ŷ)T R̂−1(ĤX′bw+ ĥ(xb)− ŷ) (24)

with gradient

∇J(w) = w+X
′T
b ĤT R̂−1(ĤX′bw+ ĥ(xb)+ ŷ). (25)25

7



We can see that the tangent linear model and adjoint are still present in equation (24) and (25) within Ĥ (see equation (13)).

However, we can write X
′T
b ĤT as (ĤX′b)T where ĤX′b is a perturbation matrix in observation space given by

ĤX′b ≈
1√

Ne− 1
(ĥ(xb,1)− ĥ(xb), ĥ(xb,2)− ĥ(xb), . . . , ĥ(xb,Ne)− ĥ(xb)), (26)

the gradient then becomes

∇J(w) = w+(ĤX′b)
T R̂−1(ĤX′bw+ ĥ(xb)− ŷ), (27)5

avoiding the computation of the tangent linear and adjoint models as we can calculate (26) using only the nonlinear model and

nonlinear observation operator.

2.3.3
::::::::::::::
Implementation

::::
with

:::::::
JULES

::
In

::::
order

::
to

:::::::::
implement

::::::::
4DEnVar

:::
we

::::::::
construct

::
an

::::::::
ensemble

::
of

:::::::::
parameter

::::::
vectors

:::
and

::::
then

:::
run

:::
the

:::::::
process

:::::
model

:::
for

::::
each

::::::
unique

::::::::
parameter

:::::
vector

:::::
over

::::
some

::::::::::::
predetermined

::::
time

::::::::
window.

:::
We

::::
then

::::::
extract

:::
the

::::::::
ensemble

::
of

::::::::::::::
model-predicted

::::::::::
observations

:::::
from10

:::
then

::::::::
ensemble

::
of
::::::
model

::::
runs

:::
and

:::::::
compare

:::::
these

::::
with

:::
the

::::::::::
observations

::
to

::
be

::::::::::
assimilated

::::
over

:::
the

::::
given

::::
time

:::::::
window.

::
In
::::
our

::::
code

::::::::::::::::::
(Pinnington, 2019) we

:::::::::
implement

:::
the

:::::::
method

::
of

::::::::
4DEnVar

::::
with

::::::
JULES

:::::
using

::
a
:::
set

::
of

::::::
Python

::::::::
modules.

::::
The

:::
data

:::::::::::
assimilation

::::::
routines

::::
and

:::::::::::
minimization

:::
are

::::::::
included

::
in

::::::::::::::::
fourdenvar.py.

:::::
This

:::
part

:::
of

:::
the

::::
code

::::
does

:::
not

:::::
need

::
to

::
be

::::::::
modified

::
to

::
be

:::::
used

::::
with

:
a
::::
new

::::::
model.

::::::
Model

:::::::
specific

:::::::
routines

:::
for

:::::::
running

:::::::
JULES

:::
are

:::::
found

:::
in

::::::::::
jules.py

:::
and

::::
run_jules

::::
.py.

:::::::
JULES

::
is

::::::
written

::
in

::::::::::
FORTRAN

::::
with

::
its

::::::::::
parameters

:::::
being

::
set

:::
by

::::::::::
FORTRAN

:::::::
namelist

:::::::
(NML)

::::
files,

::::::::::
jules.py

:::
and

::::
run_jules

::::
.py15

::::::
operate

:::
on

:::::
these

:::::
NML

::::
files

::::::::
updating

:::
the

::::::::::
parameters

::::::
chosen

::::
for

:::::::::::
optimisation.

::::
The

::::
data

:::::::::::
assimilation

:::::::::
experiment

:::
is

:::::
setup

::
in

::::::::::::
experiment_setup

::::
.py

:::
with

::::::::
variables

:::
set

:::
for

::::::
output

::::::::::
directories,

::::::
model

::::::::::
parameters,

::::::::
ensemble

::::
size

:::
and

::::::::
functions

:::
to

:::::
extract

:::::::::::
observations

:::
for

:::::::::::
assimilation.

::::
The

:::::::
module

::::
run_experiment

::::
.py

::::
runs

:::
the

::::::::
ensemble

:::
of

:::::
model

:::::
runs

:::
and

::::::::
executes

::
the

::::::::::
experiment

:::
as

::::::
defined

:::
by

:::::::::::::
experiment_setup

:::
.py

:
.
:::::
Some

::::::::::
experiment

:::::::
specific

:::::::
plotting

:::::::
routines

:::
are

::::
also

:::::::
included

:::
in

::::::::
plot.py

:
.
:::::
More

::::::::::
information

:::
and

:
a
:::::::
tutorial

:::
can

::
be

::::::
found

::
at https://github.com/pyearthsci/lavendar.

:
20

::
To

:::
use

:::::::
another

:::::
model

::
in

:::
this

:::::::::
framework

::::
new

::::::::
wrappers

:::::
would

::::
have

::
to

::
be

::::::
written

::
to
::::::
mimic

:::
the

::::::::::
functionality

::
of

::::::::::
jules.py

:::
and

::::
run_jules

:::
.py

:::
and

::::
allow

:::
for

:::::::
multiple

::::::
model

:::
runs

::
to

:::
be

::::::::
conducted

:::::
while

::::::
varying

::::::::::
parameters.

::::
The

::::::
module

::::
run_experiment

::::
.py

:::::
would

::::
need

::
to

:::
be

::::::
updated

::
to
:::::::
account

:::
for

::::
these

::::
new

::::::::
wrappers

:::
and

::::::::
functions

::
to

::::::
extract

:::
the

::::::::::
observations

:::
for

::::::::::
assimilation

::::::::
included

::
in

::::::::::::
experiment_setup

::::
.py

:
.
::::::::
Although

:::
we

::::
have

:::::
used

::::::
Python

::::
here

:::
to

:::::::::
implement

::
a

:::::
stand

:::::
alone

:::::
setup

::
of

:::::::::::
LaVEnDAR

:::
we

:::::::
envisage

::::
that

:::
the

::::::::
technique

:::::
could

:::
be

:::::
added

::
to

:::::::
existing

::::::::
workflow

:::::::
systems

:::::
such

::
as

::::
Cylc

:::::::::::::::::::
(Oliver et al., 2019) or

:::
the

:::::::::
Predictive25

:::::::::
Ecosystem

:::::::
Analyzer

::::::::
(PEcAn)

:::::::::::::::::::
(LeBauer et al., 2013) .

:

2.3.4 Tests of the Four-Dimensional Ensemble Variational Data Assimilation System

It is important to ensure correctness of 4DEnVar the system. We show that our system is correct and passes tests for the

gradient of the cost function (Li et al., 1994; Navon et al., 1992). For the cost function J and its gradient∇J we show that our

implementation of∇J is correct using the identity,30

f(η) =
|J(w+ ηb)− J(w)|

αbT∇J(w)
= 1+O(η), (28)

8
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where b is a vector of unit length and η is a parameter controlling the size of b. For small values of η we should find f(η) close

to 1. Figure ?? shows f(η)
:
1
:::::
shows

:::::::::
|f(η)− 1| for a year’s assimilation window with b = w||w||−1 where w is calculated from

the prior parameter values (see table 3) perturbed by 30%. We can see that f(η)→ 1 as η→ 0, as expected. We also show

|f(η)− 1| in Figure 1 this shows that |f(η)− 1| → 0 as η→ 0 as expected, until f(η) gets too close to machine precision at

O(η) = 10−9. This was also tested with different choices of b finding similar results.5

Test of the gradient of the 4DEnVar cost function.

10 9 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
|f(

)
1|

Figure 1. Test of the gradient of the 4DEnVar cost function.

2.4 Experiments

2.4.1 Twin Experiments

A so–called “twin” experiment in data assimilation is one where a model is used to generate synthetic observations to be as-

similated. This is a commonly used approach to test whether particular combinations of observations can, in principle, be used

retrieve desired target variables using some DA method. In effect the model the observations are being assimilated into is “per-10

fect” because it represents the underlying physics that gave rise to them in the first place. We conducted a parameter estimation

twin experiment with the aim to recover values for key JULES–Crop parameters: the quantum efficiency of photosynthesis,

nitrogen use efficiency (scale factor relating Vcmax with leaf nitrogen concentration), scale factor for dark respiration, two

allometric coefficients for calculation of senescence and two coefficients for determining specific leaf area (see table 1). These

seven parameters have an effect on the crop’s seasonal growth cycle and its photosynthetic response to meteorological forcing15

data.
:::
The

::::::
choice

::
of

::::::::::
parameters

:::
was

:::::::::
motivated

::
by

:::
the

:::::::
analysis

:::
of

:::::::::::::::::::::
Williams et al. (2017) who

::::::
found

:::
that

::::
they

:::::
were

::::
least

::::
able

::
to

9



:::::::
constrain

:::::
these

:::::::::
parameters

::::
with

:::
the

::::::::
available

::::
data. We assimilated synthetic observations of Gross Primary Productivity (GPP),

Leaf Area Index (LAI) and canopy height, all generated by JULES, over a year long assimilation window.

The model truth was taken from the values given in Williams et al. (2017) and perturbed using a normal distribution with a

10% standard deviation to find a prior parameter vector, xb. We then generated an ensemble by drawing 50 parameter vectors

from the normal distribution with mean xb and variance (0.15×xb)
2. Synthetic observations were sampled from the model5

truth with the same frequency as the real observations available from Mead and perturbed with
::::
using

::::::::
Gaussian

:::::
noise

::::
with

::
a

:::::::
standard

::::::::
deviation

::
of 2% Gaussian noise

:
of
:::

the
::::::::

synthetic
:::::
truth

::::
value. This provided an idealised test case where we have high

confidence in the assimilated observations to ensure our system is working and can recover a set of known parameters, given

known prior and observation error statistics.
::
We

::::
also

::::::
include

::
a

::::
twin

:::::::::
experiment

:::::
using

:::
the

::::
same

:::::
error

:::::::
statistics

::
as

:::::
those

::::
used

:::
for

::
the

::::
real

::::
data

::::::::::
experiments

::
at

:::
the

:::::
Mead

:::
site

::::::::
(outlined

::
in

::::::
section

:::::
2.4.2)

::
in
:::::::::::::
supplementary

:::::::
material

::::::
section

:::::
S1.1.10

Parameter Description xtrue

α quantum efficiency of photosynthesis (mol CO2 mol−1 PAR) 0.055

neff nitrogen use efficiency (mol CO2 m−2 s−1 kg C (kg N)−1) 5.7× 10−4

fd scale factor for dark respiration (-) 0.0096

µ allometric coefficient for calculation of senescence (-) 0.02

ν allometric coefficient for calculation of senescence (-) 4.0

γ coefficient for determining specific leaf area (-) 17.6

δ coefficient for determining specific leaf area (-) -0.33

Table 1. Description of parameters optimised in experiments and model truth value.

2.4.2 Mead Experiments

For the experiments using real data from the Mead US-Ne1 FLUXNET site the same seven parameters were optimised (shown

in table 1) by assimilating observations over a year long assimilation window in 2008. The prior parameter vector, xb, is taken

from the values given in Williams et al. (2017). We then generated an ensemble of 50 parameter vectors by sampling from the

normal distribution with mean xb and variance (0.25×xb)
2.

::
We

:::::
apply

:::
the

:::::
same

:::::::
variance

::
to

:::
all

:::::::::
parameters

::::
here

::
as

:::
the

:::::::
analysis15

::
of

::::::::::::::::::::::::
Williams et al. (2017) showed

:::::
these

::::::::::
parameters

::
to

:::
all

::
be

::::::
poorly

::::::::::
constrained

::::
with

:::
the

::::::::
available

::::
data

::
in
::

a
:::::
more

:::::::::
traditional

:::::
model

:::::::::
calibration

:::::
study.

::
In

::::::
reality

::
it

:
is
:::::::
unlikely

::::
that

::
all

::::::::::
parameters

:::
will

:::::
have

::
the

:::::
same

:::::::
variance

:::
but

::
in

:::
the

:::::::
absence

::
of

:::::::::
additional

:::::::::
information

::::
and

:::
for

:::
the

::::::::
purposes

::
of

:::
this

::::::::::::
demonstration

:::
we

:::::
used

:::::::::::
(0.25×xb)

2.
:
Observations for the site are described in sec-

tion 2.2. For the more direct measurements of
:::
We

::::::::
prescribe

:
a
:::
5%

:::::::
standard

::::::::
deviation

:::
for canopy height and leaf area index errors

were specified as 5
:::
and

:
a
:::
10% standard deviation . Errors in GPPwere inflated to

:::
for

:::::
errors

::
in

::::
GPP.

:::::
These

:::::::::::
uncertainties

:::
are

:::::
rough20

:::::::
estimates

::::
that

:::
we

:::::::::
considered

:::::::
adequate

:::
for

::::::::::::
demonstrating

:::
our

::::::
system,

:::
but

:::
for

:::
any

:::::::
specific

:::::::::
application

:::
the

:::::
errors

::::::::
estimates

::::::
should

::
be

:::::::::
determined

:::::
more

::::::::
carefully.

::::::::
However,

:::
our

:::::::::::
uncertainties

:::
are

:::::::::
consistent

::::
with

::::::::::::::::::::::
Schaefer et al. (2012) who

:::::
found

::
an

::::::::::
uncertainty

::
of

::::
1.04

:
g
::
C

::::
m−2

:::::
day−1

::
to
::::
4.15

::
g
::
C

::::
m−2

:::::
day−1

:::::::
(scaling

::::
with

::::
flux

:::::::::
magnitude)

:::
for

::::::::
estimates

::
of

::::
GPP,

::::::::::::::::::
Raj et al. (2016) who

:::::
found

10



::
an

:::::::::
uncertainty

::
in
:::
the

:::::
order

::
of

:
10% standard deviation to account for the fact that these are pseudo observations based on eddy

covariance data and assumptions about ecosystem respiration
::
for

:::::
daily

::::::::
estimates

::
of

::::
GPP

::::
and

:::::::::::::::::::::::::::
Guindin-Garcia et al. (2012) who

:::::
found

:
a
::::::::
standard

::::
error

:::
of

::::
0.15

:::
m2

::::
m−2

:::
for

:::::::::::
destructively

:::::::
sampled

:::::
green

::::
LAI

:::
at

:::
the

:::::
Mead

::::
flux

:::
site. The error statistics used

within the data assimilation experiments could be investigated more thoroughly but are appropriate for demonstrating the

validity of the technique and providing an optimal weighting between prior and observation estimates.5

3 Results

3.1 Twin Experiments

Figure 2 to 4 show plots of the 3 target variables over the year long assimilation window. For these figures the blue line

and shading represents the 50 member prior ensemble mean and spread (+/− 1 standard deviation), the orange line and

corresponding shading represent the same but for the 50 member posterior ensemble of JULES model runs, pink dots with10

vertical lines are the synthetic observations with error bars (+/− 1 standard deviation) and the dashed black line is the trajectory

of the JULES model using the “true” parameter values. Figure 2 shows that after data assimilation the posterior model estimate

tracks the model truth trajectory closely with the LAI model truth always being captured by the posterior ensemble spread.

For GPP Figure 3 shows a very similar result as for LAI with the posterior estimate fully capturing the model truth. Figure 4

illustrates the effect the large spread of the prior ensemble has on harvest dates towards the end of the season, with the15

ensemble spread increasing markedly as different ensemble members are harvested on different days. The spread for the

posterior estimate of canopy height reduces considerably and tracks the model truth well. Figure 5 shows prior, posterior and

true trajectories for harvestable material. We have not assimilated any observations of this quantity but this Figure shows we

improve predictions of harvestable material after assimilation of the 3 previously discussed target variables. In table 2 we

show Root-Mean Squared Error (RMSE) for the 3 target variables before and after assimilation. We find an average 93.67%20

reduction in RMSE for the 3 target variables.

Prior and posterior distributions for the seven parameters are shown in Figure 6 (light grey and dark grey respectively) with

the true model parameter values shown as dashed black vertical lines. For all seven parameters the posterior distribution moves

toward the model truth and in most cases the posterior distribution mean appears very close to the model truth. The posterior

distributions also narrow significantly in comparison to the prior distributions with the exception of fd. Table 3 shows the mean25

prior and posterior parameter vectors and percentage error values between prior parameter estimates and the model truth and

posterior parameter estimates and the model truth. The percentage error in the posterior estimate is reduced for all parameters,

again with the exception of fd. The inability of the technique to recover fd is discussed further in section 4.1. There is an

average error of 10.32% in the prior parameter estimates and this is reduced to 2.93% for the posterior estimates.
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Figure 2. 4DEnVar twin results for leaf area index using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange

shading: posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars, dashed black line: model truth.
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Figure 3. 4DEnVar twin results for gross primary productivity using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1

σ), orange shading: posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars, dashed black line: model truth.
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Figure 4. 4DEnVar twin results for canopy height using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange

shading: posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars, dash black line: model truth.
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Figure 5. 4DEnVar twin results for harvestable material using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ),

orange shading: posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars, dashed black line: model truth.
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Figure 6. 4DEnVar twin distributions for the 7 optimised parameters for both the prior ensemble (light grey) and posterior ensemble (dark

grey). The value of the model truth is shown as a dashed vertical black line.

Target variable xb RMSE xa RMSE

LAI 1.95 0.15

GPP 5.17 0.33

Canopy height 0.39 0.03

Table 2. 4DEnVar twin assimilated observation RMSE for the 4 target variables when an ensemble of size 50 is used in experiments.

parameter xtrue xb xa xb % error xa % error

α 0.055 0.067 0.056 22.4 1.1

neff 0.00057 0.00062 0.00056 9.5 2.2

fd 0.0096 0.0087 0.0082 9.8 14.6

µ 0.020 0.024 0.021 18.7 5.3

ν 4.0 4.16 3.90 4.0 2.4

γ 17.6 20.7 18.1 17.6 2.9

δ -0.33 -0.29 -0.30 9.8 8.0

Table 3. 4DEnVar twin results and percentage error for each of the seven optimised parameters when an ensemble of size 50 is used in

experiments.
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3.2 Mead field observations

Figures 7 to 9 show assimilation results for the 3 target variables over the year long window for the Mead field site. For these

Figures the blue line and shading represents the 50 member prior ensemble mean (taken from Williams et al. (2017)) and

spread (+/− 1 standard deviation), the orange line and shading represents the same but for the 50 member posterior ensemble

of JULES model runs after data assimilation and the pink dots with vertical lines are the field observations from Mead site5

US-Ne1 with error bars (+/− 1 standard deviation). From Figure 7 we can see that the prior estimate
::::
mean

:
underestimates

LAI, only capturing 5 of the 11
:::::::
reaching

:
a
:::::
much

::::::
lower

::::
peak

::::
than

:
observations, despite this the technique finds a posterior

estimate that captures
:::::
mean

:::::::
estimate

::::
that

:::::
agrees

::::
well

:::::
with all but 2 LAI observations (in September and October). We find

similar results for GPP in Figure 8, with the posterior capturing the majority of observations but missing some of the highest

values. For canopy height in Figure 9 the effect of the spread in ensemble harvest dates for the prior is again obvious (also seen10

in the twin experiments, Figure 4), this spread is reduced for the posterior estimate and all observations are captured by the

posterior ensemble spread.

Prior and posterior estimates for unassimilated independent observations are shown in Figure 10 to 12. From Figure 10 we

can see the prior estimate is underestimating the amount of harvestable material for the maize crop. After assimilation the

posterior estimate predicts the amount of harvestable material well and with increased confidence. Figure 11 shows that our15

posterior estimate of leaf carbon content improves after assimilation but is still too low, this is the same for stem carbon content

in Figure 12.
:::
The

::::
fact

::::
that

:::
we

:::
can

::::
find

::::
good

:::::::::
agreement

:::
for

::::
LAI

:::::
with

:
a
::::::
poorer

::
fit

::
to
::::

leaf
::::::
carbon

:::::::
content

::
is

:::::
likely

:::
due

:::
to

:::
the

::::::::
optimised

:::::::::
parameters

:::::::::
controlling

:::::::
specific

:::
leaf

::::
area

::::::::::::
compensating

:::
for

:::::
errors

::
in

:::::
model

::::::::::
parameters

:::::::::
controlling

:::
the

::::::::::
partitioning

::
of

::
net

:::::::
primary

::::::::::
productivity

::::
into

:::
the

:::
leaf

::::::
carbon

:::::
pool.

::::
This

::::::
allows

::
us

::
to

::::::
achieve

:::
the

::::::
correct

::::
leaf

::::
area

::::
with

:::
the

:::::::
incorrect

::::
leaf

::::::
carbon

::::::
content.

:
20

Prior and posterior ensemble parameter distributions are shown in Figure 13. After assimilation the distributions have shifted

and narrowed for all parameters, except fd, with α being the most extreme example of this. The effect these updated parameter

distributions have on the model prediction of the 3 target variables in table 4 is clear. We find the largest reduction in RMSE

for canopy height (73%) with the smallest reduction in RMSE for GPP (44%), overall we found an average 59% reduction

in RMSE for the 3 target variables. From table 5 we can see the updated parameters have also reduced the model prediction25

RMSE in independent unassimilated observations. The largest reduction is in the prediction of harvestable material (74%),

overall we have found an average 47% reduction in RMSE for the 3 independent observation types.

Target variable xb RMSE xa RMSE Reduction

LAI 1.49 0.60 59%

GPP 3.86 2.15 44%

Canopy height 0.38 0.10 73%

Table 4. 4DEnVar Mead assimilated observation RMSE for the 3 target variables when an ensemble of size 50 is used in experiments.
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Figure 7. 4DEnVar results for leaf area index using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange shading:

posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars.
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Figure 8. 4DEnVar results for gross primary productivity using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ),

orange shading: posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars.

16



200802

200803

200804

200805

200806

200807

200808

200809

200810

200811

200812

Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
an

op
y 

H
ei

gh
t (

m
)

prior
posterior
observations

Figure 9. 4DEnVar results for canopy height using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange shading:

posterior ensemble spread (+/− 1 σ), pink dots: observations with error bars.
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Figure 10. 4DEnVar results for harvestable material using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange

shading: posterior ensemble spread (+/− 1 σ), pink dots: observations.
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Figure 11. 4DEnVar results for leaf carbon using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange shading:

posterior ensemble spread (+/− 1 σ), pink dots: observations.
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Figure 12. 4DEnVar results for stem carbon using 50 ensemble members. Blue shading: prior ensemble spread (+/− 1 σ), orange shading:

posterior ensemble spread (+/− 1 σ), pink dots: observations.
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Figure 13. 4DEnVar distributions for the 7 optimised parameters for both the prior ensemble (light grey) and posterior ensemble (dark grey).

Target variable xb RMSE xa RMSE Reduction

Harvestable material 0.06 0.02 74%

Leaf carbon 0.05 0.03 32%

Stem carbon 0.10 0.06 34%

Table 5. 4DEnVar Mead unassimilated observation RMSE when an ensemble of size 50 is used in experiments.

4 Discussion

4.1 Twin experiments

In section 3.1 we have demonstrated that the 4DEnVar technique is able to retrieve a synthetic truth given known prior and

observation error statistics. There is good agreement between the mean posterior trajectory and model truth for the 3 target

variables (see Figure 2, 3 and 4). We also retrieve accurate predictions of independent unobserved quantities such as harvestable5

material (see Figure 5). The mean posterior parameter vector after assimilation is very close to the model truth as shown in

table 3 and Figure 13 with the exception of the scale factor for dark respiration fd. Our inability to recover this parameter is

likely due to the fact that the assimilated daily averaged observations are not greatly impacted by changes in dark respiration.

Assimilating total above ground carbon could improve the estimation of fd by giving us a proxy to the net primary productivity
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of the crop and with the concurrent assimilation of GPP better constraint on respiration. Alternatively including correlations

in the prior error covariance matrix would provide information to update fd even when the assimilated observations are not

impacted by changes in this parameter.
::
It

:::
has

::::
been

::::::
shown

:::
that

:::::::
suitable

::::::::::
correlations

:::
can

::
be

:::::::::
diagnosed

::
by

::::::::
sampling

:::::
from

:
a
:::
set

::
of

::::::::::::
predetermined

::::::::
ecological

:::::::::
dynamical

:::::::::
constraints

::::
and

:::::
taking

:::
the

:::::::::
covariance

::
of

:::
an

::::::::
ensemble

:::
run

:::::::
forward

::::
over

:
a
:::
set

::::
time

:::::::
window

::::::::::::::::::::
(Pinnington et al., 2016) .

:
5

In the results for all predicted variables we find that the posterior ensemble collapses
::::::::
converges around the model truth.

This can be also be seen for the parameters in Figure 6 where the posterior ensemble spread of the parameter α is particularly

narrow. This could lead to problems when using our posterior estimate as the prior for a new assimilation cycle. It is also

possible that equifinality could become an issue when attempting to optimise a larger number of parameters. From table 3

we can see this issue for the two parameters controlling photosynthetic response with the posterior slightly over-predicting10

α and under-predicting neff , as different combinations of these parameters can produce the same trajectory for the observed

target variables.
:::
The

::::::
effect

::
of

::::::::::
equifinality

:::
can

::
be

:::::
seen

::::
more

::::::
clearly

:::
for

:::
the

::::::::
posterior

::::::::
ensemble

:::::::::
correlation

::::::
matrix

::::::::
included

::
in

:::::
Figure

:::
S7

::
of

:::
the

::::::::::::
supplementary

::::::::
material.

:
It is also clear that selection of the prior ensemble is important to the success of the

technique. From Figures 4 and 5 it can be seen that the prior ensemble is poor, suggesting that it could be better conditioned

to deal with the discontinuity of the harvest date. It may be the case that for more complex problems an iterative step in the15

assimilation would be needed to address this (Bocquet, 2015) or ensemble localisation in time. The
::
In

:::
this

:::::
study

:::
we

:::::
have

::::
only

:::::::::
considered

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::
parameters

::::
and

:::::
initial

:::::::::
conditions

:::
and

:::
not

:::
the

::::::::::
uncertainty

::
in

::::::
forcing

::::
data,

:::::::
random

::::::
effects

:::::::::
(parameter

:::::::::
variability)

::
or

::::::::::
uncertainty

::
in

:::
the

:::::::
process

:::::
model

:::::::::::::
(Dietze, 2017) .

::::
The

::::::::
inclusion

::
of

:::::
these

::::::::
additional

:::::::
sources

::
of

:::::
error

:::::
would

:::::
avoid

:::
the

::::::::
ensemble

:::::::::
converging

:::
too

::::::
tightly

::::::
around

::::
any

:::::
given

:::::
value.

::
In

:::::
order

::
to

::::::
include

::::::::::
uncertainty

::
in

:::
the

::::::
forcing

::::
data

::
it

:::::
would

::
be

:::::::::
necessary

::
to

:::
run

::::
each

::::::::
ensemble

:::::::
member

:::::
with

:
a
:::::::
different

:::::::::
realisation

::
of

:::
the

:::::::
driving

:::::::::::
meteorology.

::::::
Process

:::::
error

:::::
could20

::
be

:::::::
included

:::
in

:::::::
equation

:
(5)

:::::::
resulting

::
in

:
a
::::

new
:::::

term
::
in

:::
the

::::::::
4DEnVar

::::
cost

:::::::
function

::
in
::::::::

equation
:
(24)

::::::::
containing

::
a

:::::
model

:::::
error

:::::::::
covariance

::::::
matrix,

::
it

:::
has

::::
also

::::
been

::::::
shown

::::
that

:::::
these

:::::::
different

:::::
types

:::
of

:::::::::
uncertainty

:::::
could

:::
be

::::
built

::::
into

:::
the

::::::::::
observation

:::::
error

:::::::::
covariance

:::::
matrix

::
R
::::::::::::::::::

(Howes et al., 2017) .
::
If
::::::::
estimates

::
to

:::::
these

:::::::
sources

::
of

::::
error

:::
are

::::
not

:::::::
available

:::
the

:
use of methods such as

ensemble inflation (Anderson and Anderson, 1999)
:
,
:
a
:::
set

::
of

:::::::::
techniques

::::::
where

:::
the

::::::::
ensemble

:::::
spread

::
is
:::::::::
artificially

:::::::
inflated,

:
will

help alleviate problems of ensemble collapse
::::::::::
convergence.25

4.2 Mead field observations

We have demonstrated the ability of the technique to improve JULES model predictions using real data in section 3.2. Posterior

estimates improve the fit to observations with the posterior ensemble spread capturing the majority of assimilated observations

(see Figure 7, 8 and 9). We reduce the RMSE in the mean model prediction by an average of 59% for the 3 target variables.

As independent validation that we are improving the skill of the JULES model we also improve the fit to three unassimilated30

observation types (see Figure 10, 11 and 12) with an average reduction in RMSE of 47%. We find the largest reduction in

RMSE for the independent observations for harvestable material (74% reduction) which is an important variable closely linked

to crop yield. The improvement in skill for the unassimilated observations gives us confidence that the technique has updated

the model parameters in a physically realistic way and we have not over-fitted to the assimilated data.
::
By

:::::::::
conducting

::
a

:::::::
hindcast

20



::
for

:::::
2009

::::::
(shown

::
in

::::::::::::
supplementary

:::::::
material

::::::
Figure

:::
S6

:::
and

::::
table

::::
S2)

:::
we

:::
also

::::
find

:::
the

:::::::
retrieved

::::::::
posterior

::::::::
ensemble

::::::::
improves

:::
the

::
fit

::
to

:::
the

:::::::::::
unassimilated

:::::::::::
observations

::
in

:::
the

:::::::::
subsequent

:::::
year,

::::
with

::
an

:::::::
average

::::::::
reduction

::
in

::::::
RMSE

::
of

::::
54%

:::::
when

:::::::::
compared

::::
with

::
the

:::::
prior

:::::::
estimate.

:

The experiments with Mead field observations do not show the same level of ensemble collapse
:::::::
reduction

::
in

::::::::
ensemble

::::::
spread

as in the twin experiments (see Figure 13) due to the specified prior and observations errors being much larger. However, the5

posterior distribution for some parameters is still quite narrow. We again find very little update for fd as in the twin experiments,

suggesting that the assimilated observations (at their current temporal resolution) are not sensitive to changes in this parameter.

In our experiments we have held back observations of harvestable material, leaf carbon and stem carbon to use as independent

validation of the technique. However, these observations could have been included in the assimilation to better constrain the

current parameters or consider a larger parameter set.10

4.3 Challenges and opportunities

Avoiding the computation of an adjoint makes the technique of 4DEnVar much easier to implement and also agnostic about

the land surface model used. By maintaining a variational approach and optimising parameters over a time window against

all available observations we also avoid retrieving non-physical time-varying parameters associated with more common se-

quential ensemble methods. However, as with other ensemble techniques results are dependent on having a well conditioned15

prior ensemble. Methods of ensemble localisation (Hamill et al., 2001)
:
,
:::::
where

::::::
distant

::::::::::
correlations

:::
or

::::::::
ensemble

::::::::
members

:::
are

::::::::::::
down-weighted

:::
or

::::::::
removed, could be used to improve prior estimates. In this instance we would need to consider localisation

in time (Bocquet, 2015). As we move to
::
In

::::
order

::
to

::::::
extend

:::
this

:::::::::
framework

::
to
:
model runs over a spatial grid localisation in space

will also become important
::
we

::::
will

::::
need

:
a
:::::::
method

::
to

::::::
sample

:::::
prior

::::::::
parameter

:::::::::::
distributions

::::::::
regionally

::
or

::::::::
globally,

:
it
::::::
would

::::
then

::
be

:::::::
possible

::
to

:::::::
conduct

::::::::
parameter

:::::::::
estimation

::::::::::
experiments

::::
over

::
a

::::::
region,

:::::
either

::
on

::
a

::::
point

:::
by

::::
point

:::::
basis

::
or

:::
for

:::
the

:::::
whole

::::
area

::
at20

::::
once.

:::::::::::
Considering

:
a
::::
large

::::
area

::::::
would

:::::::
increase

:::
the

::::::::
parameter

:::::
space

:::
and

::::::
require

:::::
more

::::::::
ensemble

::::::::
members.

:::::::::::
Localisation

::
in

:::::
space

::::
could

::::
help

:::
to

:::::
reduce

:::
the

:::::::::
parameter

:::::
space

:::
and

::::
thus

:::::
allow

:::
for

:::
use

::
of

::
a
::::::
smaller

::::::::
ensemble. The ensemble aspect of the technique

also allows us to retrieve posterior distributions of parameters whereas in pure variational methods we would only find a poste-

rior mean. However, this also presents a possible issue of posterior ensemble collapse
::::::::::
convergence around certain parameters.

Using
::::::::
Including

:::::::::
additional

::::::
sources

:::
of

::::
error

::::::
within

:::
the

::::::::::
assimilation

::::::
system

:::::::
(driving

::::
data

:::::
error,

:::::::::
parameter

:::::::::
variability,

:::::::
process25

:::::
error)

::
or

:::::
using methods such as inflation (Anderson and Anderson, 1999) will help to avoid this and ensure our posterior esti-

mates maintain enough spread to be used as a prior estimate in new assimilation cycles.
::::
While

::::::::
posterior

:::::::::
parameter

::::::::
estimates

::::
could

:::
be

::::
used

:::
in

:::::
future

::::::
studies

:::::
with

::::
their

:::::::::
associated

:::::::::::
uncertainties

:::
we

::::::::
envisage

:::
that

:::::::
cycling

::
of

:::
the

:::::::::::
assimilation

::::::
system

::::
will

::
be

:::::
more

:::::::::
appropriate

:::
for

::::
state

:::::::::
estimation

:::::
(after

:::::
initial

:::::::::
parameter

::::::::::
estimation)

:::::
where

:::
the

::::::
system

:::::
could

:::
be

::::::
cycled

::
on

::
a

::::::::
timescale

::::::
suitable

:::
for

:::
the

:::::::
required

::::
state

:::::::
variable

::::
and

:::
data

::::::::::
availability.

:
30

In 4DEnVar we approximate the tangent linear model using an ensemble perturbation matrix. Without the explicit knowledge

of the tangent linear and adjoint models 4DEnVar could be less able to deal with nonlinearities in the process model in

cases where the ensemble is small or ill-conditioned. For the examples presented in this paper 4DEnVar deals well with the

nonlinearity of the JULES land surface model. However, it is possible that for high dimensional spaces a technique of stochastic
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ensemble iteration (Bocquet and Sakov, 2013) will need to be implemented to cope with increased nonlinearity at the cost of

multiple model runs within the minimisation routine. The framework proposed in this paper allows for the implementation of

such a technique fairly easily.

In this paper we have focused on parameter estimation as it is often more important in land surface models than state

estimation (Luo et al., 2015) . However
::::
using

:::::::::::
LaVEnDAR

:::
for

::::::::
parameter

::::::::::
estimation.

::::::::
However,

:
the technique we present can5

just as easily be used to adjust the model state at the start of an assimilation window in much the same way as is done in

weather forecasting (Liu et al., 2008). In this case it is likely that a shorter assimilation window would be requiredand data

assimilated to adjust, for example, the predicted leaf area index using observations from satellites. The posterior ensemble is

then used to provide the initial conditions for the next assimilation window. However some addition of stochastic noise and /or

inflation may be required to account correctly
::::
This

:::::
would

:::::::
require

::::::::
additional

:::::::
modules

:::
to

::
be

::::::
written

::::::
within

::::::::::
LaVEnDAR

::::::
which10

:::::
would

::::::
handle

:::
the

:::::::
starting

:::
and

::::::::
stopping

::
of

:::
the

:::::::
process

::::::
model.

::
It

:::::
would

::::
also

::::::
require

::::
that

:::
the

:::::::::::
implemented

::::::
model

::::
was

::::
able

::
to

:::::
dump

:::
the

:::
full

:::::::
existing

:::::
model

:::::
state

:::
and

::::
then

:::
be

:::::::
restarted

::::
with

:::
an

:::::::
updated

::::::
version

::
of

::::
this

::::
state

:::
(as

::
is

:::::::
possible

::::
with

:::::::
JULES).

:::
In

:::
this

:::::::
iterative

:::::::::
framework

:::::::::
accounting

:
for model error

:::::
would

:::
also

:::::::
become

:::::
more

::::::::
important.

A particularly appealing aspect of the LaVEnDAR framework as presented in this paper is that there is no interaction

between the DA technique and the model itself — once the initial ensemble is generated it is not necessary to run the model15

again to perform any aspect of the DA. Because the main computational overhead is running the model this makes the DA

analysis extremely efficient. This is quite unlike related techniques such as 4DVar and provides some unique opportunities. For

example, it lends itself to efficient implementation of Observing System Simulation Experiments (OSSEs). OSSEs are used to

examine the impact of different observation networks and sampling strategies on specific model Data Assimilation problems

by repeating twin experiments with different sets of synthetic observations used to mimic different instruments and/or sampling20

regimes. In the LaVEnDAR framework the synthetic observations for a large number of different scenarios can all be generated

with the initial ensemble and hence facilitate a large number of OSSE experiments without any further model runs.

5 Conclusions

Variational DA with land surface models holds a lot of potential, especially for parameter estimation, but as land surface models

become more complex and subject to more frequent version releases the calculation and maintenance of a model adjoint will25

become increasingly expensive. One way to avoid the computation of a model adjoint is to move to ensemble data assimilation

methods. In this paper we have documented the LaVEnDAR framework for the implementation of 4DEnVar data assimilation

with land surface models. We have shown the application of the LaVEnDAR DA framework to the JULES land surface model,

but as it requires no modification to the model itself it can easily be applied to any land surface model. Using the LaVEnDAR

framework with JULES we retrieved a set of “true” model parameters given known prior and observation error statistics in a30

set of twin experiments and improved model predictions of real world observations from the Mead continuous maize US-Ne1

FLUXNET site. The use of 4DEnVar with land models holds a great deal of potential for both parameter and state estimation.
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The additional computational overhead compared to 4DVar is an appealing compromise given the simplicity and generality of

its implementation.
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