Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.252 IF 4.252
  • IF 5-year value: 4.890 IF 5-year
    4.890
  • CiteScore value: 4.49 CiteScore
    4.49
  • SNIP value: 1.539 SNIP 1.539
  • SJR value: 2.404 SJR 2.404
  • IPP value: 4.28 IPP 4.28
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 51 Scimago H
    index 51
Discussion papers
https://doi.org/10.5194/gmd-2019-77
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-2019-77
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 27 May 2019

Development and technical paper | 27 May 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Geoscientific Model Development (GMD).

An urban trees parameterization for modelling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0)

Emilie Redon, Aude Lemonsu, and Valéry Masson Emilie Redon et al.
  • CNRM, Météo-France/CNRS, 42 avenue Gaspard Coriolis, 31057 Toulouse cedex, France

Abstract. The TEB urban climate model has recently been improved to more realistically address the radiative effects of trees within the urban canopy. These processes necessarily have an impact on the energy balance that needs to be taken into account. This is why a new method for calculating the turbulent fluxes for sensible and latent heat has been implemented. This method remains consistent with the "bigleaf" approach of the ISBA model which deals with energy exchanges between vegetation and atmosphere within TEB. Nonetheless, the turbulent fluxes can now be dissociated between ground-based natural covers and tree stratum above (knowing the vertical leaf density profile), which can modify the vertical profile in air temperature and humidity in the urban canopy. In addition, the aeraulic effect of trees is added, parameterized as a drag term and an energy dissipation term in the evolution equations of momentum and of turbulent kinetic energy, respectively. This set of modifications relating to the explicit representation of tree stratum in TEB is evaluated on an experimental case study. The model results are compared to micrometeorological and surface temperature measurements collected in a semi-open courtyard with trees and bordered by buildings. The new parameterizations improve the modelling of surface temperatures of walls and pavements thanks to taking into account radiation absorption by trees, and of air temperature. The wind speed is strongly slowed down by trees that is also much more realistic. The universal thermal climate index diagnosed in TEB from inside-canyon environmental variables is highly dependent and sensitive to these variations in wind speed and radiation. This demonstrates the importance of properly modelling interactions between buildings and trees in urban environments, especially for climate-sensitive design issues.

Emilie Redon et al.
Interactive discussion
Status: open (until 22 Jul 2019)
Status: open (until 22 Jul 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Emilie Redon et al.
Emilie Redon et al.
Viewed  
Total article views: 169 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
124 44 1 169 1 2
  • HTML: 124
  • PDF: 44
  • XML: 1
  • Total: 169
  • BibTeX: 1
  • EndNote: 2
Views and downloads (calculated since 27 May 2019)
Cumulative views and downloads (calculated since 27 May 2019)
Viewed (geographical distribution)  
Total article views: 162 (including HTML, PDF, and XML) Thereof 162 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 16 Jun 2019
Publications Copernicus
Download
Short summary
The TEB urban climate model simulates micrometeorological conditions from the neighbourhood scale to the entire city. It has recently been improved to more realistically address the radiative effects of trees within the urban canopy. This article presents additional developments that have been made to better represent the effect of trees on heat and moisture exchange, as well as on air flow in the streets, and on thermal comfort.
The TEB urban climate model simulates micrometeorological conditions from the neighbourhood...
Citation